Published by
The Departalent of Mollusks
Museum of Comparative Zoölogy, Harvard University
Cambridge, Massachusetts

THE GENUS CONUS IN THE WESTERN ATLANTIC BY
 William J. Clefech

Conus fosteri Clench and Aguayo
Conus fosteri Clench and Aguayo 1942, Johnsonia 1, no. 6, p. 34, plate 19, fig. 5 (off Sagua la Grande, Santa Clara [Las Villas] Cuba).

Specimens examined. Venezuela: Atlantis, cruise 240, off Cabo Codera (N. Lat. 11° : W. Long. $66^{\circ} 1^{\prime}$) in 150 fathoms (W. Athearn).
'This extends considerably the range of this species. Heretofore it was known only from Cuba.

THE GENUS SCONSLA IN THE WESTERN ATLANTIC ${ }^{13}$

Whiliam J. Cleych

Sconsia striata Lamarck

Plate 172
Sconsia striuta Lamarck. Clench and Abbott 19 \&3, Johusonia 1, no. 9, p. 6.

Plate 172. Sconsia barbudensis Higgins and Marrat (=Sconsia striata Lamarck). Holotype, 15 fathoms, off Barbuda, Lesser Antilles (slightly enlarged).

At the time of our original study of this genus, it was impossible to get photographs from Europe. Through the kindness of Mr. W. K. Ford, Keeper of Invertebrate Zoology of the City of Liverpool Public Museums we have obtained a photograph of the holotype of Sconsia barbudensis Higgins and Marrat. This species is a synonym of Sconsia striata Lamarck. 'The measurements of the holotype are: length 67 mm ., width :38 mm.

THE GENUS COLUMBARIUM IN THE WESTERN ATLANTIC

BY
Wilidam J. Cleench

'Through the kindness of Mrs. Roy C. Athearn I am privileged to describe the following species. The specimens were obtained by her son, William Athearn during a cruise of the Atlantis off the coast of Venezuela.

Columbarium brayi, new species

 Plate 173, figs. 1-2Description. Shell medium in size, reaching 51 mm . (2 inches) in length, imperforate, rather thin, dull and carinated. Color a dull light yellowish brown. Whorls 9 and sharply carinated. Spire somewhat depressed. Suture deeply impressed. Aperture subquadrate. Outer lip simple. Parietal wall thinly glazed. Columella long and straight, extending to the end of the long siphonal canal. Sculpture consists of numerous fine, spiral cords which are interrupted by the growth lines. Embryonic whorls two, smooth and glasslike. Periostracum thin with short axial blades. Operculum unknown.

length	width	
51.0	20 mm.	Holotype
37.5	18	Paratype

Types. Holotype, Museum of Comparative Zoology, no. 221601, from Atlantis, cruise ≥ 40, off Cabo Codera, Venezuela (N. Lat. 11°; W.Long. $66^{\circ} 1^{\prime}$) in 150 fathoms, W. Athearn collector, Nov. 1, 195\%. A single paratype from the same station.

Remarks. 'This species does not appear to be closely related to any other species of Columbarimm in the Western Atlantic. Its larger size and lack of spines differentiate it from C. atlantis Clench and Aguayo, its larger size and depressed spire distinguish it from C. bermudezi Clench and Aguayo and its size and smooth carina from C. sarissophorum Watson. This last species has a uniformly serrated carina (see Johnsonia 1944, 1, no. 15, p. 3).

This species is named for Captain W. Scott Bray of the Atlantis.

Columbarium atlantis Clench and Agnayo

Columbarium atlantis Clench and Aguayo 1944, Johnsonia 1, no. 15, p. 2, pl. 1, fig. 4 off Matanzas, Cuba).
Specimens cavamined. Cuba: Atlantis, station 3434, off Sagua la Grande, Las Villas (N. Lat. $2: 33^{\circ} 10^{\prime} ; ~ W$. Long. $79^{\circ} 35^{\prime}$) in 260 fathoms.

Plate 173. Columbarium brayi Clench. Fig. 1. Holotype. Fig. 2. Paratype. 150 fathoms off Cabo Codera, Venezuela (2.8x).

THE GENUS MUREX IN THE WESTERN ATLAN'IC $13 \mathrm{I}^{5}$

Wilifiam J. Ciefeh

Murex (Murex) finlayi Clench

Plate 174 , figs. $1-3$
Murex (Murex) finlayi Clench 19.55, Breviora, Museum of Comparative Zoology, no. tt, pp. 1-3, text figs. 1-3 (Matanzas Bay, Cuba).

Description. Shell reaching 93 mm . ($3 \frac{3}{4}$ inches) in length, rather solid in structure and moderately spinose. Whorls 10 and moderately consex. Nuclear whorls glass-like and smooth. Color brownish yellow to brownish cream with a few spiral threads of a darker
brown which follow the crests of the cords. Spire moderately extended. Suture irregular and deeply indented. Aperture subcircular and slightly oblique. Parietal lip glazed, adherent to the body whorl and fairly thick. Palatal lip crenulated and slightly thickened. Siphonal canal greatly extended, sometimes nearly half the length of the shell, usually curved upward and to the left when viewed dorsally. Two or three previously formed stages of the siphonal canal remain as scale-like spines. The sculpture consists of three equidistant varices, each supporting a rather large shoulder spine and maybe two or three smaller spines between the shoulder and the base of the shell. The varices on each whorl are more or less aligned with the varices on the whorl above. Between the varices there are two to four axial ridges which are strongly nodulose, Spiral sculpture consisting of numerous thread-like cords. The varices are formed by two arched plates, the plates on the aperture side being somewhat smaller, the outer (first formed) leaving a flange or web-like ridge as a crest on the varix. This is usually broken away on the early varices or remains as a series of small blade-like spines.

length	width	whorls	
87	30	10	Holotype
93	31	10	Paratype
85	33	10	Paratype
82.5	34	10	Paratype

Types. Holotype, Museum of Comparative Zoology, no. 189939 from shell trap, Matanzas Bay, Cuba, in 100 fathoms. Paratypes from the same locality in the Museum of Comparative Zoology and the collections of C. J. Finlay and E. H. Monroe.

Plate 174. Murex (Mures) finlayi Clench. Figs. 1 and 3. Paratypes. Fig. 2. Holotype. 100 fathoms, Matanzas Bay, Cuba (all slightly enlarged).

Remarks. 'This speeies appears to be rather closely related to both Murea' antillarum Hinds and Murex beanii Fiseher and Bemardi. From M. antillarmm it differs by having fewer and mueh larger axial eostae, having fewer spines, and in possessing a webbing along the variees and greatly extended siphonal canal. From M. beanii it differs by hasing fewer and much larger axial eostae, shorter spines, and not having the extensive webbing whieh characterizes \boldsymbol{M}. beanii. This present species may also be related to \boldsymbol{M}. aguayoi Cleneh and Farfante but it differs from aguayoi by being larger, having the diffused brownish yellow eoloration, fewer spines, larger axial costae and by having the webbing on the variees.

The development of the webbing and the greatly extended siphonal canal probably allows these mollusks to exist on a rather soft muddy bottom.
'The subgenus Murex in which this species is included is a very complex group and of very wide distribution in nearly all tropical and south temperate seas.

Murex (Murex) pulcher A. Adam.

Murex (Murex) pulcher A. Adams. Clench and Farfante 1945, Johnsonia 1, no. 17, p. 23, pl. 12, figs. I-4.
Speeimens examined. Brasil: Hassler Voyage off Salvador (Bahia) in 40 fathoms (S. Lat. $11^{\circ} 49^{\prime}$; W. Long. $37^{\circ} 20^{\prime}$) ($\mathrm{MC} Z$).

This reeord extends the range of this rare species from the Lesser Antilles to the coast of north eentral Brasil.

Murex (Phyllonotus) pomum Gmelin

Murex (Phyllonotus) pomum Gmelin. Clench and Farfante 1945, Johnsonia 1, no. 17, p. 26, pl. 14, figs. 1-3.
Speeimens examined. Florida: St. Andrews Bay, Panama City (R. Work). Texas: 5 miles W of Roekport (MCZ), Port Aransas ('T. Pulley).

Murex (Phyllonotus) pomum margaritensis Ablott

 Plate $\mathbf{1 7 5}$, figs. 1-2Murex imperialis Swainson 1831, Zoological Illustrations (2) 2, pl. 67 (Island of Margarita [Vene\%uela]). Non Murex imperialis Fischer 1807.

Murex (Phyllonotus) pomum Gmelin. Clench and Farfante 1945 [in part] Johnsonia 1, no. 17, p. 26.
Murex margaritensis Abbott 1958, Acad. Nat. Sci., Philadelphia, Monograph no. 11, p. 61, pl. 1, figs. n and o. [New name for Murex imperialis Swainson, non Fischer].

In our Johnsonia number on Morex (1945, 1, no. 17, p. 26) we considered Morex imperialis to be a synonym of Murex pomum Gmelin. At that time we had seen no speeimens so our judgment was based only upon deseriptions and figures in Swainson, Reeve and Kiener, all of whom failed to show the deep pink eoloration of the aperture. Abbott has mentioned several eharacters which distinguish this form from pommm. When a series of this form is examined, all of these characters, other than the pink coloration. are found in both pommm and imperialis. The number of varices on the body whorl valy in both forms, but the variation appears to be similar in both pommm and imperialis. There are two rows of spines on most specimens of imperialis we have secn, not one row as stated by Abbott.

Many specimens of imperialis lack the brown patch on the parietal area, but in others it is present. Most specimens of imperialis are less attenuated than pommm, but eren this character is occasionally duplicated in large specimens of pommom.

length	width	
96 mm.	70 mm.	Margarita Id.
68	43.5	Erin River, Trinidad

Ramge. Margarita Island, Venezuela east to 'Trinidad.
Specimens cavamined. Vexezuela: Margarita Island (MCZ). Leesser Anthlifes: near Erin River: Guayaguagare Beach; Magueripe Bay: Couva Bank, Gulf of Paria, all 'Trinidad (all H. G. Kugler).

Plate 175. Murex pomum margaritensis Abbott. Fig. I. With a clear pink aperture. Fig. 2. With the brown parietal spot. Margarita Island, Venezuela (about natural size).

THE GENERA HEMITOMA AND DIODORA IN THE WESTERN A'TLANTIC

BY
Ruth D. Turaer
Hcmitoma is a small and relatively little known genus in the Fissurellidae. It is close to E'marginnla, but in IIcmitoma the anal notch is reduced or lacking but there is an internal anal groove. A key to the genera and subgenera of the Fissurellidae of the Western Atlantic appeared in Johmsonia 2, no. 24, p. 94.

Genus Hemitoma Sicainson

Hemitoma Swainson 1840, Treatise on Malacology, p. 3.56; Iredale 1915, Transactions New Zealand Institute 47, p. 433.

Subemargimula Gray 184i, Proceedings Zoological Society London 15, p. 147 (type species, Patella octoradiata Gmelin, by monotypy).
Siphonella Issel 1869, Malacologia del Mar Rosso, p. 232 (type species, Emargimula (Siphonella) arcomatii Issel, by monotypy).

Hemiloma 'Rafinesque' Scudder 1882, Nomenclator Zoologicus, Part I, Supplemental List. Bulletin United States National Museum, no. 19, p. 159 [error for Hemiloma Rafinesque]. ${ }^{1}$

Type species, H. [Emargimula] tricostata Sowerbs [=octoradiata Gmelin], by monotypy.

Shell patelliform, small to medium in size, solid in structure, elliptical to broadly oral in outline, depressed to highly conic. Sculpture consisting of radial ribs and in some species both radial ribs and concentric ridges. Anterior rib usually the most prominent and often with a small notch at the ventral margin. Muscle scar horseshoe shaped with the anterior ends recurved toward the apex as triangular spurs. The scar left by the attached area of the mantle anterior to and between the spurs is probably responsible for the description of the muscle scar in this group as being trilobed. Radula with a moderately wide central tooth which has a single cusp without denticles. The first three lateral teeth are similar but much narrower. The fourth lateral is large, nearly covering the third lateral when in its normal position. At the base of this tooth and between it and the first marginal tooth there is a small squarish plate or tooth which is quite flat except for a central thickened ridge. This plate was first figured by Odhner (1932, fig. 41). This is similar to what Robertson (1958) has shown in the radula of Tricolia and referred to as a latero-marginal plate. It is interesting that this structure should appear in two such unrelated groups, or has it been overlooked in other families? The marginal teeth of Hcmitoma range in number from 30 to over 60 , they are long, narrow, with a single cusp and numerous denticles.

Gray 1847 gave credit to de Blainville for the name Subcmargimula with Patella octoradiata Gmelin as the type. However, de Blainville used this name only in the rer-nacular-'Les subemarginules.' 'Though Pilsbry (1891) used Subcmarginula de Blainville 1825 with Emargimula cmarginata de Blainville as the type species, the first acceptable use of the name is that of Gray 1847. Hcmitoma Swainson 1840, having seven years priority, is the name generally accepted for this genus today. Iredale (1915, p. 433) has given a detailed discussion of this problem. However, he was in error in using Subcmargimula Gray for octoradiata alone, and considering Hemitoma a distinct genus with tricostata Sowerby as type. This species is a synonym of octoradiata and Subemarginula an objective synonym of Hemitoma.

The oldest known American species in this genus is Hemitoma (Hemitoma) secera which was described by Woodring (1928 , p. 475) from the Miocene of Bowden, Jamaic:a. This

[^0]species is rery close to the recent species H. octoradiata Gmelin which is common throughout the West Indies. The only fossil records from the mainland are those of Hemitoma (Montfortia) retiporosa Dall (=emargimata de Blainville) from the Pliocene of Florida. Wenz (1938) records the genus as first appearing in the Eocene.

Odher (1932) has discussed the anatomy of Hemitoma in relation to the other genera in the Fissurellidae and has illustrated the anatomy of \boldsymbol{H}. octoradiata.

This genus is world wide in distribution in warm temperate and tropical seas.

Subgenus Hemitoma Sicainson

Species in this subgenus are characterized by having the sculpture predominantly radial, with strong primary and secondary radial ribs. The concentric sculpture is weak, usually consisting only of growth lines. The anal notch is lacking except in some very young depressed forms but the internal anal groove is well marked. The apex is nearly central, usually blunt and inclined only slightly posteriorly.

There is only a single recent species in this subgenus in the Western Atlantic.

Hemitoma (Hemitoma) octoradiata Gmelin

Plates 176,177

Patella octoradiata Gmelin 1791, Systema Naturae, ed. 13, p. 3699 (Insulas Americae mediae).
Emarginula tricostata Sowerby 1824, The Genera of Recent and Fossil Shells, no. 21, Emarginula, fig. 6 (no locality given).

Emarginula listeri Anton 1839, Verzeichniss der Conchylien, p. 27 (refers to Lister, pl. 532, fig. II-Barbados).

Emargimula clansa d’Orbigny 1842 [in] Sagra, Histoire d`lle de Cuba, Mollusques 2, p. 194, pl. 24, figs. 34-36 (Cuba).

Subemargimula octoradiata Gmelin. Gray 1847, Proceedings Zoological Society London 15, p. 147; A.Adams 1851 [1852], Proceedings Zoological Society London, p. 90; Pilsbry 1891, Manual of Conchology 12, p. 273.

Emargimula depressa Sowerby 1863, Thesaurus Conchyliorum 3, p. 219, pl. 247, figs. 64, 65, 68 (no locality given).

Emarginula guadaloupensis Sowerby 1863, Thesaurus Conchyliorum 3, p. 219, pl. 247, fig. 69 (Guadeloupe Island, on basis of name).

Hemitoma octoradiata Gmelin. Woodring 1928, Carnegie Institution of Washington Publication, no. 385, p. 45%.

Hemitoma rubida A. H. Verrill 1950, Nautilus 63, p. 126, pl. 9, figs. 2, 2a (Canefield Point, Dominica, B. W.1.).

Inescription. Shell solid, reaching 30 mm . ($1 \frac{1}{4}$ inches) in length, patelliform and radially sculptured. Extremely variable in shape, ranging from nearly circular to elliptical in outline, the height varying from about $\frac{1}{4}$ to nearly the length of the shell. Apex subcentral and pointed slightly posteriorly. Anterior slope slightly to strongly convex. Posterior slope slightly concave immediately below the apex, then varying from nearly straight to rather strongly convex. Radial sculpture consisting of eight unbranched, irregularly nodulose primary ribs which extend from the apex to the basal margin. In young specimens the primary ribs are very prominent and project beyond the margin producing a stellate appearance. As the shell grows, secondary and often tertiary ribs are produced between the primary ribs, and the margin becomes finely crenulate. Concentric sculpture consisting of irregular growth lines only. Color a light tan or gray to greenish brown. Periostracum thin, medium golden brown in color and usually seen only
on young specimens. Interior of shell a glossy olivaceous green to purplish brown with a white margin and a white area at the apex. Anal groove narrow and deep, extending inward about $\frac{1}{2}$ to $\frac{2}{3}$ the length of the anterior slope.

The soft parts of this species are extraordinarily beautiful. The main portion of the mantle and foot are a medium blue-green, the base of the foot being somewhat lighter. 'This coloration increases to an intense turquoise near the edge of the mantle, while the edge proper is a vivid magenta. The base of the tentacles and the head are also turquoise while the ends of the tentacles and a circle around the end of the proboscis are magenta.
'The radula is similar to that of emargimata though the central tooth is somewhat broader and there are far more marginal teeth, there being from over 45 to 60 marginals depending upon the age and size of the specimen.

Iength	width	height	
18.5 mm .	12 mm .	7.5 mm .	Arthurs Town, Cat Island, Bahama Ids.
23.5	20	20	،6 ، ،
19	15	13	Whitelıouse, Jamaica
23	23	15.5	6، 6،
22	18	8	Barbados
30.5	24.5	15.2	6
24.5	20	9	Clifton Harbour, Lnion Island, Grenadines
29.5	25	11.5	Tortugas, Florida

Types. Patella octoradiata Gmelin as originally described was a composite species. Gmelin`s description applies quite well to this species, but the references are certainly composite. His first reference was to Lister, plate 532, fig. 11 and this was used by A. Adams in 1852 to indicate Gmelin's species. Pilsbry followed Adams and selected

Plate 176. Hemitoma octoradiata Gmelin. Series of specimens selected to show variation in shape and sculpture. Fig. 1. Marina Cay, south of Great Camanoe Island, Virgin Islands. Fig. 2. Cayo Francés, Caibarién, Cuba. Fig. 3. Clifton Harbour, Linion Island, Grenadines. Figs. 4-i. Cienfuegos Harbor, Cuba. Fig. 8. Dundas Town, Great Abaco, Bahama Islands. Fig. 9. Clifton Harbour, Union Island, Grenadines. Fig. 10. Santa Bárbara de Samaná, Dominican Republic. Fig. 11. Internal view, Marina Cay, south of Camanoe Island, Virgin Islands.

Figs. 1-3. Side view to show variation in height (anterior to the left). Figs. 4-10. Dorsal view to show growth series (anterior end downward). Fig. 10. A specimen with numerous radial ribs (all 15 x).

Lister’s figure as the trpe. As Gmelin gave a very indefinite locality for this species, the trpe locality is here restricted to Barbados, the locality given on Lister's figure. The type of Emargimula clausa d`Orbigny is in the British Museum according to Gray (1854). The types of E. guadaloupensis Sowerby and E. depressa Sowerby are also probably in the British Museum (Natural History).

Remarlis. This is an extremely variable species as indicated in the description. Specimens may range from those which are quite flat and nearly circular in outline with strong ribs and deeply crenulated margins to those which are very high and conical with weak ribs and nearly smooth margins, and there may be any combination of these characters. As shown in the measurements, the length of mature specimens may vary in relation to the height from 1.15 to 2.75 and the width may vary from less than $\frac{2}{3}$ the length to equal the length. Hemitoma rubida Verrill is one of the flattened, broad and strongly sculptured trpes. 'The anterior rib is usually the most prominent, but this is not alwars so and the anal groove which follows it on the internal surface of the shell usually does not end in a notch at the margin though in occasional young specimens there may be a very small one. Young specimens are usually somewhat rectangular in outline, depressed and stellate. Specimens of this species are usually moderately to heavily encrusted with

Plate 15i. Radulae of Hemitoma. Fig. 1. Hemiloma emarginata de Blainville. Fig. 2. Hemitoma octoradiata Gmelin. Fig. 3. Embryonic whorls of H. emarginata de Blainville.
coralline algae and other growths and it is often necessary to clean them in order to study the sculpture. Howerer, the muscle scar, the anal groove and the color pattern on the inner surface are usually sufficient for identification.

Robert Robertson who has spent a great deal of time collecting and studying in the Bahama Islands writes as follows concerning this species. "In the Bahama Islands H. octoradiata is abundant in the vicinity of Elbow Cay, Great Abaco (the windward edge of the Little Bahama Bank). It usually lives a few inches below low tide mark on exposed rocky shores. The irregular surface of the rock is covered with lithothammia (chiefly Porolithon) and in this these limpets form slight depressions. They appear to be sedentary. They may also be found under slabs of dead coral (Acropora) in the reef northeast of Elbow Car. Occasionally specimens were found under rocks and live corals in shallow water in sheltered areas. At Bimini, on the leeward side of the Great Bahama Bank, this limpet is scarce. The rocky shores here are not as exposed as many of those at Abaco. Feces of this Hemitoma studied at Bimini contained chiefly green algac but also a copepod and series of marginal teeth from its own radula.

Range. From Biscayne Bay, Florida south through the Florida Kevs, Bermuda (Peile 1926), the Bahama Islands, throughout the West Indies and along the north coast of South America south to Porto Seguro, Brasil.

Specimens examined. Flobida: Biscayne Bay (MC Z) : Pelican Shoals off Boca Chica Key (J. Schwengel) : Middle Sambo Shoals, near Ker West ('I. McGintỵ) : Sand Keer, Key West; Dry Tortugas (both MCZ). Bainana Islands: West End and Eight Mile Rock, Grand Bahama (both MCZ) : Cooper Jacks Cays, S of Elbow Cay and Dundas 'Town, Great Abaco: North Rabbit Car, Bimini Islands (all R. Robertson): Brown's Point, New Providence: Governors Harbour, Eleuthera: Cape St. Maria: Clarence Town and Simms, all Long Island: Little San Salvador and Russell Creek, Cat Island: Rum Cay; Matthew 'Town, Great Inagua (all MCZ). Cciba: Vedado and Playa de Jibacoa, Habana; Cayo Cruz del Padre and Peninsula de Hicacos, Matanzas (all MCZ): Cayo Francés, Caibarién, Las Villas: Santa Maria Key, off Punta Alegre, Camagüey (both R. Humes) ; Vita; Guarda la Vaca, Banes: Bahía de Banes; Blue Beach, Guantánamo Naval Base, all Oriente; Punta de los Colorados, Cienfuegos, Las Villas (all MCZ). Jamaica: Runaway Bay, St. Ann’s: Montego Bay (both MCZ) : Whitehouse (J. K. Howard). Hispaniola: Gonave Island, Haiti (W. J. Eyerdam): Monte Cristi: Puerto Plata; Puerto Sosúa; Santa Bárbara de Samaná, all Dominican Republic (all MCZ). Puerto Rico: Mata de la Gata, off La Paguera: La of Boca de Congrejos (both MCZ). Virgin Islands: Virgin Corda: Marina Cay and Guana Island, Tortola (all M. W. Dewey) ; St. John; Great St. James Island, St. Thomas (both MCZ) : Ham Bay, St. Croix (M. K. Jacobson). Lesser Antures: Antigua: Guadeloupe: Marigot. St. Lucia (all MCZ) : Barbados (P. G. Kellett) : Carriacou Island, Grenadines: Grand Anse, Grenada (both H. G. Kugler): Buccoo Reef, 'Tobago ($\triangle \mathrm{C} / 2$) : '「oco, north coast of Trinidad (H. G. Kugler). Caribbean Islanis: Southwest point: Grand Cayman, Cayman Islands (MCZ). Brifisir Guiana: Mouth of Corentyne River (H. G. Kugler). Brasil: Porto Seguro ($\mathrm{MC} /$) .

Subgenus Montfortia Récluz

Montfortia Récluz 1843, Revue Zoologique par la Société Cuvierienne 6, p. 259 and 376.
Type species, Emargimula australis Quoy and Gaimard, subsequent designation, Iredale 1915.

Species in this subgenus are characterized by having a pronounced radial and concentric sculpture with the three anterior ribs usually strongest and by having a small anal notch at the margin of the anterior rib in addition to the internal anal groove. The apex is prominent, subcentral and recurved posteriorly.

Hemitoma emarginata de Blainville

Plates 177, 178
Emarginula emarginata de Blainville 1825, Manuel de Malacologie, p. 501 , pl. 68 bis, fig. 3 (no locality given).

Emarginula octoradiata 'Gmelin' Sowerby 1863, Thesaurus Conchyliorum 3, p. 219, pl. 247, fig. 66 (no locality given); non octoradiata Gmelin 1791.

Subemargimula retiporosu Dall 1903, Transactions Wagner Free Institute Philadelphia 3, pt. 6, pl. 55, fig. 3 ; pl. 60, fig. 17 (Pliocene marl of Shell Creek, Florida). Figured but not described.

Hemitoma retiporosa Dall. Olsson and Harbison 1953, Academy Natural Sciences, Philadelphia, Monographs, no. 8 , p. 360 , pl. 48 [not 18], figs. 14, 14a.

Emarginula ostheimerae Abbott 1958, Academy Natural Sciences, Philadelphia, Monographs, no. 11, p. 18, pl. 1, fig. c (Old Man Bay, north side of Grand Cayman Island, Cayman Islands).

Description. Shell solid, reaching 25 mm . (1 inch) in length, patelliform and strongly sculptured. Extremely variable in shape, the basal outline ranging from more or less quadrate to broadly oval, circular or elliptical. Height ranging from about $1 / 4$ to over $3 / 5$ the length of the shell. Apex subcentral, recurved posteriorly and slightly to the left. Anterior slope convex. Posterior slope concave just below the apex, then continuing nearly straight or slightly consex. Sculpture consisting of radial ribs and concentric ridges with nodules formed where the radial ribs and concentric ridges cross, producing a strong reticulate sculpture. Primary ribs 8 to 10 , the anterior rib always being single, usually prominent and ending in a small notch at the margin. The remaining primary ribs may be single or compound, the compound ones made up of from 2 to 5 closely spaced ribs which give the effect of a single broad rib. The spaces between the primary ribs have from 1 to 5 low secondary ribs. Concentric sculpture consisting of more or less evenly spaced ridges, the distance between them increasing slightly as the shell grows. Margin of mature specimens usually moderately to finely crenulate. Young specimens have a strongly scalloped margin. Shell white, periostracum thin, pale yellow and usually remaining only in the pits formed by the reticulated sculpture. Interior of the shell glossy white, often with yellow patches indicating the pits. Anal groove fairly deep and narrow near the margin, ending in a small notch. It extends as a very shallow groove to near the apex. Embryonic whorls one and one half, small, smooth and with a light brown periostracum.

length	width	height	
11 mm.	7.3 mm.	3 mm.	Arenas de la Chorrera, Habana, Cuba
20	1.5	7	Jamaica
21.5	12	12	Fort Jefferson, Tortugas, Florida
23.5	17	8.2	St. Thomas, Virgin Islands
24.5	18.5	7.2	Off Fowey Rocks, Florida
25.2	19	8.2	Nassau, New Providence, Bahama lslands
25.5	15	12.5	Dry Tortugas, Florida

Types. The location of the type specimen of Emargimula emarginata de Blainville is unknown.

Plate 178. Hemitoma emarginata de Blainville. A series to show variation in shape and sculpture (anterior end downward). Fig. I. Jamaica, a somewhat beachworn specimen. Fig. 2. Arenas de la Chorrera, Habana, Cuba. A roung specimen with a distinct anal notch. Fig. 3. Tortugas, Florida, a side view to show arerage shape in profile (figs. 1, 2 and 4 are somewhat flatter than this: figs. 7 and 8 are about the same and fig. j is much higher). Fig. 4. Fowey Rocks, Florida, from an old wreck. Fig. 5. Dry 'lortugas, Florida, a very high narrow form. Fig. 6. Barbados, internal view to show muscle scar and anal groove. Fig. 7 . St. Thomas, Virgin Islands. Fig. 8. Nassau, New Providence, Bahama Islands, from a pier. (All about $2 x$.)

The holotrpe of Subemarginula retiporosa Dall is in the United States National Museum and that of Emarginula ostheimerac Abbott is in the Academy of Natural Sciences. Philadelphia, no. 195983.

Remarks. This is a rather rare species and specimens are seldom taken alive. Consequently we know nothing of its ecology. It apparently lives from just below low tide to depths of perhaps 100 fathoms. Specimens known to have been collected alive which we have seen, came from a wharf at Nassan, New Providence, Bahama Islands and from a wreck on Fowey Rocks, Florida. On the basis of the poorly preserved specimen arailable
for study, the anatomy of cmarginata appears to be rery close to that of octoradiata and the radula differs mainly in the width of the central tooth and the fewer marginal teeth.

Emargimla osthcimerac Abbott appears to be a young specimen of this species, the trpe specimen being almost identical with figure 2 shown in the growth series on Plate 178. Dall figured but never described this species from the Pliocene marl of Shell Creek, Florida under the name of Subemargimma retiporosa, and Olsson and Harbison report it under Hemitoma retiporosa Dall as fairly common in the Pliocene of St. Petersburg, Florida.

The range of rariation in this species is equally as great as that in octoradiata. Many of the high specimens are also laterally compressed and, as pointed out by Pilsbry (1891), the anterior and posterior ends of many specimens are slightly raised so that the specimen will rock when placed on a flat surface. Howerer, this certainly does not hold true for all specimens. 'The extent of the anal groove also varies considerably and is barely visible in some specimens.

This species is not closely related to any other found in the Western Atlantic. It differs from octoradiata in having a pronounced reticulate sculpture and compound ribs.

Range. From Lantana, Florida south through the Florida Keys and probably throughout the West Indies.

Specimens examined. Fioriba: off Lantana in 10 fathoms: off Hollywood in 35-60 fathoms; off Cape Florida, Biscayne Bay in 50 feet: Fowey Rocks; $5 \frac{1}{2}$ miles NE of Beacon D, The Elbow, Key Largo in 66-83 fathoms: 6 miles SE of Sombrero Light, off Marathon in 66 fathoms (all MCZ): Pelican Shoals, Key West in 45 fathoms (J. Schwengel) : Fort Jefferson, Tortugas ($\triangle \mathrm{C} Z$). Bahama Islands: W of Picquet Rocks, Bimini Islands in 10 fathoms (R. Robertson) : Northeast shore of New Providence (D.H. Brown) : Nassau, New Providence; Mathew 'Town, Great Inagua (both MCZ). Cuba: near Habana (MCZ). Virgin Islavins: St. Thomas (MCZ). Lesser ANtilites: Barbados (МСZ/): Fontenary Beach, Grenada (H. G. Kugler).

Genus Diodora Gray

Diodora Gray. Farfante $19+3$, Johnsonia 1, no. 11, pp. 1-20, pls. 1-6.
The following description of Diodora fragilis is basically a translation of the work of I. P. Farfante and D. L. Henríquez which appeared after Johinsonia, no. 11 on Diodora had been published.

Diodora fragilis Farfante and Henriquez Plate 179, figs. 1-4

Diodora delicata Farfante and Henríquez 1946, Revista de la Sociedad Malacologica 'Carlos de la Torre 4, p. 54 (Arenas de La Chorrera, Habana, Cuba).

Diodora fragilis Farfante and Henríquez 1947, ibid. 5, p. 52, figs. 1-4 (new name for D. delicata Farfante and Henrique\%, non E. A. Smith 1889).

Description. Shell small, reaching 10 mm . in length, delicate in structure, depressed conic, and with the anterior slope considerably shorter than the posterior slope. Base orial. Anterior slope straight for its entire length, the posterior slope concave just below
the apex, the remainder straight to convex. Apex anterior of the center and pierced by the anteriorly directed orifice. Orifice small, 1 mm . in length and oral. Radial sculpture consisting of numerous rather large, rounded ribs which alternate with very fine ones. Concentric sculpture consisting of numerous lamina which cross the radial ribs forming small scales. Margin denticulate. Color grayish white. Interior of shell gray, glossy and with a series of grooves which correspond to the radial ribs. The callus around the orifice gray, sharply truncated and excavated posteriorly.

length	width	height
20 mm.	11 mm.	5 mm.

Types. The holotype is in the collection of Mrs. E. G. Henriquez. 'The type locality is from sands dredged near Habana and deposited at La Chorrera.

Range. Known only from the type locality.
Remarks. This is a very distinctive species and readily distinguished from all others known in the Western Atlantic. It belongs to the group of D. aguayoi and D. wetmorei, but is nearer to aguayoi. It differs from that species by having a smaller, broadly oval rather than oblong orifice and is lacking the rounded tooth on either side of the orifice. In addition, the shell of fragilis is more depressed, the radial ribs lower and more widely spaced than in aguayoi.

Plate 179. Diodora fragilis Farfante and Henríquez. Holotrpe. Arenas de la Chorrera, Habana, Cuba. Figs. $1-3\left(2 \frac{1}{2} x\right)$. Fig. $+(10 x)$.

REFERENCES

Gray, J. F. 1854 , List of the Shells of Cuba in the Collection of the British Museum, pp. 1-48.
Iredale, T. 1915, A Commentary on Suter`s Manual of the New Zealand Mollusca. 'Transactions of the New Zealand Institute 47, pp. 417-497.
Odhner, N. 1932, Zur Morphologie und Systematik der Fissurelliden. Jenaische Zeitschrift für Naturwissenschaft 67, pp. $292-309$, figs. $1-+1$.

Peile, A. J. 1926, Mollusca of Bermuda. Proceedings Malacological Society London 17, pp. 71-98.
Pilsbry, H. A. 1891, Manual of Conchology (1) 12, pp. 273-287.
Robertson, R. 1958 , The Family Phasianellidae in the Western Atlantic. Johnsomia 3, pp. 245-283, pls. 136-148.
Wenz, W. 1938 [in] Schindewolf. Handbuch der Paläozoologie 6, (1), p. 178.
Woodring, W. P. 1928, Miocene Mollusks from Bowden, Jamaica, Part II Gastropods. Carnegie Institution of Washington, Publication no. 385 , pp. 1-564, 40 plates.

$$
* * * *
$$

'THE GENERA AMAEA AND EPITONIUM IN THE WES'TERN ATLANTIC
BY
Ruth D. Turner

Amaea (Amaea) mitchelli

Amaea (Amaea) mitchelli Dall. Clench and Turner 1950, Johnsonia 2, p. 243, pl. 106, figs. 5-7.
Specimens caramined. Texas: Mustang Island, 1 mile S of Port Aransas (Doil Turner).

Epitonium (Asperiscala) sericifilum Dall

Epitonium (Asperiscala) sericiflum Dall. Clench and Turner 1952, Johmsonia 2, p. 317, pl. 152.
Mrs. G. R. Hettick has kindly donated a specimen of this rare species to the Museum of Comparative Zoology. Dall (1889, p. 124) in his list of the Marine Mollusks of the Southeastern Coast lists this species with a question as occurring on the Texas Coast. 'The specimen collected by Mrs. Hettick is from 10 miles south of Port Aransas, 'Iexas. It has 10 whorls and measures 6.5 mm . in length and 1.9 mm . in width.

THE FAMILY PHASIANELLIDAE IN THE WESTERN ATLANTIC BY
 Robert Robertson

Some additional observations on Tricolia made at the Lerner Marine Laboratory, Bimini, Bahama Islands in June and July, 1958, are included in this supplement, as well as some new records from Cuba. Previously there were no records of Tricolia on the south coast of Cuba west of Guantánamo. The specimens were sent by Dr. C. G. Aguayo, Museo Poey, Universidad de la Habana and Dr. Cortez Hoskins, Jersey Production Research Co., Tulsa, Oklahoma.

Tricolia affinis affinis C. B. Adams
Tricolia affinis affinis C. B. Adams. Robertson 1958, Johnsonia 3, no. 37, p. 262.
S'pecimens examined. Cuba: Cayo Inés de Soto: Playa Manimaní, both Pinar del Río; Vedado: Arenas de la Chorrera, both Mabana; Gibara, Oriente (all Museo Poey): W of Cayo 'Tablones, Archipiélago de los Canarreos, Habana; Cayo Perro, Cayos de San Felipe (both C. Hoskins) ; Pta. de la Yana, both Pinar del Río (Museo Poey).

Tricolia adamsi Philippi

Tricolia adamsi Philippi. Robertson 1958, Johnsonia 3, no. 37, p. 268.
Specimens exomimed. Cuba: Vedado, Habana (Museo Poey).

Tricolia thalassicola Robertson

Tricolia thalassicola Robertson 1958, Johnsonia 3, no. 37, p. 271.
Remarks. The median longitudinal furrow is present at the anterior end of the under side of the foot only. Hence the wases of progression are only partially ditaxic. There are irregular yellowish olive-green spots, somewhat as on the shell, on the upper surface of the foot. The left cerrical lobe is peduneulate and digitate, with four digits in two specimens and three in another. The lobe on the right side is entire.

This species lives on Manatee Grass (Cymodocca manatormm Ascherson) as well as on 'Turtle Grass (Thalassia) at Bimini. It was seen to feed on fine filamentous and crustose ealcareous red algae.

Specimens exomined. Cuba: Cayo Inés de Soto: Playa Manimaní, both Pinar del Río; S eoast Camaguiey Provinee (subfossil; all Museo Poey); Cayo Perro, Cayos de San Felipe (C. Hoskins): Pta. de la Yana, both Pinar del Río (Museo Poey).

Tricolia bella M. Smith

Tricolia bella M. Smith. Robertson 1958, Johusonia 3, no. 37, p. 274.
Remarks. 'There is no median longitudinal furrow on the under side of the foot in this speeies, as was previously stated to be eharacteristic of the whole genus (p. 250) and the waves of progression are monotaxie, not ditaxie (see also Remarks above on T. thalossicola). The earlier observation (p. 249) that there is no cervieal lobe on the right side was based on a single abnormal speeimen. Normally there is an entire lobe, as in 'T. thalassicola. 'The left lobe had three digits in the specimens examined. The feces are U-shaped, as in T. pullus.

Four young speeimens (the largest 1.8 mm . long) were eollected from floating $S a r$ gassum west of Bimini. 'This species usually lives in mats of filamentous green algae. Sometimes it may be found in the red alga Bostrychia [$=$ "Amphibia"] tenella (V'ahl) Agardh on mangrore roots.

Specimens examined. Cuba: Vedado, Habana (Museo Poey) : Cayo Perro, Cayos de San Felipe, Pinar del Río (C. Hoskins).

Tricolia tessellata Potiez ond Michand

Tricolia tessellata Potiez and Michaud. Robertson 1958, Johnsonia 3, no. 37, p. 277.

Range. This species was previously believed not to occur on the coast of Cuba. It has, howerer, been eollected on the south coast in a subfossil state. A record of this species at Grand Cayman (Abbott 1958, Academy of Natural Sciences of Philadelphia Monograph 11, p. 32) is based on a specimen collected alive of the banded form of 'T. thalossicola (see Plate 146 , fig. 3, p. 272).

Specimens examined. Cuba: S coast Camagüer Prorince (subfossil: Museo Poer).

ADDITIONS AND CORRECTIONS

Page 250. The Carpenter specimens of Tricolia compta (Gould) are now at the United States National Museum, Washington, D.C.

Page 2 SO. Phusianella concolor C. B. Adams is probably a synonym of Assiminea succinea (Pfeiffer) [Paludina succinea Pfeiffer 1840]. Paludestrina auberiana d'Orbigny is not an Assiminea as was believed by Dall, but a Littoridina.

Page 280. A. Heilprin 1893 (The Bermuda Islands, Philadelphia, p. 175) reports "Phasianella Kochi, Phil." from Bermuda. He evidently had some other species of Tricolia, for T. kochii (Philippi) is restricted to South Africa (and possibly parts of the Indo-Pacific). There are three separate records of Tricolia from Bermuda published during the last half of the nineteenth century and there is only one specimen of T. bella in the Haycock Collection, Bermuda Government Museum (teste Richard W. Foster). None of the species appear to hare been collected in recent rears. Evidently the genus is sporadic there.

```
* * ***
```


Notes

Since the publication of Distorsio in this rolume (pp. 235-242) we have obtained two additional records of note.

Distorsio (Rhysema) clathrata Lamarck

Specimen examined. North Carolina: Combat, station 381, about 15 miles SE of Cape Hatteras (N. Lat. $34^{\circ} 59^{\prime}$; W. Long. $75^{\circ} 333^{\prime}$) in 45 fathoms.

Distorsio (Rhysema) mcgintyi Emerson and Puffer

Specimen examined. Bermuda: $\frac{3}{4}$ mile S of Castle Rock in $80-100$ fathoms (Bermuda Biological Station).

This record extends the range considerably to the north.

INDEX

BY
Merrial, E. Champion
See Trable of Contents for references to new genera and speries, book reviews, royages, and contributors.

The first page number given is to the most important reference.
abnormis, Scutum, 1 t
aborta, Pholadidea, 90
abyssorum, Sylophaga, 156,1+6
acclivis, Triton, 228
acinaces, Patella, $1+$
Acmaea, 1 t
acuminata, Parapholas, $128,9,123$, 132
acuminata, Pholas, 128
adamsi, Phasianella, 268,274
adamsi, Tricolia, $268,263,270$, 272,345
adamsii, Littorina, 262,274,275
affinis, Phasianella, 262,263
affinis, Tricolia, 262,248,951,253,
265,269,270,271,272,34+
aguayoi, Diodora, $3+3$
aguayoi, Murex, 333
Ai yyella, 252,261
alta, Pinna, 315,317,318
altispira, Melongena, $1 \mp 6,181,18$?
Amaea, 3+4
americana, Martesia, $102,10+, 107$
americanum, Triton, 228,229
Anchomasa, 22
anomalus, Triton, 243
antillarum, Melongena, 164
antillarum, Murex, 333
antillarum, Triton, 225
anus, Distortio, 236
anus, Distortrix, 235
anus, Murex, 235,236
anus, Persona, 2.35
Apophyses, 13
aquatilis, Triton, 216
Aquilus, 200
Aquillus, 900
arconatii, Emarginula, 335
aspinosa, Melongena, 172,17t
assimilis, Pinna, $31+$
Assiminea, $3+6$
Astraea, 79
atlantica, 'Tritonia, 194
atlantica, Xylophaga, 152,5, 146, 148,156
atlantis, Columbarium, 330
atomus, Pholas, 104
Atrina, 310,292,297,301
atropurpurea, Pinna, 290
auberiana, Assiminea, 280
auberiana, Paludestrina, 346
australasiae, Monoplex, 227,228
australe, Buccinum, 255,256
australis, Emarginula, 340
australis, Phasianella, 255,245, $2+8,2+9$
Ariculopinna, 297,298
bahamensis, Martesia, 111,112, 113
Bailya, 243
Bankia, 3,146
barbudensis, Sconsia, 329
Barnea, 19, 2, 10, 15, 16,17
Barnia, 19
beaniana, Pholas, 104
beanii, Murex, 333
beaui, Tricolia, 263,265,269
beauiana, Pholas, $10+$
belknapi, Melongena, 172,17t
bella, Phasianella, 27t
bella, Tricolia, $274,249,250,251$, 262,263,280,34.5
bermudezi, Columbarium, 330
bicarinata, Phasianella, 280
bicarinata, Tricolia, 250
bicolor, Fusus, 182,184
bicolor, Melongena, 182,163,164, 168,178
bispinosa, Melongena, 180
bifrons, Pholas, 5.5,56
bispinosa, lyrula, 180
bisulcata, Parapholas, 131,139
bitruncata, P'anope, so
Bolina, 25.5
branchiata, P'arapholas, 1.32
brasilianum, 'Triton, 298,299
brayi, Columbarium, 330
brevis, Eucosmia, 258
brevis, Gabrielona, $258,248,2.51$, 257,262
brevis, Phasianella, 257,258,262, 263,268,270,2フ2
brevis, Tricolia, 258
brevissima, Phasianella, 2.58
Buccinatorium, 193
bulimoides, Phasianella, 256
Cabestana, 200
Cabestanimorpha, 200
Cadmusia, 89
caduceus, Murex, 200
Caducifer, 243
californianus, Mytilus, 79
californica, Parapholas, 124,70, 130
californica, Pholas, 123,128
californica, Xylophaga, 15t,155, 156
callosa, Pholas, 45
callosa, Zirfaea, 23
Callum, 13
calra, Martesia, 131
calva, Parapholas, $131,123,128$, 130
calva, Pholas, 131
calypta, 'Tricolia, 2.53
campechiensis, Dactylina, 48
campechiensis, Pholas, $48,10,53$, 170
campechiensis, Pragmopholas, ts
candeana, Pholas, 48,49
candida, Barnea, 19,10,20,24
candida, Barnia, 20
candida, Pholas, 19,21
caribaea, Pholas, 114,116
caribbaeum, Cymatium, 20t, 100 . 208,242
carnea, Pinna, 306,2s6,287,2s8. 296, 301
carolinensis, Piman, 31?
caudatus, Murex, 20t

Cerithium, 183,184
Chaceia, 66,158,3,16
Charonia, 193
Charonis, 193
chemnitzii, Triton, 243
chiloensis, Pholas, $51,10,49,50$, 170
Chimaera, 301
Chimaeroderma, 301
chipolana, Tricolia, 253
chlorostomum, Crmatium, 190
chlorustomum, Triton, 210,211
Chromutis, 25テ, ㄴ60
cingulata, Cassidaria, 242
cingulata, Linatella, 198
cingulatum, Cymatium, 200,242
clappi, Lignopholas, $98,99,100$
clathrata, Distorsio, 236,235,240, 346
clathrata, Distortrix, 240
clathratum, Triton, 236
clathratus, Triton, 236
clausa, Emarginula, 336
clavata, Pholas, $101,102,103,107$
clavator, Tritonium, 204
colosseus, Fusus, 187
Columbarium, 330
commutatus, Triton, 194
compta, Phasianella, 260,279,280
compta, Tricolia, 279, 248,346
concamerata, Pholas, 80,83
concinna, l'hasianella, 262,263
concinna, Tricolia, 268
concolor, Phasianella, 280,346
conoides, Pholas, 103
conradi, Penitella, $75,2,14,71,74$, 84,122
constricta, Distorsio, 242
constricta, Zirfaea, 88
Conus, 329
corona, Melongena, 172,161,162,
$163,164,170,179,180,182,184$
corona, Murex, 172
coronatus, Fusus, 18.5
corrugatum, Cymatium, 221
corticaria, Pholas, 104, 107
costata, Barnea, 9
costata, Cyrtopleura, 35, 2, 8, 9,14 , 40,42
costata, Holopholas, 35
costata, Pholas, 35
costata, Scobina, 35
costatus, Murex, $228,229,230$
costatus, Pholas, 35
costulata, Plıolas, 20
crassa, Phasianella, 261
crenulatus, Pholas, 23
crispa, Pholas, 55
crispata, My̌a, јј
crispata, Pholas, $54,5.5$
crispata, Zirfaea, $55,1,3,4,5,8,9$,
$10,11,21,24,30,59,61,91$
crispus, Solen, jう
crucifera, Pholas, 34,41
cruciger, Cyrtopleura, 41,36,37,40
cruciger, Pholas, $34,41,42$
crucigera, Pholas, +1
cruenta, Tricolia, 267, 263,266,269
cumingii, Jouannetia, 9,134,135, 136
cuneiformis, Martesia, $11+, 6,50$, 101
cuneiformis, Pholas, 114
cupula, Pholas, 104
Currus, 19 i
curta, Diplothyra, 121
curta, Martesia, 104,108
curta, Pholas, 121
curvata, Penitella, $80,83,84$
curvata, Pholas, 81
cutaceum, Cymatium, 203
cutaceus, Aquillus, 200
cutaceus, Fusus, 198
cutaceus, Murex, 200
cutaceus, Triton, 198
cranocephalum, Cymatium, 204
cyclostoma, Tricolia, 253
cylindrica, Barnea, 20
cylindrica, Pholas, 20
Cymatiidae, 189
Cymatilesta, 200
Cymatium, 231,197
Cymatriton, 210
Cynocephalum, 242
cynocephalum, Cymatium, 242, 198,200,206
cynocephalum, Triton, 204,205, 242
Cyrtopinna, 301
Cyrtopleura, $34,41,158,16,17$
dactilus, Pholas, 45
Dactylina, 44
dactylina, Pholas, 45
dactyloides, Pholas, 19, 23
dactylus, Dactylina, 45
dactylus, Hypogaeoderma, 45
dactylus, Pholas, $45,2,8,9,10,24$, dactrlus, Pragmopholas, 45
darwinii, Netastoma, $1+1$
darwinii, Nettastomella, 142,145
darwinii, Pholadidea, 142
darwinii, Pholas, $1+1,1+2,1+3$
decorata, Phasianella, 256
decurtata, Pholas, 45,47
decussata, Pholas, 103
degenera, Pinna, 306
delicata, Diodora, 342
delicatula, Phasianella, 256
denudata, Melongena, 165,168
depressa, Emarginula, 336
dilecta, Pholas, $51,52,53$
Diodora, 342
Diploplax, 102
Dipluthyra, 118,158,6,101,140
1)istorsia, 235

Distorsio, 235,236
Distorsus, 235
Distorta, 235
Distortio, 235
Distortix, 235
Distortrix, 235
divisus, Tagelus, 179
Dularium, 200
d'urbignyi, Pinna, $315,317,318$, 319
dorsalis, Teredo, 146
dorsalis, Xylophaga, $146,6,10$, 149, 150, 153
dubia, Eudora, 262
duboisi, Pholas, 23
duchassaingi, Jouannetia, 135
effusa, Litiopa, 216
elongata, Pinna, 304,305
emarginata, Emarginula, 340
emarginata, Hemitoma, 340
Eotricolia, 247,252,261
Epitonium, 344
estephomenos, Hemifusus, 182
estephomenos, Melongena, 182
Eucosmia, 257,259,260
Eudora, 260
Eulithidium, 247, 257,260, 261,279
Eutriton, 193
Eutritonium, 193
Eutropia, 254,255
exaratum, Triton, 200
exigua, Phasianella, 261
exilis, Cyrtopleura, $+1,+2$
exquisita, Martesia, 111,112,113
falcata, Pholas, $103,114,116$
fasciata, Melongena, 165
fasciata, Pugilina, 184,185
felipponei, Crmatium, 203,201, 202
felipponei, Lotorium, 203
femorale, Cymatium, 232,189,231
femorale, Murex, 107,231,232
ferruginea, Pinna, 304,305
ficus, Murex, 165
finlari, Murex, 331
fitchi, Penitella, 71,70
flabellum, Pinna, 30 T
flammeus, Turbo, 261
floridana, Distorsio, 239,240,241, 242
fordiana, Tricolia, $2+9$
fosteri, Conus, 399
fragilis, Diodora, 342
fragilis, Martesia, 111,101, 102, 108,109
fulgens, Haliotis, 79
funisicola, Martesia, 104,107
fusco-nigricans, Pyrula, 168
gabbi, Penitella, $85,61, \div 0,71, i s$, 84
gabbi, Tricolia, 253
gabbi, Zirfaea, 3,8, $58,61,85,8$ i
Gabrielana, 257
Gabrielona, 257,246,247,250,253, 256,272
galea, Tonna, 190
Galeodes, 165
gemmatum, Crmatium, 222,189
gemmatus, Triton, 222
gibbosa, Pholas, $1+8$
gibbosus, Triton, 200
gigantea, Ranella, 228
Gitocentrum, 48
Glabella, 259
globosa, Jouannetia, 9, 136
globosa, Triomphalia, 136
globosa, Silotoma, $1+8$
globosa, Xylophaga, 148,151
globosa, Xrlotomea, 148
globulosa, Jouannetia, 138
globulosa, Pholadopsis, 136
goodall, Pholadidea, 89
goodall, Pholas, 90
gracilior, Strombus, 170
gracilis, Pholas, 45,47
gracilis, Triton, 222
guadaloupensis, Emarginula, 336

Gutturnium, 224
hadra, Tricolia, 253,257
haemastoma, Thais, 187
Hatasia, 92, 89
hawaiiensis, Martesia, $10+107$
Hemifusus, 187
Hemitoma, 336
hians, Pholas, 45,47
Hiata, 102
Hiloa, 247,252,261
Holopholas, 19
hornbeckii, Pholas, 104,107
Hypogaea, 44
Hypogaeoderma, 4t
imperialis, Murex, 333
incisa, Penitella, 104
incurra, Pinna, 301
incurrata, Melongena, 172
infelix, Hiata, 102, 104, 105, 107, 10s
inflata, Atrina, 300
inspinata, Melongena, $17 \because, 1$ な
intercalata, Martesia, $75,78,104$, 108,122
intermedius, Triton, 216,217
intusgranosa, Mesopholas, 102, $10+, 107$
Iouannetia, 133
Isognomonidae, 298
janellii, Pholas, 124,128
japonica, Atrina, 291
johnstonei, Melongena, 178,179, 163,164
jolỵi, Tricoliella, 262
Jouannetia, 133,134,158,13,15, $16,17,140,146$
Jouannetiinae, 16,133,17,65
klenei, Cymatium, 202
kochi, Phasianella, 346
kochii, Tricolia, 3+6
krebsi, Pholas, $11+$
krebsii, Cymatium, 220,223
krebsii, Triton, 220
labiosa, Murex, 201
labiosum, Cỵmatium, 201,190,200
labiosus, Murex, 201
laevigatum, Laevicardium, 319
lamarckii, Spondylus, 75
lamellata, I'holas, 90,91
lamellosa, Barnea, 25,22,24
lamellosa, Pholas, 25
lamellosus, Pholas, 90
Lampusia, 214
lanceolata, Barnea, 39
lanceolata, Cyrtopleura, 39,36.37, 43
lanceolata, 1'holas, 39,40
laqueata, Pholas, 51,53
larvata, Penitella, 104
latior, Triton, 216
lehmanni, Phasianella, 256
ligamentina, Pholas, 23
lignivora, Penitella, 104
Lignopholas, 98,159,188
Linatella, 198
lineolatus, Phasianella, 2.56
lineolatus, Turbo, 256
lipeata, Phasianella, 27
listeri, Emarginula, 336
listeri, Pinna, 307,315,317
Littoridina, 346
longirostra, Ranularia, 204
loroisi, Cymatium, 202
loroisi, Triton, 200,201
loscombeana, Pholadidea, 90
loscombiana, Pholadidea, 90,89
Lotorium, 197
lotor, Lotorium, 197,232
lotorium, Triton, 232
lurida, Tricolia, 247
Luterium, 197
Mactesia, 101
Mactresia, 101
maculata, Macrocallista, 319
maculatus, Pinna, 296
major, Pholas, 23
margaritana, Melongena, 165.166,
168
margaritensis, Murex, 333
maritima, Barnea, 63,159
marmoratum, Tritonium, 193, 196
Martesia, $101,102,158,1,2,15,16$, $17,98,100,118,1+6$
Martesiinae, $16,66,11,15,17,65$
Martesiella, 102
martiniana, Melongena, 181
martiniana, P!rula, 180
martinianum, Triton, 210
maura, Atrina, 491,318
megintri, Distorsio, 240,235,239, $3+6$
melanura, l'holadidea, $\Omega 3,9,9 \because, 96$
melanura, Pholas, $92,03,9+$
Melongena, $165,163,16+170.17 \%$. 178
melongena, Galeodes. 16.5
melongena, Melongena, 165,167, 163,171
melongena, Murex, 165
melongena, Pyrula, 165
Melongenidae, 161
membranacea, Pinna, $\because 98$
Mesopholas, 105
Metarylophaga, 145
mexicana, Xylophaga, 150,156
Mimelenchus, $25 j$
minor, Ensis, 179
minor, Hemifusus, 182
minor, Melongena, 168,18?
minuscula, Pholadidea, 111,113
minuta, Phasianella, 9 Э
minuta, Tricolia, 278
minutissima, Eulithidium, 270
minutissimum, Eulithidium, 268
mitchelli, Amaea, 344
mohorteri, Cymatium, $2+3$
mollis, Phasianella, 253
mollis, Tricolia, 253
Monoplex, 227
Monothyra, 44
Montfortia, $3+0$
morio, Fusus, 18.5
morio, Melongena, 185
morio, Murex, 184,185
morio, Pyrula, 185
morio, Pugilina, 185,163
morio, Semifusus, 185
moritinctus, Cymatium, 208
moritinctus, Triton, 206
mulletensis, Melongena, 173
multispinosa, Melongena, 165,168
mundum, Triton, 229
Murex, 331
muricata, Pinna, 300,301,302,303, 320,321
muricatum, Trachycardium, 319
muricatus, Pholas, 45,47
muricina, Distorsio, 224,225
muricinum, Cymatium, 225,224
mutica, Pyrula, 185
Mytilidae, 298
Mrtilus, 10
nana, Pholas, 131
nanus, Pholas, 103
Navea, 158
Neoxylophaga, $1+5$
nepeanensis, Gabrielona, $258,2+6$, 257
nepeanensis, Phasianella, 247,

257,258

Neptunella, 200
neritina, Chromotis, 260
neritina, Phasianella, 260
Netastoma, $1+1$
Netastomella, 1+1
Nettastoma, $1+1$
Nettastomella, $1+1,158,13,16,17$, $13+, 1+6$
newcombii, Navea, $75,77,78,79$
nicobaricum, Cymatium, 210,190, 220,221
nicobaricum, Tritonium, 210
nigra, Pinna, 310
nobile, Triton, 193
nobilis, Pinna, 287, $291,292,294$, 301
nobilis, Triton, 194,196
nucicola, Mesopholas, 104,107
Nectilochus, 193
obesa, Litiopa, 225,226
oblongata, Pholas, 48,49
oblongata, Thovana, 48
occidentale, Cymatium, 2 14,189
occidentale, Triton, 214
octoradiata, Emarginula, $3 \nmid 0$
octoradiata, Hemitoma, 336
octoradiata, Patella, 336
octoradiata, Subemarginula, 336
oldroydi, Atrina, 298
olearium, Monoplex, 297,2ソ8
olearius, Triton, 228
orientalis, Pholas, $1+$
orientalis, Triton, 201
Orthomesus, 255
Orthopnoea, 255
ostheimerae, Emarginula, 340
Ostreidae, 298
ostreum, Pinnotheres, 296
ovoidea, Chaceia, $66,74,84,8 \uparrow, 88$
oroidea, Parapholas, 66
ovoidea, Pholadidea, 66,85,88
oroidea, Pholas, 66,69
orum, Pholas, 104
pacifica, Barnea, 31,33
Palaeopinna, 997,298
panza, Purpura, 170
papyraceus, Pholas, 90,91,19
paradisiaca, Volema, 16.)
P'arapholas, 129,158,2,3,6,13,15, $16,17,148$
Parlicrmatium, 200
parthenopeum, Cymatium, 228,

189,227,230
parthenopeus, Murex, 298
Particoma, 114,102
Particymatium, 200
parra, Barnea, $23,22,33,55$
parva, Barnia, 23
parra, Holopholas, 23
parra, Penitella, $14,75,77,78,79$
parra, Pholas, 23,51,53
parrus, Pholas, 55
parvus, Triton, 243
patagonica, Pinna, 315
Patella, 14
patula, Cassidulus, 169
patula, Cyrtulus, 169
patula, Galeodea, 169
patula, Galeodes, 169
patula, Melongena, $168,166,167$,
169,171
patula, Purpura, 170
patula, Pyrula, 168
paulucciae, Pinna, 30t,305
pectinata, Jouannetia, 137,136. 140
pectinata, Pholadopsis, 136,137
Pellax, 246,247,252,261
Penicilla, 70
peninsulum, Cymatium, 198
penita, Penitella, $80,2,7,8,61,69$,
$70,71,74,78,79,87,88,128$
penita, Pholadidea, 80
Penitella, $70,158,2,6,9$
pennantiana, Anchomasa, 23
Pennaria, 310
pernula, Pinna, 304
Persoma, 235
Persona, 235
perspectiva, Melongena, 173
perspinosa, Melongena, 172,174
pharcida, Lampusia, 290
pharcidum, Cymatium, 220,221
Phasianella, 255,247,249,250, 252,254
phasianella ?: Trochus, 256
Phasianellidae, $245,254,34+$
Phasianellinae, 2う4
Phasianochilus, 261
Phasianus, 255
phasianus, Bulimus, 256
phasianus, Helix, 256
phaseolina, Penitella, 104
Pholadidae, $1,2,15,65$
Pholadidea, $89,158,3,16,17,70,71$

Pholadidoidea, 89
pholadiformis, Petricola, 50
Pholadinae, 15,1,11,19
Pholadopsis, 136,134
Pholas, $4+158,2,6,7,16,17,35$
Phragmopholas, $4+$
picta, Phasianella, 256
pictus, Turbo, 261
pileare, Cymatium, 216,190,211, 215,220,221
pileare, Murex, 216
pileare, Triton, 216
pilsbryi, Zirfaea, 58,3,8,56,69
P'inna, 301,292,294,297,298
Pinnaria, 310
Pinnarius, 301
Pinnidae, 285, 295, 298
Pinnogena, 297
Pinnula, 301
pisum, Penitella, 104
Pododesmus, 79
pomum, Murex, 333
poulsenii, Cymatium, 198,190
poulsenii, Triton, 198
praestans, Xylophaga, 10
Pragmopholas, +4
precursor, Lacuna, 253
preissii, Phasianella, 256
prima, Dissentoma, 216,217
Prisogaster, 251
probrevis, Tricolia, 253,259
producta, Phasianella, 280
productum, Triton, 225
Protoplax, 12
Protoxylophaga, 145
Pseudophasianus, 252
Pteria, 298
Pteriidae, 298
pterocladica, Tricolia, 264,263, 266,268,269,278
Pugilina, $184,185,163,164$
pugilis, Strombus, 170
pulchella, Littorina, 274
pulchella, Martesia, 104
pulchella, Phasianella, 256,261, 280
pulchella, Tricolia, 274
pulchella, Turbo, 270
pulcher, Murex, 333
pulchellus, Triton, 210,211
pulchellus, Turbo? 263,274,275
pulcherrima, Triomphalia, 136, 137,138
pullulus, Phasianella, 261
pullus, Phasianella, 261
pullus, T'ricolia, $261,246,248,2+9$, $250,252,253,255,260,345$
pullus, Turbo, 260,261
pumilio, Triton, 210
punctata, Lacuna, 253
punctata, Tricolia, 2.53,261
pusillus, Pholas, 103,107
pygmaea, Phasianella, 267
pygmaea, Tricolia, 267,268
pyriformis, Triton, 225
pyruloides, Fusus, 187
pyrum, Cymatium, 209,210
pyrum, Murex, 225
quadra, Pholadidea, $95,92,9+, 9 \tau$, 98
quadra, Pholas, 95
quadrangula, Barnea, 23
quillingi, Jouannetia, 139,134, 159,188
ramulosa, Pinna, 315,31\%
Ranula, 204
Ranularia, 204
rehderi, Cymatium, 208,206,211
reticulata, Distortrix, $\because 36,239$
retifer, Pholas, 51,53
retiporosa, Hemitoma, 340
retiporosa, Subemarginula, $3+0$
Rexmela, 170
Rhysema, 236
ridleyi, Cymatium, 908
ridleyi, Triton, 206
rigida, Atrina, 312,287,289,290,
291,295, $296,499,300,301,302$,
311,318
rigida, Pinna, 312
rikuzenica, Xylophaga, $1+5$
rivicola, Lignopholas, 98, 100
rivicola, Martesia, 10
rosea, Pholas, 104,107
rostrata, Nettastomella, $1 \neq 3,9$, $1+1,1+2$
rostrata, Pholadidea, $1+4,1+5$
rostrata, Pholas, $1+3$
rotunda, Distorta, 235
rubeculus, Murex, 214
rubens, Phasianella, 249,250,251, 2.5.5,256
rubida, Henitoma, 336
rude, Chimeroderma, 304
rudis, Pinn:1, $304,293,295,300$, 301,302,303,308
rufescens, Haliotis, $76,77,79$
rugosa, Pınna, 291
rutilum, Tritonium, 201
sagitta, Pholadidea, $80,83,8+$
sarcostoma, Triton, 206
sarcostomum, Cymatium, 206,208, 210
sargenti, Melongena, 172
sarissophorum, Columbarium, 330
scarlatina, Septa, 214
sciera, Hemitoma, 335
Scobina, 35
Scobinopholas, 95
Sconsia, $3 \cong 9$
sculpturata, Melongena, 164
Scutum, $1+$
seebachi, Pinnogena, 997
semicaudata, Jouannetia, 133,134, 135
semicostata, Pholas, 159
semicostata, Scy phomya, 159
semicostata, Zirfaea, 159
Semifusus, 187
semispinosa, Melongena, 165,168
seguenzae, Tritonium, $19+$
seminuda, Atrina, 315,286,300,
$301,302,303,305,307,309,311$,
$312,31+321,329$
seminuda, l’inna, 320,321
Septa, 214, 193
sericifilum, Epitonium, 34t
serrata, Atrina, $320,300,301,318$
serrata, Pinna, 320
Servatrina, 314
setosa, Cassidaria, 243
shreevei, Capulus, $14,35,37$
silicula, Penitella, 104
simillimus, Distorsio, 29.5
Simplum, 214
Simpulum, $21+$
Siphonella, 335
smithii, Diplothyra, 118,2,3,116, 123
smithii, Martesia, 118
solanderia, Cadmusia, 89.90
solanderiana, Pholadidea, 90
sorenseni, Haliotis, 79
spathulata, Barnea, 31,33
spathulata, Pholas, 31
spelaea, P'enitella, so
spengleri, Triton, 200
sphaeroidalis, Jouannetia, $1+0$
spinosa, Barme:ı, 19
squamifera, Atrina, 318
squamosissima, Pinna, 320,321
Steganomphalus, 260
stillata, Penitella, 10t
strangei, Triton, 200,201,202
Streptopinna, 298
striata, Martesia, $103,1,3,6,8,65$,
$101,102,104,113,117,123$
striata, Pholas, 90,102,103,106
striata, Sconsia, 329
subcoronata, Melongena, 170,172, $17+175$
Subemarginula, 33.5
subglobosa, Navea, $75,78,79,158$
subovata, Pholas, 20
subsanguinea, Phasianella, 256
subtruncata, Barnea, 31, 22, 27, 29, 63,170
subtruncata, Pholas, 31
subviridis, Pinna, 309,315,317
succinctum, Triton, 228
succinea, Assiminea, 346
succinea, Paludina, 346
Sulcatopinna, 297
supplicata, Metaxylophaga, 145
syntoma, Tricolia, 253,257
Talona, 158,17
Talonella, 89
tenuis, Phasianella, 261
tenuistriata, Pholas, 103
Teredinidae, 1
teredinaeformis, Pholas, $10+, 107$
terediniformis, Pholas, 104
Teredo, 3, 146
tesselata, Phasianella, 263,275
tessellata, Phasianella, 277,280
tessellata, Tricolia, 277,262,263,
265,268,272,275,280,3+5
Thais, 18 I
thalassicola, Tricolia, 271,252,253, 262,263,266,278,345
Thovana, $48,4+50$
Thurlosia, $5+$
tigrinum, Cymatium, 233
tigrinus, Triton, 233,234
tokyoensis, Martesia, 104
tomlini, Xylophaga, 145
triangularis, Septa, 232
Tricola, 260
Tricolea, 260
Tricolia, 260, 246, 247,249, 250,
$252,253,255,256,25 \div, 344$
Tricoliella, 260
Tricoliinae, 250
tricostata, Emarginula, 336
tricostata, Hemitoma, 336
tridens, Pholadidea, 159,91
tridens, Pholas, 159
tridens, Talona, 89,159
trinodulosa, Melongena, 173
Triomphala, 136
Triomphalia, 136
Triton, 189, 193
Tritonalia, 193
Tritonellium, 193
Tritonia, 193
Tritonicus, 200
Tritonidea, 243
tritonis, Charonia, 195, 196
tritonis, Murex, 193,196
tritonis, Phasianella, 256
tritonis, Tritonium, 193
Tritonium, 193
Tritonocauda, 204
Trochidae, $2+6$
truncata, Barnea, $27,3,8,10,1+$, 22,24,26,29,33,50,170
truncata, Pholas, 27,28
truncata, Zirfaea, 55,56,57
tuberculata, Pholas, 23
tuberculosa, Atrina, $31+$
tuberosum, Triton, 224,225
tubifer, Pholas, 96
tubifera, Pholadidea, 96,9ㅢ
tubifera, Pholas, 96,97
Turbinidae, 246
turbinoides, Phasianella, 255
Turritriton, 200
typica, Phasianella, 279
typicum, Eulithidium, 279
umbilicata, Littorina, 262,271
umbilicata, Phasianella, 26ะ,263,

271,275,280
umbilicata, Tricolia, 253
undosum, Triton, 243
Usatricolia, 260,261,279,280
varia, Phasianella, 256
varians, Eudora, 260,261
varicosa, Pinna, 295,304,305
variegata, Charonia, 193,190
variegata, Eucosmia, 260,279
variegata, Phasianella, 249,255, 256,279
variegata, Tricolia, 279,248
variegatum, Triton, 193,194
variegatus var. B, Triton, $19+$
veliei, Triton, 216,21i
Venus, 10
venusta, Phasianella, 256
verrucosa, Hypogaea, 45
vexillum, Atrina, 290
vibonensis, Pholas, 90
vignoni, Jouannetia, 134, 138, $1+0$
virginica, Crassostrea, 3,296
virgo, Pellax, 2.58
Volema, 165
waltonia, Didianema, 253,257
washingtona, Xylophaga, 154, 153
waterhousii, Cymatium, 202
wetmorei, Diodora, $3+3$
wiegmanni, Fusus, 242
wilsoni, Penitella, 93,94
xilophaga, Penitella, 104,107
xilophaga, Pholas, 146
Xilotoma, 145
Xilophaga, $145,158,1,2,9,10,15$, 16,17
xylophaga, Penitella, 104
xylophaga, Pholas, 104
Sylophaginae, $17,1+5,11,15,65$
Xylotomea, $1+5$
Xylotrya, 44
zebrina, Phasianella, 262,275
Zinatella, 198
Zirfaea, $54,2,3,5,6,9,10,12,15$, $16,17,57,68,70,88$

[^0]: ${ }^{1}$ In the Preface to his book Scudder stated: "Where the entry has been furnished by an author or other correspondent his name is appended in italics as its sponsor; the name Agassiz is appended to all entries copied from his manuscript additions to the Nomenclator of 1846. " Such was the case with Hemiloma Rafinesque. However, when checking Agassiz' Nomenclator, we find that he had not included Hemilomo Rafinesque and it was this to which he was referring in his manuscript and Scudder made the error in copying it.

