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A B S T R A C T

Operational wave forecasting plays an important role in ensuring safe navigation and in the prediction of tidal
windows for harbour approach channels. The underlying nearshore process-based wave models need to be
accurate for a wide range of different conditions, from more common mild wave conditions to the occasional
high energy (storm) conditions. In this work, an innovative hybrid modelling approach is proposed to improve
the accuracy of operational wave forecasts. An operational wave model is combined with a machine learning
model which is trained using wave measurements within the wave model domain. This hybrid modelling
approach is applied to the Dutch North Sea, covering four major harbour approach channels.

The final hybrid operational wave model results in a significant average error decrease compared to just
the process-based model, amounting to 21.7% for the wave energy density and 25.3% for the wave direction.
The error reduction for the spectral wave parameters is even larger, with a 33.3% smaller error in spectral
wave height and a 38.8% smaller error in spectral wave period. As this approach is generically applicable to
spectral wave models, it contains the potential for significant improvements in operational modelling.
1. Introduction

In operational forecasting, nearshore process-based wave models
are crucial in ensuring safe navigation and the prediction of tidal
windows for harbour approach channels. For these applications, the
nearshore wave model needs to be accurate for a wide range of different
conditions, from more common mild wave conditions to the occasional
high energy (storm) conditions.

Traditionally, there are several ways in which the accuracy of
wave models is ensured. Firstly, wave models are both calibrated and
validated based on field measurements, for instance from wave buoys.
Such calibration and validation efforts are often either a one-time
effort during the model setup or a periodical quality check of the
operational model performance. The underlying assumption with this
approach is that (part of) the discrepancy between model outcome
and measurement can be solved by tuning the model settings. Another
approach is to derive and implement new or improved descriptions of
physical processes in the process-based model. This usually is a time
and knowledge intensive activity, requiring rigorous research.

In the end, process-based wave models are very useful, but not
perfect tools. Even when all the above-mentioned avenues for model
improvement have been exhausted, in practice the operational wave
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model will still not give perfect predictions compared to the measure-
ment data, because it is practically impossible to capture all physical
processes in a process-based model. The input of a wave model is
often a factor of large uncertainty. For this reason data assimilation is
often used in forecasting, where measurement data are assimilated to
improve the model input. However, in the practice of nearshore wave
forecasting this technique is not often used, since data assimilation
usually features a significant computational demand which is often
infeasible in an operational context.

Another way to use a data-driven model is to make use of a machine
learning (ML) approach. In many cases, there will be continuous wave
measurements – such as wave buoys or measurement equipment on
offshore platforms – available within the model domain. When both
the predictions from the operational model and the measurements are
stored for sufficiently long periods of time, these can provide the nec-
essary training data for a ML model used to improve wave predictions.
Existing efforts to incorporate ML models in operational forecasting can
be divided into two categories: (a) those that completely replace the
process-based wave model with a data-driven model and (b) those that
use both a process-based and a data-driven model together. The former
category contains examples of neural networks predicting of wave
heights inside a harbour (Tsai et al., 2002) and wave heights in the
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swell and low frequency bands (Lopez et al., 2015), both for a single lo-
cation, and the use of Convolutional Neural Networks to predict waves
and hydrodynamics as a surrogate for numerical models (Wei and
Davison, 2022). For the latter category either Bayesian Networks (Em-
manouil et al., 2020), deep learning models (Yevnin et al., 2023),
Random Forests or Gradient Boosting Decision Trees (Callens et al.,
2020) are used in conjunction with a process-based model to correct
spectral wave parameters for a very small number of locations (one or
two) or perform a short-term prediction of the wave height time series
in the case of Yevnin et al. (2023). Also, de Ridder et al. (2021) propose
to correct the remaining error between the process-based model result
and the measurement on the entire wave spectrum instead of only on
the spectral parameters (as in the previously mentioned works), which
results in a much wider range of possible applications. This approach
not only leads to significant improvements in the energy and mean
directional spectra, but also in the spectral wave parameters derived
from those corrected wave spectra. In this paper, this exploratory work
is innovated upon by extensive optimization of the configuration of the
ML model, firstly selecting and engineering the right input features to
use and secondly deriving optimal settings. Furthermore it is expanded
to accommodate a larger number of locations, a total of 14 along four
major approach channels of harbours in the Netherlands, Belgium and
Germany. For these locations, predictions are made by an operational
SWAN wave model (Booij et al., 1996) of the Dutch North Sea. The
ML correction is then predicted by a gradient boosting decision tree
implementation – XGBoost (Chen and Guestrin, 2016) – in Python (van
Rossum, 1995).

This paper is structured as follows. Section 2 describes the method
and data, including the operational and machine learning models. In
Section 3, the calibration of the machine learning model is discussed.
The results of the calibrated model are shown in Section 4. The penulti-
mate Section 5 contains the discussion and in Section 6 the conclusions
drawn from this work are presented.

2. Method

The methods and data used within this work are described below,
featuring in order: the operational wave model used (Section 2.1),
the available data (Section 2.2), a description of the XGBoost ML
model (Section 2.3) and finally the general approach and model setup
(Section 2.4).

2.1. Operational wave model

To provide a wave forecast for the Dutch coast, the SWAN-Kust-
strook model schematization (Gautier et al., 2018) is applied in com-
bination with the third-generation wave model SWAN (Booij et al.,
1996). The model is used by the operational forecasting service of the
Dutch Directorate-General for Public Works and Water Management
(Rijkswaterstaat), to provide a 48-hour forecast of the wave conditions.
This forecast is updated every hours and the forecast data is available
with a time step of one hour. The wave forecast provides essential data
for early warning related to flooding and for operational shipping infor-
mation, such as the computation of tidal windows for ships navigating
the approach channels of the main Dutch ports.

The model domain covers the entire Dutch coast including the
Wadden Sea and Western Scheldt (longitude 2.1◦ – 7.3◦, latitude 51.1◦

– 54.1◦). A spatially varying grid is applied with a grid resolution
varying between 35 m nearshore and 6.2 km offshore. The directional
space is divided into 45 bins, with a bin size of 8◦. The frequency range
is 0.03 – 0.6 Hz, divided into 32 bins. The offshore wave boundary is
located at approximately 100 km out of the Dutch coast (see Fig. 1)
and the ECMWF-WAM wave data (The Wamdi Group, 1988) is used as
forcing. In addition to the wave forcing on the offshore boundary, the
SWAN-Kuststrook model is forced with wind fields from the numerical
weather prediction model HARMONIE (Bengtsson et al., 2017).
2

Fig. 1. Wave measurement locations (dots) and SWAN-Kuststrook model domain extent
(white line). In red the locations for which 1.5D measured wave spectra are available
(wave energy data and mean wave direction and directional spreading per frequency
bin). In yellow the locations for which only 1D measured wave spectra are available
(only wave energy data).

2.2. Available measurement data

To train the ML model, 14 wave measurement locations are selected
from four regions, all of them close to the approach channels of major
Dutch (and other European) harbours. Firstly, the region Wadden Sea
(WAD) covers the approach to the ports of Eemshaven, Delfzijl and
Emden (Germany). The second region is the IJgeul (IJG), the access
channel to the Port of Amsterdam. The third region features the Eu-
rogeul (EUG), the access channel to the Port of Rotterdam. The final
region covers the mouth of the Western Scheldt (WES) estuary, which
gives access to the ports of Vlissingen, Terneuzen and Antwerp (Bel-
gium). The selected stations within these regions are shown in Fig. 1.
Both wave measurements and output data from the SWAN-Kuststrook
model are available for all 14 locations, as listed in Table 1.

The wave observation data consists of wave energy density and
mean wave direction per frequency bin and per time step. This is called
a 1.5D wave spectrum, since the distribution of wave energy over the
frequency space is known, but the distribution of wave energy over
wave directions is simplified by specifying a mean wave direction per
frequency bin. A full 2D wave spectrum would contain the wave energy
distribution over both frequency and directional space. The available
wave observation data is available with a time step of 10 minutes and
covers a period from October 2020 to April 2022 (about 18 months) for
the directional wave information. For wave energy density, the data
is available up to 18 January 2022 (about 15 months). Incidentally,
there are gaps in the time series, but in general the measurement data
set is fairly complete. Whether or not wave directions are measured is
dependent on the type of measuring device deployed at a location. At
the locations Eurogeul DWE, IJmuiden stroommeetpaal and Cadzand
CADW no recordings of wave direction or directional spreading are
available (these locations are indicated by * in Table 1).

The wave energy, wave direction, water level, significant wave
height (𝐻𝑚0) and spectral period (𝑇𝑚−1.0) are extracted from the SWAN-
Kuststrook model through the MATROOS web tool (Rijkswaterstaat,
2022).

Since the HARMONIE wind speed and wind direction is only avail-
able for a small number of locations that do not overlap entirely with
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Table 1
Overview of the locations and the number of predicted wave spectra for each location. The measurements that lack
information on wave direction are indicated by *.
Location name Location ID N Wind location Region

Randzelgat Noord RZGN 3,730 Huibertgat WAD
Westereems Oost WEO1 11,148 Huibertgat WAD
Westereems West WEW1 8,368 Huibertgat WAD
Schiermonnikoog Noord SON 10,501 Huibertgat WAD
Eierlandse Gat ELD 9,389 Q11 WAD
Platform Hoorn Q11 Q11 9,413 Q11 WAD

IJmuiden munitiestortplaats IJMDMNTSPS 10,150 IJMDMNTSPS IJG
IJgeul 1 boei IJG1B 11,069 IJMDMNTSPS IJG
IJmuiden stroommeetpaal* IJMDSMPL 10,498 IJMDMNTSPS IJG

Europlatform EPL 11,215 EPL EUG
Eurogeul E13 E13 10,670 EPL EUG
Eurogeul DWE* DWE 10,039 EPL EUG

Deurlo Deurlo 10,933 Vlakte vd Raan WES
Cadzand CADW* CADW 6,238 Vlakte vd Raan WES

All locations – 133,361 – –
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Table 2
Number of available data points (number of wave spectra for the locations within the
region multiplied by the number of frequency bins) for the different regions. Both the
total, training, validation and test set are shown.

Region Total Training Validation Test

Wave energy

WAD 1,471,372 1,064,021 217,933 189,418
IJG 888,076 626,295 128,279 133,502
EUG 893,872 642,494 131,595 116,783
WES 480,788 338,514 69,336 72,938

Wave direction

WAD 1,695,036 1,248,872 255,792 190,372
IJG 666,400 470,843 96,437 99,120
EUG 646,156 474,027 97,089 190,372
WES 306,600 216,318 44,306 45,976

the all wave measurement locations, 5 reference wind locations have
been chosen that provide wind information for a certain area and
coupled to the wave measurement locations (see Table 1). The SWAN
prediction, wave measurements and wind input are synchronized along
the time axis, resulting in a data set with a communal time step of one
hour.

Once all the information from the different data sets is gathered,
the wave measurement data, SWAN data and wind data combined into
one large data set per measurement location. The number of data points
per region is listed in Table 2. Fig. 2 gives an illustration of the final
data set for all the locations by showing the density scatter plots of
the wave height, wave period, wave direction, wind speed and wind
direction. These scatter plots show that the data set contains different
hydrodynamic conditions. Both mild (𝐻𝑚0 < 1𝑚) and more severe
𝐻𝑚0 > 3𝑚) wave conditions are included in the data set.

.3. Machine learning model

In this work, the Python (van Rossum, 1995) package implementing
he machine learning method XGBoost (Chen and Guestrin, 2016) is
pplied. Existing examples of the successful application of XGBoost
n adjacent fields include the aforementioned wave parameter correc-
ion (Callens et al., 2020), the prediction of added-wave resistance
n ships (Mittendorf et al., 2022) and the prediction of mean wave
vertopping volumes (den Bieman et al., 2021).

XGBoost falls under the category of models named gradient boosting
ecision trees (GBDT), which make use of decision trees. These models
an either predict a label (classification) or a quantity (regression). The
erm used for this type of decision trees is CART (classification and
egression trees).
3

The anatomy of a CART consists of decision and leaf nodes. Decision
odes contain a condition based on a training data feature, also known
s a split. An example of a split could be ‘‘Is the wave height larger
han 1.5 m?’’. From the split, two branches emerge corresponding to
he two answers. Each branch in turn ends in a next decision or leaf
ode. A leaf node gives a prediction of the target variable, so no further
ranches stem from a leaf node. A CART starts at a single decision node
nd branches out from there, with branches eventually ending in leaf
odes. The maximum number of decision nodes between the start and
leaf node is called the depth of the CART.

Usually, the complexity of real-world problems is too large to solve
ith a single CART. This is why GBDT models (such as XGBoost) make
se of an ensemble of CARTs containing a (very) large number of
hem. The idea behind that is that, while a single CART is a weak
redictor, the sum of many of them can result in a strong predictor.
n the ensemble, the predictions of each individual CART are summed
p to the ensemble prediction, accounting for the learning rate (see
ection 3.4) applied in the model.

In the training of a GBDT model, new trees are iteratively added,
ach one trying to reduce the remaining prediction errors of the trees
lready present in the ensemble. When forming a new tree, its splits
ust be determined. To that end, an objective function is specified.
he objective function consists of two parts, a training loss function
hat promotes prediction accuracy of the model on the training data
et and a regularization term that penalizes the complexity of the tree.
dditional levels of tree depth are iteratively added, searching for the
ptimal split condition per feature. Then the combination of feature
nd split condition that give the largest improvement in terms of the
bjective function is selected for the decision node. The maximum
umber of levels that is grown in this way is capped by the maximum
ree depth. The work by Chen and Guestrin (2016) extensively details
he entire XGBoost algorithm.

The total dataset for each region is randomly divided into training,
alidation and test data sets (see Table 2). The model is trained on the
raining data set, during which the validation data set is used in the
arly stopping algorithm described below. To show the performance
f the model it is applied to the up to now unseen test data set, the
esults of which are presented in Section 4. The split is approximately
0% training, 15% validation and 15% test data. Some deviations from
his split occur, because the test data set covers the same moments in
ime for all locations but sporadically data is missing for some of those
ocations. Note that each moment in time is exclusively used within
ither the training, validation or test data set. Since the model only uses
he input of a single moment in time (as is described in Section 2.4),
here is no data leakage between these data sets.

The number of CARTs that form the ensemble can either be a hard
umber set as input variable or determined during the training process,
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Fig. 2. SWAN wave data and HARMONIE wind information for all locations listed in Table 1. The upper left panel shows the density scatter of the wave height and the wind
speed. The upper right panel shows the density scatter of the wave height and the wind direction. The lower left panel shows the density scatter of the wave height and the
spectral period. The lower right panel shows the density scatter of the wave height and the wave direction. This data set contains 8.368 predicted wave spectra.
using a method called ‘early stopping’. Early stopping stops adding trees
when the model improvement from new trees becomes too small. The
algorithm adds new trees until another new tree would either exceed
the maximum number of trees or the last 1,000 trees no longer improve
the models performance on the validation data set.

2.4. Approach and model setup

To improve operational wave predictions, a ML model (Section 2.3)
is trained to predict the correction to the SWAN-Kuststrook model (Sec-
tion 2.1). The ML model is trained using the SWAN model predictions
combined with wind input and wave measurement data (Section 2.2).
Here, the wave measurement data is used to derive the target variable,
namely the correction necessary to make the SWAN output match the
wave measurements. Corrections are derived for each bin of the fre-
quency spectrum, both for the energy density and the mean direction.
Since the energy density and the mean direction are two separate target
variables this requires two ML models, one energy model and one
direction model.

The ML model has the following SWAN related variables available
(also listed in Table 3): the HARMONIE wind velocity (𝑈𝑤𝑖𝑛𝑑) and
direction (𝐷𝑤𝑖𝑛𝑑) at the associated wind location (see Table 1), the
water level (ℎ), spectral wave height (𝐻𝑚0), spectral wave period
(𝑇𝑚−1.0) and mean wave direction (𝜃), the energy density (𝐸(𝑓 )) and
mean wave direction (𝜃(𝑓 )) per frequency bin at a specific location. In
addition to these SWAN related variables, a set of input features also
includes indicators to both the location and the bin in the frequency
spectrum for which the correction is being predicted. This means that
a single wave spectrum at one location translates to 28 data points,
since the frequency spectrum is discretized into 28 bins. So for each of
these 28 frequency bins the variables listed in Table 3 are provided as
4

Table 3
Overview of input features for the machine learning model. The features excluded from
the final model are indicated by *.

Feature name Symbol Unit

HARMONIE wind velocity used in SWAN 𝑈𝑤𝑖𝑛𝑑 [m/s]
HARMONIE wind direction used in SWAN 𝐷𝑤𝑖𝑛𝑑 [◦N]
Water level used in SWAN ℎ [m +NAP]
Spectral wave height predicted by SWAN 𝐻𝑚0 [m]
Spectral wave period predicted by SWAN* 𝑇𝑚−1.0 [s]
Deep water wave steepness predicted by SWAN 𝑠𝑚−1.0 [–]
Wave direction predicted by SWAN* 𝜃 [◦N]
Difference between wave and wind direction 𝛿𝜃 [◦N]
Predicted energy density in frequency bin 𝐸(𝑓 ) [m2/Hz]
Predicted main wave direction in frequency bin 𝜃(𝑓 ) [◦N]
Location indicator – [–]
Frequency bin indicator – [–]

input and the only variables that change between frequency bins within
the same wave spectrum are 𝐸(𝑓 ) and 𝜃(𝑓 ).

As mentioned in Section 2.2 the wave measurements are only avail-
able as 1.5D spectra. To match the format of the wave measurements,
the 1.5D spectra from the operational SWAN model are used and
interpolated to match the discretization of the measured wave spectra.
In this way, both measured and modelled spectra can be added to the
same training data base. Note that, if there were 2D measured wave
spectra available, the method could still be applied when expanded
with directional bins.

Both the different locations and frequency bins are represented
using ‘one-hot-encoding’. This means that each different location and
frequency bin is added as a feature (column) in the training data. Each
row in the data contains a value of 1 for the feature representing the
location and frequency bin it pertains to, with all other locations and
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frequency bins containing a value of 0. In this way, the model is able
to differentiate between the different locations and frequency bins.
Applying one-hot-encoding to the frequency bins adds 28 features, for
the locations it adds between 2 and 6 features depending on the number
of locations in a region (see Table 1).

For the energy model the target variable is a normalized correction
of the energy density in a given frequency bin (𝛥𝐸(𝑓 )). It is defined
as the difference between the observed (𝐸𝑜𝑏𝑠(𝑓 )) and SWAN prediction
of the energy density in that bin (𝐸(𝑓 )), which is then normalized by
the total amount of predicted energy (𝐸𝑆𝑊𝐴𝑁,𝑡𝑜𝑡𝑎𝑙) over all frequency
bins (see Eq. (1)). The normalization step effectively reduces the dimen-
sionality of the problem, because both mild and more extreme wave
conditions result in a similar range of values for this target variable.
In other words, if the normalization is left out, the range of values of
the target variable becomes much wider, making it harder for the ML
model to accurately predict. Note that the algorithm is prevented from
predicting negative energy density, in which case it is set to 0.

𝛥𝐸(𝑓 ) =
𝐸𝑜𝑏𝑠(𝑓 ) − 𝐸(𝑓 )
𝐸𝑆𝑊𝐴𝑁,𝑡𝑜𝑡𝑎𝑙

(1)

For the direction model the target variable is the normalized correc-
tion of the main wave direction in a given frequency bin (𝛥𝜃(𝑓 )). It is
efined as the difference between the observed (𝜃𝑜𝑏𝑠(𝑓 )) and the SWAN
rediction of the main wave direction in that bin (𝜃(𝑓 )), normalized by

360◦ (see Eq. (2)). Note that the difference between the two directions
has a value between −180◦ and +180◦, since the smallest directional
ifference is used.

𝜃(𝑓 ) =
𝜃𝑜𝑏𝑠(𝑓 ) − 𝜃(𝑓 )

360
(2)

The root-mean-squared error (RMSE) – defined in the Appendix –
s used both as the objective function in the ML model training and to
valuate the performance of the SWAN and corrected SWAN results.

Since the SWAN-Kuststrook model is an operational model, its pre-
ictions are available with different lead times. To train the ML model,
he SWAN prediction with zero lead time – the ‘nowcast’ – is used.
he main consideration here is that for a given moment in time, the
redictions for that moment with different lead times mainly feature
ifferent levels of uncertainty pertaining to the SWAN model forcing,
.e. the wind conditions and water levels. The aim of this work is to
rain a ML model to correct for the error made by SWAN in the wave
rediction, and not to correct for the errors in the wind and water level
redictions as well. Effectively, the latter would be the case when using
redictions with a lead time. Even though the model is trained on the
owcast, it is suitable for application to SWAN predictions with any
mount of lead time, the model just will not correct for any prediction
rrors in the SWAN model forcing. Note that a somewhat similar effort
s of course possible to create another ML method that does correct the
redicted wind and water level, as showcased by the work of Yevnin
nd Toledo (2022). This however is out of scope of the current work.

. Model calibration

To arrive at the final ML model used in this work the model is
alibrated in a few ways. Firstly, the question of how to group the
4 different locations is addressed in Section 3.1. Then in Section 3.2
everal features in the training data set are recast in an attempt to make
he model more efficient. Subsequently, both the importance of the
ifferent training features (Section 3.3) and the optimal model settings
Section 3.4) are analysed.

.1. Location grouping

As mentioned in Section 2.2, there are 14 locations of interest in the
perational wave model domain which are included in the ML model.
ncluding all locations in a single model will significantly increase
5

he computational effort of training the model, especially since each t
Table 4
Root-mean-squared error (RMSE) [m2/Hz] for three different training sets (EUG+IJG,
EUG and location DWE). The RMSE is shown for all three locations within region EUG,
both for the uncorrected energy density (SWAN) and the corrected energy (SWAN𝑐𝑜𝑟𝑟)

Loc. SWAN EUG+IJG EUG DWE
SWAN𝑐𝑜𝑟𝑟 SWAN𝑐𝑜𝑟𝑟 SWAN𝑐𝑜𝑟𝑟

E13 0.38 0.29 0.30 0.32
EPL 0.40 0.31 0.31 0.33
DWE 0.43 0.36 0.36 0.37

location adds a column to the input data due to the one-hot-encoding
described in Section 2.4. Because of the large extent of the operational
wave model domain some of the locations considered in this work are
relatively far apart, so that in practice they are located in water systems
that behave differently. For instance the locations in the south along
the mouth of the Western Scheldt are so different from those in the
north close to the Wadden Sea, it is questionable whether it would even
be advantageous to include both in the same ML model. Hence, both
from a physics and a practical standpoint, the locations are grouped
into four regions as described in Section 2.2. In this way, four different
ML models are trained with the same model setup.

To verify how the selection of these groups affects the final ac-
curacy, ML have been trained with three different location subset
variations in the training data set: (1) a training set with only location
Eurogeul DWE, (2) all locations in the Eurogeul region, and (3) a
combination of the locations from both Eurogeul and IJgeul regions
(see Table 1). Note that the associated test data sets have the same
moments in time for each location (if available) in order to fairly
compare the results.

The results, listed in Table 4, indicate that the model is fairly robust
for the grouping of locations in the training data set, and different
variations thereof do not significantly affect the model performance.
All three variations show a similar accuracy for the corrected energy
density. This indicates that an enlarged training data set with additional
(nearby) locations does not improve the accuracy of the ML model.
Thus, from a practical standpoint it is decided to set up ML models
for the four regions (WAD, IJG, EUG and WES) separately. This seems
a sensible choice as it both prevents a large number of different models
on the one hand and prevents a large amount of one-hot-encoded
location features in the training data set on the other. To show whether
a correction is also applicable for nearby locations, the Eurogeul DWE
model trained on only location DWE is also used to predict the correc-
tion for the locations Eurogeul E13 and Eurogeul EPL. These suggest
that in this case the correction is also applicable for nearby locations,
since the error reduction for E13 and EPL is fairly similar to (though
slightly worse than) the error reduction of the location DWE.

3.2. Feature engineering

In an effort to increase the accuracy of the ML model, the input
features are adapted to make it easier for the algorithm to discover
the patterns present in the data. One strategy to do this is to redefine
input features to make them uncorrelated to other features whenever
possible. In this work, that can easily be done with both 𝑇𝑚−1.0 and
𝜃. The spectral wave period 𝑇𝑚−1.0 is partially correlated mainly to
the 𝐻𝑚0, in the sense that higher wave heights will also results in
onger wave periods. By using the deep water wave steepness, 𝑠𝑚−1.0

(see Eq. (3)), as a feature instead of the wave period this problem is
avoided, since 𝐻𝑚0 and 𝑠𝑚−1.0 are uncorrelated.

𝑠𝑚−1.0 =
2𝜋 ⋅𝐻𝑚0

𝑔 ⋅ 𝑇 2
𝑚−1.0

(3)

In a similar vein, the wave direction is often partially correlated to
he wind direction. To avoid this correlation in the training features,
he wave direction is replaced with 𝛿𝜃 which represents the difference
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Table 5
Overview of feature importance rankings for the different regional models for the
energy and mean direction in the wave spectrum. Note that the one-hot-encoded
features related to location and frequency bin are not part of the feature importance
analysis.

Rank WAD IJG EUG WES

Wave energy

1 𝐻𝑚0 𝐻𝑚0 𝐻𝑚0 𝐻𝑚0
2 𝑠𝑚−1.0 𝑠𝑚−1.0 𝑠𝑚−1.0 𝑠𝑚−1.0
3 𝐸(𝑓 ) 𝐸(𝑓 ) 𝛿𝜃 𝐸(𝑓 )
4 𝑈𝑤𝑖𝑛𝑑 𝛿𝜃 𝐷𝑤𝑖𝑛𝑑 𝑈𝑤𝑖𝑛𝑑
5 𝛿𝜃 𝑈𝑤𝑖𝑛𝑑 𝑈𝑤𝑖𝑛𝑑 ℎ
6 𝐷𝑤𝑖𝑛𝑑 ℎ ℎ 𝐷𝑤𝑖𝑛𝑑
7 ℎ 𝐷𝑤𝑖𝑛𝑑 𝐸(𝑓 ) 𝛿𝜃

Wave direction

1 𝜃(𝑓 ) 𝜃(𝑓 ) 𝜃(𝑓 ) 𝜃(𝑓 )
2 𝐷𝑤𝑖𝑛𝑑 𝐷𝑤𝑖𝑛𝑑 𝐷𝑤𝑖𝑛𝑑 𝐷𝑤𝑖𝑛𝑑
3 𝛿𝜃 𝐻𝑚0 𝐻𝑚0 𝐻𝑚0
4 𝐻𝑚0 𝛿𝜃 𝛿𝜃 𝛿𝜃
5 𝑈𝑤𝑖𝑛𝑑 𝑠𝑚−1.0 𝑠𝑚−1.0 𝑠𝑚−1.0
6 𝑠𝑚−1.0 𝑈𝑤𝑖𝑛𝑑 𝑈𝑤𝑖𝑛𝑑 𝑈𝑤𝑖𝑛𝑑
7 ℎ ℎ ℎ ℎ

between wind and wave direction (see Eq. (4)). The possible values
of 𝛿𝜃 range from −180◦ to +180◦. Note that this only replaces the

ave direction for the spectrum as a whole. The predicted main wave
irection per frequency bin, 𝜃(𝑓 ), is still included as a feature in the

directional model.

𝛿𝜃 = 𝜃 −𝐷𝑤𝑖𝑛𝑑 (4)

To see what effect these changes have the directional model of the
WES region is trained with both the original and the new uncorrelated
features. The effect on the accuracy of the model is negligible, but
the model with the uncorrelated features converges much faster, with
150 trees required in the XGBoost model instead of 237 trees using
the original features. Apparently, the patterns present in the data are
now more easily found by the model, making it converge faster and
providing a significant reduction in the model training effort. Hence,
the new uncorrelated features are adopted going forward.

3.3. Feature importance

When making a final selection of which features should comprise
the input for the ML model and which should be left out, a feature
importance analysis can be a useful tool. The idea is that this anal-
ysis results in a ranked list of features from most to least important
for the model outcome of the chosen target variable (in this case
either the amount of energy or main direction in a given frequency
bin). To arrive at this ranking, the feature importance is derived by
performing a permutation importance analysis (Breiman, 2001; Fisher
et al., 2018). This method iterates over the available features, and
one-by-one scrambles a single feature in the test data set to gauge its
effect on predictions of the target variable, with important features
having a large effect and vice versa. To account for randomness, the
scrambling of a feature is repeated 5 times and the importance is
averaged for each feature. In this work, the permutation importance
implementation in the ELI5 (2020) Python package was used. Note
that the one-hot-encoded features related to location and frequency bin
are not considered in the analysis, since permutation of one of those
features would lead to input combinations that belong to two frequency
bins or locations at the same time, which is nonsensical.

From Table 5 it can be seen that for the energy models, the 𝐻𝑚0 and
𝑠𝑚−1.0 are consistently the two most important features, representing
56.1% and 29.0% of the average total weight respectively. Their feature
importance is significantly higher than that of the features ranked 3–7.
This makes sense, since these two variables form a basic characteriza-
tion of the spectrum concerning the total amount of energy (𝐻 ) and
6

𝑚0
Table 6
XGBoost parameter variations used in the hyperparameter tuning process, with optimal
values indicated by *.

Name Parameter name Values

Max. tree depth 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ 15; 25*
Min. data points per leaf 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 50*; 100
Learning rate 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 0.05*; 0.10

the distribution of the energy over the frequency bands (𝑠𝑚−1.0). The
remaining features for the energy models are all much closer together
in terms of importance (ranging from 1.0% to 7.8%), so depending on
the specific region the specific ranking of these features varies a bit.

Similar to the energy models, the two highest ranked features for
the directional models - 𝜃(𝑓 ) and 𝐷𝑤𝑖𝑛𝑑 - are consistently the most
important with some distance from the rest, accounting for at 45.4%
and 34.2% of the average total weight. Logically, the wave direction in
the given frequency bin predicted by SWAN (𝜃(𝑓 )) and the HARMONIE
wind direction (𝐷𝑤𝑖𝑛𝑑) should already provide quite a lot of information
regarding the correct prediction of the direction. Again, the features
at ranks 3–7 are fairly close together in their importance (ranging
from 2.0% to 6.3%), with the total amount of energy (𝐻𝑚0) and
the difference between wind and wave direction (𝛿𝜃) being the most
important among them.

Overall, it can be said that the most important features for the ML
model seem to make sense from a physical standpoint. Additionally,
as expected they are fairly consistent over the different regions, which
adds to the confidence in the ML models.

3.4. Hyperparameter tuning

The process of finding the optimal parameter settings for a specific
application of a ML method is often called ‘hyperparameter tuning’.
The optimal settings form a compromise between unrestricted model
complexity, which promotes model overfitting, and a model that is too
simple, rendering it unable to represent the intricacies of the underlying
data.

Three hyperparameters are tuned: the maximum tree depth
(𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ), the minimum number of data points per leaf
(𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡), and the learning rate (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒). The maximum
tree depth limits complexity of a singular decision tree, where the
depth is the number of subsequent decision nodes in the tree. Using
a minimum number of data points per leaf prevents trees becoming
very specific – their structure being determined by a single point in the
training data set – at the cost of their generic predictive skill. Lastly, the
learning rate is implemented as a multiplication factor on the prediction
of each tree in the ensemble, where values < 1 result in slower but often
more stable conversion to a final trained model.

To find these optimal settings, a K-fold cross-validation (with 𝐾 = 3)
is used in combination with a grid search. In the grid search, a grid of
values for the hyperparameters that are being optimized is constructed.
For every combination of hyperparameter values, a model is trained
and its performance assessed on a test data set. The 3-fold cross-
validation repeats each model training three times with a different
‘fold’ – the random split between training and test data – to lessen the
influence of this random split on the optimal settings that are found.

The values in the hyperparameter optimization are shown in
Table 6. The tuning is executed for each region for both energy
and direction models. The large majority of the results points in the
direction of the following optimal set of hyperparameters: a maximum
tree depth of 25, a minimum of 50 data points in the leaf nodes and
a learning rate of 0.05. In all cases, the differences in performance for
the different sets of hyperparameters was very small, indicating that –
at least for this value grid – any combination of parameter values could
lead to an accurate ML model.
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Table 7
Overview of root-mean-squared errors of energy and directional wave spectra for the
test data set per region, including the relative error reduction (in brackets).

Energy [m2/Hz] Direction [◦]
SWAN SWAN𝑐𝑜𝑟𝑟 SWAN SWAN𝑐𝑜𝑟𝑟

WAD 0.52 0.40 (−23.1%) 50.3 37.3 (−25.8%)
IJG 0.51 0.40 (−21.6%) 48.2 34.4 (−28.6%)
EUG 0.40 0.32 (−20.0%) 53.2 42.6 (−20.0%)
WES 0.20 0.18 (−10.0%) 50.4 37.0 (−26.5%)

All regions 0.46 0.36 (−21.7%) 50.4 37.6 (−25.3%)

4. Results

In this section, the calibrated XGBoost ML model is applied to the
test data set to gauge its performance. Firstly, this performance is
quantified in Section 4.1 using the target variables for the correction
of wave energy density and direction. Then, in an effort to translate
this into practical terms, in Section 4.2 use is made of spectral wave
parameters to express the model performance.

4.1. Target variables

Based on the predicted correction and the initial SWAN spectrum,
a 1.5D wave spectrum for the test data set (previously unseen by the
ML model) was reconstructed. To illustrate the performance of the ML
model for all the data points in the test data set (see Section 2.3), a
density scatter plot is shown in Fig. 3 for the energy density and the
mean wave direction. The density scatter for the directions is shown for
the absolute direction error bounded between −180◦ and +180◦. It can
e seen that the energy density scatter clouds of the corrected spectrum
panel b) contain less scatter and are better aligned with the line of
erfect agreement compared to the original spectrum (panel a). The
ean wave direction also shows a scatter reduction when the corrected

esults (panel d) are compared to the original SWAN results (panel c).
ote that for the direction there is a distinct high density area (lighter
olours) as most of the points have an observed wave direction between
00 and 360◦N. Applying the correction moves this high density area
loser to the zero-error line, which means that the wave direction for
aves from this directional sector is better represented in SWAN𝑐𝑜𝑟𝑟. It

s interesting that the scatter plots for the uncorrected SWAN directions
panel c) include clusters of data points around diagonal lines (from
pper left to lower right). These clusters correspond to frequency bins
f the lower frequencies for which SWAN has a preferred direction,
hereas the observations contain all directions. This model artefact in
WAN results in a significant deviation in the direction, but it does
ot have a large effect on the integral wave parameters because these
ow-frequency bins do not contain much energy.

In Table 7 the root-mean-squared errors corresponding to the data
oints shown in Fig. 3 are listed for the SWAN model with ML correc-
ion (indicated by SWAN𝑐𝑜𝑟𝑟) and without ML correction for both the
nergy and direction models. The statistical comparison shows that the
WAN𝑐𝑜𝑟𝑟 model reduces the RMSE by more than 20% from 0.46 m2∕Hz
o 0.36 m2∕Hz for the energy density and by more than 25% from 50.4◦

o 37.6◦ for the mean wave direction.
When comparing the different regions with each other, the initial

rrors in the wave direction are of roughly the same magnitude (around
0◦) but apparently the corrections in IJG are easier to predict (28.6%
mprovement) than those in EUG (20.0% improvement). In terms of
nergy density it is remarkable that the initial error in the WES area
s quite small compared to the other areas. This is mainly caused by
he fact that the WES locations are located in relatively shallow water,
esulting in lower wave energy. As is to be expected, the subsequent
mprovement of the SWAN𝑐𝑜𝑟𝑟 model is relatively small compared to
he other regions (10% error reduction).

Above, SWAN𝑐𝑜𝑟𝑟 is shown to perform well for individual frequency
7

ins. This, however, does not necessarily guarantee that it leads to
Table 8
Overview of root-mean-squared errors of spectral wave height and spectral wave period
per region for the test data set.

𝐻𝑚0 [m] SWAN𝑐𝑜𝑟𝑟 𝑇𝑚−1.0 [s] SWAN𝑐𝑜𝑟𝑟
SWAN SWAN

WAD 0.24 0.15 (−37.5%) 0.55 0.42 (−23.6%)
IJG 0.23 0.14 (−39.1%) 0.68 0.44 (−35.3%)
EUG 0.23 0.14 (−39.1%) 0.51 0.30 (−41.2%)
WES 0.15 0.12 (−20.0%) 0.83 0.43 (−48.2%)

All regions 0.21 0.14 (−33.3%) 0.67 0.41 (−38.8%)
𝐻𝑚0 > 2𝑚 0.42 0.24 (−42.9%) 0.38 0.29 (−23.7%)
𝐻𝑚0 ≤ 2𝑚 0.16 0.11 (−31.3%) 0.70 0.42 (−40.0%)

realistic reconstructed 1.5D spectra. In Fig. 4 three examples are shown
of 1.5D wave spectra. These three wave spectra include one mild
and two more energetic wave conditions with wave heights exceeding
1.5 m. For examples the SWAN𝑐𝑜𝑟𝑟 wave spectrum matches better

ith the observed wave spectrum. Both the shape (represented by the
pectral period) and the total amount of energy (represented by the
ave height) are more accurately captured. The SWAN𝑐𝑜𝑟𝑟 mean wave
irection also matches better with the observation than the uncorrected
pectrum.

Overall, in terms of the target variables the SWAN𝑐𝑜𝑟𝑟 results are
significant improvement over the SWAN results for both the wave

nergy density and direction.

.2. Spectral wave parameters

In addition to the performance of SWAN𝑐𝑜𝑟𝑟 on the energy density in
ndividual frequency bins (Section 4.1), it is also insightful to asses its
erformance on integral spectral wave parameters, using the spectral
ave height (𝐻𝑚0) and the spectral wave period (𝑇𝑚−1.0). The spectral
arameters modelled by both SWAN and SWAN𝑐𝑜𝑟𝑟 for the test data set
re plotted against the observed values from the wave measurements
n Fig. 5.

In Fig. 5(a) it can be seen that the SWAN𝑐𝑜𝑟𝑟 successfully corrects
slight underestimation of larger wave heights, while also reducing

he scatter. For the 𝑇𝑚−1.0, Fig. 5(b) shows that the main benefit of
WAN𝑐𝑜𝑟𝑟 is that it significantly reduces over- and underestimation in
he 3–6 s (observed) period range.

The impression of improved performance given by Fig. 5 is substan-
iated by Table 8, which lists the root-mean-squared error for 𝐻𝑚0 and
𝑚−1.0 for both the initial SWAN prediction and the corrected prediction
SWAN𝑐𝑜𝑟𝑟). In general, SWAN𝑐𝑜𝑟𝑟 offers a large improvement of the
pectral wave parameters, with the 𝐻𝑚0 error decreasing by a third
nd the 𝑇𝑚−1.0 error decreasing with 38.8%. The initial errors and
ffectiveness of correction of the 𝐻𝑚0 is very similar for three of the
our regions. In line with the observations in Section 4.1 the initial
𝑚0 error in the WES region is relatively small, which again leads to
smaller relative improvement (20%) by SWAN𝑐𝑜𝑟𝑟, compared to the

ther regions (almost 40%). Conversely, the 𝑇𝑚−1.0 in the WES region is
elatively poorly predicted by SWAN, but can effectively be corrected
y SWAN𝑐𝑜𝑟𝑟 to reduce the error with 48.2%. When the test data set is
ivided into a set with milder (𝐻𝑚0 ≤ 2𝑚) and more extreme wave
onditions (𝐻𝑚0 > 2𝑚), it can be concluded that for both sets the
mprovement is significant. Furthermore, this distinction shows that the
ncorrected SWAN model has a larger spectral period RMSE for milder
aves, which seems counter-intuitive. Since the SWAN model does not
lways accurately simulate the spectral shape for swell conditions (long
aves with smaller wave heights) and very small waves, this results in
larger 𝑇 error for mild wave conditions.
𝑚−1.0
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Fig. 3. Density scatter plot of the energy density (panels a and b) and mean wave direction (panels c and d) for the original spectrum, SWAN, (left) and corrected spectrum,
SWAN𝑐𝑜𝑟𝑟, (right) for the test data set. The 20% error bands are shown for the energy density plots and the absolute deviation of 20◦ is shown for the mean wave directions. The
directional error shown in panels c and d is computed as the observed direction subtracted from the modelled direction. The colours indicate the density of the point (number
of instances), with yellow colours representing high density. A log colour scale is used for point density in the energy density figures, to make the interpretation of these panels
easier. The histograms on the top and side of the panels show the density of the points of both the x-axis and y-axis.
5. Discussion

In this paper, a data-driven approach for correcting an operational
wave model is presented. This approach suits the high complexity and
dimensionality of both the data and its underlying physical processes.
This becomes more than clear when comparing the performance of the
ML model with that of a simple bias correction, which is defined as the
mean normalized correction (mean of 𝛥𝐸(𝑓 ) or 𝛥𝜃(𝑓 )). Only correcting
for this mean bias in wave energy density and direction would lead to
error decreases of 2.2% and 0% respectively, compared to the 21.7%
and 25.3% error reductions reached with the XGBoost model.

When comparing this work to the approaches described in existing
literature to use data-driven techniques to improve operational mod-
elling (see Section 1), two important differences are apparent: (a) in
this work the entire wave spectrum is corrected instead of correcting
just the spectral wave parameters and (b) a significantly larger domain
with more locations is considered (14 instead of 1 or 2). Outputting a
corrected wave spectrum opens up a whole range of new applications,
as the wave spectrum is needed for instance to predict wave-ship
8

interaction and consequently tidal windows for ports. At the same time,
Section 4.2 show that correcting the wave spectrum still results in a
significantly more accurate prediction of the spectral wave parameters.
The larger number of locations enables this approach to cover all
relevant locations along 4 major harbour approach channels in the
North Sea, which can contribute to safe navigation along important
stretches of shipping routes instead of just a single location.

The limitations of the data-driven model presented here can be
separated into two categories: those that are inherent to the type of
method (GBDT) and those that stem from the amount and quality of the
data used in model training. Regarding the former, because of the tree
structure of the CARTs, GBDT methods are generally not well equipped
for extrapolation past the feature ranges of the data set they are trained
on. In a similar vein, for regions in the feature space that are relatively
sparsely populated with training data the tree structure will often be
quite coarse, lacking the granularity for accurate predictions. Lastly, it
can be easy to overfit regression trees on the training data. This can,
amongst other options, be avoided by requiring leaf nodes to have a
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Fig. 4. Energy density spectra (upper panels) and directional spectra (lower panels) for location EPL for three moments in time, showing observed (black), SWAN (blue) and
SWAN𝑐𝑜𝑟𝑟 (red) predictions. Note that the directions are shown for a wider range (180 and 650◦) to enhance visibility and avoid fluctuations between 360◦ and 0◦.
Fig. 5. Spectral wave parameters for the test data set as predicted by SWAN (blue) and SWAN𝑐𝑜𝑟𝑟 including correction (red).
minimum number of data points and by applying an early stopping
algorithm combined with a validation data set, as is done in this work.

In the model training process, about 18 months worth of data is used
to train, validate and test the model. As long as both the operational
wave model and the wave measurements are functional and their
results are being stored, this combination is continuously generating
new data that could benefit model training. Hence, it is expected that
the ML models become progressively more accurate as the amount of
data they are trained on grows larger. From a practical standpoint,
very frequent retraining of the ML model is not expected to add a lot
of value, since often occurring mild wave conditions should be well
represented in the training data set already. Also, the training process
has a relatively high computational demand, with training times (which
depend on the computational resources used) varying from several
hours to several days per model on the computational cluster used in
this work. This high computational demand makes that retraining is
9

preferably only attempted when a clear benefit to model performance
is expected. However, severe wave events (e.g. storms) are much rarer
than mild wave conditions, and therefore present a valuable addition
to the training data. Thus a pragmatic approach might be to retrain
the ML models after every storm season to ensure the largest impact
from the retraining effort. Note that it is recommended that retraining
is combined with a critical comparison of the performance of the newly
trained models with that of the existing ones.

As mentioned above, there is an imbalance in the quantity of
training data representing mild wave conditions (relatively calm seas)
and severe wave conditions (storms), with the latter being far more
rare than the former. In principle, it is then likely that a ML model
will perform better for calm seas than for storms, simply because the
larger number of data points represents a larger part of the error
metric that is being minimized. If this is undesirable with regards to
the foreseen application of the ML model, the use of differentiated



Applied Ocean Research 136 (2023) 103583J.P. den Bieman et al.
weights in model training could be considered. By giving the smaller
number of data points representing storms each a larger weight than
those representing calm seas, the ML model will be inclined to converge
towards a better performance for stormy conditions. The approach
presented in this work is tailored towards being broadly applicable,
hence no differentiated weighting was used in model training.

In practice an operational wave model might be improved or
changed with some regularity, for instance with an updated
bathymetry, newly calibrated model settings, or improved description
of the physical processes in the wave model. For a ML model used in
such an operational context, this raises the question whether a model
trained on data generated before the change in the wave model is still
valid to use after the change takes effect. There is no singular answer
to this question, since it depends on the magnitude of the effect of
the model change on the locations for which corrections are derived.
Hence, it is often difficult to predict beforehand. One approach could
be to retrain the ML model with only data generated after the change in
the wave model. In this way, the ML model is certainly valid but at the
cost of throwing away a large amount of potential training data, and
this does not provide an alternative for the period between the wave
model change and the time enough data is available to train the ML
model on. Alternatively, the performance of the existing ML model can
be compared between two test data sets, selected from data before and
after the wave model change respectively. Comparable performance on
both data sets implies that the existing ML model is still good enough
to use, even after the change in the wave model.

As described in Section 2.4, the ML models are trained on the
nowcast data. To also account for the uncertainty in the SWAN model
forcing (wind and water level), there are two general directions that can
be taken. One option is to construct a ML model to predict a correction
for the wind velocity, wind direction, water level and current fields
(similar to the approach improving the wind velocity field suggested
by Yevnin and Toledo (2022)) and/or the offshore boundary conditions.
These corrected values can then be used as forcing for the SWAN
model. The subsequent SWAN predictions can then in turn be corrected
with the ML model presented in this work. The other option is to
construct one single model that uses multiple predictions with different
lead times as input. For the latter direction, possibly Long Short-Term
Memory (Hochreiter and Schmidhuber, 1997) models could be used.
These allow for the temporal dimension to be taken into account, so
that the input can consist of a whole series of forecasts with different
lead times. Any such exploratory research is outside the scope of the
current work.

The approach presented in this work is based on discrete locations
where both model predictions and wave measurements are available.
This in turn means that the corrections are in principle only available
on the same locations. Since the operational wave model is capable
of predicting the whole wave field within its model domain, it begs
the question whether it is also possible to derive a (spatially varying)
correction for the entire model domain. One of the main difficulties
is that the measurements are limited to a small number of discrete
locations that do not cover the entire extent of the model domain.
To gauge whether any attempt at a correction for the whole model
domain performs well or not, a comparison with wave measurements
over the same domain seems indispensable. Just adding more point
measurements is likely not the solution, since the effects of local
variations within the domain in for instance bathymetry will not be
captured. A possible solution strategy could include trying to constrain
the ML methods using prior physical knowledge, somewhat akin to the
physics-informed neural networks proposed by Wang et al. (2022).

6. Conclusions

In this paper, an innovative hybrid modelling approach is proposed
to improve operational wave forecasts. This approach is generically
applicable to spectral wave models in an operational setting. In this
10
work, the approach has been applied in the Dutch North Sea, where
an operational SWAN wave model is combined with a XGBoost ma-
chine learning model that corrects both the energy density spectrum
and directional spectrum predicted by SWAN. A total of 14 different
locations is grouped into four regions along harbour approach channels,
with a machine learning model being trained for each region. For these
regions, around 18 months of data is available for training, validation
and testing of the machine learning model.

When engineering the features of the input data, it becomes appar-
ent that replacing strongly correlated features with uncorrelated ones
(replacing wave period with wave steepness and wave direction with
the difference between wind and wave direction) significantly reduces
the computational effort posed by the model training. Subsequently,
the hyperparameters of the machine learning model are tuned for both
energy and direction for all regions. The differences between regions
prove to be negligible, so one consistent set of hyperparameters can be
used for all models.

The SWAN model including the XGBoost correction – SWAN𝑐𝑜𝑟𝑟 –
results in a significant average decrease in the root-mean-squared error
compared to just the operational SWAN model, amounting to 21.7%
for the wave energy density and 25.3% for the wave direction. The
error reduction for the spectral wave parameters is even larger, with
a 33.3% smaller error in spectral wave height and a 38.8% smaller
error in spectral wave period. Hence, the SWAN𝑐𝑜𝑟𝑟 model is shown
to be a significant improvement of the operational wave model. As
mentioned, its approach is generically applicable to spectral wave
models, so it could also be applied to another model domain, another
spectral wave model, or both. Additionally, with a slightly adapted
approach the applicability does not need to be limited to wave models
at all, and could be widely applied in operational contexts where one
has measurement data and predictions on the same locations.
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Appendix. Error metric

To show the performance of the different models, the root-mean-
squared error (RMSE) is used as an error metric. The RMSE is defined
as:

RMSE =

√

∑𝑁
𝑖=1(𝑥𝑖 − 𝑦𝑖)2

𝑁
(A.1)

where 𝑥𝑖 is the modelled value, 𝑦𝑖 the observed value and 𝑁 the number
of data points. To determine the error metric for circular datasets like
the wave direction, 360◦ is added to the modelled values when the
difference between the modelled and observed values is smaller than
180◦. 360◦ is subtracted from the modelled values when the difference
between the modelled and observed values is smaller than −180◦. This
additional step is required to compute the RMSE for circular datasets
in a proper way.
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