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Abstract The extended multiple linear regression technique is used to determine changes in
anthropogenic carbon in the intermediate layers of the Eurasian Basin based on occupations from four
cruises between 1996 and 2015. The results show a significant increase in basin-wide anthropogenic
carbon storage in the Nansen Basin (0.44–0.73 ± 0.14 mol C⋅m−2⋅year−1) and the Amundsen Basin
(0.63–1.04 ± 0.09 mol C⋅m−2⋅year−1). Over the last two decades, inferred changes in ocean acidification
(0.020–0.055 pH units) and calcium carbonate desaturation (0.05–0.18 units) are pronounced and rapid.
These results, together with results from carbonate-dynamic box model simulations and 129I tracer
distribution simulations, suggest that the accumulation of anthropogenic carbon in the intermediate
layers of the Eurasian Basin are consistent with increasing concentrations of anthropogenic carbon in source
waters of Atlantic origin entering the Arctic Ocean followed by interior transport. The dissimilar distributions
of anthropogenic carbon in the interior Nansen and Amundsen Basins are likely due to differences in the
lateral ventilation of the intermediate layers by the return flows and ramifications of the boundary current
along the topographic boundaries in the Eurasian Basin.

1. Introduction

Between 25% and 30% of the total anthropogenic emissions of carbon dioxide (CO2) to the atmosphere is
absorbed by the ocean (Le Quéré et al., 2016). The ocean’s capacity to store CO2 is controlled by biological
(soft tissue and calcification), physical (interior export), and chemical (solubility) processes. Although miti-
gating climate change, the oceanic uptake of anthropogenic CO2 (Cant) causes significant changes in ocean
carbon chemistry and may ultimately lead to cessation or significant decrease in the inorganic storage of
anthropogenic CO2 in the ocean as the seawater buffering capacity decreases (Hagens & Middelburg, 2016;
Hauck & Völker, 2015; Revelle, 1983; Sabine et al., 2004). Uptake of anthropogenic CO2 inevitably leads to
decreasing pH, lower concentration of carbonate ions, and lowered saturation state (Ω) for metal carbonates
such as aragonite and calcite, that is, ocean acidification.

Ocean acidification in the Arctic is more pronounced than in any other ocean (Bates et al., 2011;
Semiletov et al., 2016; Steinacher et al., 2009; Yamamoto et al., 2012). Saturation states of the calcium carbon-
ate polymorphs aragonite and calcite indicate that most of the waters of the deep basins are oversaturated
(Jutterström & Anderson, 2005). However, observations have shown that a number of regions in the Arctic
Ocean are already undersaturated with respect to aragonite, for example, the Canada Basin with the Chuckchi
and Beaufort Seas (Qi et al., 2017; Wynn et al., 2016; Yamamoto-Kawai et al., 2009), the Canadian Arctic
Archipelago and MacKenzie shelves (Chierici & Fransson, 2009; Fransson et al., 2013), and the Laptev and East
Sibierian Seas (Anderson et al., 2017; Semiletov et al., 2016). This is primarily caused by freshwater dilution
from sea ice melt and riverine input, invasion of anthropogenic CO2 from the atmosphere at an ice-free
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Figure 1. Map of the Arctic Ocean with general circulation patterns in the intermediate layers of the deep basins and
exchange with waters of Atlantic origin, adapted after Rudels (2016). Sections in this study are indicated by their roman
numerals referred to in the text and Table 1: Arctic Climate System Study 1996 (ACSYS 1996) (I); Beringia 2005 (II);
TransArc 2011 (III, V, and VII); and TransArc 2015 (IV and VI). FS = Fram Strait; NB = Nansen Basin; AB = Amundsen Basin;
MB = Makarov Basin; CB = Canada Basin; StAT = St. Anna Trough; GR = Gakkel Ridge; and LR = Lomonosov Ridge.

surface ocean, terrestrial organic carbon inputs from rivers, thawing permafrost and coastal erosion, and
changes in wind patterns and circulation of source waters.

The Arctic Ocean has a high potential for anthropogenic CO2 uptake (ΔCant) and storage (Cant) relative to its
size, a feature related to the intense ventilation of subsurface layers and high CO2 solubility in low-temperature
waters. The renewal of intermediate layers is mainly driven by the inflow of ventilated Atlantic water through
the Fram Strait and over the Barents Sea and dense water formation by brine release during sea ice produc-
tion (Rudels et al., 2012). The anthropogenic CO2 concentration in the Arctic Ocean is nearly twice that of the
global mean, and highest Cant concentrations are found at the surface and throughout the intermediate lay-
ers, with distinct interbasin differences, whereas the deep waters hold low Cant concentrations (Tanhua et al.,
2009). The inorganic carbon inventory of the intermediate layers of the Arctic Ocean has increased during
the last two decades, which is attributed to increasing concentrations of anthropogenic carbon in the inflow-
ing Atlantic source waters (Ericson et al., 2014). The Atlantic layer and intermediate water masses flow in a
cyclonic pattern along topographic boundaries (Figure 1) before exiting through Fram Strait and beyond to
the Atlantic Ocean, thereby linking the Arctic to the global thermohaline circulation (Anderson et al., 1999;
Mauritzen, 1996). However, there is relatively little recent information on the inventory and uptake rate of
anthropogenic CO2 in the Arctic Ocean (Tanhua et al., 2013). This is primarily due to the dearth of high-quality
seawater CO2 system data and ancillary biogeochemical variables of sufficient spatial and temporal resolu-
tion from which to determine anthropogenic inventory and uptake rates. As a result, the Arctic Ocean has not
typically been included in the global estimates of anthropogenic CO2 (e.g., Khatiwala et al., 2013).

The gradual uptake of anthropogenic CO2 by the ocean from the atmosphere can, in principle, be quantified
as the ensuing gradual rise of dissolved inorganic carbon (DIC) at the surface and eventually within the ocean
interior (Brewer, 1978; Chen & Millero, 1979; Postma, 1964). The large and complex natural ocean background
provides difficult challenges in order to assess any trends and to distinguish the small anthropogenic compo-
nent. Several different methods have been developed to estimate the total anthropogenic CO2 inventory (Cant)
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Table 1
List of Cruises: Arctic Climate System Study 1996 (ACSYS 1996; ARK-XII; PS41), Beringia 2005 (ODEN05; AOS-2005), and Trans-Arctic Survey of the Arctic Ocean in Transition
2011 (TransArc 2011; ARK-XXVI/3; PS78) and 2015 (TransArc II 2015; ARK-XXIX/3, PS94)

Survey (Section) EXPOCODE (vessel) Date Parameters Source Adjustmentsa

ACSYS 1996 06AQ19960712 12 Jul to 6 Sep 1996 S, T , O2, GLODAPv2b (Anderson and Augstein (1996))

(Section I) (R/V Polarstern) DIC, TAc, pH,

NO3, PO4, Si

Beringia 2005 77DN20050819 19 Aug to 25 Sep 2005 S, T , O2, GLODAPv2b (Anderson, Tanhua, et al., 2011) TA:+5, pH:+0.01,

(Section II) (I/B Oden) DIC, TA, pH, Si:+0.4

NO3, PO4, Si

TransArc 2011 06AQ20110806 6 Aug to 7 Oct 2011 S, T , O2
d, Schauer et al. (2011) O2:+2,

(Sections II, V, VII) (R/V Polarstern) DIC, TA, pH, Anderson, Ulfsbo, and Ericson (2011) DIC:-3

NO3, PO4, Si Kattner and Ludwichowski (2014)

TransArc II 2015 06AQ20150817 17 Aug to 15 Oct 2015 S, T , O2
e, Rabe et al. (2016)

(Sections IV, VI) (R/V Polarstern) DIC, TAf, pH, Jones and Ulfsbo (2017) DIC:-2

NO3, PO4, Si van Ooijen et al. (2016)

Note. For the geographic location of the stations for each section and cruise, see Figure 1. The original data source and principal investigator are referred to in
parentheses. DIC = dissolved inorganic carbon; TA = total alkalinity; CTD = conductivity-temperature-depth.
aAdjustments made in this study. GLODAPv2 adjustments available at https://glodapv2.geomar.de/adjustments/. bThe ACSYS 1996 and Beringia 2005 data sets

were extracted from GLODAPv2 (Key et al., 2015; Olsen et al., 2016). cTA calculated from pH and DIC (see section 2). dCalibrated CTD oxygen. eNoncalibrated CTD
oxygen. fTA calculated from pH and DIC (see section 2).

since the preindustrial era and to quantify the increase in Cant (ΔCant). The first category requires knowledge
of preindustrial concentrations and transient tracers (e.g., Brewer, 1978; Chen & Millero, 1979; Gruber et al.,
1996; Hall et al., 2002; Stöven et al., 2016; Tanhua et al., 2009), whereas the latter relies on linear regression
analyses of high-quality repeat hydrographic sections or ocean times series (e.g., Friis et al., 2005; Peng et al.,
1998; van Heuven, Hoppema, et al., 2011; Wallace, 1995).

With close to 20 years (1996–2015) of hydrographic and carbonate system data in the Eurasian Basin (Figure 1),
we exploit the extended multiple linear regression (eMLR) technique (Friis et al., 2005) in the Atlantic and
intermediate layers (∼100–1,500 m) of the central Arctic Ocean with respect to changes in anthropogenic
CO2, pH, and aragonite saturation state. The eMLR technique has been widely used to detect decadal changes
in anthropogenic carbon throughout the major oceans (e.g., Brown et al., 2010; Carter et al., 2017; Chu et al.,
2016; Friis et al., 2005; Sabine et al., 2008; Waters et al., 2011; Woosley et al., 2016) and now in the Eurasian
Arctic Ocean.

2. Data Description and Quality
2.1. Data Sets
Data were analyzed from four icebreaker surveys between 1996 and 2015 (Table 1) transecting the Nansen
and Amundsen Basins in the Eurasian Arctic Ocean (Figure 1). We refer to the Arctic Climate System Study
1996 (ACSYS 1996) cruise (Figure 1; Section I) as the initial occupation, and the progressively more recent
Beringia 2005 (Section II), TransArc 2011 (Sections III, V, and VII), and TransArc II 2015 (Sections IV and VI)
cruises are assumed reoccupations. It is important to note that the transects are not true repeat surveys with
respect to geographical location and vertical and horizontal sampling resolution. The ACSYS 1996 section
spans between 82–86∘N and 90–120∘E, whereas the main sections from 2005 to 2015 are between 85∘N
and 90∘N along 60∘E. Two additional sections from 2011 (Section V) and 2015 (Section VI) with an eastern
offset from ACSYS 1996 were included, as well as a third section from 2011 along the Gakkel Ridge toward
the Laptev Sea (Section VII). The data from 1996 and 2005 were included in the Arctic Ocean data compilation
(Jutterström et al., 2010) within the Carbon Dioxide in the Atlantic Ocean (CARINA) data synthesis project
(Key et al., 2010) and the more recent Global Ocean Data Analysis Project version 2 (GLODAPv2), which has
been subjected to rigorous quality control as described in Key et al. (2015) and Olsen et al. (2016). Data from
2011 and 2015 have not yet been included in these synthesis products; however, they are available from other
sources (Table 1).
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2.2. Analytical Methods and Quality
Practical salinity (S), temperature (T), dissolved oxygen (O2), nitrate (NO3), phosphate (PO4), silicate (Si), pH,
total alkalinity (TA), and DIC were used in the present study. Briefly, during the 1996–2011 cruises, DIC was
determined using a coulometric titration method based on Johnson et al. (1987) with a modified Single
Operator Multiparameter Metabolic Analyzer system (coulometer type UIC 5012), a predecessor to the VINDTA
3C (MARIANDA, Kiel, Germany), which was used to measure both DIC and TA in 2015. During the earlier cruises,
TA was determined by open cell potentiometric titration according to Haraldsson et al. (1997). For DIC, the
precision was 1–2 μmol/kg for all cruises but TransArc 2011, with a precision of about 4 μmol/kg. The precision
in TA was better than 2 μmol/kg for all cruises. The accuracy in DIC and TA was ensured by routine analy-
sis of certified reference material (CRM) obtained from A. G. Dickson of Scripps Institution of Oceanography
(La Jolla, CA, USA) during all cruises. Seawater pH was determined spectrophotometrically (Agilent 8453) on
the total scale with a precision better than 0.001 pH units. The method is based on the absorption ratio of
the sulfonephthalein dye m-cresol purple (Clayton & Byrne, 1993). Purified m-cresol purple (Liu et al., 2011)
was obtained from R. H. Byrne of University of South Florida (St. Petersburg, USA) for 2015. Conversion of
seawater pH between standard (25∘C and surface (0 dbar) pressure) and in situ (temperature and pressure)
conditions followed the GLODAPv2 quality control methodology (Olsen et al., 2016; Velo et al., 2010). The
total pH scale at in situ temperature and pressure was used throughout this study. During the 1996 and 2005
cruises, oxygen was determined with automated Winkler titration systems, with a relative precision of better
than 1%. During the 2011 and 2015 cruises oxygen was acquired from a Sea-Bird Electronics (SBE43) oxygen
sensor mounted on the conductivity-temperature-depth (CTD) package, with the data calibrated by Winkler
titrations only in 2011. Nutrients were measured by autoanalyzers according to standard procedures (e.g.,
following the World Ocean Circulation Experiment protocol for the earlier cruises Gordon et al., 1994), with a
relative precision better than 2%.

Secondary quality control was applied on Eurasian Basin Deep Water (>2,500 m) by offset analysis using mul-
tiple linear regression (MLR) for each parameter (Jutterström et al., 2010). There is little variation in Eurasian
Basin Deep Water properties as a result of long residence time (Tanhua et al., 2009) with small impact from
biogeochemical processes, such as organic matter remineralization and the temporal variability of calcium
carbonate dissolution (Ericson et al., 2014). According to Jutterström et al. (2010), the offset (supporting
information Figure S1) should be greater than 4 μmol/kg for DIC, 6 μmol/kg for TA, 2% for nutrients and oxy-
gen, and 0.01 for salinity for an adjustment to be made. Although no true offsets were found, adjustments
were performed on the entire data sets according to Table 1, based on the notion of invariable deep water
mean values over the considered period of this study (Ericson et al., 2014).

The carbonate system was overdetermined (pH, DIC, and TA) during all cruises. The internal consistency, based
on the mean differences between measured and calculated parameters, was better than 2 μmol/kg for TA and
DIC and 0.005 for pH (Table S1) and thus of the same order of magnitude as the precision of the measurements.
For ACSYS 1996 TA was partially calculated from DIC and pH within the CARINA data product, whereas these
were excluded in GLODAPv2. In this study, we use TA calculated from DIC and pH for ACSYS 1996 and TransArc
II 2015 using the carbonic acid dissociation constants of Lueker et al. (2000), the bisulfate constant of Dickson
(1990), and the boron/salinity ratio of Uppström (1974). All calculations were made using the MATLAB CO2SYS
version 1.1 (van Heuven, Pierrot et al., 2011).

3. Methods
3.1. Determining Anthropogenic CO2 Changes
The eMLR technique presented by Friis et al. (2005), a derivative from the MLR approach (Wallace, 1995), was
used to assess the short-term increase of Cant (ΔCant) on decadal scales. Since its introduction, the eMLR tech-
nique has been used extensively throughout the major oceans (Brown et al., 2010; Carter et al., 2017; Chu et al.,
2016; Hauck et al., 2010; Olsen et al., 2006; Peng & Wanninkhof, 2010; Quay et al., 2007; Sabine et al., 2008;
Wanninkhof et al., 2010; Waters et al., 2011; Woosley et al., 2016; Williams et al., 2015). All MLR techniques
are empirical approaches that rely on the robust correlation of changes in DIC with changes in other physical
and biogeochemical variables throughout an ocean section and account for seasonal and interannual vari-
ability between data sets. This inherently assumes that the natural variability in DIC is linearly related to the
physical and biogeochemical input variables, while anthropogenic changes are not. In the eMLR approach,
DIC from two different years are fit independently applying a MLR to the same set of multiple physical and
biogeochemical predictor variables that explain the DIC content for each year. The change (or difference)
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in the resultant MLR regression coefficients between the two data sets (years) is then, usually, used in con-
junction with the physical and biogeochemical variables from the most recent occupation to estimate ΔCant.
Assuming that hydrographic properties of the water masses and the underlying natural relationship between
the input variables and DIC stay the same, physical and biogeochemical variations thence cancel out (Friis
et al., 2005; Hauck et al., 2010). The information about Cant is therefore carried only by the regression coef-
ficients and not by the variables. Equations (1) through (3) illustrate the eMLR approach to estimate ΔCant

(μmol/kg) between two occupations,

DICMLR
1 = a1 + b1S1 + c1T1 + d1[NO3]1 + e1[TA]1 + f1[Si]1, (1)

DICMLR
2 = a2 + b2S2 + c2T2 + d2[NO3]2 + e2[TA]2 + f2[Si]2, (2)

ΔCant =(a2 − a1) + (b2 − b1)S2 + (c2 − c1)T2 + (d2 − d1)[NO3]2

+ (e2 − e1)[TA]2 + (f2 − f1)[Si]2, (3)

where S, T , NO3, TA, and Si were used as predictor variables in this study. The subscript 2 indicates variables
and regression coefficients from a more recent occupation (Table 1; 2005–2015), and subscript 1 repre-
sents regression coefficients from the reference occupation (1996). Physical and biogeochemical variables
can, ideally, be used either from the prior occupation (forward case) or from the more recent occupations
(backward case), however, the data set with the highest quality should be used to calculate ΔCant from
equation (1) (Tanhua et al., 2007). Consequently, we use the “backward case” throughout this study deeming
the more recent data sets (2005–2015) to be of higher quality and of greater spatial coverage compared to
the reference occupation (1996, for “forward case”; see supporting information and Figure S2).

The variables used in the MLRs are not universal, and the best choice of variables varies by geographic loca-
tion and data quality; thus, they must be determined for each data set. The combination of predictor variables
in equations (1)–(3) was determined by an iterative stepwise linear regression approach (MATLAB routine
“stepwiselm”) of all ACSYS 1996 DIC data. The approach uses a t test to determine which variables are signifi-
cant and an F test to ensure model robustness. Potential temperature (𝜃), T , S, O2, apparent oxygen utilization
(AOU), TA, Si, NO3, and PO4 were considered in different combinations in addition to the final choice of vari-
ables (equations (1)–(3)) as determined from the stepwise regression. There was no significant improvement
of the statistical fit using potential temperature instead of temperature. The inclusion of either O2 or AOU to
the variables in equations (1)–(3) resulted in highly scattered results with both depth and in space. Neither
nutrient changed the statistical fit considerably; however, NO3 and Si best supported the notion of invariable
deep waters with respect to changes in physical and biogeochemical variables over the considered period of
time in this study (Ericson et al., 2014). For the MLRs, a robust regression routine was used (MATLAB routine
“robustfit”) following Carter et al. (2017). The coefficients for each MLR analysis along with root mean square
error and MLR residuals are supplemented (Table S2 and Figure S3). The total uncertainty in the eMLR analysis
was estimated to be 5–6 μmol/kg, depending on water mass, and values of ΔCant (Figure 2) below this range
should be considered with caution (Appendix A).

3.2. Determining Ocean Acidification
Decreasing pH as a result of increasing anthropogenic CO2, that is, ΔpHant, has previously been estimated
from the difference in calculated pH including the change in DIC from ΔCant under the assumption that total
alkalinity does not change significantly in time and space (e.g., Waters et al., 2011; Woosley et al., 2016). In this
study, we use another approach by taking the ratio of ΔCant to the buffer factor 𝛽DIC as defined by Egleston
et al. (2010). The buffer factor 𝛽DIC describes the ocean’s capacity to buffer changes in [H+] due to accumulation
of CO2 from the atmosphere ((𝛿ln[H+]/𝛿DIC)−1) and, inherently, assumes constant total alkalinity. Similarly,
the ratio of ΔCant to the buffer factor 𝜔DIC was used to estimate the change in aragonite saturation state.
The buffer factor 𝜔DIC describes the ocean’s capacity to buffer changes in [CO2−

3 ] due to accumulation of CO2

from the atmosphere, that is, (𝛿ln[CO2−
3 ]/𝛿DIC)−1, which is the same as (𝛿lnΩAr/𝛿DIC)−1. The buffer factors were

included in a modified CO2SYS version 1.1 and validated against the work of Egleston et al. (2010) and the
“buffesm” function in the “seacarb” software package (Lavigne & Gattuso, 2010). The explicit expressions of
the buffer factors provide means to compare the degree of buffering in different regions at different times and
to gain insight into the buffering mechanisms (Egleston et al., 2010). Reductions greater than 0.01 pH units
and 0.02 units for aragonite saturation state should be considered with caution (Appendix A).
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Figure 2. (a–f ) Section plots of ΔCant (μmol/kg) for Beringia 2005 (Figure 1; Section II), TransArc 2011 (Sections III, V, and VII), and TransArc II 2015 (Sections IV
and VI) relative to ACSYS 1996 (Section I). CTD stations and sampling depths (black dots) are denoted by their station numbers. Bathymetry is taken from CTD
bottom depth in (a) and from the ship’s sonar in (b)–(f ). Isopycnals (𝜎𝜃 = 27.70, 𝜎𝜃 = 27.97, and 𝜎0.5 = 30.444) and isothermal (𝜃 = 0∘C) used to define each water
mass are listed in (a) and shown in all panels. (g–i) Potential temperature-salinity (𝜃-S) plots with overlaid ΔCant (μmol/kg) for all stations in 2005, 2011,
and 2015. ACSYS 1996 = Arctic Climate System Study 1996; CTD = conductivity-temperature-depth; AAW = Arctic Atlantic Water; dAAW = dense Arctic Atlantic
Water; uPDW = upper Polar Deep Water; EBDW = Eurasian Basin Deep Water; CBDW = Canada Basin Deep Water; Tf = seawater freezing temperature, dashed
line. AAW thermocline indicates waters defined by 27.70 ≤ 𝜎𝜃 ≤ 27.97, 𝜃 ≤ 0, and S ≤ 34.676 + 0.232𝜃. Colored 𝜃-S lines indicate selected CTD stations
deemed representative of the Nansen Basin (red), western Amundsen Basin (orange), eastern Amundsen Basin (purple), and the Makarov Basin (blue)
for the different years.

3.3. Water Mass Definitions
The water masses of the Eurasian Basin were defined by their S, 𝜃, and density levels (𝜎𝜃 , 𝜎0.5) following Rudels
et al. (2012). In this study we refer to Arctic Atlantic Water (AAW; ∼100–500 m), dense Arctic Atlantic Water
(dAAW; ∼500–700 m), upper Polar Deep Water (uPDW; ∼700–1,500 m), and deep water (DW; >1,500 m),
including both Eurasian Basin Deep Water (EBDW) and Canada Basin Deep Water (CBDW). Surface data (upper
∼100 m) was not included in the analysis due to the seasonal changes in the summer and winter mixed layers
as a result of brine rejection, physical mixing, and stratification. The depth of the winter mixed layer typically
ranges from∼30 to 100 m in the Eurasian Basin (Figure S4). Initial inclusion of surface data provided significant
scatter in the eMLR residuals, rendering seemingly poor results. Also, eMLR analysis of data separated into
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respective water masses based on isopycnal boundaries (e.g., Wanninkhof et al., 2010; Williams et al., 2015;
Woosley et al., 2016) rendered unrealistic results, not consistent with invariable deep water conditions over
the time period in this study (Ericson et al., 2014).

4. Results
4.1. Increasing Anthropogenic CO2

The increase in ΔCant for all cruises (2005, 2011, and 2015) show similar distribution patterns (Figure 2) in
the AAW, dAAW, and uPDW (∼100–1,500 m) along the western (Sections II–IV) and eastern (Sections V–VII)
sections in the Nansen and Amundsen Basins relative to 1996 (Figure 1 and Section I). For the western
sections along 60∘N (Figures 1 and 2a– 2c), accumulation of Cant is generally greater at higher latitude with a
southward spreading pattern with the Gakkel Ridge as a natural divider between the basins. The same pat-
tern holds for the eastern sections (Figures 1 and 2d–2f) with greater accumulation eastward, toward the
Lomonosov Ridge and the Laptev Sea slope. There is no significant change in the deep waters of the central
Arctic Ocean, and any apparent deviation from 0 is less than the uncertainty of the analysis (Appendix A).

For all sections, the greatest accumulation is found below the mixed layer in the upper AAW (∼100–200 m)
in the northern Amundsen Basin. Here we also see local maxima in dAAW and uPDW (∼500–1,000 m) in all
years. In 2011, there are two additional pronounced features of high ΔCant values (Figure 2b and Section III):
(i) south of the Lomonosov Ridge (89–90∘N) and (ii) north and (iii) south of the Gakkel Ridge (87.5–88∘N
and 86.4∘N, respectively). These features of higher ΔCant at intermediate depth are also seen in the eastern
sections (Figures 2e and 2f) in 2011 (Section V) and, partly, in 2015 (Section VI). This suggests that the highest
increase in Cant is associated with the propagation of the boundary current and its ramifications north of the
Laptev Sea followed by interior transport along the submarine ridges. The absence of the high ΔCant feature
along the Gakkel Ridge at intermediate depth in 2015 (Section VI) compared to 2011 is attributed to the lack
of data between 120∘E and 140∘E during the former cruise. The lowest ΔCant is mainly found in the Nansen
Basin during all cruises, as well as for the section along the Gakkel Ridge (Section VII) in 2011 (Figure 2d), with
increasing ΔCant toward the Laptev Sea slope and the boundary current. There is a similar increase of ΔCant in
the Makarov Basin as in the Amundsen Basin, with higher accumulation in the eastern parts of the basins. For
the western sections (Figures 2a–2c), the horizon of significant ΔCant (>5 μmol/kg) is shoaling from 1,500 to
1,000 m between 90∘N and 85∘N, following the isopycnal separating the DW and uPDW (𝜎0.5 = 30.444). For
the eastern sections (Figures 2e and 2f), this horizon deepens slightly toward the Lomonosov Ridge. TheΔCant

results for all stations from each year are shown in Figures 2g–2i where selected stations (colored lines) outline
the representative 𝜃-S properties of the different water masses in the Nansen, Amundsen, and Makarov Basins
for 2005, 2011, and 2015. The warm core of the AAW in the Nansen Basin becomes cooler and fresher crossing
the Gakkel Ridge to the Amundsen Basin and even cooler and fresher crossing the Lomonosov Ridge to the
Makarov Basin. Similar patterns, albeit less pronounced, are true for the deeper dAAW and uPDW. The greatest
increase in ΔCant in the upper part of the AAW includes the Arctic Ocean thermocline. The anthropogenic
changes in AAW, dAAW, and uPDW are more evident in the Amundsen Basin (Figures 2g–2i; orange and purple
lines) compared to the Nansen Basin (red line). In 2015, the selected station in the Nansen Basin includes
properties of the winter mixed layer with a temperature minimum close to freezing temperatures.

The increase in integrated column inventories (ΔCant/Δt) during the last two decades are given for each water
mass and basin in Table 2. Overall, there is a significant increase in basin-wide anthropogenic carbon storage
ranging from 0.44 to 0.73±0.14 mol C⋅m−2⋅year−1 in the Nansen Basin and 0.63 to 1.04±0.09 mol C⋅m−2⋅year−1

in the Amundsen Basin. Column inventories are estimated by integrating over the depth of the water masses
(∼100–1,500 m) of significant ΔCant and dividing by the years between occupations.

4.2. Ocean Acidification and Buffer Capacity
As a result of increasing anthropogenic CO2, seawater pH and aragonite saturation state decrease. BothΔpHant

(Figure 3) and ΔΩArant (Figure 4) show similar distribution patterns as ΔCant (Figure 2), as is expected since
they are calculated from ΔCant (Figure 3) and the explicit buffer factors 𝛽DIC and 𝜔DIC (Figure 5), respectively.
Both buffer factors show similar (reverse) distribution patterns to ΔCant (Figure 2): (i) lowest values in the
upper AAW (including the thermocline), (ii) low values in both the dAAW and uPDW, and (iii) higher values
in the lower part of the AAW and throughout the DW. The lower values in the upper AAW, dAAW, and uPDW
are associated with slightly higher DIC/TA mean ratios (∼0.943) compared to the AAW and DW (∼0.938). As
the DIC/TA ratio increases and approaches unity, the buffer factors are near their minimum. The higher ratios
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Table 2
Mean Column Inventories, ΔCant/Δt, (mol C⋅m−2⋅year−1) Separated by Water
Mass and Basin as Annual Rates Calculated Over the Time Period 1996 to 2015

Water mass Nansen Basin Amundsen Basin Eurasian Basin

AAW upper 0.73 ± 0.14 1.04 ± 0.16 0.85 ± 0.17

AAW 0.58 ± 0.13 0.75 ± 0.10 0.65 ± 0.16

dAAW 0.54 ± 0.12 0.72 ± 0.05 0.56 ± 0.15

uPDW 0.44 ± 0.16 0.63 ± 0.09 0.46 ± 0.17

Mean 0.50 ± 0.14 0.69 ± 0.09 0.54 ± 0.16

Note. Inventories were determined by depth integrating significant ΔCant
(>5 μmol/kg). The spread within each water mass and basin is represented
by the standard deviation. AAW = Arctic Atlantic Water; dAAW = dense
Arctic Atlantic Water; uPDW = upper Polar Deep Water.

in the intermediate layers are attributed to the increasing anthropogenic CO2 at these depths, signifying
that these water masses are particularly sensitive to the increasing anthropogenic CO2 and, thus, ocean acid-
ification. Over the last two decades (1996–2015), pH decreased by 0.020–0.055 units and the saturation
state of aragonite was reduced by 0.05–0.18 units depending on water mass and basin. Annual mean rates
of ocean acidification (ΔpHant/Δt and ΔΩArant/Δt) for each water mass and basin are given in Table 3. It is
worth to note that the two different approaches (Egleston et al., 2010; Woosley et al., 2016) to estimate the
anthropogenic change in pH and ΩAr as a result of increasing Cant mentioned in section 3.2 provided similar
results (Figure S5).

5. Discussion

During the last two decades, there is an evident increase in the accumulation of anthropogenic CO2 with con-
secutive ocean acidification in the intermediate layers of the Eurasian Basin. The change in anthropogenic CO2

at these intermediate depths is rapid, and the distribution patterns suggest that ramifications of source waters
of Atlantic origin have a predominant role in the acidification of the Arctic Ocean interior. As the input of Cant

occurs at the atmosphere-ocean interface, we put our results in the context of (i) source waters and ventila-
tion of the intermediate layers (sections 5.1 and 5.2), (ii) the distribution of artificial radionuclides as tracers of
Atlantic waters in the Eurasian Arctic Ocean (section 5.3), and (iii) simulations from a carbonate-dynamic box
model (section 5.4).

5.1. Intermediate Layers and Source Waters
The intermediate layers of the Arctic Ocean have an Atlantic origin (e.g., Rudels et al., 2012). The only warm
water from lower latitudes entering the Eurasian side of the Arctic Ocean is that carried by the Norwegian

Table 3
Mean Rates of Ocean Acidification Expressed as Decrease in pH and ΩAr in Units Per Year (×10−4)

Water mass Nansen Basin Amundsen Basin Eurasian Basin

ΔpHant∕Δt AAW upper −18 ± 3.7 −26 ± 4.2 −21 ± 4.4

AAW −14 ± 3.2 −19 ± 2.6 −16 ± 4.1

dAAW −13 ± 3.0 −18 ± 1.3 −14 ± 3.8

uPDW −10 ± 3.9 −15 ± 2.3 −11 ± 4.2

All −12 ± 3.6 −16 ± 2.2 −13 ± 4.1

ΔΩArant∕Δt AAW upper −40 ± 8.8 −60 ± 10.0 −48 ± 11.0

AAW −31 ± 7.4 −42 ± 6.1 −36 ± 9.6

dAAW −30 ± 6.9 −40 ± 3.1 −32 ± 8.7

uPDW −22 ± 8.7 −33 ± 5.5 −23 ± 9.4

All −26 ± 8.1 −36 ± 5.3 −28 ± 9.3

Note. The spread within each water mass and basin is represented by the standard deviation. AAW = Arctic Atlantic Water;
dAAW = dense Arctic Atlantic Water; uPDW = upper Polar Deep Water.
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Figure 3. (a–f ) Section plots of inferred ΔpHant for Beringia 2005 (Figure 1; Section II), TransArc 2011 (Sections III, V, and VII), and TransArc II 2015 (Sections IV
and VI) relative to ACSYS 1996 (Section I). (g–i) Potential temperature-salinity (𝜃-S) plots with overlaid ΔpHant for all stations in 2005, 2011, and 2015. Colored 𝜃-S
lines indicate selected CTD stations deemed representative of the Nansen Basin (red), western Amundsen Basin (orange), eastern Amundsen Basin (purple),
and the Makarov Basin (blue) for the different years. See Figure 2 for abbreviations.

Atlantic Current, which supplies both the Fram Strait and the Barents Sea inflow branches (Rudels, 2016;
Figure 1). The Fram Strait branch is supplied by the extension of the Norwegian Atlantic Current, the West
Spitsbergen Current, of which a fraction, the Fram Strait branch water, flows eastward along the Eurasian con-
tinental slope forming a boundary current (Pnyushkov et al., 2015; Rudels et al., 2012). The Barents Sea branch
is modified by cooling and is freshened by sea ice melt water during summer and brine addition from sea
ice production in winter, as well as mixing with the Norwegian Coastal Current (Gascard et al., 2004). Part of
the Barents Sea branch enters the Arctic Ocean through St. Anna Trough and then joins the eastward flowing
boundary current with the Fram Strait branch. The mean contributions of the two Atlantic branches to the
boundary current are of similar magnitude, but (north of the Laptev Sea) a substantial fraction of the Fram
Strait branch water is diverted into the interior of the Nansen Basin, whereas the Barents Sea branch is the
main supplier of water to the Atlantic layer in the Amundsen Basin (Aksenov et al., 2010; Rudels et al., 2012;
Rudels, 2016). The modifications of the Atlantic water through Fram Strait are more modest than those in the
shallow Barents Sea, and the modification history of the two branches may also contribute differently to the
anthropogenic signals in the Nansen and Amundsen Basins (Figure 2).
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Figure 4. (a–f ) Section plots of inferred ΔΩArant for Beringia 2005 (Figure 1; Section II), TransArc 2011 (Sections III, V, and VII), and TransArc II 2015 (Sections IV
and VI) relative to ACSYS 1996 (Section I). (g–i) Potential temperature-salinity (𝜃-S) plots with overlaid ΔΩArant for all stations in 2005, 2011, and 2015. Colored
𝜃-S lines indicate selected CTD stations deemed representative of the Nansen Basin (red), western Amundsen Basin (orange), eastern Amundsen Basin (purple),
and the Makarov Basin (blue) for the different years. See Figure 2 for abbreviations.

From analysis of the transient change in DIC in the intermediate layers of the Nansen and Amundsen Basins,
Ericson et al. (2014) presented significant trends of increasing DIC in the range of 0.6–0.9 μmol⋅kg−1⋅year−1

for AAW and dAAW, and 0.4–0.6 μmol⋅kg−1⋅year−1 for uPDW over the period 1994–2011. The increase in
DIC is of similar size or lower compared to previous estimates of increasing ΔCant/Δt in Atlantic source
waters (Ericson et al., 2014), for example, 1.0 ± 0.3 μmol⋅kg−1⋅year−1 in the Norwegian Atlantic Current over
the period 1981–2005 (Skjelvan et al., 2008), 0.57–0.67 μmol⋅kg−1⋅year−1 in the West Spitsbergen Current
over the period 1981–2002/2003 (Olsen et al., 2006), and 0.9 μmol⋅kg−1⋅year−1 in the core of the Atlantic
inflow to the Nordic Seas over the same period. Furthermore, Omar et al. (2003) showed that the surface water
partial pressure of CO2 (pCO2) increased in the Barents Sea over the period 1967–2001 largely followed the
atmospheric record, meaning that the Cant concentration would increase correspondingly. The uniform distri-
bution of the increasing surface pCO2 suggested that the uptake of atmospheric CO2 takes place prior to enter-
ing the Barents Sea (Omar et al., 2003). The results of Ericson et al. (2014) show the basin-wide mean trend of
increasing carbon inventory of the intermediate layers. Because no corresponding change in nutrient concen-
trations was observed, the increase in DIC was explained by increasing concentrations of anthropogenic CO2

in Atlantic source waters flowing into the Arctic Ocean (Ericson et al., 2014). Correspondingly, they estimated
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Figure 5. Potential temperature-salinity (𝜃-S) plots of all data from 2005–2015 with overlaid explicit buffer factors
(a) 𝛽DIC and (b) the negative of 𝜔DIC. The two buffer factors ((𝛿ln[H+]/𝛿DIC)−1 and (𝛿lnΩAr/𝛿DIC)−1) are used together
with ΔCant to estimate ΔpHant and ΔΩArant, respectively. Note the different colorbar scales and unit of concentration.
See Figure 2 for abbreviations.

the increase in the integrated carbon column inventory over the Atlantic and intermediate layers of the
Nansen and Amundsen Basins to be 0.6 ± 0.1 mol C⋅m−2⋅year−1 and 0.9± 0.1 mol C⋅m−2⋅year−1, respectively.
This is in good agreement with our estimates of change in integrated column inventories (based on eMLR anal-
ysis) for the Nansen Basin (0.44–0.73 ± 0.14 mol C⋅m−2⋅year−1) and Amundsen Basin (0.63–1.04 ± 0.09 mol
C⋅m−2⋅year−1) over the period 1996–2015 (Table 2). Here our results add important information on the spatial
distribution of the accumulation of Cant (Figure 2) and we further argue that the accumulation in the interior
Nansen and Amundsen Basins is mainly being driven by the increasing concentrations of anthropogenic CO2

in source waters of Atlantic origin.

The rates of ocean acidification in the intermediate layers of the Amundsen Basin and the upper parts of the
AAW in the Nansen Basin (Table 3) are similar to the rates seen in surface waters at long-term ocean carbon
time series sites such as Irminger Sea (−0.0026 ± 0.0006 pH units/year), European Station for Time series
in the Ocean at the Canary Islands (−0.0018 ± 0.0002 pH units/year), Bermuda Atlantic Time-series Study
(−0.0017±0.0001 pH units/year), and Hawaiian Ocean Time-series (−0.0016±0.0001 pH units/year) over the
last two to three decades (Bates et al., 2014). Based on ΔCant from eMLR analysis, Woosley et al. (2016) also
found similar rates of ocean acidification (−0.0021±0.0007 pH units/year) in the surface waters (upper 250 m)
of the Atlantic Ocean over the period 2003–2014. Our results support the idea of a well-ventilated boundary
current at intermediate depth, propagating along the submarine ridges in the Eurasian Arctic Ocean interior.

5.2. Ventilation of Intermediate Layers
At intermediate depths, the Amundsen Basin has been considerably more recently ventilated than the inte-
rior Nansen Basin by the return flow of the Barents Sea branch along the Lomonosov Ridge and Gakkel
Ridge (Rudels et al., 2012; Tanhua et al., 2009). The return flow of the boundary current in the Nansen Basin,
mainly supplied by the Fram Strait branch, follows the southern rim of the Gakkel Ridge. These return flows
of ventilated waters are clearly illustrated by the composite section plots of the atmospheric perturbation
response (APR) in Figure 6, based on the ΔCant results from the western and eastern sections from 2011 and
2015 (Figures 2b and 2c). Here, the “atmospheric perturbation response” is defined as the change in sea-
water pCO2 relative to the change in atmospheric pCO2 (ΔpCOsw

2 ant/ΔpCOatm
2 ) over the period 1996–2015.

A value near 100% indicates that an interior ocean location is thoroughly ventilated, while low response is
indicative of less well-ventilated waters. After a sufficiently long lead time, the APR will approach a constant
value reflecting the exposure of an ocean interior location to changes in atmospheric boundary condi-
tions, following the Transient Steady State concept (Gammon et al., 1982; Tanhua et al., 2007). Naturally,
lead time would be shortest for those locations that attain the highest APR. The increase in seawater pCO2

is calculated from the increase in Cant (obtained using eMLR), under the assumption of no change in TA.
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Figure 6. Composite section plots of atmospheric perturbation response for 2011 and 2015 relative to 1996 in the
(a) central Eurasian Basin between 85∘N and 90∘N along 60∘E (Sections III and IV; Figure 1) and (b) the eastern Eurasian
Basin including the Makarov Basin (Sections V and VI; Figure 1). Values near saturation indicate that the increase in pCO2
as a result of increasing anthropogenic CO2 increases at a rate similar to the rate of the increasing atmospheric pCO2;
that is, waters are more recently ventilated with respect to contact with atmosphere and uptake of anthropogenic CO2
by the ocean.

The rate of increasing atmospheric pCO2 (∼ 2 μatm/year) is derived from Arctic zonal mean xCOatm
2 data

retrieved from the NOAA Greenhouse Gas Marine Boundary Layer Reference data product (Conway et al., 1994,
http://www.esrl.noaa.gov/gmd/ccgg/mbl/). Considering the residence times of the intermediate layers and
the time variability in the source waters (Ericson et al., 2014; Tanhua et al., 2009; Smith et al., 2011), this does
not necessarily provide the accurate picture of the ventilation. However, the rate of increasing atmospheric
pCO2 has been fairly constant over the last few decades and it highlights the notion of a more recently ven-
tilated boundary current with respect to atmospheric CO2, supplying the intermediate layers of the Nansen
and Amundsen Basins.

5.3. Tracers of Atlantic Water
Measurements of transient tracers such as chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF6) have been
used to estimate the ventilation and Cant storage in, for example, the Arctic Ocean (Tanhua et al., 2009) and
Fram Strait (Stöven et al., 2016). The scarcity of transient tracer data in the Arctic Ocean, however, makes it dif-
ficult to expand on such an analysis for the time being with respect to Cant. The discharge of anthropogenic
radionuclides from nuclear fuel reprocessing facilities into the North Sea allowed the use of radioactive iso-
topes as tracers of Atlantic waters into the Arctic Ocean (Kershaw & Baxter, 1995). Among these radionuclides,
129I is of special interest for this purpose, as the main source has been the European reprocessing plants of
Sellafield (UK) and La Hague (France), with very little input of weapon tests (He et al., 2013). This means that
input comes mostly from a single point source of Atlantic origin. 129I released into European coastal waters
from nuclear fuel reprocessing plants flow conservatively northward through the Nordic Seas and label the
Atlantic water entering the Arctic Ocean (Aldahan et al., 2007; Karcher et al., 2012).

Measurements of the artificial radionuclide 129I from 2011–2012 (Casacuberta et al., 2016) and 2015 (Casacu-
berta et al., 2018) are compared to our estimates of ΔCant in the Nansen and Amundsen Basins (Figure 7).
A similar distribution pattern of higher ΔCant and 129I is found in the AAW, dAAW, and uPDW. Values close
to 0 for both parameters are found in the deep waters with no significant change between years, cor-
roborating negligible anthropogenic signals to deep and bottom waters. Mean concentrations separated
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Figure 7. Potential temperature-salinity plots for 2011–2015 with overlaid (a) ΔCant (μmol/kg) and (b) 129I (×107 at
kg−1). (c) Map with station locations of the ΔCant (2011–2015, black) and 129I (2011–2012, green; 2015, red).
(d) Relationship (model type II regression geometric mean) between mean concentrations of ΔCant and 129I separated
by water mass for 2011–2015 (black). The error bars correspond to standard deviations of the data in each water mass.
Also shown are the individual mean data for respective water mass from 2011 to 2012 (green; ΔCant = 0.0294 × 129I +
1.8904, R2 = 0.991) and 2015 (red; ΔCant = 0.0329 × 129I + 2.5186, R2 = 0.995).

by water mass (Figure 7d) show a high degree of linear correlation (model type II regression geometric
mean). Concentrations of 129I do not necessarily scale perfectly to ΔCant. They do, however, together with
the high degree of linear correlation, support a common anthropogenic signature and distribution pat-
tern of the inflowing Atlantic water. It is worth to emphasize that, while the input of Cant occurs at the
atmosphere-ocean interface as a result of increasing atmospheric CO2 (linear to exponential depending on
time scale), 129I originates from point sources in the North Sea with a time dependency input function of
129I (Smith et al., 2011). Karcher et al. (2012) assessed changes in Arctic Ocean circulation using 129I measure-
ments and model simulations of tracer 129I transport through the Arctic Ocean during the period 1970–2010.
In this study, we present updated model simulations by Karcher et al. (2012) extended to the years 2011
and 2015 (Figure 8) at representative depths of the AAW (300 m), dAAW (600 m), and uPDW (1,000 m)
for comparison. The general distribution patterns of simulated 129I agree well with our estimates of ΔCant.

The intrusion of Atlantic water into the AAW and dAAW is clearly indicated by elevated 129I concentrations
in the Fram Strait and Barents Sea branches along the boundary current. While the boundary current around
the continental margins and ridges is relatively confined and energetic, the basin interior is more quiescent.

ULFSBO ET AL. 1266



Global Biogeochemical Cycles 10.1029/2017GB005738

Figure 8. Simulated 129I distributions (×107 at L−1) at (a, d) 300, (b, e) 600, and (c, f ) 1,000 m for 2011 and 2015. Model results are updated simulations from
Karcher et al. (2012) extended to 2011 and 2015. Markers indicate the station locations of 129I from 2011–2012 (green) and 2015 (red) in Figure 7c, and the black
contour line indicates the 1,000 m isobath.
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Figure 9. Differences in (a) DIC and (b) pH in the surface, intermediate, and deep water boxes between 1996 and 2015
in the Eurasian Basin from the box model of Luo et al. (2016). The model’s DIC and carbonate alkalinity of the inflowing
Atlantic and Pacific waters (i) do not change with time (constant source; black lines) and (ii) are allowed to change with
time (variable source; red lines), see text for details. Mean profiles of changes in (c) DIC and Cant and, correspondingly,
(d) pH and pHant between 2005 and 2015 relative to 1996. The changes are in relation to the modeled ΔDIC and ΔpH
(constant dotted lines) in (a) and (b) for the same period in the surface (0–200 m), intermediate (200–700 m), and deep
(>700 m) layers of the Eurasian Basin as indicated by the arrows at representative depths of the layers in the box model.

Hence, any eddy generated in the basin or the dynamic boundary currents (e.g., Karcher et al., 2012; Pnyushkov

et al., 2015) would have high impact on inner basin water mass properties. For the uPDW, the contribution

of the Fram Strait branch to the boundary current is less evident with respect to 129I, whereas there is a clear

intrusion of the Barents Sea Branch via St. Anna Trough. At all depths, bifurcation of the boundary current takes

place north of the Laptev Sea, where one part flows along the Lomonosov Ridge toward Greenland, while

the other continues into the Makarov and Canada Basins. Along the Lomonosov Ridge, there is a tendency

of higher 129I in the dAAW compared to AAW and uPDW. Our results show a similar distribution of higherΔCant

in these layers, when excluding the upper AAW (100–200 m).

In Karcher et al. (2012), the simulation of 129I circulation in the Arctic indicated that after 2004 the continu-

ation of the boundary current from the Eurasian Basin into the Amerasian Basin via the Makarov Basin had

ceased. We find that in the years up to 2015 this situation holds and the Atlantic water spreads the 129I sig-

nal along the Lomonosov Ridge and along the Alpha and Mendeleev Ridges. The basic situation is similar for

both 2011 and 2015. However, in 2015 we see a strong branch of 129I entering the Amerasian Basin from the

north (Figures 8d and 8e). Concentrations in the region between the North Pole and Greenland are higher

in 2015, while concentrations in the eastern Eurasian Basin were higher in 2011. Although promising correla-

tions to anthropogenic CO2 have been found, more detailed studies are warranted on artificial radionuclides

as prospective tracers for future applications in deriving changes and distributions of anthropogenic CO2 in

the Arctic Ocean.
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5.4. Box Model Simulations
Based on simulations from a carbonate-dynamic box model, Luo et al. (2016) argued for the rapid, near simul-
taneous acidification of both surface and deeper waters, where deeper waters will be influenced strongly by
intrusion of middepth, preacidified, Atlantic water. In this study, we use their default model setup (Boudreau,
Middelburg, Hofmann, & Meysman, 2010; Luo et al., 2016) and compare our results to the model simula-
tions of changes in DIC (ΔDIC) and pH (ΔpH) in the surface (0–200 m), intermediate (200–700 m), and deep
layers (>700 m) of the Eurasian Basin between 1996 and 2015 (Figures 9a and 9b). In the model, the Arctic
atmospheric pCO2 follows a prescribed CO2 emission scenario (Boudreau, Middelburg, Hofmann, & Meysman,
2010). The two model runs in Figure 9 illustrate when the DIC and carbonate alkalinity of the inflowing Atlantic
and Pacific waters (i) do not change with time (constant source) and, more realistically, (ii) are allowed to
change with time (variable source), dictated by the evolving atmospheric CO2 (Luo et al., 2016). The model
applies time-varying DIC and carbonate alkalinity of the Pacific surface and high-latitude Atlantic waters that
enter the Arctic obtained from the output of a previously published global carbon system model (Boudreau,
Middelburg, Hofmann, & Meysman, 2010; Boudreau, Middelburg, & Meysman, 2010). The variable source run
shows a clear increase in DIC and reduction in pH in the intermediate and deep layers compared to the con-
stant condition when DIC and carbonate alkalinity of the inflowing waters do not change with time (see Luo
et al., 2016 for details on model setup).

Model results of ΔDIC and ΔpH for 2015 in the Eurasian Basin using the variable source run are compared
to mean profiles of measured ΔDIC and ΔpH (2005–2015 relative to 1996) and corresponding mean profiles
of ΔCant and ΔpHant between 85∘N and 90∘N along 60∘E (Figures 9c and 9d). The constant lines and arrows
indicate the change in the parameters given by the model: surface layer (17.9 μmol/kg; −0.062 pH units),
intermediate layer (13.4 μmol/kg; -0.045 pH units), and deep layer (7.1 μmol/kg; -0.022 pH units). The ΔCant

and ΔpHant are consistently lower than ΔDIC and ΔpH, except at deeper depths (∼2,500–4,000 m) where no
significant anthropogenic change is observed. The modeled increase in ΔDIC of the deep layer agrees well
with the observed ΔCant at ∼1,500 m. This may be explained by the fact that the deep layer of the model
ranges from 700–4,750 m, hence including large parts of the uPDW (∼700–1,500 m) where we find signifi-
cant accumulation of Cant. ObservedΔCant in the intermediate layers agree well with the model’s intermediate
box and the increase in surface box is superceded by ΔCant in the upper AAW. While there is good agree-
ment between model ΔDIC and ΔCant, observed ΔpH is more representative of the model results compared
to ΔpHant

The general agreement between observed and modeled changes supports the notion that the increasing Cant

in the intermediate layers of the Eurasian Basin is mainly being driven by the increasing anthropogenic CO2

of the inflowing Atlantic water. Considering analytical uncertainties of ±2–4 μmol/kg in DIC, at least ±0.01
pH units, and uncertainties in the eMLR of 5–6 μmol/kg (∼0.01 pH units), both measured ΔDIC and derived
ΔCant are comparable to the model results of the intermediate and deep layers.

Luo et al. (2016) projected surface waters to become undersaturated with respect to aragonite by 2105 and
could remain so for ∼600 years. In deep waters, the aragonite saturation horizon is projected to rise, reaching
the base of the surface mixed layer by 2140. Assuming constant rates of aragonite desaturation (Table 3) and
constant ambient conditions with respect to physical and biogeochemical processes, we find similar results
of the shoaling of aragonite horizons in the Amundsen Basin (Figure 10) as Luo et al. (2016) suggested for the
Eurasian Basin.

Observation-based saturation states of aragonite and calcite indicate that most of the waters of the Eurasian
Basin are oversaturated (Figure 10a). However, the Arctic Ocean also demonstrates multibathyal undersatura-
tion with more than one aragonite saturation horizon, a feature found throughout much of the Canada Basin
(Jutterström & Anderson, 2005). The western Arctic Ocean has been found to have up to three distinct arag-
onite undersaturation zones (Wynn et al., 2016): (i) a surface zone (∼0–30 m) consistent with carbonate ion
dilution by sea ice melt and invasion of anthropogenic CO2 from the atmosphere, (ii) an Arctic halocline zone
(∼90–220 m) consistent with remineralization of organic matter on shallow continental shelves bordering the
Canada Basin and the input of nutrients and CO2 entrained by currents of Pacific origin, and (iii) a deep zone
(>2,000 m) maintained by relatively low temperatures and stable chemical composition. Recently, Qi et al.
(2017) showed that the halocline zone in the western Arctic Ocean had deepened (∼150 m) and expanded
northward (∼ 5∘) between the 1990s and 2010. This expansion of aragonite undersaturation was mainly
attributed to increased Pacific Winter Water transport, displacing Atlantic Water as a result of an anomalous

ULFSBO ET AL. 1269



Global Biogeochemical Cycles 10.1029/2017GB005738

Figure 10. Shoaling of ΩAr horizons in the central Eurasian Basin (along 60∘E) over the period 2011–2140 assuming constant rates of Cant accumulation (Table 2)
and ambient conditions. (a) Year 2011. (b) Year 2100. (c) Year 2140.

circulation pattern and sea ice retreat. Pacific Water is fresher than the Atlantic Water and it has lower TA and
much higher DIC, where biologically driven DIC enrichment and acidification over the shelves add to the latter
(Qi et al., 2017). In the Eurasian Basin, which is mainly of Atlantic origin, the surface and halocline zones of
aragonite undersaturation are less common features (Jutterström & Anderson, 2005). In this study, surface
(0–60 m) aragonite undersaturation and near saturation levels (Figure S6) were only found in 2015 along
the eastern Section VI crossing the Lomonosov Ridge (Stations 125–132, Figure 2f ), which is attributed to
low-salinity river runoff, and/or sea ice melt.

The eastern Eurasian Basin is currently experiencing a shoaling of the Atlantic layer, a weakening in the strati-
fication, and a northward withdrawal of the summer sea ice extent, with increased vertical mixing and winter
ventilation as a result (Polyakov et al., 2017). This “atlantification” of the Eurasian Basin and the overall Arctic
amplification (e.g., Serreze & Barry, 2011) are expected to become stronger in coming decades and will likely
have large impacts on the rate and distribution of ocean acidification in the surface and Atlantic layers of the
Eurasian Arctic Ocean.

6. Summary and Conclusions

There is an evident accumulation of anthropogenic CO2 in the subsurface and intermediate layers of the
Eurasian Basin during the last two decades (1996–2015) and inferred changes in ocean acidification and
aragonite desaturation are rapid. The increase in anthropogenic CO2 in the intermediate depths is very likely
being driven by the increasing anthropogenic CO2 of the inflowing Atlantic water. This is supported by find-
ing (i) similar rates of increasing anthropogenic CO2 at intermediate depths in the interior of the Arctic Ocean
as previously reported for Atlantic source waters, (ii) overall agreement between the estimated increase in
anthropogenic CO2 and results from a simple box model driven by increasing atmospheric CO2 and inflow
of Atlantic water, and (iii) strong, positive linear correlation between the distribution of increasing anthro-
pogenic CO2 and distributions of both observed and modeled anthropogenic 129I, originating from European
reprocessing nuclear plants, labeling the Atlantic waters flowing into the Arctic Ocean.

The largest increase in column inventories is found in the Amundsen Basin (0.63–1.04 ± 0.09 mol
C⋅m−2⋅year−1) where the intermediate waters are strongly influenced by intrusion and propagation of recently
ventilated water of Atlantic origin, mainly via the Barents Sea Branch. Smaller changes are found in the inte-
rior of the Nansen Basin (0.44–0.73 ± 0.14 mol C⋅m−2⋅year−1), possibly as a result of older recirculating water
with input from the Fram Strait branch.

As a result of the increasing accumulation of anthropogenic CO2, pH is reduced by 0.020–0.055 units during
the last two decades. Consequently, this lowers the aragonite saturation state by 0.05–0.18. Assuming con-
stant rates and conditions, it will take less than 100 years for the subsurface and intermediate waters of the
Amundsen Basin to become undersaturated with respect to aragonite. The saturation state of aragonite is
impacted by several processes, for example, remineralization of organic matter, dilution by sea ice melt, and
invasion of anthropogenic CO2. The combined effect of natural and anthropogenic processes needs to be
considered in future assessments of the development of basin-wide aragonite desaturation.
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Observation-based studies tend to be biased toward either the Amerasian or Eurasian Arctic Ocean, as is this
study. Repeat surveys in the rapidly changing Arctic Ocean have historically been rare and warrant the need
for international synoptic efforts, such as the Global Ocean Ship-Based Hydrographic Investigations Program
(GO-SHIP) and the GEOTRACES program.

Appendix A: Caveats and Uncertainties

One advantage of the eMLR approach (Friis et al., 2005) compared to the original MLR approach (Wallace,
1995) is that the standard deviation of the eMLR must be lower than the standard deviation of the MLRs
because measurement errors go into the prediction twice and partly cancel out when subtracting the regres-
sion coefficients from each other (Friis et al., 2005). However, there is still no mechanistic understanding of how
errors propagate in an eMLR analysis (Friis et al., 2005; Hauck et al., 2010; Tanhua et al., 2007). Following Hauck
et al. (2010), we performed Monte Carlo simulations by randomly disturbing all data sets with a noise on the
order of twice the measurement precision: 𝛿S = 0.004, 𝛿T = 0.002∘C, 𝛿NO3 = 0.5μmol/kg, 𝛿Si = 0.5μmol/kg,
𝛿TA = 4μmol/kg, and 𝛿DIC = 4μmol/kg. We used these perturbed data sets to calculate perturbed ΔC1996∶2015

ant
(ΔC1996∶2015

ant-error ) 10,000 times and measure precision of our eMLR-based ΔCant estimates as the standard devia-
tion of all ΔC1996∶2015

ant-error values and accuracy as the difference between the mean ΔC1996∶2015
ant-error and unperturbed

ΔC1996∶2015
ant . The total mean errors for the water masses AAW, dAAW, uPDW, and DW are 4.0 ± 1.1, 4.1 ± 0.8,

4.1 ± 1.0, and 3.0 ± 0.7 μmol/kg, respectively (Figure S7). The total uncertainty (mean error + 2SD) is esti-
mated to be in the range of 5 μmol/kg for the deep waters and 6 μmol/kg for the intermediate layers. Values of
ΔCant below 5–6 μmol/kg (Figure 2), depending on water mass, should be considered with caution. It should
also be noted that converting pH from standard temperature (15∘C [1996–2011] or 25∘C [2015]) and pressure
(0 dbar) to in situ temperature and pressure involves using thermodynamic relationships and either TA or DIC.
Hence, the results of these calculations are dependent on the choice of dissociation constants used (Woosley
et al., 2017) and are associated with uncertainties of the measurements, the strong temperature dependency
of seawater pH, and the dissociation constants. Temperatures in the Arctic Ocean are often near or below the
valid ranges of most sets of dissociation constants. Furthermore, the pressure dependency of pH is not well
constrained (Woosley et al., 2016) and there were no standards or CRM available for seawater pH over the
period 1996–2015. It is therefore difficult to determine the accuracy and total uncertainty of the pH measure-
ments. The variables of the marine carbonate system from the different cruises are internally consistent to a
high degree, and we assume that the accuracy in pH is better than ±0.01 pH units. For the inferred changes
in ocean acidification we apply the total uncertainty from the Monte Carlo perturbation simulations to the
calculations of ΔpHant and ΔΩArant from ΔCant and the explicit buffer factors 𝛽DIC and 𝜔DIC. Consequently,
reductions smaller than 0.01 pH units (Figure 3) and 0.02 units (Figure 4), respectively, should be considered
with caution.

Trends in any of the ancillary physical and biogeochemical variables that persist over time may affect the
accuracy of the eMLR results (Levine et al., 2008) and it is difficult to estimate the total error in the eMLR in the
presence of secular trends. For example, during the 1990s and 2000s the AAW was getting warmer and saltier
(Ericson et al., 2014). Two warming events have been observed in the Nansen Basin (Korhonen et al., 2013). The
first occurred in 1996 when the average temperature increased by 0.5∘C in the lower Atlantic layer, extending
into the Amundsen and Makarov Basins. Between 2001 and 2007, the second warming event exceeded the
first event by 0.1∘C but was limited to the Nansen Basin. This was also illustrated by Ericson et al. (2014) who
looked at the depth integrated mean values of potential temperature and salinity for each water mass in the
Nansen and Amundsen Basins over the period 1991–2011. They found limited decadal variability in the both
temperature and salinity of all water masses but the AAW in the Nansen Basin. Adding a secular warming
trend of 0.1∘C and 0.5∘C to the AAW data of the more recent data sets (2005–2015) in the Monte Carlo analysis
above, the mean total uncertainty increased by 0.6 and 3 μmol/kg, respectively. In this study, we assume any
secular trends in the ancillary physical and biogeochemical variables to be negligible and less than the total
uncertainty of the eMLR analysis. For example, Ericson et al. (2014) reported no conceivable decadal trends
in TA, PO4, and NO3 in the intermediate layers of the Eurasian Basin relative to the deep water (>2,000 m)
over the period 1991–2011. The only significant trends found were those of increasing DIC (section 5.1) and,
possibly, increasing deep water AOU (+0.4 μmol⋅kg−1⋅year−1).

Every technique used to determine temporal anthropogenic changes in DIC between two cruises is sensitive
to biases in the data of either cruise. Such biases are not uncommon. Although values of DIC and TA are more
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accurate after the introduction of CRMs, quality can vary between data sets (Bockmon & Dickson, 2015). In
addition, the measurements of dissolved nutrients and oxygen occasionally remain inaccurate by several per-
cent. Until primary measurements of required master parameters and ancillary parameters reach a level of
sufficient accuracy, the interpretation of results of the back calculations and MLR-type methodology will be
ambiguous to some extent, as is the choice of optimal predictors (Plancherel et al., 2013). This is important to
consider when selecting the independent variables and when interpreting the results. Although a statistical
fit of the natural variability of DIC can be within the uncertainty when using a different subset of predictors,
it can result in unexpected and unrealistic features (section 3.1; Friis et al., 2005; Woosley et al., 2016).
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