

EGU23-16325, updated on 06 Jun 2023 https://doi.org/10.5194/egusphere-egu23-16325 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

The seawater calcium concentration may be a driver of long-term changes in CO₂

David Evans^{1,2}, Yair Rosenthal³, Jonathan Erez⁴, Hagar Hauzer⁴, Laura Cotton⁵, Xiaoli Zhou⁶, Romi Nambiar², Peter Stassen⁷, Paul Pearson⁸, Willem Renema⁹, Pratul Kumar Saraswati¹⁰, Jonathan Todd¹¹, Wolfgang Müller², and Hagit Affek⁴

¹School of Ocean and Earth Science, University of Southampton, Southampton, UK

²Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany

³Departments of Marine Sciences and Earth and Planetary Sciences, Rutgers University, New Brunswick, USA

⁴Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

⁵Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

⁶School of Ocean and Earth Science, Tongji University, Shanghai, China

⁷Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

⁸Department of Earth Sciences, University College London, London, UK

⁹Naturalis Biodiversity Center, Leiden, The Netherlands

¹⁰Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai, India

¹¹Department of Earth Sciences, Natural History Museum, London, UK

The drawdown of CO₂ via the temperature-dependent weathering of silicate minerals is thought to be one of the key processes acting to maintain Earth's climate within narrow bounds over geologic time. However, the climatic responsiveness of weathering on multi-million-year timescales is, to our knowledge, yet to be demonstrated. If other factors dominate climate regulation on geologic timsecales, previously unexplored factors may be important in driving long-term carbon cycle changes. Here, we present the first continuous Cenozoic record of the concentration of calcium in seawater ([Ca²⁺_{sw}]). Our record is based on the Na/Ca of exceptionally well-preserved foraminiferal calcite, a methodology which leverages the extremely long seawater Na⁺ residence time (>40 Myr) to interpret such changes predominantly in terms of $[Ca^{2+}_{sw}]$ fluctuation. We show that a 12 mM decrease in $[Ca^{2+}_{sw}]$ occurred over the last ~50 Ma, with a close correspondence to the timing of atmospheric CO_2 changes, potentially implying a common driver. Using a carbon cycle box model, we demonstrate that, if the relationship between silicate weathering is shallower than commonly assumed, then this change in $[Ca^{2+}_{sw}]$ can mechanistically explain the majority of the Cenozoic CO_2 decrease, via the effect that Ca²⁺ has on CaCO₃ burial rates. Given the recently identified major change in the global sea floor spreading rate, this finding shifts the key driver of long-term climate from the terrestrial to marine realm. Conversely, if there is a steep relationship between silicate weathering and climate, the climatic responsiveness of weathering is such that the system would rebalance before $[Ca^{2+}_{sw}]$ can drive a major CO_2 change. Our results therefore highlight the need to determine whether silicate weathering is responsive to climate change on geologic timescales before the long-term drivers of CO₂ can be determined.