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ABSTRACT
Microplastic pollution is a widespread environmental concern. Like other anthro-
pogenic pollutants, microplastics can reach aquatic ecosystems through rivers and
interact with the aquatic biota. For instance, Lake Titicaca (between Bolivia and
Peru), one of the great ancient lakes in South America (3,809 m a.s.l.), shows a
pollution problem, particularly in the southern shallow basin (Lago Menor) in Bolivia.
Nevertheless, our knowledge of the presence of microplastics and their interaction with
the biota of Lake Titicaca is limited. Therefore, this study evaluated the presence of
microplastics in the stomach content of the four fish species targeted by local fisheries in
Lago Menor of Lake Titicaca (Orestias luteus, Orestias agassizii, Trichomycterus dispar,
and Odonthestes bonariensis; N = 1,283), and looked for relationships with trophic
guilds or fishing areas. Additionally, surface water was analyzed to evaluate the presence
of microplastics in the water. The evaluation of microplastics was carried out by visual
observations. We observed that the frequency of microplastic ingestion was low in all
species (<5%). Conversely, microplastic was present in the water, with the highest
quantity at the southern part of Lago Menor (103 ± 20 particles per L), without
differences in the microplastic number between sites. Most microplastics counted in
stomach contents were fibers, whereas water samples mainly contained fragments. Our
results point to microplastic pollution in Lago Menor of Lake Titicaca. However, we
could not determine the pollution rate due to considerable methodological limitations.
Further research will be needed to robustly detect microplastics in Lake Titicaca and
their impact on the fish species in the lake.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Environmental Contamination and
Remediation, Environmental Impacts
Keywords Fishery impacts, Fibers, Plastic pollution, Orestias

INTRODUCTION
Plastic is an important component in everyday life (Andrady & Neal, 2009), and its diverse
applications, widespread use, particularly for disposable items, has increased drastically
(Thompson et al., 2009; Li, Liu & Paul Chen, 2018). Plastic is nowadays considered one of
themain pollutants in the environment and has attractedworldwide attention (Thompson et
al., 2009; Cole et al., 2011; Eerkes-Medrano, Thompson & Aldridge, 2015). Plastic wastes are
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observed even in isolated islands in the Pacific Ocean (Lavers & Bond, 2017). Microscopic
plastic (i.e., microplastics) is currently a topic of interest to researchers. The plastic
characteristics, fragmentation, environmental fate, and potential impacts are the main
research topics (Blettler et al., 2018). The term microplastic was coined by Thompson
et al. (2004) and further defined by other authors (see Arthur, Baker & Bamford, 2009;
Cole et al., 2011; Frias & Nash, 2019; Hartmann et al., 2019). We define microplastic as
‘‘plastic particles ranging between 0.1 and 5,000 µm’’ (Desforges et al., 2014; EFSA Panel on
Contaminants in the Food Chain , CONTAM). Microplastic pollution is well-studied in the
marine environment, while research on plastic pollution in freshwater environments is still
limited (Mani et al., 2016; Blettler et al., 2017; Blettler et al., 2018; Dusaucy et al., 2021). The
majority of plastic pollution studies in freshwaters were carried out in Europe and North
America, leaving research to do in Asia and Latin America, where progress has been made
in recent years (Blettler et al., 2018; Alfonso, Arias & Piccolo, 2020; Galafassi et al., 2021).

The interaction of microplastics and aquatic biota is expected (Silva-Cavalcanti et al.,
2017; Alfonso, Arias & Piccolo, 2020). Although microplastic ingestion does not directly
impose fatal effects on fish, a negative correlation between fitness and plastic ingestion
was observed (Lusher et al., 2014). The pathways of microplastics entering the fish include
direct and indirect ingestion. Fishes are the group with most records of plastic ingestion
and it is described that fish mainly ingests microplastics via predation activities (Li, Liu
& Paul Chen, 2018; Azevedo-Santos et al., 2021). The ingestion of plastics by fish thus may
be related to the trophic guild. For instance, omnivorous fish tend to consume more
plastic than fish with a specialized diet (Mizraji et al., 2017). Understanding the feeding
aspects across fish species facilitates the interpretation of plastic content in the stomach
(Dantas, Barletta & Costa, 2015). Freshwater biota is vulnerable to microplastic pollution,
particularly fish living in freshwater ecosystems near urban areas (Silva-Cavalcanti et al.,
2017; Souza, Corrêa & Smith, 2020). Their vulnerability is caused by the disposal of plastics
in freshwater ecosystems coming from direct dumping into rivers or through the disposal
of synthetic fiber products from an increasing population and rapid urbanization (Blettler
et al., 2018). For example, Lake Titicaca (shared between Bolivia and Peru), one of the
highest and most emblematic ancient great lakes in South America (3,809 m a.s.l.), shows a
pollution problem that has increased since the 1990s due to poor land-use planning (Molina
et al., 2017). The lake is part of the TDPS endorheic system (Titicaca-Desaguadero-Poopo-
Coipasa Salt lake), characterized by a north-south gradient, with a single outlet, which
drains out to the Lake Uru-Uru and Poopo (Dejoux & Iltis, 1992; Cross et al., 2000; Revollo,
2001). Its physicochemical characteristics are atypical due to its high altitude and tropical
location (∼16

◦

S) (Lazzaro & Gamarra, 2014). Lake Titicaca is also the most important
water resource for the Andean Altiplano. However, Bolivia’s main source of anthropogenic
pollution reaches the lake in Cohana Bay through the Katari River, which drains the densely
populated area of El Alto city, with more than 1.2 million inhabitants, industries, and a
poor waste water treatment (Molina et al., 2017). Moreover, the pollution on the Bolivian
side of Lake Titicaca is exacerbated in the southern shallow basin (Lago Menor), with large
areas encompassing depths between 5 to 10 m (Dejoux & Iltis, 1992; Lazzaro & Gamarra,
2014).
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Lake Titicaca also hosts a highly endemic biota, dominated by members of the killifish
genus Orestias (more than 20 species) and the catfish genus Trichomycterus (2 species)
(Ibañez et al., 2014). In addition to the exotic piscivores, rainbow trout (Oncorhynchus
mykiss), and silverside (Odontesthes bonariensis) were introduced in the 1940s (Loubens,
1992; Loubens & Osorio, 1992). Although Lake Titicaca provides fish for∼3 million people
in the region the fish stock has been drastically declining, mainly by anthropogenic causes
(Ibañez et al., 2014; Monroy et al., 2014; ALT, 2020). A lack of knowledge remains on fish
response to pollution. The native and exotic fishes are the base of artisanal fisheries
in Lake Titicaca. Most of the native species (i.e., O. luteus, O. agassizii, and T. dispar)
predominantly occupy benthic habitats (Lauzanne, 1992; Ibañez et al., 2014; De La Barra
et al., 2020) with an omnivorous diet, although with few detailed studies. Conversely,
O. bonariensis is a piscivore fish, and is the main predator of native Orestias (Loubens &
Osorio, 1992;Monroy et al., 2014). Frequently, the species that are economically important
for commercial fisheries are the target of studies on plastic ingestion. However, scarce
information exists on microplastic contamination in the fish community of Lake Titicaca.
This study, therefore, aims to evaluate the presence of microplastics in the stomach
contents of four fishery resources from the Lago Menor of Lake Titicaca caught by local
fishermen and to assess whether there is an association with trophic guilds or fishing areas.
Additionally, surface water was analyzed to evaluate the presence of microplastics in the
water. Finally, our study contributes to the growing body of research on microplastics in
freshwater environments.

MATERIALS & METHODS
Study area
Lake Titicaca is divided into two basins: the oligotrophic deepest northern basin Lago
Mayor (7,131 km2; mean depth = 100 m; max depth = 285 m; water volume = 900 km3),
and the smaller southern shallow basin Lago Menor (1,428 km2; mean depth = 9 m; max
depth = 40 m; water volume = 12 km3) (Dejoux & Iltis, 1992). The difference between
basins in Lake Titicacamake LagoMenormore susceptible to pollution (Molina et al., 2017;
Guédron et al., 2017). Similarly, due to its shallow water column, the entire water column
of Lago Menor is mixed because of the strong winds (Achá et al., 2018). Therefore, small
shallow portions of the lake are now eutrophic (Molina et al., 2017; Achá et al., 2018). Lake
Titicaca hosts a strong artisanal fishing activity of considerable importance for the income
of rural families. The fisheries in Lago Menor have four main target species (O. agassizii,
O. luteus, T. dispar and O. bonariensis), which are caught all year round (Lino & Padilla,
2014; ALT, 2020). Nonetheless, as stated previously, heavily polluted water drains to the
Lago Menor through the Katari River from untreated sewage (Molina et al., 2017). This
study was carried out in Lago Menor.

Fish sampling
We identified the main landing zones arriving from the same fishing areas, and the rural
communities of Huarina, Cachilaya, and Desaguadero were selected (Fig. 1). We followed
the fishing activity during the last weeks of May and June 2021 and bought samples
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composed of 60 to 100 specimens (when possible) of each of the four target species from
the fishermen. Often the fish arrived alive at the landing zone, so the entire sample was
euthanized in ice, which also reduced digestive action and preserved stomach content.
Then, fish were transported in coolers to the laboratory (between one and two hours travel
time). Each fish specimen was measured: total length (TL, mm; digital Vernier CD-20CP
Mitutoyo) and weight (W, g; PT 120 Sartorius Laboratory precision balance, 0.01 g).
After the measurements were taken, the specimens were dissected, and the stomachs were
separated. Next, stomach content was washed with distilled water and diluted in case of
abundant stomach content. All stomach content was transferred to Petri dishes, where
the microplastics were evaluated under a stereomicroscope with a magnification power
between 6 X to 50 X (WILD M3, Heerbrugg). Microplastics were identified, counted, and
categorized by color and type (fragment and fiber) (McCormick et al., 2016). The visual
identification of microplastics may have several limitation, but is still the simplest and
most widely used (Li, Liu & Paul Chen, 2018). Our visual evaluation followed personal
observations comparing plastic fragments and fibers found in the stomachs with plastic
materials found in water samples. In order to prevent any contamination, we used lab
coats, gloves, and caps during the evaluation. In addition, all work surfaces and tools were
sterilized with ethanol, and all utensils and Petri dishes were carefully assessed before the
stomach contents were transferred to ensure the Petri dishes were not contaminated with
any plastic. The quantification of microplastics ingested was based on the frequency of
occurrence (FO) (Hyslop, 1980), calculated from the equation: FO (%) = Fi/Ft*100; where
Fi is the number of stomachs containing microplastics and Ft in the total number of
stomachs examined.

Water sampling
The water samples were collected during the survey of the project ‘‘Working for a healthier
aquaculture in Lake Titicaca’’ (TEAM Project, VLIR-UOS) in Huatajata, Central Islands,
and Desaguadero (July, 2021), and Nacoca and San Jose (August 2021; Fig. 1). Samples
were collected along transects from the shoreline to open waters of the LagoMenor. Surface
water (between 0.5 to 1m depth) was collected using a 1 L VanDorn bottle. Three replicates
were taken along of each transect, where 5 L of water was collected in each replicate. The
collected water was accumulated in carefully washed gallon jugs prior to use. Then, the 5
L of water was filtered in a 20 µm mesh, concentrated in 50 mL falcon tubes, and stored
on ice until it arrived at the laboratory for evaluation under controlled conditions. In
the laboratory, the individual 50 mL of water sampled was subsequently suspended with
distilled water and filtered once again through a 10 µm sieve to avoid losing any portion
of the sample. Next, the sieved material was transferred to a Sedgwick-Rafter counting cell
with a glass dropper pipette and visually examined under a microscope (Olympus CX43,
4X, and 10X objectives) coupled to a 3.1-megapixel digital color camera for microscopy
(Olympus LC30). The microplastics were identified, counted, and categorized by color and
type (fragment and fiber) (McCormick et al., 2016). Finally, 10–15 items of microplastics
in fragments and fibers were randomly selected, photographed, and measured using the
microscope’s camera software (LCmicro, Olympus Image Analysis Software 2.2 version)
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Figure 1 Locationmap of sampling station in LagoMenor of Lake Titicaca.Map the localization of the
Lago Menor in the Lake Titicaca study area. Dark Blue circles show the water sampling replicates along the
transect (blue dotted line). Red circles show the three landing zones in Lago Menor, and light blue show
the fishing areas near the transect.

Full-size DOI: 10.7717/peerj.14112/fig-1

without changing any of the image characteristics (i.e., contrast, gain, saturation). The
same contamination prevention measures mentioned in the previous section were taken.
The Bolivian Ministry of Environment fully approved the development of the project
investigations from which this study is derived (MMAYA/VMABCCGDF/DGBAP/MEG
340/2019).

Data analysis
The data presented did not meet the assumptions required for conducting a one-way
ANOVA. Therefore, a Kruskal–Wallis test was performed to look for differences in number

Loayza et al. (2022), PeerJ, DOI 10.7717/peerj.14112 5/16

https://peerj.com
https://doi.org/10.7717/peerj.14112/fig-1
http://dx.doi.org/10.7717/peerj.14112


Figure 2 Examples of fibers of microplastics found in gut content. Photograph of fibers found in stom-
ach content of O. luteus and O. agassizii. (A) Microplastic fiber bun, (B) microplastic fiber with stomach
content. The stereo microscope used has a magnification power of 6 X and 50 X (WILD M3, Heerbrugg).

Full-size DOI: 10.7717/peerj.14112/fig-2

of microplastics ingested per fish species, trophic guilds and fishing areas. The Kruskal-
Wallis test was also used to test differences in the number of microplastics per site. All
statistical analysis were performed using Infostat software (Di Rienzo et al., 2017).

RESULTS
A total of 1,283 fish were evaluated, dominated by O. agassizii (32%) (Supplemental
Material). We observed microplastics inside the stomach of 44 specimens (3% of the
evaluated fishes). Microplastics ingestion was observed in all fishing areas, but none was
observed in the stomach of O. agassizii and O. bonariensis at Desaguadero. The ingested
microplastics observed in fish were dark-colored fibers (blue and black). The fibers were
usually found as filaments (Fig. 2A) and rarely as a bundle (Fig. 2B). The frequency of
occurrence of fibers was low in all species (FO <5%; Fig. 3). The carnivorous species (O.
bonariensis) showed microplastics at much lower frequency (0.3%). Finally, the mean
number of microplastics found per species, trophic guilds and fishing areas were not
significantly different (H = 2.64, p= 0.504; H = 1.26, p= 0.297; and H = 4.35, p= 0.111,
respectively).

A total of 3,395 particles of microplastics were counted in water samples ranging between
56 and 602 particles per sample. Microplastic quantity was highest at Desaguadero (103
± 20 particles per L; Table 1), although there were no differences between sites (H = 7.36,
p= 0.118). Of the total number ofmicroplastics identified, 69.4%were blue, 29.4% red, and
1.2% black. The majority of microplastics counted were fragments (54.2%). Desaguadero
was the site with the highest quantity of microplastic fragments (75 ± 19 particles per L).
Conversely, a higher quantity of microplastic fibers was found in the Central Islands (41
± 34 particles per L; Fig. 4). The size of particles ranged from 5.63 µm to 2,756.92 µm
for fibers and from 2.15 µm to 1,249.34 µm for fragments. The mean size in length of
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Figure 3 Frequency of occurrence (FO) percentage of microplastics found in gut content of the fish
studied in LagoMenor of Lake Titicaca. Frequency of microplastics fibers found in the stomach content
of four target species of Lago Menor artisanal fisheries. Bars indicate the SD.

Full-size DOI: 10.7717/peerj.14112/fig-3

Table 1 Microplastic debris in the water of LagoMenor of Lake Titicaca.Mean microplastic number
per liter debris in the water samples of Lago Menor of Lake Titicaca.

Site Mean of microplastics
counted± SD

Range of microplastics
counted (min-max)

Huatajata 36.00± 00.57 35.60–36.40
Central Islands 58.87± 41.41 11.20–86.00
Nacoca 23.93± 5.82 18.40–30.00
San Jose 24.60± 16.69 12.80–36.40
Desaguadero 103.13± 19.88 81.40–120.40

Notes.
Number of microplastics found= 3,395 particles (Fibers: 45.8%; Fragments: 54.2%).

fragments and fibers was larger in Central Islands (fragments: 117.5 ± 183.7 µm; fibers:
645.3 ± 584.7 µm; Fig. 5).

DISCUSSION
We observed that 3% of the fish evaluated in our study had ingested microplastics. This
low occurrence of plastic particles was much lower than other freshwater fish species
reported (Galafassi et al., 2021). Furthermore, the relationship between microplastic
ingestion, species, trophic guild, and fishing areas was not evident. However, it is notable
that the carnivorous species (O. bonariensis) had the lowest occurrence of microplastics.
Conversely, omnivorous species, particularlyO. agassizii, had a relatively higher ingestion of
microplastics. An important ecological characteristic of this species is its feeding plasticity,
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Figure 4 Number of microplastics in water samples in LagoMenor of Lake Titicaca. Box plot for the
microplastic number found in the water samples in different sites in Lago Menor of Lake Titicaca. Visual
examination was performed using an Olympus CX43 microscope, 4X and 10X objectives.

Full-size DOI: 10.7717/peerj.14112/fig-4

Figure 5 Size of microplastics found in the water samples in LagoMenor of the Lake Titicaca. Bar plot
of the size in length of microplastics found in the water samples in different sites in Lago Menor of Lake
Titicaca. Bars indicate the SD. Visual examination was performed using an Olympus CX43 microscope,
4X, and 10X objectives, and photographed using an attached Olympus LC30 digital camera. No contrast,
gain, and image saturation modification to the photographs were made.

Full-size DOI: 10.7717/peerj.14112/fig-5

which allows it to take advantage of almost all food items in its habitat (Vila, Pardo &
Scott, 2007; Ibañez et al., 2014; De La Barra et al., 2020). Specifically, our result may be
consistent with the hypothesis that the amount of plastics ingested by omnivorous fish is
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associated with their wider food web (Mizraji et al., 2017). It has frequently been suggested
that fish living in freshwater environments near urbanized regions have a higher risk of
microplastic ingestion, and a direct relationship with the level of urbanization has been
observed (Silva-Cavalcanti et al., 2017; Souza, Corrêa & Smith, 2020; Galafassi et al., 2021).
However, several studies present evidence that higher environmental concentrations of
microplastics do not necessarily translate into higher ingestion by aquatic biota (McNeish
et al., 2018; Talley, Venuti & Whelan, 2020; Sembiring et al., 2020). Such is the case for our
results because the microplastic numbers in the water were higher than in the stomachs.
Life history may thus have an even more significant influence on the level of microplastic
ingestion (Talley, Venuti & Whelan, 2020). It is important to highlight here that more
research is needed to obtain further information on microplastic ingestion by fish in
Lake Titicaca. Surely, microplastics can cause health complications to wildlife in aquatic
ecosystems. These complications can include intestinal obstruction, gut microbiota,
physical injury, and liver stress, among others (Browne et al., 2008; Wright, Thompson &
Galloway, 2013; Guerrera et al., 2021; Huang et al., 2022). Furthermore, aspects such as
transit time and the ability of the digestive system to get rid of microplastics should be
considered in future studies to understand the impact of these pollutants in fish of Lake
Titicaca.

The mean numbers of microplastic abundance in freshwater systems vary significantly
(Li, Liu & Paul Chen, 2018). Human activities, sampling location and sampling approaches
could contribute to differences in microplastic number (Eerkes-Medrano, Thompson &
Aldridge, 2015). In our study, the number of microplastics was variable (ranging from 11
to 120 particles per liter), showing higher quantities in the southern part of Lago Menor.
Specifically, the highest quantity of microplastics was observed in Desaguadero. It was not
possible to differentiate whether this higher number of microplastics is a local phenomenon
or is a result of the natural watershed gradient. There is no accurate information on the
amount of waste discharged into Lake Titicaca. Moreover, there is no data on the Lago
Menor’s water flows (Lazzaro & Gamarra, 2014). The number of microplastics was also
higher near the Central Islands, possibly because of the spread of pollution fromwastewater
inlets into the lake (Duwig et al., 2014; Archundia et al., 2017). The Katari River, the main
tributary of Lago Menor, is undoubtedly the main wastewater source in this shallow
lake (Molina et al., 2017; Achá et al., 2018). However, physicochemical changes observed
in Lago Menor suggest other sources of pollutants, in addition to those transported by
the Katari River (Achá et al., 2018). In recent years, demographic growth in the Central
Islands in Lago Menor has led to rapid urbanization, with no sewage water or solid waste
management, adding to the pollutants discharged into Lake Titicaca. There is a strong link
between the rapid growth of urban and industrial areas and the detriment of the water
quality of Lake Titicaca, as there is deficient wastewater management (Molina et al., 2017;
Archundia et al., 2017; Baltodano et al., 2022). This situation thus highlights the need for a
monitoring system for Lake Titicaca, one of the 20 largest lakes in the world.

It is worth mentioning that the methods used to evaluate water and the stomach
content of the collected fish were based on visual observations and could therefore
be biased. Furthermore, none of the samples studied were subjected to a purification
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process nor density separation. Therefore, our results should be taken cautiously as no
analytical methods was performed. Although the current techniques for quantitative and
qualitative research of microplastics include spectroscopy and liquid chromatography
(Li, Liu & Paul Chen, 2018), the availability of this specialized equipment is not always
easily accessible to researchers in developing countries. Unfortunately, our study
has methodological limitations and does not meet all the requirements and quality
assurance/quality control proposed by Cowger et al. (2020). Specifically, visual observation
of plastics can bemisleading, and, more importantly, the calculated number of microplastic
presence could be an underestimate or overestimate of the real number. In addition, the
results of visual classification are strongly affected by several factors (i.e., carelessness of the
assessor or the quality of the microscopy) (Hidalgo-Ruz et al., 2012). To date, there is no
information on microplastic pollution in Bolivia or Lake Titicaca (Castañeta et al., 2020;
Galafassi et al., 2021). Therefore, despite its methodological limitations, our study provides
evidence of the pollution of microplastics in Lake Titicaca’s habitat and fishery resources.

CONCLUSIONS
In this study, we report the presence of microplastics in the stomachs of the four target
species of artisanal fisheries in the Lago Menor ok Lake Titicaca. Our results suggest that
the frequency of microplastic ingestion by fish is low, and was not related to the trophic
guild or fishing areas. However, the presence of microplastics in the water was particularly
high in Desaguadero, near the outlet of Lago Menor. The difference between microplastics
found in stomach contents and the water column suggests that microplastic pollution and
urbanization were not related in LagoMenor. However, we cannot ensure the pollution rate
in Lago Menor due to considerable methodological limitations. Nevertheless, despite these
limitations, this study represents relevant information assessing the microplastic content in
the emblematic Lake Titicaca. Further research would be needed for more robust detection
of microplastic quantity for Lake Titicaca fishes across large spatial scales.
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