

EGU23-8749, updated on 06 Jun 2023 https://doi.org/10.5194/egusphere-egu23-8749 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

An abrupt transition in the Antarctic sea ice–ocean system

F. Alexander Haumann¹, François Massonnet², Paul R. Holland³, Mitchell Bushuk⁴, Ted Maksym⁵, Will Hobbs^{6,7}, Michael P. Meredith³, Ivana Cerovečki⁸, Thomas Lavergne⁹, Walter N. Meier¹⁰, Marilyn Raphael¹¹, and Sharon Stammerjohn¹²

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany (alexander.haumann@gmail.com)

²Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium

³British Antarctic Survey, Cambridge, United Kingdom

⁴National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States of America

⁵Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America

⁶Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

⁷ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Australia

⁸Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States of America

⁹Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway

¹⁰National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States of America

¹¹Department of Geography, University of California Los Angeles, Los Angeles, CA, United States of America

¹²Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, United States of America

Over the past decade, Antarctic sea ice extent exhibited a sequence of record maxima, followed by a rapid decline in 2015/16, and record minima since. In this presentation, we show that this sudden and remarkable ice loss marks an abrupt transition from a high to a low ice state that cannot be explained by year-to-year variability. Instead, it is most likely associated with a longer term variability arising from ice-ocean feedbacks. The abrupt transition was preceded by a multi-decadal increase in persistence and variance of the sea ice anomalies, an increasing upper Southern Ocean density stratification, and an accumulation of heat at the subsurface; suggesting a decoupling of the surface from the subsurface ocean. During this period, the sea ice anomalies shifted from being structured predominantly regionally and seasonally to a largely circumpolar and interannual regime. In 2015/16, the upper ocean density stratification in the ice-covered region suddenly weakened, leading to a release of heat from the subsurface, contributing to the sea ice decline during winter. Our analysis suggests that the sudden sea ice loss in 2015/16, and the persisting low ice conditions since, arose from a systematic change in the physical state of the coupled circumpolar ice-ocean system. This change will have wide implications for global climate, ecosystems, and the Antarctic Ice Sheet.