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Advances in Bayesian time series analysis of palaeoclimate data
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Time series analysis of palaeoclimate data is used to identify quasi-periodic changes attributable

to astronomical forcing of insolation by Earth’s axial obliquity and precession, and orbital

eccentricity, i.e., Milankovitch cycles. Hays et al. (1976) applied time series analysis – including

spectral analysis, filtering, tuning and hypothesis testing – on palaeoclimatic data from the most

recent 500 Ka of Earth history to demonstrate forcing from these astronomical parameters. The

CENOGRID “splice” (Westerhold et al., 2000) has since extended this evidence to 66 Ma.

Investigators have also recognised the imprint of Milankovitch cycles in palaeoclimatic records

reaching back into the Precambrian. 

Palaeoclimate time series present unique challenges: sample spacing is generally not constant;

measured data represent combinations of palaeoenvironmental factors; most problematic of all,

palaeoclimate time scales are almost never known with adequate certainty. Important time

constraints are provided by geochronology from volcanic ash layers, geomagnetic reversals and

selected chemostratigraphic events, but only at isolated, widely spaced points along geologic time,

and only extremely rarely do they provide a precision sufficient to determine the time-periodicity

of palaeoclimate variations at Milankovitch scales. Investigators must also grapple with

uncertainties in celestial mechanics, and in the theory of climate change, sedimentation and

alteration. From this collective information, one may choose to investigate mechanisms of climate

or environmental change (climate modelling); estimate the chronology and duration of

stratigraphic series of palaeoclimate data (cyclostratigraphy); and constrain the celestial

mechanics of Earth’s distant past. 

In principle, all of these objectives can be obtained through application of a hierarchical Bayesian

model: astronomical forcing -> climate -> environment -> sedimentation -> alteration ->

observation. Bayesian theory allows us to reverse all of the arrows and to update information

about sedimentation, the environment, climate, and astronomical forcing. However, in Bayesian



statistics, expressing a likelihood function is a fundamental step and requires parameterising

stochastic quantities. One needs to be clear and explicit about errors. We present an example that

considers an explicit-likelihood route for Quaternary data (Carson et al., 2019). In the more distant

geologic past, uncertainties about climate and sedimentation are increasingly challenging.

Strategies tend to be based on pattern identification by the investigator, with or without numerical

techniques. Examples include recognising orbital eccentricity bundling in paleoclimatic data

sequences that exhibit precession cycling, and studying the relationships between frequency and

amplitudes (Meyers and Malinverno, 2018). We review examples illustrating the relationship

between frequency and amplitude together with the supporting theory. 
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