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Abstract

Many single-output regression problems require estimates of uncertainty along with the point predictions. For this
purpose, there exists a class of regression algorithms that predict a conditional distribution rather than a point estimate.
The off-the-shelf options are much more limited, however, when the prediction output is multivariate and a joint
measure of uncertainty is required. In this paper, we predict a distribution around a multivariate random vector of
dimensionP, such that the joint uncertainty would quantify the probability of any vector inP-dimensional space. This
is more expressive than providing separate uncertainties in each dimension. To enable joint probabilistic regression,
we propose a natural gradient boosting approach based on nonparametrically modeling the conditional parameters of
the multivariate predictive distribution, where we focus on the multivariate Gaussian distribution. Our method is
robust, can be easily trained without extensive tuning, and performs competitively in comparison to existing
approaches. The motivating application of our methodology is to predict two-dimensional oceanographic currents
measured by freely floating Global Drifter Program drifters using remotely sensed data. We also demonstrate the
method’s performance on simulated data. We find this method excels when strong correlation between output
dimensions is present. As part of this work, we have added the model to the open source package at github.com/
stanfordmlgroup/ngboost.

Impact Statement

This paper develops a general multivariate probabilistic regression algorithm to quantify joint uncertainty in
multi-output regression. The usefulness of this method comes up in many areas of environmental data science
such as oceanography, weather modeling, and environmental epidemiology. This paper demonstrates the
performance of our algorithm on an application where the goal is to predict two-dimensional velocities measured
by freely floating ocean drifters using remotely sensed wind and geostrophic velocity data. We show that this
method is particularly beneficial when strong correlation between the prediction output dimensions is present.
We provide the method in a Python package for ease of use in other applications.
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1. Introduction

The motivation for this paper is to predict two-dimensional velocity outputs, commonly studied in
environmental applications such as ocean currents (Maximenko et al., 2009; Sinha andAbernathey, 2021)
and wind velocities (Lei et al., 2009). In such applications, independence between the dimensions being
predicted is often assumed, but will seldom be the case in practice, and this independence assumption
becomes even more unrealistic when uncertainty estimates are given along with point predictions.
Motivated by these challenges, in this paper, we propose a methodology for multivariate prediction in
any dimension that allows for dependence between each output dimension, and we provide a real-world
large scale example of our method by predicting two-dimensional ocean currents, and their associated
uncertainty, using remotely sensed satellite data. Ocean current models are used in practice for applica-
tions such as predicting the locations of debris, plastics, and oil spills. By modeling the joint two-
dimensional stochasticity of directional currents more accurately, this will translate to better forecasts,
decisions, and better measures of associated uncertainty.

The standard regression problem is to predict the value of a continuous random variableY based on the
values of an observed set of featuresX. Under mean squared error loss, this is equivalent to estimating the
conditionalmeanE YjX½ �. Often, however, the user is also interested in ameasure of predictive uncertainty
about that prediction, or even the probability of observing any particular value of the output. In other
words, one seeks to estimate the conditional distribution p YjXð Þ. When we predict the distribution rather
than the point estimate this is called probabilistic regression (Duan et al., 2020). In this work, we focus on
probabilistic regression where the output Y is vector valued.

A common approach for flexible probabilistic regression is to use a standard multi-output regression
model to parameterize a probability distribution function, then optimize the log-likelihood. Commonly
this approach uses a neural network as the multi-output model (Williams, 1996; Sützle and Hrycej, 2005;
Rasp and Lerch, 2018). Recently, Duan et al. (2020) proposed an algorithm called natural gradient
boosting (NGBoost) which uses a gradient boosting-based learning algorithm to fit each of the parameters
in a distribution using an ensemble of weak learners. A notable advantage of this approach is that it does
not require extensive tuning to attain state-of-the-art performance. As such, NGBoost works out-of-the-
box and is accessible without machine-learning expertise.

Our contribution in this paper is to construct and test a similar method that works for multivariate
probabilistic regression. We will achieve this by extending the NGBoost Duan et al. (2020) framework
to fit the parameterization of the multivariate Gaussian used by Williams (1996). A common approach
for multi-output regression is to either fit each dimension entirely separately with a univariate model or
assume that the residual errors in both output dimensions are independent (Segal and Xiao, 2011;
Borchani et al., 2015), allowing the practitioner to factor the objective function. In reality, however,
output dimensions are often highly correlated if they can be predicted using the same input data. When
the task requires a measure of uncertainty, we must therefore model the joint uncertainty in the
predictions.

In summary, in this paper, we present an NGBoost algorithm that allows for multivariate probabilistic
regression. Our key innovation is to place multivariate probabilistic regression in the NGBoost frame-
work, which allows us to model all parameters of a joint distribution with flexible regression models. At
the same time, we inherit the ease-of-use and performance of the NGBoost framework. In particular, we
demonstrate the use of a NGBoost to predict a multivariate Gaussian distribution, and we evaluate the
performance in a simulation study and in the oceanographic use case described above. The results show
that: (a) joint multivariate probabilistic regression is more effective than naively assuming independence
between the outcomes, and (b) our multivariate NGBoost approach outperforms a state-of-the-art neural
network approach.We also provide a detailed analysis in the oceanographic use case where we compare a
model that assumes independence in the output, with the method we have developed in this work. In this
analysis, we find that the new NGBoost algorithm excels in data dense regions where a strong correlation
exists between output dimensions. The code developed to produce the results we present in this paper is
freely available as part of the ngboost Python package.
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1.1. Notation

Let the input space be denoted as X ¼ℝd, and let the output space be denoted as Y ¼ℝP. The aim of
this paper is to learn a conditional distribution from the training dataset D¼ Xi,Yij1 ≤f
i ≤ N,Xi∈X ,Yi∈Yg. Let p Yjθð Þ be a probability density of the output Y∈Y parameterized by
θ∈ℝM , where M is the dimension of the parameters. In this work, we aim to learn a mapping such that
the parameter vector varies for each data point, that is, a function f :X !ℝM , inducing the distribution
function of Y, p Yjθ¼ f Xð Þð Þ. For convenience, we shall henceforth adopt a shorter notation:
p Yjθ¼ f Xð Þð Þ¼ p YjXð Þ.

2. Background

2.1. Natural gradient boosting

NGBoost (Duan et al., 2020) is a method for probabilistic regression. The approach is based on the well-
proven approach of boosting (Friedman, 2001) with two main differences. First, rather than attempting to
produce a single-point estimate forE YjX½ �, NGBoost aims to fit parameters for a pre-specified probability
distribution function withM unknown parameters, in turn producing a prediction for p YjXð Þ. Second, in
place of the ordinary gradient, the natural gradient is used instead (Amari, 1998).

NGBoost learns this relationship by fitting a base learner f bð Þ :X !ℝM at each boosting iteration. The
weighted sum of these base learners constitutes the function f . Each output of f is used to parameterize the
pre-specified distribution. After B∈ℕ boosting iterations, then the final sum of base learners specifies a
conditional distribution:

p Yjθ Xð Þ¼ θ 0ð Þ �η
XB
b¼1

ρ bð Þf bð Þ Xð Þ
( ) !

,

where ρ bð Þ∈ℝ,b∈ 1,…,Bf g are scalings chosen by a line search, θ 0ð Þ is the initialization of the
parameters, and η is the fixed learning rate.

For the base learner f , the requirement is that it is a functionwhichmaps the featuresX to a value inℝM .
In NGBoost, the standard base learner is a regression treewhich is what we use here.We fitM independent
decisions trees, each tree being one of the entries in the vector-valued output.

The base learner at each iteration is fit to approximate the functional gradient of a scoring rule (the
probabilistic regression equivalent of a loss function). Throughout this paper, we use the log score
which is more commonly referred to as the log-likelihood, hence the optimization procedure is
maximum likelihood estimation; we note that alternatives exist such as those introduced in
Gneiting and Raftery (2007). For shorthand in the following explanation, we denote the log-
likelihood of Y evaluated at θ as lðθÞð¼ log pðYjθÞÞ. Multi-parameter boosting aims to form a
prediction of the value of the functional gradient ∇l θð Þ from the features Xi using a standard
regression algorithm. In effect, each base learner represents a single gradient descent step. However,
this approach by itself is not sufficient to attain good performance in practice. To solve problems with
poor training dynamics, NGBoost uses the natural gradient (Amari, 1998) in place of the ordinary
gradient. This is particularly advantageous for fitting probability distributions as discussed in Duan
et al. (2020).

To calculate the natural gradient, wemust pre-multiply the gradient of the log-likelihood by the inverse
of the expected Fisher information I θð Þ evaluated at the current point θ in the parameter space. The
expected Fisher information is computed as the expectation of the Hessian matrix:

I θð Þij ¼�E ∂
2l

∂θi∂θj

� �
, i, j∈ 1,…,Mf g,

which is valid when the likelihood l is twice differentiable and under certain regularity conditions. The
natural gradient is calculated as
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~∇l θð Þ¼ I θð Þ�1∇l θð Þ: (1)

One of the contributions of this paper is that we provide the calculations I θð Þ for a specific parameter-
ization of themultivariate Gaussianwhichwill be discussed in Section 3.1. For reference, we give pseudo-
code of NGBoost in Algorithm 1.

Algorithm 1. NGBoost for probabilistic prediction. Adapted from Duan et al. (2020).

2.2. Related works

Probabilistic regression has been approached in multiple ways: for example, deep distribution regres-
sion (Li et al., 2021), quantile regression forests (Meinshausen and Ridgeway, 2006), and generalized
additive models for location, shape, scale (GAMLSS; Rigby, 2019). All the listed methods focus on
producing some form of outcome distribution. Both Li et al. (2021) and Meinshausen and Ridgeway
(2006) rely on binning the output space, an approach which will work poorly in higher output
dimensions.

NGBoost is a method closer to Rigby (2019), where we prespecify a form for the desired
distribution, and then fit a model to predict the parameters which quantify this distribution. Such a
parametric approach allows one to specify a full multivariate distribution while keeping the number of
outputs which the learning algorithm needs to predict relatively small. This is in contrast to deep
distribution regression (Li et al., 2021), for example, where the number of outputs which a learning
algorithm needs to predict becomes infeasibly large as the dimension of Y grows. This highlights the
trade-off between the approaches: by specifying a distribution priori as in GAMLSS and NGBoost, we
make the problem tractable; however, this specification comes at a cost of flexibility in the distribution
we predict.
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Williams (1996) proposes a neural network-based estimating the conditional density of multi-output
problems using a multivariate Gaussian distribution. This neural network method is directly compar-
able to what we aim to achieve here and motivates the approach we will be taking in Section 3.1. The
model is specified such that the output of the neural network is the M parameters which are used to
specify a multivariate Gaussian distribution, that is, θ Xð Þ in Section 2.1 is a neural network rather than a
weighted sum of regression trees. One minor difference is that methods which use neural networks for
conditional density estimation (Bishop, 1994; Williams, 1996) generally fit a single model with M
outputs; whereas in NGBoost, the model for θ Xð Þ could easily be factorized to be written as M
independent models.

Gaussian processes (Williams and Rasmussen, 2006) may appear at first glance very similar to the
approach which we will take here. In the context of Gaussian processes, multiple output regression has
been studied extensively (Álvarez et al., 2010; Alvarez et al., 2012; Liu et al., 2018). Multi-output
Gaussian processes, however, are not comparable towhat we aim to achieve in this paper. In particular, we
want the property that the covariance between output dimensions is heterogeneous, that is, it changes over
the input spaceX. As an example, the linear model of a coregionalization multi-output approach would be
to model:

Y�Wf Xð Þ,
whereW is a P�L shapedmatrix of mixing weights and f Xð Þ is an L�1 vector, each coordinate being an
independent Gaussian process. The covariance is modeled through the mixtureW , which is not a function
ofX. Therefore, the covariance between output dimensions is notmodeled as a function ofX.Whereas the
approach we propose would allow the correlation between output dimensions to vary over space.

Developments inmulti-output Gaussian processes also naturallyworkwith datawhere for some rows i,
only a subset of Yi needs to be observed. Moreno-Muñoz et al. (2018) focuses on heterogeneous
modeling, in the sense that dimensions do not have the same data type (e.g.,Yi,0 could follow a Gaussian
distribution and Yi,1 could follow a Bernoulli distribution). This would not easily be handled by the
NGBoost framework which we use here.

There are also a number of methods in Bayesian uncertainty quantification which aim to quantify
uncertainty (Abdar et al., 2021), such as Monte Carlo Dropout (Gal and Ghahramani, 2016), the
aforementioned Gaussian processes (Williams and Rasmussen, 2006; Alvarez et al., 2012; Moreno-
Muñoz et al., 2018), and Bayesian neural networks (Blundell et al., 2015; Kendall and Gal, 2017). These
approaches aim to quantify the posterior distribution or posterior predictive distribution, whereas
probabilistic regression generally focuses on fitting a conditional distribution, without a measure of
uncertainty on the fitted conditional distribution. These two approaches to uncertainty have trade-offs,
generally the barrier to Bayesian uncertainty quantification is the computational cost and complex
inference procedures. As an example, compare the fitting of Bayesian additive regression trees
(Chipman et al., 2010), to fitting a similar model with gradient boosting (Friedman, 2001), the latter is
considerable quicker and easier to implement. Here, we focus on non-Bayesian probabilistic regression as
in Rigby (2019), Duan et al. (2020), and Li et al. (2021).

3. Multivariate Gaussian NGBoost

The original NGBoost paper of Duan et al. (2020) briefly noted that NGBoost could be used to jointly
model multivariate outcomes, but did not provide details. Here, we show how NGBoost extends to
multivariate outcomes and provide a detailed investigation of one useful parametrization, namely, the
multivariate Gaussian.

In univariate NGBoost (P¼ 1, Y∈ℝ), the predicted distribution is parametrized with
p Yj θm ¼ f m Xð Þf gð Þ, where Y is a univariate outcome. For example, Y ∣X may be assumed to follow a
univariate Gaussian distributionwhere μ and logσ are taken to be the parameter vector θ (i.e., the output of
NGBoost is θ Xð Þ¼ μ Xð Þ, logσ Xð Þð Þ). Therefore, to model amultivariate outcome, all that is necessary is
to specify a parametric distribution that has multivariate support, as we shall now show.
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3.1. Multivariate Gaussian

The multivariate Gaussian is a commonly used generalization of the univariate Gaussian. This general-
ization allows us to define a joint distribution on vector-valued data. The multivariate Gaussian
distribution is commonly written in the moment parameterization as

Y�Nðμ,ΣÞ,
where Y is a P�1 vector, Σ is the covariance matrix (a P�P positive semidefinite matrix), and μ is the
mean vector (a P�1 vector). The off-diagonal elements, Σk,q, k 6¼ q measures the degree to which
dimensions k and q of Y vary with each other. Often this quantity is reported as a correlation coefficient:

ρkq ¼
Σk,qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σk,kΣq,q

p :

By putting the multivariate Gaussian within the scope of NGBoost, we enable the modeling of
multivariate data where this correlation between dimensions can be predicted as a function of X.

In particular, this choice of distribution is motivated by the core application of this paper. Ocean
currents are often reported and modeled in standard axes—longitudinal and latitudinal flows. In practice,
the flow components in each direction are highly correlated and that correlation changes over space.
Modeling the correlation between these axes is achievable with the multivariate Gaussian distribution
hence our choice.

The rest of this paper is focused on the development and evaluation of a probabilistic regression
algorithm using the multivariate Gaussian. We achieve this by placing the multivariate Gaussian within
the NGBoost framework introduced in Section 2.1. For the application study in this paper, we are
primarily interested in P¼ 2, however, all derivations are given keeping P general so this work can be
used for any output dimension. The only constraint is that all output dimensions must be real valued.

3.2. Implementation details

Note that we only consider positive definite matrices for Σ to ensure the inverse exists. We write the
probability density function as

pðYijμ,ΣÞ¼ jΣj�1
2

ð2πÞP2
exp �ðYi�μÞTΣ�1ðYi�μÞ

2

" #
: (2)

We fit the parameters of this distribution conditional on the corresponding training data Xi such that
pðYijXiÞ¼ pðYijμðXiÞ,ΣðXiÞÞ. To perform unconstrained gradient-based optimization for any distribu-
tion, we must have a parameterization for the multivariate Gaussian distribution where all parameters lie
on the real line. Themean vector μ already satisfies this. However, the covariancematrix does not; it lies in
the space of positive definite matrices. We shall model the inverse covariance matrix which is also
constrained to be positive definite. We leverage the fact that every positive definite matrix can be
factorized using the Cholesky decomposition with positive entries on the diagonals (Banerjee and
Roy, 2014).

We opt to use an upper triangular representation of the square root of the inverse covariance matrix
Σ�1 ¼U⊤U, as used byWilliams (1996), where the diagonal is transformed using an exponential to force the
diagonal to be positive. As an example, in the two-dimensional case, we have

U¼ exp a11ð Þ a12
0 exp a22ð Þ

� �
, (3)

which yields the inverse covariance matrix

Σ�1 ¼ expða11Þ2 expða11Þa12
expða11Þa12 a212þ expða22Þ2
" #

:
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This parameterization for Σ�1 ensures that the resulting covariance matrix Σ¼ðU⊤UÞ�1 is positive
definite for all aij∈ℝ. Therefore, we can fit the multivariate Gaussian in an unconstrained fashion using
the parameter vector θ¼ μ1,μ2,a11,a22,a12ð Þ as the output in the two-dimensional case. Note that the
number of parameters grows quadratically with the dimension of the data. Specifically, the relation
between M, the dimension of θ∈ℝM , and P, the dimension of Yi is

M¼P2þ3P
2

: (4)

For NGBoost using the log-likelihood scoring rule, we require both the gradient and the Fisher
information. The gradient calculations are given in Williams (1996), and the derivations for the Fisher
information are given in Appendix B. We have used these derivations to add the multivariate Gaussian
distribution to the open-source Python package ngboost as part of the contributions of this paper. Note that
the natural gradient is particularly advantageous for multivariate problems such as these. This is because,
for example, there are multiple equivalent parameterizations for the multivariate Gaussian distribution
(Sützle and Hrycej, 2005; Malagò and Pistone, 2015; Salimbeni et al., 2018), but the choice of
parameterization has been shown to be less important when using natural gradients than with classical
gradients (see, e.g., Salimbeni et al., 2018).

3.3. Practical adjustment for singular inverse covariance matrices

A small adjustment is made toU to improve numerical stability in the implementation. In particular, if the
diagonal entries of U from equation (3) (exp aiið Þ) get close to zero the resulting matrix Σ�1 has a
determinant close to zero, causing numerical problems to occur when inverting Σ�1. The fix we propose
for this is to add a small perturbation of 10�6 to the diagonal elements of U. For most datasets, once the
model is fitted, the predicted value for the diagonal elements will be much larger than 10�6 so this slight
adjustment has a negligible effect on the predictions. This small perturbation is fixed as constant and used
throughout this work.

This practical adjustment will become an issue in cases where the determinant of the covariance matrix
is very large. As an extreme example, suppose the predicted covariance without the adaptation is
Σ¼ I2�1012, where I2 is the identity matrix. The practical adjustment results in a marginal variance
four times larger in this case, which is clearly not negligible. Problems like this can typically be mitigated
by scaling the output data Y (e.g., using a min–max scaling strategy).

4. Simulation

We now demonstrate the effectiveness of our multivariate Gaussian NGBoost algorithm in simulation.
Specifically, we show that (a) it outperforms a naive baseline where each dimension of Y is modeled
independently, (b) it outperforms a state-of-the art neural network approach, and (c) the natural
gradient is a key component in the effective training of distributional boosting models in the
multivariate setting.

We simulate the data similarly to Williams (1996). The nature of the simulation tests each algorithm’s
ability to uncover nonlinearities in each of the distributional parameter’s relationship with the input.
Specifically, we use a one-dimensional input and two-dimensional output, allowing us to illustrate the
fundamental benefits of our approach in even the simplest multivariate extension. The data are simulated
as follows:

Xi �IID Uniform 0,πð Þ i∈ 1,…,Nf g

Yi∣Xi �ℕ
μ1 Xið Þ
μ2 Xið Þ

" #
,

σ21 Xið Þ σ1 Xið Þσ2 Xið Þρ Xið Þ
σ1 Xið Þσ2 Xið Þρ Xið Þ σ22 Xið Þ

" # !
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with the following functions:

μ1 xð Þ¼ sin 2:5xð Þsin 1:5xð Þþ x,

μ2 xð Þ¼ cos 3:5xð Þcos 0:5xð Þ� x2,

σ21 xð Þ¼ 0:01þ0:25 1� sin 2:5xð Þ½ �2,
σ22 xð Þ¼ 0:01þ0:25 1� cos 3:5xð Þ½ �2,
ρ xð Þ¼ sin 2:5xð Þcos 0:5xð Þ:

(5)

Simulated data alongside the true parameters are shown in Figure 1.
We compare multiple methods, all of which predict a multivariate Gaussian. For all boosting models,

we use scikit-learn decision trees (Pedregosa et al., 2011) as the base learner. Specifically, we consider five
different comparison methods:

• NGB: The method proposed in this paper: NGBoost to fit a multivariate Gaussian distribution.
• Indep NGB: Independent NGBoost where a univariate Gaussian model is fitted for the two
dimensions separately, that is, Yi � ℕ μ1,σ2ð Þ,ℕ μ2,σ2ð Þð Þ. Early stopping allows the number of
trees used to predict each dimension to differ.

• skGB: Scikit-learn’s (Pedregosa et al., 2011) implementation of gradient boosting (skGB) is used as
a point prediction approach. To turn the skGBpredictions into amultivariate Gaussian, we estimate a
constant diagonal covariance matrix based on the residuals of the training data. For metric
computation, we assume that each Yi follows a multivariate Gaussian with mean from a model fit
for each dimension, and constant covariance matrix. Similar to Indep NGB, we allow a different
number of trees for each dimension. This is the only model which does not have a covariance matrix
varying over X.

Figure 1. Simulated data from equation (5). A sample of 100 points is shown in panel (a). We plot each
parameter in plots (b) to (f). The true parameters of the distribution are shown in blue, the NGBoost fit is
shown in orange, and the neural network fit with one hidden layer (100 neurons in the hidden layer) is
shown in red. Both model fits are trained on N¼ 5,000 training points.
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• GB: A multi-parameter gradient boosting algorithm, where the only change from NGB is that the
gradients are not multiplied by I θð Þ�1.

• NN: The neural network approach fromWilliams (1996) discussed in Section 2.2. We fit the model
using tensorflow (Abadi et al., 2016).More details about themodel and the grid search carried out on
the network structure are explained in the Supplementary Material.

To prevent overfitting, we employ early stopping for all methods on the held-out validation set, where we
use a patience of 50 for all methods. For all boosting approaches, we use the estimators up to the best
iteration that was found, and for neural networks we restore the weights back to the best epoch. The base
learner for all boosting approaches are run using the default parameters specified in each package. For
each N considered in the experiment, the neural network structure with the best log-likelihood metric
averaged over all replications is chosen from the grid search. A learning rate of 0.01 is used for all
methods, for NN, we use the Adam optimizer (Kingma and Ba, 2015).

We train the models used in the experiment with N∈f500,1000,3000,5000,8000,10000g with
50 replications for each value of N. For each simulation, N values were simulated as the training dataset.
In addition to theN values, 300 values were simulated as the validation set for early stopping, and another
1000 values were used as the test set. We then use the Kullback–Leibler (KL) divergence from the true
distribution at the test-set locations as the main comparison metric, however, we report extended results
with extra metrics in the Supplementary Material.

The per-model results on the test data points are shown in Table 1. The averageKL divergence from the
predicted distribution to true distribution is used as ametric. The results show that the NGBmethod is best
for allN despite not being tuned in any way besides early stopping. The KL divergence converges quickly
to 0 as N grows, showing that NGB gets better at learning the distribution as N increases. NN performs
worse than NGBwith higher KL divergence for all values ofN. The KL divergence for Indep NGB seems
to converge to a nonzero quantity asN increases, likely because the true distribution in equation (5) cannot
be captured by a multivariate normal with a diagonal covariance matrix. skGB has large KL divergences
which get worse asN increases, likely because of the homogeneous variance fit.We note that GBperforms
significantly worse than NGB showing that the natural gradient is necessary to fit the multivariate
Gaussian effectively with boosting. Further metrics can be seen in the Supplementary Material, in
particular, they show that GB fits the mean μ very poorly, which is then compensated for by a large
covariance estimate, explaining the large KL divergence.

The modification we made from the simulation inWilliams (1996) is that we added x and�x2 terms to
μ1 xð Þ and μ2 xð Þ, respectively, in equation (5). This modification is to highlight where our method excels
and shows how robust the natural gradient methods are. We also ran the original simulation without the
modification, where the results are given in the Supplementary Material. As a summary, we note the two
major differences: (a) The gaps between NGB, GB, and NN are much smaller without the modification,

Table 1. Average KL divergence in the test set (to three decimal places) from the predicted distribution to the true distribution as the
number of training data points N varies.

N NGB Indep NGB skGB GB NN

500 0.564 � 0.016 1.633 � 0.043 17.194 � 0.301 126.227 � 2.579 1.285 � 0.547

1000 0.257 � 0.004 1.150 � 0.020 17.963 � 0.270 114.113 � 1.622 0.320 � 0.018

3000 0.106 � 0.002 0.884 � 0.015 19.609 � 0.248 97.682 � 1.397 0.149 � 0.004

5000 0.081 � 0.008 0.878 � 0.015 20.308 � 0.169 90.101 � 1.291 0.128 � 0.005

8000 0.053 � 0.004 0.866 � 0.013 20.614 � 0.170 79.006 � 1.168 0.103 � 0.004

10000 0.043 � 0.001 0.831 � 0.010 20.554 � 0.150 74.799 � 1.191 0.130 � 0.004

Note. Standard error estimated from 50 replications reported after� to three decimal places. Lower values are better, the result with the lowestmean is bolded
in each row. An extended table showing additional metrics is shown in the Supplementary Material.
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implying that the addition of x and�x2 terms causes the GBmethod to perform much worse. (b) Without
themodification, theNNmethod does best forN∈f500,1000,3000g, whereasNGB continues to preform
best for N∈f5000,8000,10000g.

In simulation results in the Supplementary Material, where x and�x2 are not included in equation (5),
GB achieves the lowest RMSE. Thus suggests that GB only has difficulty learning the mean when
adaptation of x and�x2 is included which explains the poor result from GB in Table 1. As noted the only
difference between NGB and GB is that we do not pre-multiply by the inverse Fisher information, hence,
we can attribute this difference in performance to the natural gradient.

5. Ocean Drifters Application

The motivating application of this paper is to predict two-dimensional oceanographic velocities from
satellite data on a large spatial scale. Typically, velocity prediction is done through physics-inspired
parametric models fitted with least-squares or similar metrics, treating the directional errors as independ-
ent (Mulet et al., 2021). In this section, we shall instead focus on a data-driven approach utilizing a number
of observational datasets.

5.1. Data

Here, we introduce the datasets used which shall define Yi∈ℝ2, Xi∈ℝ9 d¼ 9,P¼ 2ð Þ. The data for all
sources are available from 1992 to 2019 inclusive. All raw data sources are publicly available online,
however, we also provide the processed ready to use dataset for future comparisons at https://doi.org/
10.5281/zenodo.5644972.

For the model output Yi, we seek to predict two-dimensional oceanic near-surface velocities as
functions of global remotely sensed climate data. The dataset used to train, validate and test our model
comes from the Global Drifter Program, which contains transmitted locations of freely drifting buoys
(known as drifters) as they drift in the ocean and measure near-surface ocean flow.

The quality controlled 6-hourly product is used (Lumpkin and Centurioni, 2019) to construct the
velocity data points which will be the outputs we aim to predict. We drop drifter observations which
have a high location noise estimate, and we apply a low-pass filter to the velocities at 1.5 times the
inertial period (a timescale determined by the Coriolis effect), this preprocessing follows previous
similar works (Laurindo et al., 2017). We only use data from drifters which still have a holey sock
drogue, which is a drogue attached by a tether and is designed such that when attached the drifter will
follow ocean near-surface flow. We use the inferred two-dimensional velocities of these drifters as our
outputs Yi.

The longitude–latitude locations of these observations and the time of year (percentage of 365) are
used as three of the nine features in Xi to account for spatial and seasonal effects. For the remaining six
features inXi, we use two-dimensional longitude–latitude measurements of geostrophic velocity (ms�1),
surface wind stress (Pa), and wind speed (ms�1). These variables are used as they jointly capture
geophysical effects known as geostrophic currents, Ekman currents, and wind forcing, which are known
to drive oceanic near-surface velocities. We obtain geostrophic velocity and wind measurements from
data products Thematic Assembly Centers (2020a) and Thematic Assembly Centers (2020b) respectively,
where the data products are interpolated to the longitude–latitude locations of interest. We further
preprocess the data as explained in Appendix A.

To allow us to run multiple model fits, we subset the data to only include data points which are
spatially located in the North Atlantic Ocean as defined by IHO marine regions (Flanders Marine
Institute, 2018) and between 83°W and 40°W longitude. We also down-sample the data to daily
intervals. Ultimately, this results in 414697 observations which wewill use to compare the probabilistic
regression models.

To give an insight into this dataset in Figure 2, we show the five longest trajectories used in this
analysis. In particular, one of the features to notice is that there are areas where the sampled points are
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quite close together. For example, even though the northernmost trajectory is almost as long as the rest it
seems to travel a much smaller distance overall. The drifters that start in the west, however, travel very
long distances overall. This motivates the use of probabilistic regression algorithms, as the velocity
measurement will have very different magnitudes depending on where in space they are and other
factors. Additionally, we may suspect that the prediction error will be larger when the underlying
velocity is larger.

In Figure 3, we display a subset of the predictor variables X for the first 50 days of the same drifters
shown in Figure 2. In general, the geostrophic variables show strongest correlation to the Yi data for the
respective dimensions.We do not show three of the nine dimensions inX in this plot: longitude, latitude or
days since January 1st. These are not shown in the plot as, in general, we do not expect these relationships
to be linear, hence the need for more complicated models.

As a note, we do not exploit the grouped time-series structure of the drifter data in this work. When
fitting the models, we ignore the drifter identification (ID) and just concatenate all data together. We learn
a purely spatiotemporal model. If the goal was to forecast the location or velocity of the drifter at time tþ1
andwe knew the history up to time t then exploiting information such as the velocity at time twould likely
be an informative feature to use.

5.2. Metrics

Unlike in the simulation, here, there is no ground truth, hence, we cannot use KL divergence as in
Section 4 because the true distributions of these data are unknown. We shall instead use held-out data
validation. We use a series of performance metrics that diagnose model fit which we introduce now.

Negative log-likelihood (NLL): All methods are effectively minimizing the negative log-likelihood;
therefore, we use the negative log-likelihood as one of our metrics:

1
N

XN
i¼1

log pðYijXiÞ:

RMSE: To compare the point prediction performance of the models, we also report an average root mean
squared error (RMSE):

Figure 2. A plot showing the five longest trajectories in the dataset described in detail in Appendix A,
where each drifter has a lifetime of between 1100 and 1378 days. A point is plotted every 10 days.
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1
NP

XN
i¼1

XP
j¼1

Yi,j� bYi,j

� �2" #1=2
, where bYi ¼E YjXi½ �:

Region coverage and area: As this paper focuses on a measure of probabilistic prediction, we also report
metrics related to the prediction region. The prediction region is themultivariate generalization of the one-
dimensional prediction interval. The two related summaries of interest are: (a) the percentage of Yi

covered by the α% prediction region, and (b) the area of the prediction region.
A α% prediction region can be defined for the multivariate Gaussian distribution as the set of valuesY

which satisfy the following inequality:

ðY�μÞΣ�1ðY�μÞ⊤ ≤ χ2P,α, (6)

where χ2P,α is the quantile function of the χ2 distribution with P degrees of freedom evaluated at α%.
This prediction region forms a hyper-ellipse which has an area given by

Figure 3. The values of the prediction featureX for the sample of drifters shown in Figure 2.We only show
the first 50 days to allow the reader to see the more granular patterns.
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ð2πÞP=2
PΓðP2Þ

ðχ2P,αÞ
P=2jΣj1=2: (7)

To use this as a metric, we report coverage as the percentage of data points which satisfy equation (6), and
we report the average area of the prediction region over all points in the dataset. Thesemetrics will be used
in Table 2 in the next section.

5.3. Results

We compare the same five models considered in Section 4. To compare the models, we randomly split
the dataset, keeping each individual drifter record within the same set. We put 10% of records into the
test set, 9% of records into the validation set, and 81% into the training set. The model is fitted to the
training set with access to the validation set for early stopping, and then the metrics from Section 5.2 are
evaluated on the test set. This procedure is repeated 10 times. The aggregated metrics are shown in
Table 2.

For this example, we also use a grid search for all the boosting approaches, in addition to the neural
network approach. The reason we do this is because we found that with the default parameters used in
Section 4 early stopping did not occur, suggesting that the base learner may not be flexible enough. For
each boosting method, a grid search is carried out on the number of leaves andminimum data in leaves, as
outlined in the Supplementary Material. The best hyperparameters from the grid search for each method
are selected by evaluating the test set negative log-likelihood.

The aggregated results of the model fits are shown in Table 2. NGB and Indep NGB perform very
similarly in terms of NLL, RMSE, and 90% PR coverage in this example. However, NGB provides a
smaller 90% PR area, which is expected as correlation will reduce ∣Σ∣ in equation (7). To further highlight
the differences, we show the spatial differences in negative log-likelihood between these two methods in
Figure 4b. In Figure 4c,d, we show the averaged held out spatial predictions for ρ and μ from the NGB
model. The results shown in Figure 4b,c suggest that using a combination of NGB and IndepNGBmay be
suitable for this application. For example, we could use the NGB model in geographic areas with high
anticipated correlation; and otherwise we could use Indep NGB.

In Table 2, we see that theNN andGB approaches generally perform poorly. Bothmethods have a large
root mean squared error, which is compensated for by a larger prediction region on average, as can be
concluded from the large average PR area. This behavior agrees with the univariate example given in
Figure 4 of the NGBoost paper (Duan et al., 2020), and the behavior of GB in the simulation of Section 4.

One of the novelties of this work is that wemodel the dependence between the two output dimensions.
Any region where ρ is close to 0 in figure 4c likely means that this additional modeling of the dependence
will notmake a significant difference in the predictions. In contrast, any regionwhere the absolute value of
ρ is large implies that NGB predictions will be significantly different from IndepNGB. In particular, NGB
predicts large values of ∣ρ∣ around the South Equatorial and Gulf Stream currents.

Table 2. Average test set metrics defined in Section 5.2.

Metric NGB Indep NGB skGB GB NN

NLL 7.73 � 0.02 7.74 � 0.02 8.17 � 0.02 8.79 � 0.01 7.81 � 0.02

RMSE (cm s�1) 14.53 � 0.14 14.45 � 0.12 14.31 � 0.13 24.14 � 0.36 16.63 � 0.19

90% PR cov 0.87 � 0.00 0.87 � 0.00 0.89 � 0.00 0.94 � 0.00 0.89 � 0.00

90% PR area (cm2 s�2) 2482 � 51 2568 � 41 2714 � 8 8070 � 22 3670 � 75

Note. Standard error estimated from 10 replications reported after �. PR stands for prediction region. Coverage has been shortened to cov. All numbers
rounded to two decimal places, aside from the 90% PR area row which is rounded to the nearest integer. Lower values are better for NLL and RMSE, best
value is bolded in both rows.
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In Figure 5, we show a sample trajectory on the Gulf Stream alongside the predicted means and the
70% prediction region from both Indep NGB and NGB. In Figure 5a, the main factor to note is that the
elliptical prediction regions of NGB take various orientations on the trajectory, most of which have the
major axis aligned with the flow. In contrast, the predictions from Indep NGB in Figure 5b show the
ellipses’major axes are always either aligned with the longitudinal or latitudinal axis, as must be the case.
This difference is particularly evident in the latter half of the shown trajectory, when traveling north–east,
where Indep NGB’s predictions show a larger minor axis in the ellipses in comparison to NGB
predictions. This is probably the key reason why NGB performs better on average around the Gulf
Stream, as seen in Figure 4b.

5.4. Investigation into multivariate NGBoost against independent NGBoost

As is clear in the metrics shown in Table 2, the NGBmethod we have developed is only marginally better
than the IndepNGB in terms of negative log-likelihood. This is despite the fact that themodel that predicts
amultivariate Gaussian seems to be better suited to the problem. The distribution where each dimension is
just a univariate Gaussian is a special case of the multivariate Gaussian.

One potential reason may be related to overfitting. In the learning, we allow early stopping to alter the
number of boosting rounds. In NGB, the way model fitting works is that we require every parameter to be
predicted byB base learners, whereas with IndepNGB,we allow the twomodels (one for longitudinal and
one for latitudinal) to have different numbers of base learners B: The longitudinal model generally chose
to use more decision trees than the latitudinal direction. Thus, the early stopping used by Indep NGB has

Figure 4. Summaries of test set results within 2∘�2∘ latitude–longitude bins for the North Atlantic Ocean
application. Panel (a) shows the spatial distribution of where the data are sampled. Panel (b) shows the
difference between the negative log-likelihood spatially between NGB and Indep NGB; negative values
(blue) implying NGB is better than Indep NGB (with vice versa in red). Panel (c) shows the average
prediction of ρ, where ρ ¼ Σ0,1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ0,0Σ1,1

p
is extracted from the predicted covariance matrix in the held

out set from NGB. Panel (d) shows the mean currents estimated by NGB. All major ocean features are
captured by the model (Lumpkin and Johnson, 2013).
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extra power in comparison to NGB. Further developments in the learning algorithm or fine-tuning of
parameters of the base learner may correct this.

Another potential reason may be due to sampling, an argument which will be examined here. We find
that NGB does better in areas with strong non-axes aligned currents like the Gulf Stream. For example, if
we filter the test data used to calculate the entries in Table 2 to an area which is primarily made up of the
Gulf Stream, we find that the improvement is more noticeable; consider the box with corners
80∘W,31∘Nð Þ, 74∘W,35∘Nð Þ which is a section largely made up of the Gulf Stream. This area is shown
in Figure 6. The average likelihood is 9.46 for NGB and 9.52 for Indep NGB on this subset of the data.
That is a larger difference in likelihood than what we observed in the unfiltered dataset in Table 2. We
show this difference in NLL across this smaller region in Figure 6b; we note that in some areas, NGB is
doing much better, particularly in boxes with stronger currents, which can be identified using Figure 6d).

Another observation that can be seen is where NGBoost is doingworse than Indep NGB on average.
In particular, the spatial boxes near the coast around 78∘W,33:5∘Nð Þ in Figure 6b, where Indep NGB is

Figure 5. Plots showing the predictions from both NGB (a) and Indep NGB (b) for the first 12 days of
drifter ID 54386 starting from September 23, 2005. The velocity predictions are plotted every 2 days for
visualization purposes. The velocity measurements are translated to where the drifter would end up after
1 day if it continued at the constant predicted velocity for visualization purposes. The model used for the
prediction did not see this trajectory when trained. The faded blue line shows the trajectory of the drifter
with a plotted point every day. The 70% prediction region is the boundary from equation (6). The 70%
level is just chosen for visualization purposed to prevent the ellipses from overlapping in the plot.
Conversion to easting-northing computed using a transverse Mercator projection centered at �78∘

latitude and 28∘ longitude.
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doing better (positive difference). By looking at the same boxes in Figure 6a,c, we can observe that
these areas have few data points and returns a high predicted average correlation from the NGB
method. A potential reason for Indep NGB doing better in this specific region is that Indep NGB is
benefiting from the independence assumption. There is not enough data for NGB to learn that
correlation is not strong in this specific region so NGB extrapolates information from the nearby
regions. We can make a similar observation for the region around the bottom right corner of Figure 4b
where Indep NGB is doing better in multiple boxes, and there are few data points, but NGB predicts a
strong negative correlation.

A final observation is that areas such as the Gulf Stream have very large velocities. The sampling to
create this dataset is carried out temporally, where we sampled one point for every day. To examine the
significance of this, we reuse the example shown in Figure 5; this trajectory follows the Gulf Stream and it
travels the distance shown over 12 days; contributing only 12 points to the dataset even though it covers
around 1073 km. On the other hand, consider drifter 122571 shown in Figure 2, to travel 1073 km this
drifter took approximately 113 days, hence for the same distance, drifter 11257 contributes almost
10 times more to the evaluation used in Table 2. On average, over the trajectory of drifter 11257, Indep
NGB achieved a lower NLL. In summary, due to the nature of the data sampling procedure used here, in
the evaluationwe givemoreweight to regionswith lower velocities. FromFigure 4b,d, we can infer that in
lower velocity regions Indep NGB usually has a lower NLL. Hence, we are likely giving too much weight
in the objective to drifters in areas with weaker currents; this likely explains the relatively small
differences in Table 3.

In summary, the conclusions from our study are that NGB shows improvements over Indep NGB in
regions of strong currents where flow is correlated across dimensions, and in other regions of weak flow
and correlation, the two methods perform similarly to each other. The exception to this rule is when data
sparsity is present, for example, in the case around 78∘W,33:5∘Nð Þ, where Indep NGB can sometimes

Figure 6. The samemetrics as shown in Figure 4, just zoomed in on a smaller section which is analyzed in
Section 5.4. The plot has a finer granularity than Figure 4, the resolution here is a 0:5∘�0:5∘ bin
granularity. The definition of the plotted metrics in panels A-D) can be found in the caption of Figure 4.
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outperform NGB. Overall, this suggests that NGB can be robustly applied across wide spatial regions, as
well as specifically applied in regions where Indep NGB is expected to fail. If there is no correlation
present, then Indep NGB will likely do better as the assumption of independence between output
dimensions is then correct in a Gaussian setting.

6. Conclusions

This paper has demonstrated the accuracy of our NGBoost method when focusing on bivariate outcomes
with a multivariate Gaussian distribution. The derivations of the natural gradient and implementation in
NGBoost are supplied for any dimensionality, but empirical proof of performance in higher dimensions is
left to future work. Due to the quadratic relationship between P and the number of parameters used to
parameterize the multivariate Gaussian, the complexity of the learning algorithm increases greatly with
higher values ofP. Investigating a reduced rank form of the covariancematrixmay be of interest for higher
P to reduce the number of parameters that must be learned.

Furthermore, the results shown here add to the collection of works that show large improvements in
gradient-based learning when using natural gradients (Hoffman et al., 2013; Salimbeni et al., 2018; Duan
et al., 2020). In the simulation of Section 4, we showed how crucial the natural gradient is to fitting this
model, as the “GB” approach essentially failed to learn. The same exact comparison is shown in the
original NGBoost paper Duan et al. (2020) where GB performs significantly worse than the natural
gradient approach. The simulations highlight the robustness of the natural gradient approaches in contrast
to the ordinary gradient approaches, as we have shown how making a fairly simple adjustment (þx and
�x2 to the mean terms) can yield a large difference in results.

The difference betweenNGB and IndepNGBwas overall relatively small in our real-world application
across the entire spatial domain studied, but NGB showed significant improvements around major
currents such as the Gulf Stream where directional currents (that are not aligned with the x=y axis) are
most prominent. This improvement was corroborated in simulations where NGB performed relatively
much better than Indep NGB overall. Generally, one should expect NGB to excel in cases with high
correlation between the outcomes, whereas a method assuming independence should suffice when that
assumption is warranted. Deep-learning approaches are warranted in cases where a neural network
naturally handles the input space such as images, speech, or text.

The analysis in Section 5.4, raises interesting questions about howwe should sample this dataset.What
would the difference inmodel fit and results be if we chose to sample a point every 50 km rather than daily
when forming our dataset? Such a change in data processing would end up giving more weight to regions
where strong currents exist; and in calmer regions where velocities are very low, it could take days to
obtain a single sample in the dataset. Alternatively, we could also attempt to combine NGB and Indep
NGB using model averaging, and this is reserved for future work.

Table 3. Summary of data used in the application.

Name Unit Resolution (spatial, temporal)

Drifter speed u-v component (cm s�1) Irregular, 6 hourly

Wind speed u-v component (m s�1) 0.25 degrees, hourly

Surface wind stress u-v component (Pa) 0.25 degrees, hourly

Geostrophic velocity anomaly u-v component (m s�1) 0.25 degrees, daily

Position Location-longitude (degrees) Irregular, 6 hourly

Day of year Days 6 hourly

Note. Drifter speed is used to define the two-dimensional response Y. The rest of the variables listed defined the nine features used for X.
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6.1. Final remarks

In this paper, we have proposed a technique for performing probabilistic regression on vector-valued
outputs with NGBoost. We have implemented software in the ngboost Python package which makes joint
probabilistic regression easy to do with just a few lines of code and little tuning. Our simulation shows
multivariate NGBoost exceeds the performance of existing methods for multivariate probabilistic
regression. We have demonstrated the value of modeling the covariance between dimensions on a novel
oceanographic problem using Global Drifter Program and remotely sensed satellite data. Specifically, we
found that multivariate NGBoost excels in predicting ocean velocities in spatial areas where data sparsity
is not an issue and correlation between the output dimensions is present.
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A. Appendix: Drifter Data Processing
For reproducibility, we give instructions on how the application dataset used in Section 4 is created. In its raw form, the drifter dataset
is irregularly sampled in time; however, the product used here is processed to be supplied on a 6-hourly scale (Lumpkin and
Centurioni, 2019) and includes location uncertainties. A high uncertainty would be caused by a large gap in the sampling of raw data
or a large satellite positioning error. In our study, we dropped all drifter observations with a positional error greater than 0:5∘ in
longitude or latitudinal coordinates.

The six features that we used relate to wind stress, geostrophic velocity, and wind speed, and are all available on longitude–
latitude grids, with spatial and temporal resolution specified in Table 3; we refer to these as gridded products. Before using these
products to predict drifter observations, we spatially interpolated1 the gridded products to the drifter locations. To interpolate the
gridded products, an inverse distance weighting interpolation was used. We only used the values at the n¼ 4 corners that define the
spatial box containing the longitude–latitude location of the drifter location of interest, where the following estimate is used:Pn

i¼1wigiPn
i¼1wi

, (A.1)

where gi is the gridded value for the ith corner (e.g., a 0:5ms
�1 east–west geostrophic velocity at 30∘ longitude and 25∘ latitude), wi is

the inverse of theHaversine distance2 between the drifter’s longitude–latitude and the longitude–latitude location of the griddedvalue gi.

If two ormore of the grid corners that are being interpolated fromdid not have a value recorded in the gridded product (e.g., if two
corners were on a coastline in the case of wind stress and geostrophic velocity), we did not interpolate and treated that point as
missing. If only one corner was missing, we use n¼ 3 in equation (A.1), omitting the missing point.

We low-pass filtered the drifter velocities, wind speed, andwind stress series to remove effects caused by inertial oscillations and
tides; this process is similar to previous works (Laurindo et al., 2017). A critical frequency of 1.5 times the inertial period (the inertial
period is a function of latitude) was used. Due to missing or previously dropped data due to preprocessing steps, some time series
have gaps in time larger than 6 hr. In such cases, we split that time series into individual continuous segments. We applied a fifth-
order Butterworth low-pass filter to each continuous segment. If any of these segments were shorter than 18 observations (4.5 days),
the whole segment was treated as missing from the dataset. The Butterworth filter was applied in a rolling fashion to account for the
changing fashion of the inertial period, which defines the critical frequency.

The geostrophic data are available on a daily scale; therefore, we decimated all data to daily, only keeping observations at 00:00.
No further preprocessing was performed on the geostrophic velocities (after interpolation) as inertial and tidal motions are not
present in the geostrophic velocity product.

Finally, to remove poorly sampled regions from the dataset, we partitioned the domain into 1∘�1∘ longitude–latitude non-
overlapping grid boxes. We counted the number of daily observations contained in each box; if this count was less than 25, then the
observations within that box were removed from the dataset. A link to download the processed data can be found at https://doi.org/
10.5281/zenodo.5644972.

We only considered complete collections forXi,Yi; If any of the data were recorded as missing in the process explained above,
that daily observation was removed from the dataset. Before fitting the models, we scaled the training dataXi to be in the range 0,1½ �
for all variables, this step was taken to make the neural network fitting more stable, this step will have no effect on the gradient
boosting approaches.

B. Appendix: Multivariate Normal Natural Gradient Derivations
To fit the NGBoost model, we require three elements, the log-likelihood, the derivative of the log-likelihood, and the Fisher
information matrix. We use the parameterization for the multivariate Gaussian given in Section 2.2.

We shall derive results for the general case where P is the dimension of the data Y∈ℝP: We use Yi∈ℝ, i∈ 1,…,Pf g to denote
the value of the ith dimensionofY in this section; a similar notation is used forμ andμi. The probability density function canbewritten as

pðYjμ,ΣÞ¼ ð2πÞ�P
2 jΣj�1=2exp½�1

2
ðY�μÞΣ�1ðY�μÞ�: (A.2)

Asmentioned in Section 2, the optimization ofμ is relatively straightforward, as it lives entirely on the unconstrained real line.Σ is an
P�P positive definite matrix, which is a difficult constraint. Therefore, optimizing this directly is a challenge. Instead, if we
consider the Cholesky decomposition of Σ�1 ¼U⊤U, where U is an upper triangular matrix, we only require that the diagonal be
positive to ensure that Σ is positive definite. We choose to model the inverse of Σ as in Williams (1996).

Therefore, we form an unconstrained representation forU, where we denote aij as the element in the ith row and the jth column
as follows:

aij ¼
exp νij
� �

, if i¼ j,

νij , if i< j,

0, otherwise,

8><>: wherei, j∈ 1,…,Pf g:

1 The temporal resolutions already match.
2 The Haversine distance is the greater circle distance between two longitude–latitude pairs.
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Hence, we can fit U by doing gradient-based optimization on νij∈ℝ : 1 ≤ i≤ j ≤ P
	 


as all values live on the real line. As an
example, for P¼ 2, we can fit a multivariate Gaussian using unconstrained optimization through the parameter vector
θ¼ μ1, μ2,ν11,ν12,ν22ð Þ∈ℝM .

As in Williams (1996), we simplify the parameters to

zi ¼ μi�Yi i∈ 1,…,Pf g,

ηi ¼ Uzð Þi ¼
XP
j¼i

aijzj i∈ 1,…,Pf g,

where, we have denoted z as the column vector of zi∈ℝ. Throughout the following derivations, we will interchangeably use
fΣ,U,aij ,νij ,μ,z,zi,ηig without noting that these parameters have a mapping between them (e.g., a11 ¼ exp ν11ð Þ).

Noting that log ∣Σ∣¼ log U⊤Uj j�1 ¼�2 log∣U∣¼�2 log
QP

i¼1aii
� �

, the negative log-likelihood can be simplified as follows:

� logp Yjθ¼ μ,νð Þð Þ¼�P
2
log 2πð Þþ1

2
� log ∣Σ∣þ1

2
Y�μð ÞΣ�1 Y�μð Þ

¼ c�
XP
i¼1

logaiiþ1
2
z⊤U⊤Uz

¼
XP
i¼1

1
2
η2i � νii

� �
þ c,

where c is a constant independent of μ and νij. For a shorter notation, we will write l¼�log pðYjθ¼ðμ,νÞÞ.
The first derivatives are stated in Williams (1996) and we also state them here for reference:

dl

dμi
¼
Xi
j¼1

ηjaji i∈ 1,…,Pf g (A.3)

dl

dνii
¼ ηiziaii�1 i∈ 1,…,Pf g (A.4)

dl

dνij
¼ ηizj 1 ≤ i< j ≤ P: (A.5)

The final element that we need for NGBoost to work is the M�M Fisher information matrix. This was not needed in Williams
(1996), so we derive the Fisher information here. We start all calculations from the following definition:

I ij ¼E d2l
dθidθj

� �
, i, j∈ 1,…,Mf g:

Note that I ij is a symmetricmatrix, such that I ij ¼ I ji. For convenience, we denote the entries of thematrix with the subscripts of
the parameter symbols, for example, I μi ,νkq . We use the letters i, j,k,q∈ 1,…,Pf g⊂ℕ to index the variables. The following two
expectations are frequently used: E zizj

 �¼Σij and E zi½ � ¼ 0.

The derivatives of ηj with respect to the other parameters are repeatedly used, so we give them here:

dηk
dμi

¼
0, if k> i,

aki, if k ≤ i,

(
i,k∈ 1,…,Pf g

dηi
dνkq

¼ d
dνkq

XP
j¼i

aijzj 1 ≤ i ≤ P, 1 ≤ k ≤ q ≤ P

¼
0, if i 6¼ k,

zq, else if q> k,

aiizi, else if q¼ k:

8>><>>:
We start with the Fisher information for μi,μj, using the existing derivation of dl

dμk
in equation (A.3):

d2l
dμidμk

¼ d
dμi

Xk
j¼1

ηjajk i,k∈ 1,…,Pf g

¼
Xk
j¼1

ajiajk

¼ U⊤U
 �

ik
:
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We therefore have that

I μi ,μj ¼Σij i, j∈f1,…,Pg: (A.6)

Next, we consider the mean differentiated with respect to νkq again starting from equation (A.3):

d2l
dμidνkq

¼ d
dνkq

Xi
j¼1

ηjaji i∈ 1,…,Pf g, 1 ≤ k ≤ q ≤ P

¼
Xk
j¼1

ηj
d

dνkq
ajiþaji

d
dνkq

ηj

� �
:

As the expectation of both terms inside the sum is zero for every valid combination of i,k,q, we conclude that

I μi ,νkq ¼ 0 i∈ 1,…,Pf g, 1 ≤ k ≤ q ≤ P: (A.7)

Finally, the last elements that we require for the Fisher information matrix are the entries for νij,νkq. First, we consider diagonals
(i¼ j) w.r.t. all νkq with k ≤ q. We start by using Equation (A.4) for dl

dνii
:

d2l
dνiidνkq

¼ d
dνkq

ηiziaii i∈ 1,…,Pf g, 1 ≤ k ≤ q ≤ P

¼ aiizi
d

dνkq
ηiþηizi

d
dνkq

aii

¼
aiizizq, if k¼ i and k< q,

a2iizizi, if i¼ k¼ q,

0, if i 6¼ k,

8>><>>:
þ

zi
PP
j¼i

aijzjaii, if i¼ k¼ q,

0, Otherwise:

8><>:
Taking the expectation, we get

I νii ,νkq =

aiiΣiq, if k= i and q> k,

a2iiΣiiþaii
PP
j= i

aijΣij , if i= k = q,

0, if i 6¼ k:

8>>><>>>: i∈ 1,…,Pf g, 1 ≤ k ≤ q ≤ P (A.8)

Finally, we derive the Fisher information for the off diagonals with respect to the off diagonals i< jð and k< q).We start from the
expression for dl

vij
in Equation (A.5):

d2l
dνkqdνij

¼ d
dνkq

ηizj 1 ≤ i< j ≤ P,1 ≤ k< q ≤ P

¼ zj
d

dνkq
ηi

¼
zjzq, if k¼ i,

0, if i 6¼ k:

(

Hence,

I νij ,νkq =
Σjq, if k = i,

0, if k 6¼ i,

�
1 ≤ i< j ≤ p,1 ≤ k< q ≤ P: (A.9)

Equations (A.6)–(A.9) give the full specification of the Fisher information.
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