

EGU23-1531, updated on 07 Jun 2023 https://doi.org/10.5194/egusphere-egu23-1531 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Importance of atmospheric feedbacks in simulating the seasonal cycle of the Antarctic sea ice and its response to perturbations.

Hugues Goosse¹, Sofia Allende Contador¹, Cecilia M. Bitz², Edward Blanchard-Wrigglesworth², Clare Eayrs³, Thierry Fichefet¹, Kenza Himmich⁴, Pierre-Vincent Huot⁵, François Klein¹, Sylvain Marchi⁵, François Massonnet¹, Bianca Mezzina¹, Charles Pelletier⁶, Lettie Roach^{7,8}, Martin Vancoppenolle⁴, and Nicole P.M. van Lipzig⁵

The seasonal cycle of the Antarctic sea ice extent is largely controlled by the evolution of the insolation received at the top of the atmosphere. However, sea ice processes and feedbacks with the ocean and the atmosphere can modulate this seasonal cycle. Here, the atmospheric feedbacks are quantified in a series of idealized sensitivity experiments performed with an eddy-permitting (1/4°) NEMO-LIM3 Southern Ocean configuration, including a representation of ice shelf cavities, in which the model was either driven by an atmospheric reanalysis or coupled to the COSMO-CLM² regional atmospheric model. In these experiments, sea ice thermodynamics and dynamics as well as the exchanges with the ocean and atmosphere are strongly perturbed. This perturbation is achieved by modifying snow and ice thermal conductivities, the vertical mixing in the ocean top layers, the effect of freshwater uptake/release upon sea ice growth/melt, ice dynamics and surface albedo. We show that the changes in surface heat fluxes are very different between the configurations driven by the reanalysis and those coupled to the atmosphere. Atmospheric feedbacks enhance the response of the modelled winter ice extent to any of the perturbed processes, and the enhancement is strongest when the albedo is modified. The response of sea ice volume and extent to changes in entrainment of subsurface warm waters to the ocean surface is also greatly amplified by the coupling with the atmosphere. By contrast, the atmospheric feedbacks can damp the impact of the perturbations affecting the heat conductivity through sea

¹Earth and Life Institute, Université catholique de Louvain, Belgium

²Department of Atmospheric Sciences, University of Washington, Seattle, USA

³Korea Polar Research Institute, Incheon, South Korea

⁴Sorbonne Université, Laboratoire d'Océanographie et du Climat (LOCEAN-IPSL), CNRS, IRD, MNHN, Paris, France

⁵Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

⁶European Centre for Medium-Range Weather Forecasts, Bonn, Germany

⁷NASA Goddard Institute for Space Studies, New York, NY, USA

⁸Center for Climate Systems Research, Columbia University, New York, NY, USA