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Abstract: Marine phytoplankton biomass dynamics are affected by eutrophication, ocean warming,
and ocean acidification. These changing abiotic conditions may impact phytoplankton biomass and
its spatiotemporal dynamics. In this study, we used a nutrient–phytoplankton–zooplankton (NPZ)
model to quantify the relative importance of the bottom-up and top-down determinants of phyto-
plankton biomass dynamics in the Belgian part of the North Sea (BPNS). Using four years (2014–2017)
of monthly observations of nutrients, solar irradiance, sea surface temperature, chlorophyll-a, and
zooplankton biomass at ten locations, we disentangled the monthly, seasonal, and yearly variation
in phytoplankton biomass dynamics. To quantify how the relative importance of determinants
changed along a near–offshore gradient, the analysis was performed for three spatial regions, i.e., the
nearshore region (<10 km to the coastline), the midshore region (10–30 km), and the offshore region
(>30 km). We found that, from year 2014 to 2017, the phytoplankton biomass dynamics ranged from
1.4 to 23.1 mg Chla m−3. Phytoplankton biomass dynamics follow a general seasonal cycle, as is the
case in other temperate regional seas, with a distinct spring bloom (5.3–23.1 mg Chla m−3) and a
modest autumn bloom (2.9–5.4 mg Chla m−3). This classic bimodal bloom pattern was not observed
between 2003 and 2010 in the BPNS. The seasonal pattern was most expressed in the nearshore region.
The relative contribution of factors determining phytoplankton biomass dynamics varied spatially
and temporally. Throughout a calendar year, solar irradiance and zooplankton grazing were the
most influential determinants in all regions, i.e., they jointly explained 38–65% of the variation in
the offshore region, 45–71% in the midshore region, and 56–77% in the nearshore region. In the
near- and midshore regions, nutrients were the greatest limit on phytoplankton production in the
month following the spring bloom (44–55%). Nutrients were a determinant throughout the year in
the offshore region (27–62%). During winter, sea surface temperature was a determinant in all regions
(15–17%). By the high-resolution spatiotemporal analysis of the relative contributions of different
determinants, this study contributes to a better mechanistic understanding of the spatiotemporal
dynamics of phytoplankton biomass in the southern North Sea. This detailed understanding is
anticipated to contribute to the definition of targeted management strategies for the BPNS and to
support sustainable development in Belgium’s blue economy.

Keywords: primary production; ecosystem model; phytoplankton biomass dynamics; environmental
conditions
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1. Introduction

Marine phytoplankton, which forms the base of marine food webs, is responsible
for about half of the world’s total primary production [1]. Net global marine primary
production is estimated at 50.7 Gt carbon per year [2]. Principal factors that determine
marine primary production are solar irradiance, nutrient availability, and sea surface
temperature (SST), and these factors mainly limit phytoplankton’s growth rate and carrying
capacity. According to Liebig’s law of the minimum, phytoplankton production will be as
high as allowed by the least available resource [3]. However, in many cases, co-limitation
by resources is a better description of the factors that influence phytoplankton biomass
dynamics [4,5]. Living in the Anthropocene, phytoplankton biomass dynamics are affected
by human activities that directly or indirectly alter the abiotic marine environment, such
as the burning of fossil fuels, eutrophication, and chemical pollution. To date, we have
limited insight into how the combination of changing conditions may affect phytoplankton
biomass dynamics at high-resolution spatiotemporal scales.

In temperate marine regions, phytoplankton biomass dynamics follow an annual
cycle consisting of spring and autumn phytoplankton blooms, followed by periods of
zooplankton grazing. Phytoplankton blooms are triggered by high nutrient availability and
sufficient solar irradiance [6]. After a few weeks of rapid growth, phytoplankton biomass
becomes restricted by nutrient limitation and zooplankton grazing. As in other parts of
the North Sea, the most important factors that determine the phytoplankton biomass in
the Belgian part of the North Sea (BPNS; 3454 km2 [7]) are nutrient concentrations, SST,
and solar irradiance [8–11]. Everaert et al. [12] is one of the first studies that quantified
the relative importance of these conditions in the BPNS. Based on a relatively short time
series at one location in the BPNS, it was found that SST and solar irradiance accounted
for 20% (summer) to 50% (winter) of the observed seasonal variation [12] and can thus be
considered potentially key determinants. Nutrients appeared to be less of a determinant
than SST and solar irradiance in the BPNS [12], and this was also found to be the case
for the entire North Sea by Llope et al. [13] and McQuatters-Gollop et al. [14]. Nutrients
become the dominant determinant of phytoplankton biomass (30%) in the month after
the phytoplankton bloom. Besides these bottom-up determinants, there is also a strong
top-down control of phytoplankton biomass dynamics by zooplankton grazing, i.e., up to
50% of the phytoplankton growth limitation [12]. However, the BPNS is a heterogeneous
and dynamic coastal area, so it is doubtful whether the quantifications in Everaert et al. [12]
are generalisable for the entire BPNS. The BPNS is relatively shallow with water depths
gradually increasing to 45 m from the southeast towards the northwest [15]. Sea surface
temperatures vary seasonally between 5 ◦C and 20 ◦C. The salinity is strongly influenced
by the river plumes of the Scheldt, Rhine, Seine, and Meuse [16], and it varies between
29 to 35 PSU. Seawater from the English Channel, which contains runoff from the Seine,
flows northwards through the BPNS driven by the anti-clockwise current in the North
Sea [17]. In the case of nutrients, the Seine plays a major role, except in the vicinity of the
Scheldt estuary and in the northern part of the BPNS, i.e., it is mainly influenced by the in-
flux of water from the Atlantic Ocean [18]. Due to its shallowness and riverine influx, there
is a permanent vertical mixing of the water column in the BPNS [16]. Overall, in hetero-
geneous and dynamic coastal areas such as the BPNS, the relative contribution—i.e., how
much a determinant contributes to the change in phytoplankton biomass in relation to
the cumulative contribution of all determinants—of bottom-up and top-down determi-
nants may be likewise dynamic, both spatially and temporally. The BPNS being a prime
example of such a system in combination with the availability of long-term observations
with high spatial resolution offers unique possibilities to study the scales at which the
relative contributions of bottom-up and top-down determinants may shift. Having a better
understanding of the spatial variation in the relative contribution of the determinants of
phytoplankton biomass dynamics can lead to a more adjusted and specified management
of the BPNS, as well as to the further development of the blue economy in Belgium.
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In the present research, the aim is to analyse which factors drive marine phytoplankton
biomass dynamics in the BPNS and how their relationship to primary production varies
on a spatiotemporal scale. In particular, we analysed how the relative contributions of
SST, nutrient regimes, solar irradiance, and zooplankton grazing to the marine phytoplank-
ton biomass change, both spatially and temporally. We used a nutrient–phytoplankton–
zooplankton (NPZ) model (obtained from Soetaert and Herman [19] and adjusted by
Everaert et al. [12]) to simulate changes in plankton density in the nearshore, midshore, and
offshore regions; this simulation was based on the monthly data collected from 2014 to 2017
at ten sampling locations in the BPNS. The novelty of this study lies in its high-resolution
spatiotemporal analysis, which examines the varying impacts of potential determinants
on phytoplankton biomass. The high spatiotemporal analysis contributes to a better un-
derstanding of phytoplankton biomass dynamics in the BPNS. It is anticipated that this
comprehensive exploration has the potential to guide more focused management strategies
for the BPNS and could bolster sustainable development within Belgium’s blue economy.

2. Materials and Methods
2.1. Input Data

Three regions of interest were studied (Figure 1), i.e., the nearshore region (10 km),
the midshore region (10–30 km), and the offshore region (>30 km). These regions were
defined based on an integration of information about their distance to the coast, their
sediment composition, bathymetry [20,21], and prior knowledge about different abiotic
conditions [22]. LifeWatch measuring stations are located in each of these regions (indicated
as triangles in Figure 1). LifeWatch is a European research infrastructure within the
European Strategy Forum on Research (ESFRI) that focuses on biodiversity research and
activities, such as measuring the biotic and abiotic environment. LifeWatch stations in the
near- and midshore are visited monthly [23]. We used data from two stations, i.e., 130 for
nearshore and 330 for midshore, as well as pooled the data of seven sampling stations
for the offshore region (Figure 1). The data of all offshore stations, i.e., seven stations,
were pooled in this study due to the lower temporal sampling. In the offshore region, the
LifeWatch stations are visited seasonally, whereas stations in the near- and midshore are
visited monthly.
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this study for the near-, mid-, and offshore regions. The square mark shows the Westhinder station 
Figure 1. Map of the Belgian part of the North Sea (BPNS) showing the sampling locations used in
this study for the near-, mid-, and offshore regions. The square mark shows the Westhinder station
from the Flemish Banks Monitoring Network in the BPNS. The black outline indicates the Belgian
Exclusive Economic Zone.

Four open-access datasets obtained from LifeWatch sampling campaigns, which are
coordinated by the Flanders Marine Institute, at nine locations in the BPNS from 2014 to
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2017 were used [23–26]. A first open-access dataset related to the nutrient concentrations,
i.e., NH4, NO3, NO2, PO4, and SiO3, was used and the measurements were performed by a
Skalar AutoAnalyser system [23,25]. A second open-access dataset consisted of seawater
temperature measurements, and this was performed by a CTD [25]. Environmental mea-
surements were taken at a depth of three metres. A third open-access dataset comprised
zooplankton abundances, which were obtained through ZooScan analysis [24,26]. A fourth
and final dataset used in this research contained information on the in situ pigment con-
centrations, i.e., chlorophyll-a, and these measurements were performed by HPLC [23,25].
The pigment concentrations were the result of pigment purification and sample analysis,
i.e., obtained by taking the cumulative sum of phytoplankton taxa found in the water
column. By doing so, the model takes into account the presence of phytoplankton taxa in
the BPNS.

The gathered data were assembled in two new datasets: the first containing the data
related to nutrient and pigment concentrations, as well as seawater temperature; the second
containing the zooplankton abundances. The zooplankton dataset contains the abundances
of the following taxa, as they are the most abundant in the BPNS (Appendix C [27]):
Calanoida, Noctiluca, Harpacticoida, and Appendicularia. All data were timestamped and
were location-specific.

In addition to the SST dataset gathered from LifeWatch, a second SST dataset with a
higher temporal coverage was required to infer the daily time series, i.e., the input data
for our nutrient–phytoplankton–zooplankton model, which was achieved by means of
generalised additive models. The SST data from the Westhinder station, i.e., the data from
the Westhinder measuring pile, was complemented with data from the Westhinder–buoy
(2% of the dataset). This station is part of the Flemish Banks Monitoring Network [28], and
their SST data was used to infer the daily time series for nutrients and the SST. Due to large
data gaps in the SST dataset of the Westhinder station in 2018, we have chosen to use the
dataset from 2014–2017 in order to avoid increasing random noise when calibrating the
model by including an extra dataset of the SST.

2.2. Time Trends for Input Data

Generalised additive models (GAM) were used to infer the daily trends for nutrient
concentrations, i.e., N, P, and Si, in the three regions of interest (Appendix C). These daily
trends were based on the monthly and seasonal data collected via LifeWatch. The daily time
series were used as input for the nutrient–phytoplankton–zooplankton model. Dissolved
inorganic nitrogen (DIN) was calculated as the sum of ammonium (NH4

+), nitrate (NO3
−),

and nitrite (NO2
−). Measurements of NH4, NO3, NO2, PO4, and SiO3 registered in the

LifeWatch database were already converted into nitrogen, phosphorus, and silica equivalent
weights, respectively. The covariates used in the GAM models were month and year, as
in Everaert et al. [12], to infer the daily trends. The model fit of the GAMs was assessed
following the method of Zuur et al. [29], i.e., using the Akaike Information Criterion (AIC)
and inspecting the homogeneity and normality of the model residuals. The AIC was
calculated via the package ‘stats’ [30], and the minimum AIC was used to select the best-fit
GAM models (Table A7). The corresponding R2 of the best-fit GAM model provides an
indication of how well the model fits the observational data (Table A6).

The daily SST for the near- and midshore stations were calculated using GAM models
that were based on the temperature observations from LifeWatch. For the offshore region,
the SST data of the Westhinder station (Figure 1) were used. In the case that multiple
temperature loggings were available per day, the median daily SST was used as the input
for the model.

2.3. Ecological Model

A nutrient–phytoplankton–zooplankton (NPZ) model as presented in Everaert et al. [12]
(Figure 2), which was adjusted from Soetaert and Herman [19], was used to simulate
spatiotemporal changes in plankton density in the BPNS from 2014 to 2017. The model
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time step is expressed in mmol N m−3 d−1, and the state variables are expressed in mmol
N m−3. The necessary input data for the NPZ model are (i) nutrient concentrations,
(ii) SST, and (iii) solar irradiance (Photosynthetically Active Radiation (PAR)), which is
corrected for the diffusion attenuation coefficient (the Kd is calculated at a three-metre
depth; Equation (10)). The PAR and nutrients, i.e., DIN, PO4, and SiO3, were implemented
in the NPZ model as saturating Michaelis–Menten equations, as shown in Arndt et al. [8].
As such, the Michaelis–Menten equations describe the determining factor of a variable of
interest, i.e., PAR, DIN, PO4, or SiO3, for each time step. The outcome of these equations
varies from one to zero, with a value of one indicating no limitation for plankton growth,
and a value of zero indicating a complete limitation of the plankton growth [19]. Both the
vertical and horizontal mixing of nutrients were incorporated in the model as they were
inherently included in the in situ observations used to calibrate and fit our model. The
amount of PAR available was corrected for the diffuse attenuation coefficient by means of
the Lambert–Beer law [31,32]. The same fixed sinusoidal surface irradiance for all three
regions was used as the angle of the sunlight and surface, and light hours were assumed to
be the same across all regions in our small study area. The influence of the SST on plankton
growth followed the Thomann and Mueller [33] equation (Equation (6)) [12]. The NPZ
model and corresponding calculations were performed in R [30] (version 3.4.4; R packages
‘doParallel’ [34], ‘dplyr’ [35], ‘foreach’ [36], ‘ggplot2′ [37], ‘ggpubr’ [38], ‘lubridate’ [39],
‘parallel’ [30], ‘plyr’ [40], ‘RColorBrewer’ [41], ‘reshape2′ [42], ‘stats’ [30], ‘viridis’ [43], and
‘xts’ [44]).
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Figure 2. Structure of the nutrient–phytoplankton–zooplankton ecological model. Input data such as
dissolved inorganic nitrogen (DIN), phosphate (PO4), and silicate (SiO3) concentration, as well as
the photosynthetically active radiation, were obtained from LifeWatch. The sea surface temperature
was obtained from LifeWatch and the Flemish Banks Monitoring Network. The generalised additive
models (GAMs) were used to obtain daily data for nutrients based on monthly observations (see
Section 2.1).

The equation-based description of the model is presented following the state variables
of the model (set according to Soetaert and Herman [19]). Nutrients were depicted as
regression-based models, i.e., for nitrogen GAMDIN, phosphorus GAMPO4, and silica
GAMSiO3 (Equation (1)).

Nutrients = GAMDIN + GAMPO4 + GAMSiO3 (1)

The differential equations determined the rates of change in the biomass of phytoplankton
(dPHYTO; Equation (2)) and zooplankton (dZOO; Equation (3)).

dPHYTO
dt

= Nuptake −Grazing (2)
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dZOO
dt

= Grazing− Faeces− Excretion−Mortality (3)

where t indicates time in days; Nuptake, the phytoplankton’s nutrient uptake; Grazing, the
rate of grazing of zooplankton on phytoplankton; Faeces, the faeces production of zoo-
plankton; Excretion, the zooplankton excretion; and Mortality, the mortality of zooplankton.
Nuptake is the phytoplankton’s nutrient uptake, which was expressed as the maximum
uptake of nutrients (maxUptake) and is limited by the following: solar irradiation (Parlim),
SST (Templim), the concentrations of nitrogen (DINlim), phosphorus (Plim), and silica (Silim)
expressed as limitation factors, and the phytoplankton biomass (PHYTO; Equation (4)).
The equations used to define the limitation factors follow the saturating Michaelis–Menten
equations [19]:

Nuptake = maxUptake·Parlim·Templim·Plim·DINlim·Silim·PHYTO (4)

Parlim =
PAR

PAR + ksPAR
(5)

Templim = θTemp−Tobs (6)

DINlim =
DIN

DIN + ksDIN
(7)

Plim =
P

P + ksP
(8)

Silim =
Si

Si + ksSi
(9)

where ksPAR, Tobs, ksDIN, ksP, and ksSi are parameters of the model. The equation for
PAR (Equation (10)) is defined based on the Lambert-Beer law [31,32]. where I0 is the
surface irradiance (µEinst m−2 s−1), z is the depth (m), and kd is the diffuse attenuation
coefficient (m−1).

PAR = I0·e−kd·z (10)

θ = 1.185− 0.00729·Temp (11)

In the model, the surface irradiance is modelled as photosynthetically active radiation, as
defined in Soetaert and Herman [19]:

I0 = 0.5·
(

540 + 440·sin
(

2·π·t
365− 1.4

))
(12)

where t indicates the day of the year. The diffuse attenuation coefficient (kd) describes the
rate at which light diminishes with depth due to absorption and scattering in the water
column [31,32,45]. Kd is used as a proxy of the influence of Suspended Particulate Matter
(SPM) on the PAR [45]. The Kd values were calculated based on the PAR and depth data
recorded in the Marine Information and Data Acquisition System (MIDAS). The depth
(z) used in Equation (10) was at three metres as the LifeWatch data are measured at a
three-metre depth [23].

Grazing represents the grazing of zooplankton (ZOO) on phytoplankton (PHYTO),
i.e., how much biomass is eaten, and it is expressed as follows:

Grazing = maxGrazing·
PHYTO

PHYTO + ksGrazing
·ZOO (13)

where maxgrazing is the maximum phytoplankton biomass that can be eaten by zooplankton,
and ksgrazing is the half-saturation constant for grazing.
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Zooplankton faeces production (Faeces) is expressed as a constant fraction (pFaeces)
of the total grazing.

Faeces = pFaeces·Grazing (14)

Zooplankton excretion (Excretion) is estimated as the excretion rate (excretionRate) multi-
plied by the zooplankton biomass.

Excretion = excretionRate·ZOO (15)

Zooplankton mortality is determined by multiplying the mortality rate (mortalityRate)
with the zooplankton biomass squared.

Mortality = mortalityRate·ZOO2 (16)

The phytoplankton biomass is converted to a chlorophyll-a concentration by multiplying
the phytoplankton biomass with the chlorophyll-a-to-nitrogen ratio.

Chlorophyll = chlNratio·PHYTO (17)

The maxUptake, excretionRate, maxGrazing, ksGrazing, pFaeces, mortalityRate, and chlNra-
tio are parameters of the model of which the seasonal ranges are provided for each region
(Table 1).

Table 1. The seasonal minimum and maximum values of the thirteen parameters used as the input
for the nutrient–phytoplankton–zooplankton model for each region.

Parameter Unit Period Nearshore Region Midshore Region Offshore Region

maxUptake day−1 Spring 0.38–0.66 0.38–0.61 0.50–1.12
Autumn 0.40–0.78 0.38–0.80 0.38–0.90

excretionRate day−1 Spring 0.16–0.18 0.12–0.16 0.11–0.15
Autumn 0.11–0.17 0.11–0.15 0.11–0.14

maxGrazing day−1 Spring 0.87–0.96 0.85–0.92 0.88–0.97
Autumn 0.88–0.96 0.85–0.93 0.89–0.97

ksGrazing mmol N m−3 Spring 2.15–3.27 1.54–2.15 1.48–2.22
Autumn 1.31–2.27 1.19–1.59 1.25–1.94

pFaeces day−1 Spring 0.29–0.41 0.27–0.40 0.27–0.40
Autumn 0.25–0.40 0.24–0.32 0.25–0.37

mortalityRate (mmol N m−3)−1 day−1 Spring 0.28–0.39 0.28–0.41 0.29–0.41
Autumn 0.32–0.44 0.35–0.42 0.33–0.45

ChlNratio mg Chla (mmol N)−1 Spring 7.00–7.86 6.78–7.60 6.65–7.47
Autumn 6.62–7.55 5.33–6.84 4.33–6.61

ksPAR µEinst m−2 s−1 Spring 126–227 133–224 103–210
Autumn 121–205 126–200 115–210

Tobs ◦C
Spring 9.86–13.84 10.11–13.29 9.54–13.62

Autumn 10.41–12.83 9.66–13.86 10.08–13.62

ksDIN mmol N m−3 Spring 1.33–4.21 1.62–3.94 1.92–3.70
Autumn 1.17–3.64 2.22–4.11 2.07–4.29

ksP mmol P m−3 Spring 0.30–0.43 0.28–0.44 0.30–0.44
Autumn 0.33–0.40 0.29–0.46 0.30–0.44

ksSi mmol Si m−3 Spring 0.41–0.66 0.43–0.67 0.34–0.67
Autumn 0.35–0.63 0.40– 0.67 0.39–0.65

Kd * m−1 Spring 0.73–0.90 0.44–0.60 0.28–0.38
Autumn 0.77–0.92 0.45–0.60 0.28–0.38

* Calculated at a three-metre depth.

2.4. Selection of Model Parameters and Validation

The NPZ model requires parameterisation of thirteen parameters (Tables 1 and A4).
For the model parameterisation, we followed a two-step approach to find the most optimal
model calibration for each region of the BPNS to mimic the biogeochemical processes in
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each respective region (Figure 3). In a first step, 5000 unique sets of parameters, which
were selected using a Monte Carlo approach, were run for each region of interest. The
initial minimum and maximum parameter values used to define these unique sets of
parameters were based on values reported in the literature (Table A1). In a second step,
a new set of 5000 unique parameterisations, which were selected using a Monte Carlo
approach, were run for each region of interest and for two seasons, i.e., spring and autumn.
In this second step, the minimum and maximum parameter values were based on the
10% best parameterisation for either spring or autumn conditions from the first step.
To rank these 10% best models, we calculated the Root Mean Square Error (RMSE) by
comparing the NPZ model predictions of phyto- and zooplankton density with the observed
pigment chlorophyll-a [25], i.e., a proxy for phytoplankton biomass and zooplankton
densities [26], respectively. We calculated the total RMSE for each unique parameterisation
as the cumulated error for phytoplankton and zooplankton. For each unique model
parameterisation that we tested, we cumulated the error over the different time steps.
We considered the best parameterisations as those with the lowest 10% RMSE. In this
second step, we retained a set of parameters (Table 1) to describe the spring conditions,
i.e., the situation after winter solstice and before summer solstice, and a set of parameters to
describe the autumn conditions, i.e., the situation after summer solstice and before winter
solstice. The two parameter sets were used to describe the changes in the environmental
conditions in each season.
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Figure 3. The key steps of model development, i.e., calibration, fitting, and validation. In a first
step, 5000 unique sets of parameters were run for each region of interest. The initial minimum and
maximum parameter values used to define these unique sets of parameters were based on values
reported in the literature (Appendix A). The nutrient–phytoplankton–zooplankton (NPZ) model is
driven by daily nutrient and sea surface temperature data generated from LifeWatch and Flemish
Banks Monitoring Network observations. In a second step, a new set of 5000 unique parameterisations
were run for each region of interest and for two seasons, i.e., spring and autumn. In this second step,
the minimum and maximum parameter values were based on the 10% best parameterisation for either
spring or autumn conditions from the first step. To rank these 10% best models, we calculated the
Root Mean Square Error (RMSE) by comparing the NPZ model predictions of phyto- and zooplankton
density with the observed pigment chlorophyll-a and zooplankton densities, respectively.
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To assess the model fit, we compared the NPZ phytoplankton biomass predictions
(expressed in mmol N m−3) with the observed phytoplankton biomass data (expressed in
mg Chla m−3). To enable the comparison, we converted the unit of the NPZ phytoplankton
biomass predictions and the unit of the LifeWatch phytoplankton biomass data to mg Chla
m−3. To do so, we used the Chl:N ratio parameter of the corresponding simulation (Table 1).
To compare the NPZ zooplankton production predictions (expressed in mmol N m−3) with
the LifeWatch zooplankton observations (expressed in ind m−3), we converted the latter
to the same unit. To do so, we calculated the taxon-specific body mass per individual
(mg C ind−1), converted this mass to a molar mass (mmol C m−3), and used a taxon-
specific C:N ratio to finally convert the molar mass to mmol N m−3. Details about this
conversion are available in Appendix C (Tables A4 and A5). In addition, the model
predictions were visually inspected by plotting the observed values against the predicted
values (Figures A5 and A6). The visual inspection was used to evaluate the seasonality
aspect of the model fit and to what extent that the models that obtained a good RMSE also
corresponded to the ecological interactions and dynamics in one growth season. This visual
inspection was performed to unravel the over- or underestimation of the model.

2.5. Relative Contributions

The relative importance of the SST, PAR, DIN, PO4, SiO3, and zooplankton grazing for
phytoplankton biomass dynamics were calculated as was performed in Everaert et al. [12].
To do so, we made use of the forcing functions that were integrated in the model (cfr. 2.3).
For each determinant, the absolute limitation was calculated as one minus the limitation
factor. Then, the relative contribution of each determinant was calculated as the absolute
limitation divided by the sum of all absolute limitations. Afterwards, the monthly relative
contribution of each determinant was calculated based on the average relative contribution
of the 5% best simulations, i.e., the simulations with the lowest RMSE, for each region of
interest. The 5% best simulations were selected for calculating the monthly relative contri-
bution as they offered a good compromise between computational cost and performance.
The normality and homogeneity of the relative contribution data were tested, using the
packages ‘stats’ [30] and ‘lawstat’ [46], by means of the Shapiro–Wilk test (p < 0.05) and
the Levene’s test (p < 0.05), respectively. Potential differences in the determinants between
regions were examined using the Kruskal–Wallis test (‘stats’ package; [30]) and the Dunn
test (‘dunn.test’ package; [47]) in R [30].

3. Results
3.1. Model Fit

The GAMs were used to create a daily time series of the nutrients and the SST, and
were based on the monthly and seasonal observed data (Figure A4). The SST had the
highest R2 values, and the parameter with the lowest R2 varied between regions (Table A6).

To assess the model fit, the model predictions of the phyto- and zooplankton were
compared to the field observations, i.e., the RMSE was calculated for each unique param-
eterisation. The nearshore region had a total RMSE of 1.24–1.38. The mid- and offshore
regions had a total RMSE of 0.39–0.46 and 0.32–0.42, respectively. We found that the RMSE
for the phytoplankton in the nearshore region was 1.09–1.31, midshore was 0.30–0.40, and
offshore was 0.26–0.38. The model tended to overestimate the phytoplankton density at
low observed densities (Figure A5). At high observed phytoplankton densities, the model
performs better (Figure A5). For the zooplankton, the RMSE was 0.07–0.23 in the nearshore,
0.06–0.13 in the midshore, and 0.04–0.09 in the offshore region. A similar pattern was
observed for the zooplankton densities (Figure A6). In the offshore region, it was observed
that the underestimation at high zooplankton densities was more pronounced (Figure A6).
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3.2. Phytoplankton Time Trends

We found clear spatial differences in the phytoplankton biomass dynamics in the
BPNS. The closer to the coastline, the higher the amplitude of the spring phytoplankton
bloom and the more distinct the seasonal pattern (Figure 4). In the nearshore region, the
phytoplankton biomass ranged from 3.5 to 23.1 mg Chla m−3 and followed a clear seasonal
trend, with the highest chlorophyll-a concentration being observed in spring and the lowest
chlorophyll-a concentration found in the winter (Figure 4). In the midshore region, the
maximum phytoplankton biomass was estimated to be 8.8 mg Chla m−3, and the minimum
phytoplankton biomass was 1.8 mg Chla m−3 (Figure 4). In the offshore region, the spring
blooming periods were still noticeable but less prominent (1.4–5.3 mg Chla m−3) in terms
of absolute phytoplankton biomass when compared to the nearshore region. In each of the
selected regions, the autumn blooming periods were noticeable, but they became relatively
more pronounced with an increasing distance from the coastline (Figure 4). Overall, the
spring blooms were observed for each region and were followed by a smaller peak at the
end of summer (Figure 4).
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Figure 4. Phytoplankton biomass simulations using the nutrient–phytoplankton–zooplankton model
in the nearshore, midshore, and offshore regions in the Belgian part of the North Sea. The bold
lines indicate the average phytoplankton biomass predictions, and the shaded areas indicate the 95%
confidence interval. The dots are the observed values collected during the LifeWatch campaigns.

We observed a response in the zooplankton population to the spring phytoplankton
bloom (Figures 5 and A10). As theoretically expected from a classic predator–prey pattern,
there is a time lag between the peak in phytoplankton density and zooplankton density
(Figures 5 and A10). Note that higher, i.e., almost four times higher, zooplankton densities in
the spring blooms were observed in the nearshore region as compared to the offshore region.
In the nearshore region, the zooplankton density ranged from 0.002 to 0.41 mmol N m−3

(Figure A7); in the mid- and offshore regions, these ranges were 0.003–0.12 mmol N m−3

and 0.002–0.10 mmol N m−3, respectively (Figure A7).
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Figure 5. The phyto- (solid line) and zooplankton (dashed line) density simulations obtained via the
nutrient–phytoplankton–zooplankton model in the nearshore region of the BPNS. The lines represent
the average phyto- and zooplankton density predictions.

3.3. Relative Contributions

We found that solar irradiance and zooplankton grazing are the most important deter-
minants of phytoplankton biomass throughout the year (Figure 6). Together they contribute
38% to 77% to the phytoplankton biomass dynamics in the BPNS. The contribution of zoo-
plankton grazing is the highest after the spring blooms (31%) and during the autumn
months (35%). PAR plays a more important role in the phytoplankton biomass during,
autumn (43%). We found that the nutrients and SST play a relatively less important role in
phytoplankton biomass dynamics. The total contribution of nutrients is, at maximum, 44%.
During spring bloom, PO4 plays an important role, while SiO3 and DIN take over during
early summer (Figure 6 and Appendix G). PO4 is the most limiting nutrient (12–29%),
followed by DIN (3.6–26%) and SiO3 (1.2–15%), respectively. The SST only plays a limiting
role during winter (max. 17%, Figure 6).
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Figure 6. Monthly averaged relative contributions for each determinant of phytoplankton biomass
dynamics for the three regions, i.e., nearshore, midshore, and offshore. The shaded areas indicate the
95% confidence interval. Potential determinants are dissolved inorganic nitrogen (DIN), phosphate
(PO4), silicate (SiO3), solar irradiance (PAR), sea surface temperature (SST), and zooplankton grazing.

The relative contributions gradually changed along the nearshore–offshore transect
(Figures 6 and 7). For example, the PAR’s relative contribution is the highest in the
nearshore region (30–43%) and decreases towards the open sea (14–34%). Zooplankton
grazing is less important in the offshore (22–31%) than in the nearshore region (21–35%)
or the midshore region (23–34%). There is also a nearshore–offshore gradient in terms



J. Mar. Sci. Eng. 2023, 11, 1510 12 of 36

of the relative contribution of nutrients (Figure 7). For each of the individual nutrients,
i.e., DIN, PO4, and SiO3, we found them to be more limiting in the offshore region (8.5–26%;
15–29%; 3.9–15%, respectively) than in the nearshore region (3.7–11%; 12–27%; 1.2–13%,
respectively). The SST was equally limiting in all three regions (Figure 7).
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Figure 7. Monthly averaged relative contributions for each potential determinant of the phytoplank-
ton biomass dynamics in the nearshore, midshore, and offshore regions. Statistically significant
differences were set at α = 0.05 between the regions, and are indicated by ‘a’, ‘b’, or ‘c’. The potential
determinants are dissolved inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO3), solar irradiance
(PAR), sea surface temperature (SST), and zooplankton grazing.

4. Discussion

Using an NPZ model, we reproduced phytoplankton and zooplankton dynamics
in the BPNS (Figures 4 and 5), and we quantified the relative contribution of the key
determinants of the phytoplankton biomass, i.e., the nutrients, solar irradiance, SST, and
zooplankton grazing (Figures 6 and 7). This was conducted for three regions, i.e., the
near-, mid-, and offshore, to examine the spatiotemporal variation. Only a few studies,
e.g., Everaert et al. [12], Llope et al. [13], and McQuatters-Gollop et al. [14], have quantified
the temporal relative contribution of phytoplankton biomass’ key determinants. We found
clear regional differences and seasonal patterns in the relative contribution of the key
determinants of phytoplankton biomass dynamics.

4.1. Generalised Additive Modelling Performance

The GAMs were created based on the available monthly data and their model fit was
assessed following the method of Zuur et al. [29]. Using monthly data meant that the
performance of the models was restricted by the availability of data. Although the R2 was
not high, the smoothers created based on the GAMs captured the expected seasonality
changes that were observed in the nutrient data. It was possible to capture the seasonality
changes in the nutrient input data but within a reduced variance of the possible range
for the input data. This could have affected our phytoplankton biomass dynamics if
the nutrients were underestimated in the GAMs. Phytoplankton blooms may have been
simulated smaller when the nutrient concentrations were estimated lower than they were
in reality. This may have led to a flattening of the phytoplankton biomass dynamics, i.e., the
extreme peak values may have been missed.
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4.2. Comparison Phyto- and Zooplankton Modelling Results

The in situ chlorophyll-a concentrations of this study (nearshore: 1.1–57.5 mg Chla m−3,
midshore: 0.6–13.1 mg Chla m−3, and offshore: 0.2–10.3 mg Chla m−3) were close to other
field studies in the BPNS (Figure 8), such as Desmit et al. [9] (nearshore: 1–20 mg Chla m−3,
and offshore: 0.5–15 mg Chla m−3) and Muylaert et al. [48] (nearshore: 0.2–60 mg Chla m−3,
midshore: 0.2–20 mg Chla m−3, and offshore: 0.2–15 mg Chla m−3). The NPZ model
predictions (nearshore: 3.5–23.1 mg Chla m−3, midshore: 1.8–8.8 mg Chla m−3, and off-
shore: 1.4–5.3 mg Chla m−3) based on the chlorophyll-a concentrations observed in this
study are close to the modelling results of Arndt et al. [8] (0.5–40 mg Chla m−3) and
Lancelot et al. [49] (0.3–23 mg Chla m−3; Figure 8). However, our model predictions did
not show extreme, i.e., high and/or low, phytoplankton densities, thus resulting in the phy-
toplankton biomass predictions being close to the modelled-based quantifications found
in the literature (Figure 8). In neighbouring regions, similar chlorophyll-a values were ob-
served by, e.g., Alvarez-Fernandez et al. [50], Lancelot et al. [49], EEA [51], Colella et al. [52],
and Lundsør et al. [53] (Figure 8). Although the chlorophyll-a concentrations are in line
with previous studies, we noticed that there is some variability between previous studies
and our observations. A potential reason for this is that the data used in this study are
more recent. Indeed, with the inclusion of recent observations, Desmit et al. [9] found a
decrease in the annual mean chlorophyll concentration for offshore regions over a time
span of 40 years. This is supported by Xu et al. [54], thereby demonstrating a decreasing
trend in the chlorophyll-a in the offshore region of the central North Sea.

In the BPNS, our model indicated a clear seasonal pattern with low phytoplankton
biomass in winter (min. 1.4 mg Chla m−3) and increasing phytoplankton biomass during
spring. This spring bloom (max. 23.1 mg Chla m−3), typically consisting of diatoms
and Phaeocystis spp. [48], occurs in March and April and is followed by a smaller bloom
in autumn (max. 7.7 mg Chla m−3). We found a decrease in phytoplankton biomass
overall, and a decrease of the amplitude of the spring bloom (23.1 mg Chla m−3 nearshore
to 5.3 mg Chla m−3 offshore) with increasing distances from the coast (Figure 4). These
regional differences were also observed by Desmit et al. [9] (20 mg Chla m−3 nearshore
to 12 mg Chla m−3 offshore) and Muylaert et al. [48] (60 mg Chla m−3 nearshore to
15 mg Chla m−3 offshore) in the BPNS. Muylaert et al. [48] and Desmit et al. [9] have also
observed that the seasonal pattern, i.e., a spring bloom followed by a smaller autumn
bloom, was more distinct when closer to the coast (Figure 4). Jiang et al. [55] found a high
interannual variability in the peak biomass, which is also observed in our field observations
but is less expressed in our modelling results. Nevertheless, in nearshore regions we see
that the autumn bloom is more modest, i.e., three to four times smaller in amplitude, than
the spring bloom.

The classic bimodal bloom pattern that we (Figure 5) and others (e.g., Muylaert et al. [48]
and Lancelot et al. [49]) have observed in the BPNS was not found by Nohe et al. [56]
between 2003 and 2010. They found that the spring bloom was more intense and ex-
tended, and that there was no autumn bloom. Nohe et al. [56] suggested that increased
SST and water transparency, as well as changes in nutrient concentrations and ratios,
are potential reasons for the lack of an autumn bloom. This lack of an autumn bloom
is in strong contrast with our findings with more recent data, i.e., 2014–2017. Similar
to our study, Speeckaert et al. [57] found two blooms, i.e., a spring bloom followed by a
smaller autumn bloom in 2016, whereas Nohe et al. [56] observed a mean diatom cell
density of 3.9 × 105 cell L−1 in the autumns in the period of 2003–2010. In addition,
Speeckaert et al. [57] found a peak cell density of 2.0 × 106 cell L−1 with Guinardia spp.,
which is the dominant diatom in the autumn bloom in 2016. This autumn bloom is also ob-
served in the data from the LifeWatch Flowcam [58,59] for 2017 and later (Figures A12–A14).
This suggests that the BPNS may have shifted back to a two-bloom pattern.

The seasonal dynamics of zooplankton correspond largely with the data found by van
Ginderdeuren et al. [27], Mortelmans et al. [24], and Deschutter et al. [60] for copepods,
which largely dominate the zooplankton community in the BPNS [27,61]. The delayed
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increase in zooplankton density corresponding with the spring bloom, illustrating the
zooplankton grazing on phytoplankton in our model (Figures 5 and A10 [49]), depicts the
population dynamics of a classic predator–prey relationship [62]. Zooplankton grazing
is an important determinant of phytoplankton biomass dynamics, but the predator–prey
relationship is complex and changes under different abiotic conditions [63].

The LifeWatch observations and our model results suggest higher zooplankton density in
nearshore regions (Figure 4), and this agrees well with the findings of Mortelmans et al. [64]
and of Deschutter et al. [60] for the BPNS. This was also observed in other areas in the
world [65,66]. Van Ginderdeuren et al. [27] observed that the highest copepod densities
occurred in their ‘midshore region’ of the BPNS, but that region overlaps with our nearshore
region (Figure 1).

4.3. Relative Contribution of the Key Determinants

This study provides a better understanding on the spatiotemporal variation in the
relative contribution of the key determinants of marine phytoplankton biomass dynamics
in the BPNS through using an NPZ model that is driven by in situ observation. The relative
contributions of key determinants to changes in the phytoplankton biomass dynamics are
highly seasonal and spatially related in the BPNS.

The relative contribution of the determinants changes seasonally (Figure 6). During
autumn and winter, when there is the least amount of light in the BPNS (±8 h per day),
the PAR is the major determinant (max. 43%). Obviously, sufficient solar irradiance is
needed for photosynthesis [67]. The SST becomes more of a limiting factor for phyto-
plankton growth during mid-winter and early spring (max. 17%). This was also found
by Everaert et al. [12]. They found that the combined relative contribution of the SST and
PAR varied from 20% during summer to 50% during winter, which is similar to our results
(summer: 14% and winter: 51%). In shallow coastal areas like the BPNS, the SST is a key
factor affecting phytoplankton bloom dynamics [68] as the low temperature decreases the
growth rate of marine phytoplankton [69]. In early spring, when solar irradiance and
temperature increases, phosphorus becomes depleted due to the spring bloom [8,49,70]
and becomes the major determining factor (29%). Nitrogen becomes increasingly limiting
in early summer (26%), together with silica in the nearshore (13%) and midshore (10%)
regions. The increased phytoplankton density during spring bloom results in a higher
zooplankton density after the spring bloom in early May [64]. Together with zooplankton
density, the grazing pressure on phytoplankton increases. During summer and autumn,
zooplankton grazing is an important determinant with a high relative contribution on
the phytoplankton biomass (31% and 35%, respectively); this is because zooplankton
biomass remains high [64], whereas phytoplankton biomass decreases, thus changing the
phytoplankton–zooplankton ratio. This corresponds with the findings of Gowen et al. [71]
for the Irish Sea, who found that the percentage of phytoplankton biomass grazing is high-
est after spring bloom in May. From the winter onwards, zooplankton grazing’s relative
contribution decreases as their abundance has decreased together with their food supply,
i.e., phytoplankton, which is mainly limited again by the low solar irradiance completing
the seasonal cycle of the determinants (Figure 6).

Besides their temporal variability (cfr. previous paragraph), the key determinants
affecting phytoplankton biomass also vary spatially. The influence of nutrients on the phyto-
plankton biomass dynamics increases with increasing distance from the coastline (Figure 7).
The main reason for this is related to the fact that nearshore regions tend to be nutrient-rich
due to riverine discharges. As the river runoff creates a nearshore–offshore gradient in nu-
trients with lower nutrient availabilities in offshore regions (Figure A4, [8,70], all nutrients
have a higher relative contribution in limiting phytoplankton biomass (Figures 6 and 7),
i.e., nitrogen (8.5–26%), phosphorus (15–29%), and silica (3.9–15%). The difference in rela-
tive contributions between nearshore and offshore regions is most obvious for nitrogen,
i.e., DIN is being more limiting in the offshore region (max. 26%) than in the nearshore
(max. 11%) region. Phosphorus, on the other hand, limits phytoplankton biomass in the



J. Mar. Sci. Eng. 2023, 11, 1510 15 of 36

offshore region for a longer period. This could be related to the water depth as phosphorus
is largely regenerated from the sediment; additionally, for the offshore region, there is a
much higher water mass-to-sediment ratio [70]. Silica becomes a limiting factor earlier in
the offshore region than in the near- and midshore regions, as the low SiO3 reserve in the
offshore region is depleted quickly during the spring bloom [48]. The gross part of riverine
nutrient resources (the Scheldt, Rhine, Meuse, and Seine [18]) is depleted before it reaches
the offshore region [8]. Our results largely agree with the findings of Burson et al. [72],
i.e., nearshore regions in the North Sea are P limited and, the mid- and offshore regions of
the BPNS are N and P co-limited. The impact of zooplankton grazing on phytoplankton
biomass is smaller in offshore regions, which could be due to the lower zooplankton density
(Figure A7), and thus the lower grazing pressure. In the nearshore region, PAR is a major
determinant year-round (30–43%); whereas, in the mid- and offshore regions (14–34%),
this is more in balance with the other determinants (Figure 7). The high turbidity in the
nearshore region [18,73] restricts the phytoplankton’s access to sunlight and causes PAR to
be a major determining factor throughout the year. The more offshore the region, the less
influential PAR is in terms of phytoplankton biomass dynamics.

Overall, the relative contributions of the key determinants of phytoplankton biomass
dynamics showed a clear spatiotemporal variation. The spatiotemporal variation is partially
driven by meteorological conditions, which affects currents, temperature, the levels of SPM,
light availability, river discharge, and nutrient dynamics in the BPNS [74]. Nutrients from
various rivers such as the Seine and Somme are carried by the influx of Atlantic water to
the BPNS [18]. Local rivers, primarily the Scheldt, Rhine, and Meuse—which flow through
industrialised and densely populated areas, thus providing them with high nutrient loads—
further contribute to the nutrient status of the BPNS [75]. Consequently, there is a noticeable
southeast–northwest gradient in nutrient concentrations, which was also observed in the
relative contributions of the nutrients (Figures 6 and 7). Similar to the nutrient gradient, a
salinity gradient from east to west is created due to the Scheldt [16]. The BPNS also exhibits
a gradient in PAR, primarily due to spatial variations in the SPM and in the dissolved
organic matter. In the vicinity of the coastline, shallow waters tend to be more turbid and
have higher SPM concentrations [75,76]. These factors mainly drive the spatial gradient in
phytoplankton biomass dynamics (Figure 4) in the BPNS.
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Figure 8. An overview of the phytoplankton biomass concentrations in the Belgian part of the
North Sea (BPNS, yellow) [8,9,48,49,57,76], Greater North Sea (green) [9,49,50,53], Mediterranean Sea
(blue) [52], and the North East Atlantic and Baltic Sea (purple) [51]. The phytoplankton biomass
concentrations are subdivided by region, the near-, mid-, and offshore regions in the BPNS, as well
as the coastal and open sea regions in the Greater North Sea, Mediterranean Sea, and North East
Atlantic and Baltic Sea. Citations on the y-axis refer to the corresponding studies. For the present
study, both model-based simulated phytoplankton biomass (This study (simulated)), as well as in
situ observations (This study (observed)) have been integrated.
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Whereas the temporal variation in phytoplankton biomass, i.e., the blooms (Figure 4),
are mainly determined by temperature and PAR (Figure 6) [63]. Increased temperature
resulting from more solar irradiation promotes phytoplankton growth. Additionally, the
increased settling of SPM in spring increases the light availability. The temporal changes in
PAR are influenced by the resuspension and movement of particulate matter, which are
further modified by winds and tides. For example, the stronger winds during winter lead
to a higher attenuation of PAR. This settling process affects the timing of the onset of spring
phytoplankton blooms [75,76].

The temporal variation in phytoplankton biomass is also, to a lesser extent, determined
by the mixing of the water column, nutrient conditions, grazing, and phytoplankton
community composition [63]. For example, in most areas of the region, the BPNS exhibits a
constant mixing of the water column throughout the year due to a combination of robust
tidal currents and shallow depth [15,77].

Additionally, there are also factors that could affect the phytoplankton biomass dy-
namics, such as anthropogenic activities [78–82] and biological agents [83–85]. Biological
agents, such bacteria and viruses can affect the bloom development and termination [83,85].
For example, the rapid proliferation of viruses can have a strong influence on the popula-
tions of phytoplankton hosts, thus playing a crucial role in marine biogeochemistry and
ecology [83].

Quantifying the relative contribution and identifying the spatiotemporal variation
offer a better understanding of how the key determinants’ limitations to phytoplankton
biomass will change under changing conditions, e.g., those related to climate change.
However, every method has its advantages and limitations, and below we consider those
of our modelling approach before addressing the potential implications of this study.

4.4. Modelling with Field Data: Advantages and Limitations

Often multiple driver-related research has been performed in laboratories. A big
advantage of this is that model species can be kept in optimal conditions, e.g., temperature,
light, nutrients, etc., which aids in isolating the effects of the stressor in question. However,
these optimal conditions are rarely experienced by organisms in their natural environ-
ment [86], thus hampering the conversion of the laboratory-based conclusions towards
field conditions. Therefore, we have selected a modelling approach using field data, which
has the advantage that the natural background variation of bottom-up drivers of marine
ecosystems are implicitly included in the results [87]. Therefore, by using field data to
quantify the relative contribution, we can assess the impact of the determinants under their
natural and continuously changing conditions.

Even though the phytoplankton biomass dynamics modelled in this study agree well
with the field observations from LifeWatch (Figure 4), we acknowledge that our modelling
approach contains limitations: (i) The periods with low phytoplankton growth in the
offshore region correspond less with the field observations. This is likely attributable to
the seasonal sampling strategy in that region, i.e., no monthly measurements [23]. As such,
we had less data available for the offshore region to calibrate our model. (ii) In this study,
only one station, i.e., station 130, for the nearshore region, and one station, i.e., 330, for the
midshore region were selected to represent their region. Data exploration on the publicly
accessible LifeWatch server shows that the patterns seen in the data from station 130, chosen
to represent the nearshore area, were also evident in the data from other nearshore stations,
such as station 120 in the west and station 700 in the east. This conclusion also applies
to the midshore region, currently represented by station 330, as similar dynamics were
found in station ZG02 and station W07bis. (iii) For the NPZ model, different functional
groups of phytoplankton and zooplankton were grouped, and—by doing so—we may have
missed species-specific limitations. It is known that reactions to changes in determinants,
such as with climatic changes, are quite species-specific [88,89]. (iv) Additionally, only the
most abundant and dominant zooplankton species, i.e., copepods and Appendicularia,
were aggregated. However, they account for 76% of the total zooplankton density [27],
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and, as such, represent the main biomass dynamics of zooplankton. (v) Chl:N ratios are
known to have a seasonal trend [90]. This seasonality was accounted for by selecting
two Chl:N ratios, i.e., one ratio to reflect spring conditions and one ratio for autumn
conditions. These ranges were selected based on minimising the RMSE for each season. As
such, after calibration, model simulations were performed on fixed Chl:N ratios for each
season. Using the fixed Chl:N ratios could have caused a flattening of the curve, in both
high (spring bloom peak) and low (in winter) extreme values in phytoplankton densities.
Even though Chl:N ratios were selected for each region individually, the pattern of over-
(during winter) and underestimating (during spring) was found at each region (Figure A5).
The over- (during winter) and underestimating (during spring) was most pronounced
in the nearshore region (Figure A5). Additionally, the overestimation of phytoplankton
density at low observed densities, i.e., in winter (Figure A5), may have resulted from the
selected Chl:N ratio for the autumn conditions (Table 1) (which was in the upper part
of the range found in the literature (Table A1)). (vi) The NPZ model does not include a
horizontal and vertical mixing of the nutrients in the water column. Nevertheless, these
were accounted for: firstly, the BPNS is permanently mixed [16]; and secondly, the model
was calibrated and fitted using in situ observations, which contain vertical and horizontal
mixing characteristics [23]. However, when the model would be applied to another area
where stratification does occur, vertical and horizontal mixing should be accounted for.
(vii) Using a fixed sinusoidal surface irradiance in our small study area, i.e., 67 km to 65 km,
did not impact our calculations as the difference on such a small scale is negligible. When
applying the model to large areas, the spatial properties of this factor should be considered.

Although other coastal and regional sea models exist for the North Sea, e.g., ERSEM,
MIRO, and ECOHAM [49,91,92], we used the NPZ model to make the best use of the
LifeWatch datasets. The complexity of the aforementioned models was not suited for
our goal, that is, to develop a model to assess which factors drive marine phytoplankton
biomass dynamics in the BPNS and how their relationship to primary production varies on
a spatiotemporal scale.

Using this NPZ model allowed us to integrate and simulate with forcing functions.
In turn, integrating the forcing functions gave us the possibility to determine the relative
contributions, and it permits us to add forcing functions in the model. In addition, this
NPZ model can be applied on a small scale, which is needed as the difference in the
parameterisation of the regions (Table 1) illustrate. Models covering larger areas produce
more general patterns. These general patterns have less detailed information on local
differences that is required to enable policymakers to make local decisions. We provided
here the first step towards such a model that adheres to the need to understand the
consequences of blue economy investments in the BPNS. An advantage of the NPZ model,
being less complex, is that it requires less computing power and time.

In addition, some components, e.g., the vertical mixing and depth levels, which are
included in the more complex models such as ERSEM [91], are less applicable to the BPNS.
The BPNS is permanently mixed [16], and photosynthesis is restricted to the top layer as
available light usually does not penetrate the water column more than ten meters [93].
More complex models can provide a more detailed and comprehensive set of outputs than
NPZD models as they include a wider range of physical, chemical, and biological variables.
However, this could also make it more complex for the end users, such as industry workers
and policymakers, to interpret and analyse the model results. Overall, using an NPZ model
was selected as the optimum between computing time, interpretability, and complexity in
terms of addressing our research topic.

The novelty of this study lies in five aspects: (1) performing a high-resolution spa-
tiotemporal analysis that contributes to a better understanding of phytoplankton biomass
dynamics in the BPNS (cfr. 4.2), (2) quantifying the relative contribution of the determinants
of phytoplankton biomass dynamics along a near-offshore gradient (cfr. 4.3), and (3) the
observation of a bimodal bloom pattern in the BPNS after being absent from 2003 until
2010 (cfr. 4.2). Furthermore, this study has the potential to support dedicated management
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strategies for a sustainable development of Belgium’s blue economy (see Section 4.5). Fi-
nally, as the fifth aspect, the modelling scripts and data are available according to the FAIR
principles (see Data Availability Statement Section).

4.5. Future Perspectives and Implications

Our model is well suited to simulating local phyto- and zooplankton dynamics, and
it could be used to complete data gaps in phytoplankton and zooplankton observations.
Upon the availability of abiotic input variables, these abiotic input variables could be used
to drive the model to obtain phytoplankton and zooplankton biomass, thus completing
the data gaps. The obtained results should be validated with the available observations
from before and after the data gap. In addition, our model and results could be used to
evaluate how the key drivers of phytoplankton biomass change under climate change
conditions and blue economy activities. As such, this model is suitable for understanding
and predicting the consequences of compound events, which are defined as and generated
by short time changes (weather related) combined with climate events [94].

During the Anthropocene, human activities have caused ocean warming [96], acid-
ification [95], and eutrophication [96], resulting in an on-average increasing SST, and
increased nutrient concentrations compared to the pre-industrial times. To date, it is not
clear which long-term changes in abiotic conditions are most important in the context of
marine phytoplankton biomass dynamics. It is hypothesised that the relative contribution
of the dominant determinants will change due to changing environmental conditions [97].
Modelling and quantifying the relative contribution of the phytoplankton’s determinants
provide a more holistic view rather than a one-to-one relation that is obtained from directly
measuring phytoplankton biomass. The quantification of relative contribution could give
more insight into the underlying mechanisms, e.g., changes in the relative contribution
of the key determinants of phytoplankton biomass may indicate a disruption of the phy-
toplankton community [98,99]. Modelling climate change scenarios should always be
performed carefully as (i) the NPZ model does not include different species and could
miss changes in the community composition, e.g., due to a poleward shift [98], and (ii) the
natural variability of the phytoplankton dynamics may not be fully covered in the four
years analysed in this study [100].

In the context of the blue economy, our model contributes to a better understanding
and quantification of the dynamics of the local ecosystem and the potential effects of
human activities on the marine environment. Here, we present two concrete blue economy
cases in which the model can be used to assess the potential consequences of aquaculture
development and wind farms on the local ecosystem. In the case of bivalve aquaculture, it
is anticipated that nutrient fluxes will be adapted through bottom-up effects [78,79], as well
as the limitation of phytoplankton production through filter feeding [80,81]. Once a wind
farm is operational, a well-known effect that is generated is the turbidity plume [82]. The
decrease in light availability may lead to a decrease in phytoplankton productivity locally.
These changes in abiotic conditions can be translated via the NPZ model to phytoplankton
biomass dynamics. Overall, our model has the potential to evaluate the effectiveness of
various management strategies while being less complex, which could translate to it being
user friendly and having more users, e.g., scientists and policymakers.

The model could benefit from (i) using different sources for validation, (ii) expanding
the scope of the model, and (iii) by incorporating a greater amount and more accurate
data. Firstly, for the validation of the model, high-resolution remote sensing data could be
used. This would work well with climate change conditions [101]. Secondly, based on the
results of this local model, it would be possible to integrate more parameters, and more
complexity could also be built, such as hydrodynamics. This is conducted, for example,
in the ERSEM and MIRO models, where the NPZD model is incorporated into a complex
model. Lastly, we provided the first step in this direction with our NPZ model, which
has the potential to be further developed to a more detailed taxonomical level, e.g., using
CHEMTAX as this allocates chlorophyll-a to phytoplankton groups by marker pigments
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and Chla ratios [102–104]. It would also be possible to include, in a further iteration, more
detailed data, e.g., data on a more detailed taxonomic level, to have a better understanding
of the effects of each of the key determinants on the various subgroups of phytoplankton
to predict whether the ecosystem will change [105] (even though phytoplankton biomass
dynamics are resilient to a certain extent [106]).

5. Conclusions

In this study, a first step towards a model that adheres to the need to understand
the consequences of blue economy investments in the BPNS, is provided. We quantified
phytoplankton biomass dynamics and the relative contribution of its determinants using
an NPZ model along a near–offshore gradient over a period of four years (2014–2017). By
doing so, a better understanding of the spatiotemporal variations in these contributions
was provided. After not being observed between 2003 and 2010, we again found a classic
bimodal bloom pattern. Further, we found that the relative contributions of phytoplankton
determinants alter spatially and temporally. Solar irradiance (up to 43%) and zooplankton
grazing (up to 35%) are the most influential determinants for phytoplankton biomass, and
this is the case throughout the year. A clear spatial gradient was observed for most of the
determinants, e.g., nutrients and zooplankton grazing, which are greater limiting factors off-
shore, while the opposite is true for solar irradiance. This comprehensive study contributes
to a better understanding of phytoplankton biomass dynamics and its determinants along
a near-offshore gradient in the BPNS. Additionally, it has the potential to support blue
economy strategies and management in the BPNS. In the scope of future climate scenarios
and blue economy, it is important to understand the key determinants of phytoplankton
biomass dynamics to develop management scenarios that ensure a sustainable marine
ecosystem.
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Appendix A. NPZD Model Parameters

The initial values of the model for phytoplankton (1.0 mmol N m−3), zooplankton
(0.1 mmol N m−3), and DIN (5.0 mmol N m−3) were taken from Soetaert and Herman [19].

Table A1. Parameterisations of the nutrient–phytoplankton–zooplankton (NPZ) model, i.e., the
minimum and maximum values, units, and references. These intervals are used as a reference to
create the different sets to calibrate the NPZ model. * Minimum and maximum values for kd were
calculated for each region of interest based on CTD data recorded in MIDAS.

Parameter Minimum Possible Value Maximum Possible Value References

maxUptake 0.25 (day−1) 1.5 (day−1) [19,108–111]
excretionRate 0.1 (day−1) 0.2 (day−1) [19,109,111]
maxGrazing 0.8 (day−1) 1 (day−1) [19,108,109,112,113]

ksGrazing 1 (mmol N m−3) 4 (mmol N m−3) [19,113,114]
pFaeces 0.2 (day−1) 0.5 (day−1) [19]

mortalityRate 0.25 ((mmol N m−3)−1 day−1) 0.5 ((mmol N m−3)−1 day−1) [19,108–111,113,115]
ChlNratio 1 (mg Chla/mmol N) 8 (mg Chla/mmol N) [50]

ksPAR 30 (µEinst m−2 s−1) 250 (µEinst m−2 s−1) [19]
Tobs 7 ◦C 15 ◦C [8,113,114]

ksDIN 0.25 (mmol N m−3) 5 (mmol N m−3) [8,19,108–115]
ksP 0.2 (mmol P m−3) 0.5 (mmol P m−3) [8,113]
ksSi 0.2 (mmol Si m−3) 0.8 (mmol Si m−3) [49]

Kd *
0.6 (m−1) 1 (m−1) Nearshore station

0.27 0.67 Midshore station
0.21 0.44 Offshore stations

Table A2. Root mean square error (RMSE) for each of the regions of interest based on the second
iteration, whereby the 10% best simulations correspond to the number of simulations indicated in
the last column. Each region of interest has a different number of best simulations as some of the
combinations of the set of parameters resulted in exponential behaviour. Only the simulations that
converged were considered to be the 10% best (i.e., lowest RMSE) out of the 5000 possible simulations.

Region of Interest RMSE–Median (Q1–Q3) Number of Simulations

Nearshore region 1.34 (1.32–1.36) 259
Midshore region 0.44 (0.43–0.45) 498
Offshore region 0.40 (0.37–0.41) 499

Table A3. The number of observations available of Chlorophyll-a and zooplankton densities for the
nearshore, midshore, and offshore regions (Figure 1) from 2014 to 2017.

Variable Nearshore Region Midshore Region Offshore Region

Chlorophyll-a 39 37 98
Zooplankton 40 37 96
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https://doi.org/10.14284/445
https://rshiny.lifewatch.be/
https://blue-cloud.d4science.org
www.d4science.org
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Appendix B. Zooplankton Conversion

The most common zooplankton found in the Belgian part of the North Sea (BPNS)
are copepods [27]. The most common species are Acartia clausi, Temora longicornis, Para-
calanus parvus, Centropages hamatus, Pseudocalanus elongatus, Centropages typicus,
Calanus helgolandicus, and Euterpina acutifrons [27]. The dinoflagellate Noctiluca scintil-
lans were also seasonally found in high densities, and Appendicularia Oikopleura dioica
was found year round [27]. Therefore, the taxa Calanoida, Noctiluca, Harpacticoida, and
Appendicularia were selected from the LifeWatch database to calculate the zooplankton
abundance (ind m−3).

The body mass per individual of each taxon was defined based on the most common
species of each group (Table A4). The body mass per individual was calculated as the
median value of body mass (mg C ind−1) for the most common species of each taxon.
Afterwards, the body mass in carbon was converted to mmol C by dividing by the molecular
weight of C (12.0107 gr/mole). Finally, the mmol C m−3 is converted to mmol N m−3 based
on the C:N ratio of each taxon (Table A5).

Table A4. The body mass per individual (mg C ind−1) of the most common species of taxa found in
the Belgian part of the North Sea.

Taxon Body Mass (mg C ind−1) Species Reference

Calanoida 0.0006

Acartia clausi, Temora
longicornis, Paracalanus

parvus, Centropages hamatus,
Pseudocalanus elongatus,
Centropages typicus and

Calanus helgolandicus

[116]

Noctiluca 0.0003 Noctiluca scintillans [117]

Harpacticoida 0.001 Euterpina acutifrons [118]

Appendicularia 0.002 to 0.006 Oikopleura dioica [119]

Table A5. The C:N ratio for each of the most common taxa present in the Belgian part of the North Sea.

Taxon C:N Ratio Species Reference

Calanoida 5.5–7
Acartia spp., Temora sp.,
Centropages, Oithona sp.,
Pseudo/Paracalanus spp.

[120]

Noctiluca 2.3–4.4 Noctiluca scintillans [121]

Harpacticoida 4.26–4.74
7.7–8.1 Euterpina acutifrons [122]

[123]

Appendicularia 4.08 Oikopleura dioica [119]
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Appendix C. Smoothers for the Generalised Additive Models (GAMs) in the
Three Regions of Interest, i.e., the Near-, Mid- and Offshore Regions
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Figure A1. Smoothers for the day and year input variables, i.e., ammonium (NH4), phosphate (PO4), 
nitrite (NO2), silicate (SiO3), nitrate (NO3), and the sea surface temperature (SST), for the generalised 
additive models in the nearshore region. The smoothers are calculated from 2011 to 2017 as the three 
first years are used as dummy years. The solid line represents the mean value, and the dashed lines 
are the 95% confidence interval. 

Figure A1. Smoothers for the day and year input variables, i.e., ammonium (NH4), phosphate (PO4),
nitrite (NO2), silicate (SiO3), nitrate (NO3), and the sea surface temperature (SST), for the generalised
additive models in the nearshore region. The smoothers are calculated from 2011 to 2017 as the three
first years are used as dummy years. The solid line represents the mean value, and the dashed lines
are the 95% confidence interval.
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Figure A2. Smoothers for the day and year input variables, i.e., ammonium (NH4), phosphate (PO4),
nitrite (NO2), silicate (SiO3), nitrate (NO3), and the sea surface temperature (SST), for the generalised
additive models in the midshore region. The smoothers are calculated from 2011 to 2017 as the three
first years are used as dummy years. The solid line represents the mean value, and the dashed lines
are the 95% confidence interval.
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dummy years. The daily sea surface temperature (SST) data were extracted from the Flemish Banks 
Monitoring Network, and no GAMs were applied. The solid line represents the mean value, and the 
dashed lines are the 95% confidence interval. 

 

Figure A3. Smoothers for the day and year input variables, i.e., ammonium (NH4), phosphate (PO4),
nitrite (NO2), silicate (SiO3), and nitrate (NO3), for the generalised additive models (GAM) in the
offshore region. The smoothers are calculated from 2011 to 2017 as the three first years are used as
dummy years. The daily sea surface temperature (SST) data were extracted from the Flemish Banks
Monitoring Network, and no GAMs were applied. The solid line represents the mean value, and the
dashed lines are the 95% confidence interval.
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Appendix D. Time Trends of the GAMs in the Three Regions of Interest

The time trends of the nutrient and SST data were created using the GAMs for each
region of interest (Appendix C). The detailed comparisons of the observations are found in
Tables A6 and A7 and in Figure A4. The GAMs use nonparametric smooth functions of the
explanatory variables:

g−1[E(Yi | Xij
)]

= α+ ∑k
j=1 fj

(
Xij

)
(A1)

where g is the link function between the expected value of nutrient concentration (Yi) and
the explanatory variables Xij, with I = 1 to the n number of the observations and j = 1 to
n the number explanatory variables (two explanatory variable here, i.e., time in days and
years). The smoother function fj

(
Xij

)
quantifies the effect of the jth explanatory variable on

Yi, and α represents the estimated regression coefficient. The number of basis functions
of fj (k) represents the amount of smoothing that has been applied to the data [124]. The
Rpackage “mgcv” was used to construct the GAMs [125].

Table A6. Performance of the generalised additive models in creating the daily time series of the
nutrient data, i.e., dissolved inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO3), and the sea
surface temperature (SST) data in the three regions of interest. The root mean square error (RMSE)
and the coefficient of determination (R2) were calculated for each nutrient and the SST against field
observations per region.

Region of Interest Nutrient and SST RMSE R2

Nearshore region

DIN (mmol N m−3) 9.61 0.30
PO4 (mmol P m−3) 0.30 0.32
SiO3 (mmol Si m−3) 6.43 0.39

SST (◦C) 1.82 0.94

Midshore region

DIN (mmol N m−3) 5.69 0.37
PO4 (mmol P m−3) 0.23 0.30
SiO3 (mmol Si m−3) 3.65 0.29

SST (◦C) 0.88 0.96

Offshore region
DIN (mmol N m−3) 2.33 0.55
PO4 (mmol P m−3) 0.05 0.87
SiO3 (mmol Si m−3) 1.30 0.30
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Figure A4. Time trends created using generalised additive models to generate input data for the
nutrient–phytoplankton–zooplankton model. The first three years (2011 to 2013) are used as dummy
years to stabilise the initial conditions of the model. These years are then removed, and the final
results are only considered from 2014 to 2017.
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Table A7. Performance of the different generalised additive models for each variable of interest,
i.e., phosphate (PO4), ammonium (NH4), nitrite (NO2), nitrate (NO3), silicate (SiO3), and the sea
surface temperature (SST), in the nearshore, midshore, and offshore regions using data from 2011 to
2017. The number of basis functions (k) to use for each smooth term (s(day), s(year)) are included. The
Akaike information criterion (AIC) and the penalised R2 for adding variables to the model (adjusted
R2), i.e., a p-value whether the function s() (smooth term) is non-zero, performs well (p < 0.05). The
model formulation (the GAMs) is also provided. Models in bold were selected for modelling the
corresponding variable.

Nearshore Region

Variable
k- k-

AIC Adjusted R2 k Performance GAMs (day) s (year)

PO4

3 3 58.1 0.19 p-value < 0.05 for day, and 0.38 for year PO4~s(day,
k = ks(day)) + s(year,

k = ks(year))

4 4 50.26 0.30 p-value < 0.05 for day, and 0.23 for year
5 5 46.96 0.35 p-value < 0.05 for day, and 0.07 for year
6 6 47.6 0.36 p-value < 0.05 for day, and 0.06 for year

NH4

3 3 203.54 0.04 p-values > 0.05 for both smoothers NH4~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 201.27 0.12 p-values > 0.05 for both smoothers
5 5 202.06 0.11 p-values > 0.05 for both smoothers

NO2

3 3 44.04 0.08 p-value < 0.05 for day, and 0.86 for year NO2~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 33.44 0.25 p-value < 0.05 for day, and 0.79 for year
5 5 34.31 0.25 p-value < 0.05 for day, and 0.81 for year

NO3

3 3 336.38 0.25 p-values < 0.05 for day, and 0.56 for year NO3~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 334.55 0.31 p-values < 0.05 for day and 0.26 for year
5 5 335.36 0.32 p-values < 0.05 for day, and 0.24 for year.

SiO3

3 3 481.08 0.28 p-value < 0.05 for day, and 0.22 for year SiO3~s(day,
k = ks(day)) + s(year,

k = ks(year))

4 4 476.2 0.35 p-value < 0.05 for both smoothers
5 5 471.5 0.41 p-value < 0.05 for both smoothers
6 6 472.28 0.41 p-value < 0.05 for both smoothers

Midshore Region

Variable
k- k-

AIC Adjusted R2 k Performance GAMs(day) s(year)

PO4

3 3 10.82 0.21 p-values < 0.05 for day, and 0.67 for year PO4~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 4.53 0.30 p-values < 0.05 for day, and 0.71 for year
5 5 4.96 0.31 p-values < 0.05 for day, and 0.69 for year

NH4

3 3 136.188 0.09 p-values > 0.05 for both smoothers NH4~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 136.19 0.09 p-values > 0.05 for both smoothers
5 5 136.188 0.09 p-values > 0.05 for both smoothers

NO2

3 3 −27.8 0.37 p-values < 0.05 for day, and 0.68 for year NO2~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 −26.36 0.37 p-values < 0.05 for day, and 0.72 for year
5 5 −25.81 0.37 p-values < 0.05 for day, and 0.72 for year

NO3

3 3 271.38 0.37 p-values < 0.05 for day, and 0.31 for year NO3~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 273.25 0.38 p-values < 0.05 for day, and 0.41 for year
5 5 274.05 0.38 p-values < 0.05 for day, and 0.39 for year

SiO3

3 3 362.68 0.28 p-value < 0.05 for day, and 0.54 for year SiO3~s(day,
k = ks(day)) + s(year,

k = ks(year))
4 4 363.23 0.28 p-value < 0.05 for day, and 0.56 for year
5 5 363.47 0.28 p-value < 0.05 for day, and 0.55 for year
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Table A7. Cont.

Offshore Region

Variable
k- k-

AIC Adjusted R2 k Performance GAMs(day) s(year)

PO4

3 3 −281.69 0.80 p-value < 0.05 for both smoothers PO4~s(day,
k = ks(day)) + s(year,

k = ks(year))

4 4 −288.22 0.82 p-values < 0.05 for both smoothers
5 5 −306.43 0.84 p-values < 0.05 for both smoothers
6 6 −327.19 0.87 p-values < 0.05 for both smoothers

NH4
3 3 232.78 0.05 p-values ≥ 0.05 for both smoothers NH4~s(day,

k = ks(day)) + s(year,
k = ks(year))4 4 230.73 0.09 p-values > 0.05 for both smoothers

NO2

3 3 −46.83 0.37 p-values < 0.05 for both smothers NO2~s(day,
k = ks(day)) + s(year,

k = ks(year))

4 4 −72.92 0.51 p-values < 0.05 for both smoothers
5 5 −92.81 0.60 p-values < 0.05 for both smoothers
6 6 −125.85 0.70 p-values < 0.05 for both smoothers

NO3
3 3 430.44 0.62 p-values < 0.05 for day, and 0.10 for year NO3~s(day,

k = ks(day)) + s(year,
k = ks(year))4 4 431.57 0.62 p-values < 0.05 for day, and 0.14 for year

SiO3

3 3 401.81 0.26 p-values < 0.05 for day, and 0.07 for year SiO3~s(day,
k = ks(day)) + s(year,

k = ks(year))

4 4 399.83 0.28 p-value < 0.05 for day, and 0.37 for year
5 5 396.58 0.31 p-value < 0.05 for day, and 0.47 for year
6 6 396.99 0.31 p-value < 0.05 for day, and 0.47 for year

Appendix E. Model Validation: Observation versus Simulation
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Figure A5. Phytoplankton density simulations versus the observations for the nearshore, midshore,
and offshore regions in the Belgian part of the North Sea. The simulated phytoplankton densities
were obtained from the best 10% simulations used to calculate the relative contributions. The dotted
line represents the points’ locations if all simulated values matched the observations.
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Figure A7. The zooplankton density simulations using the nutrient–phytoplankton–zooplankton
model in the nearshore, midshore, and offshore regions in the Belgian part of the North Sea. The bold
lines indicate the average zooplankton density predictions, and the shaded regions represent the 95%
confidence interval. The dots are the observed values collected during the LifeWatch campaigns.
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Figure A9. Average monthly relative contributions for each determinant of the phytoplankton
biomass dynamics in the nearshore region. Potential determinants are dissolved inorganic nitrogen
(DIN), phosphate (PO4), silicate (SiO3), photosynthetically active radiation (PAR), the sea surface
temperature (SST), and zooplankton grazing.
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Figure A10. Average monthly relative contributions for each determinant of phytoplankton biomass
dynamics in the midshore regions. Potential determinants are dissolved inorganic nitrogen (DIN),
phosphate (PO4), silicate (SiO3), photosynthetically active radiation (PAR), the sea surface tempera-
ture (SST), and zooplankton grazing.
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Figure A11. Average monthly relative contributions for each determinant of the phytoplankton
biomass dynamics in the offshore region. Potential determinants are dissolved inorganic nitrogen
(DIN), phosphate (PO4), silicate (SiO3), photosynthetically active radiation (PAR), the sea surface
temperature (SST), and zooplankton grazing.



J. Mar. Sci. Eng. 2023, 11, 1510 31 of 36

Appendix H. Diatom Cell Density in 2017
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Figure A14. Diatom cell density from May 2017 to December 2020 observed with the LifeWatch Flowcam.
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