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a b s t r a c t 

Plastic litter has been widely documented in our oceans, leading to growing worldwide concerns regarding 

its potential impact on the marine environment. A large proportion of this plastic accumulates at the bottom 

of the ocean, resulting in a need to monitor and quantify seafloor litter. Seafloor litter monitoring is mostly 

performed using benthic beam trawls, which have several limitations and environmental implications. New 

innovative ways to document and address seafloor litter are therefore necessary and requested by the United 

Nations Sustainable Development Goal 14 (SDG 14.1.1b), the Oslo Paris Convention (OSPAR) and the Interna- 

tional Council for the Exploration of the Sea (ICES). This systematic review gives an overview of the state-of- 

the-art of 14 current underwater technologies that are eligible for future in situ detection of plastic litter on 

the seafloor based on 101 publications. A set of objectives and a Technology Readiness Level (TRL) scale were 

used to benchmark the technologies and revealed that the most suitable system is often very scenario-specific 

and, therefore, demands investments in more than one specific group of technologies. A decision tool was es- 

tablished to determine the most suitable technique for a range of different situations. This review indicates 

that most of these technologies are currently at low-middle TRLs, requiring several more development, testing 

and commercialization steps before they can be applied effectively in marine field conditions. However, these 

technologies, alone or in combination, have the potential to contribute to the establishment of more robust 

global environmental indicators and monitoring programs for plastic pollution. 

© 2023 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In recent decades, the increasing levels of plastic in the World’s 

ceans has drawn significant public attention and raised concerns 

bout the impacts this might be having on the marine environ- 

ent, marine organisms and human health (e.g. [1 , 2] ). This has 

esulted in marine litter, and especially plastic litter, being high 

n the political agenda [3–5] . Litter assessments are currently per- 

ormed within the framework of both monitoring programs and 

undamental scientific research. An increasing amount of knowl- 

dge on the behavior of plastic in marine environments, the set- 

ling velocities, the sinking behavior and the role of external fac- 

ors such as biofouling provide clear insights into how plastic lit- 

er is transported to the seafloor (e.g. [6–10] ). Several effort s have 

een made to characterize seafloor litter and assess its spatiotem- 

oral dynamics (e.g. [11–13] ). To do so, a large suite of technolo- 

ies and approaches has been applied ranging from in situ sam- 

ling to remote observations. Imagery, for example, has been used 

n several studies to quantify seafloor litter [14] . There is a need 

o monitor seafloor litter and its impacts, to locate accumulation 

ones (hotspots), and, to define strategies for supporting long-term 

valuation of plastic accumulation (e.g. fishing grounds) [15] . Ef- 

ect assessment of seafloor plastic litter is necessary to understand 

hich species are most exposed, impacted and sensitive [16 , 17] . 

or example, cross mapping the distribution of litter and benthic 

pecies, especially commercial fish, supports a good evaluation of 

he exposure and risk of ingestion [18] . A 2021 global analysis of 

itter data observations showed that the proportion of plastic in 

otal litter increased progressively from 49% on riverbeds to 64% 

n nearshore bottoms ( < 100 m depth, < 100 km from shoreline) 

nd 77% on deep seafloors ( > 100 m depth, > 100 km from shore-

ine) [19] . This trend is mainly documented along canyons, which 

ct as deep conduits of litter. The diffuse vertical input from float- 

ng loads and sea-based sources is also suggested as a major cause 

f deep-sea littering [19] . A number of studies have identified the 

helf and deep-sea environments as long-term net sinks for plastic 

itter of all sizes, including microplastic [20 , 21] . 

The monitoring of litter in marine environments is a fundamen- 

al part of the wider state of environmental reporting, and a key 

omponent of ecological risk assessments, which are ideally based 

n realistic exposure conditions [22–24] . Marine litter is a trans- 

oundary problem and international cooperation and coordination 

re crucial to monitor and reduce marine pollution. On a global 

evel, marine litter is included under the UN Sustainable Devel- 

pment Goal 14 ‘Life Below Water’ (14.1.1b Plastic debris density) 

nd Challenge 1 of the UN Decade of Ocean Science for Sustain- 

ble Development ‘Understand and beat marine pollution’. Since 

he 2010s, frameworks such as the International Council for the Ex- 

loration of the Sea (ICES), the Regional Seas Conventions (e.g. Oslo 

aris Convention; OSPAR) and the European Union Marine Strategy 

ramework Directive (MSFD) have been quantifying and monitor- 

ng seafloor litter using beam trawl hauls, revealing the first in- 

ights into the prevalence distribution patterns, transport routes 

nd accumulation zones of plastic litter [24–27] . Benthic trawl sur- 

eys are a practical way to monitor seafloor litter because they are 

lready coordinated by ICES for fish stock assessments [28] . These 

urveys cover a large proportion of the European marine regions 

26 , 28] , attempt to standardize methods [26–28] and, in practice, 

ppear to sample sufficient litter for analysis [25] . 

Unfortunately, bottom trawling is a destructive sampling tech- 

ique that has been subject to discussion and criticism for many 

ears. In line with the Biodiversity Strategy 2030, the European 

ommission has the intention of implementing restrictions to limit 

ottom trawling in EU waters, supporting the transition to more 

elective and less damaging fishing techniques. It has subsequently 

ut forward a legislative proposal to phase out bottom trawling by 
2 
030 [23] . In addition, a catch-based assessment of seafloor litter 

omes with a number of other drawbacks [26] . The trawls are lim- 

ted to locations relevant for the fish stock surveys on which they 

iggyback, rather than focusing specifically on areas that might 

e particularly relevant for seafloor litter monitoring [26] . Hence, 

ostly shallow waters are examined by benthic trawling [26 , 28] . In 

ddition, trawling is not permitted in regions such as marine pro- 

ected areas, which may be important to monitor. As litter items 

re collected after a tow or trawl track is completed, there is also 

o precise information on the location of each litter item. Seafloor 

itter monitoring using bottom trawls is not applicable in all ma- 

ine environments, for example, deep areas with complex topogra- 

hy (rocky substrates, canyons, coral reefs, etc.) cannot be included 

14 , 29 , 30] . However, Pham et al. [31] showed that bottom trawling,

n rare cases, can be used to document litter down to a depth of 

0 0 0 m. Trawling surveys will miss small items due to the mesh 

ize of the net [32] . Different litter types have different catcha- 

ilities, which is also affected by the size of the catch and sedi- 

ent type [33 , 34] . The most important drawback, however, is the 

ariation in catchability of different nets, which creates an uncer- 

ainty when comparing areas [24 , 26] . Some trawls appear to cap- 

ure < 5% of seafloor litter items by number, meaning that actual 

itter numbers could be substantially higher than what is caught in 

ets [35] . In light of all these drawbacks, scientists have been seek- 

ng new and innovative ways to detect and quantify plastic litter 

resent on the seafloor and in the lower layer of the water column 

14 , 29 , 36 , 37] . These approaches include elements of autonomous 

etection (in situ detection without human interference), which 

an enable swift observations of marine litter, allowing the quick 

nalysis of evolutionary patterns of litter distribution, as well as 

etter policy alignment [37] . 

With the increased interest and desire to efficiently and effec- 

ively sample and monitor seafloor litter, it is necessary to compare 

he different available approaches to allow researchers and regula- 

ors to identify the most suitable techniques for use in research or 

onitoring. One important decision making tool for selecting the 

pproach is the use of a Technological Readiness Level (TRL) scale 

o group technologies and approaches into basic research, applied 

esearch, development and implementation. A TRL scale for appli- 

ation in litter and plastic pollution monitoring was recently put 

orward by Aliani et al. [38] . The TRL scale enables systematic val- 

dation and global harmonization of plastic pollution monitoring 

ethods by ranking them from 1 to 9 ( Fig. A1 , Appendix A) [38] . 

Currently, there is no off-the-shelf in situ detection technique 

hat is operational (TRL 7–9) for systematic seafloor monitoring of 

lastic litter in diverse marine environments that provides suffi- 

ient details to meet the required objectives for exposure, effects, 

nd risks assessment of seafloor plastic litter. Therefore, this study 

valuates which existing technologies are eligible for future in situ 

eso– and macroplastic litter ( > 5 mm) detection on the seafloor 

nd the hyperbenthic area ( < 1 m above seafloor). Two design pro- 

esses of detection systems are assessed: (i) methods from other 

ectors (e.g. food industry) that have already proven themselves 

o be useful for plastic detection and that have been published as 

 possible technique in an underwater setting and (ii) established 

nderwater technologies for new applications such as plastic litter 

etection. 

Additionally, the current state of the different technologies is 

enchmarked against the envisaged final product to determine the 

ain steps toward innovation. Therefore, a set of objectives to de- 

cribe the final product were introduced and a TRL was defined 

or each technique in the context of plastic litter detection based 

n the suggested scale by Aliani et al. [38] . As detection methods 

re region-specific in terms of applicability, a decision tool to de- 

ne the most suitable method for different scenarios is demon- 

trated. It is anticipated that the compilation of information in 
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Fig. 1. Illustration of the process implemented to determine the state-of-the-art of detection technologies and to create a decision tool. 
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his study, in combination with the proposed decision framework 

ould be helpful in identifying the optimal monitoring system de- 

ign worldwide for seafloor litter [39] . While a TRL scale has many 

dvantages, there is an additional need for a comparability assess- 

ent between the different technologies to ensure that the result- 

ng monitoring data is fit for purpose and sufficiently comparable 

cross studies utilizing different analysis approaches. 

The motivation for this study is rooted in the need for inno- 

ation in monitoring and observation activities for seafloor litter, 

hich was raised by the ICES Working Group on Marine Litter 

ICES WGML) [26] and explicitly mentioned in the OSPAR Quality 

tatus Report [24] . The latter is endorsed by 15 Governments and 

he EU, and is considered the overarching environmental assess- 

ent for the Northeast Atlantic, supported by the marine research 

andscape. Furthermore, a clear gap in the available literature and 

urrent knowledge has been identified for sustainably and accu- 

ately monitoring plastic seafloor litter at an international level. 

The objective of this systematic review is to contribute to the 

urrent knowledge regarding in situ detection methodologies for 

lastic seafloor litter by providing an overview of the state-of-the- 

rt underwater technologies based on a comprehensive literature 

tudy. This systematic review is a unique first step towards a sup- 

orted monitoring program for plastic seafloor litter and combines 

or the first time literature on existing detection techniques from 

ifferent research disciplines and sectors with the newly developed 

RL scale for plastic pollution monitoring methods of Aliani et al. 

38] . 

. Materials and methods 

An overview of technologies eligible for underwater detection 

f plastic on the seafloor was generated by a systematic liter- 

ture study ( Fig. 1 ). This comprehensive search was performed 

ollowing the Preferred Reporting Items for Systematic Reviews 

nd Meta-Analyses (PRISMA) 2020 statement [40] . Scientific peer- 

eviewed publications were collected by multiple Web of Science 

WoS) searches on November 9, 2022. This electronic platform was 

creened for the presence of ‘underwater detection’ or ‘underwater 

bservation’ in combination with ‘plastic’, ‘debris’ or ‘litter’ in all 

earchable fields of a publication. A primary selection of the result- 

ng list of publications was made based on the abstract, and a sec- 

ndary selection was performed based on the content. Publications 

ithout any reference to underwater applications or object detec- 
3 
ion were excluded. Only publications describing technologies and 

pproaches that have the ability to perform in underwater condi- 

ions were included. Furthermore, a quality assurance and quality 

ontrol (QA/QC) procedure was conducted by comparing the ref- 

rence list to the EUROqCHARM systematic review for macrolit- 

er/seafloor [41] . 

Existing techniques that only consider floating litter (e.g. re- 

ote sensing) were not included. In addition, this review focuses 

n plastic objects or particles > 5 mm, actively excluding micro- 

nd nanoplastics that need alternative methods and separate mon- 

toring programs. Following the recommendations of GESAMP ex- 

erts [42] , we use the size definitions of microplastic ( < 5 mm), 

esoplastic (5 mm - 2.5 cm), macroplastic (2.5 cm - 1 m) and 

egaplastic ( > 1 m). This set of inclusion criteria is clear and un- 

mbiguous, eliminating the risk of bias. The resulting publications 

enerated a list of described technologies with the potential for 

eafloor plastic litter detection. A second screening for publications 

n WoS was performed with the resulting technologies in combina- 

ion with ‘plastic detection’, ‘debris detection’, ‘litter detection’ or 

underwater detection’, and ‘plastic observation’, ‘debris observa- 

ion’, ‘litter observation’ or ‘underwater observation’. For complete- 

ess, other publications of the respective authors were reviewed to 

ollect more information on the different technologies. In total, in- 

ormation about 14 different technologies was gathered from 101 

cientific publications. 

Each technology was characterized based on ten characteristics 

hich gave a structure to an underlying dataset. These characteris- 

ics include; frequency/wavelength, detected materials, compatible 

latform, method resolution, detection size range, spatial coverage, 

rocessing algorithms, projects and publications ( Table B.1 , Ap- 

endix B). The established dataset forms a knowledge base to iden- 

ify the different gaps between the current state of each technol- 

gy’s development process/level and the envisaged final product. 

For each technique, a different approach is required to reach an 

ptimal technology level for in situ seafloor plastic litter detection 

iven that these techniques have their roots in other scientific dis- 

iplines. For example, 2D imaging sonar can generate high-quality 

orward-looking sonar imagery, regardless of carrier speed. This al- 

ows for seamless follow-on actions like visual identification, sam- 

ling or recovery. However, the narrow field of view means that 

he number of transects needed to cover an area equivalent to 

hat of a side looking sonar can be substantial and therefore time- 

onsuming [36] . Depending on the expected outcome, there will 
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ikely be a trade-off between the spatial coverage and the mini- 

um detected object size. Side looking sonar systems, such as side 

can sonar (SSS) and synthetic aperture sonar (SAS), can cover vast 

reas, but need a stable platform with precise navigation and a 

onstant, relatively low, speed ( < 5 knots) to generate the highest 

esolution. Furthermore, there are often several trade-offs within 

he same class of detection techniques. For example, a Sound Met- 

ics ARIS sonar (2D imaging sonar) has a very good resolution but 

 narrow field of view (40 °), while the Teledyne Blueview has a 

ider field of view (130 °) but a lower resolution [36] . 

To benchmark the different techniques, four objectives (each 

ith their own criteria, Section 3.1 ), underpinned by the expert 

udgment of the ICES WGML, were set up that matched the ex- 

ectations of the desired technology for seafloor plastic litter de- 

ection: 

1. Identification and differentiation of plastic litter 

2. Spatial coverage of detection techniques 

3. Detection size range of detection techniques 

4. Artificial intelligence for plastic detection 

The implementation of the objectives by the different tech- 

iques was subsequently examined based on the established 

nowledge base, and, in the absence of literature-based informa- 

ion, assessed by expert judgment. This allowed determination and 

omparison of the different state-of-the-art detection techniques. A 

olor code was allocated for each technique in combination with a 

pecific platform (e.g. remotely operated vehicle [ROV], unmanned 

urface vehicle [USV], autonomous underwater vehicle [AUV], ship, 

tc.) to represent the implementation of the objective. This was 

lso conducted for the technique in general without it being linked 

o a specific platform. The same color code was used for all ob- 

ectives with green indicating a complete implementation of the 

bjective, orange representing a strong implementation of the ob- 

ective and red indicating that only a small part of an objective is 

overed. 

In addition to the objectives, the plastic monitoring TRL scale 

ublished by Aliani et al. [38] was used to assess each detection 

echnique. The TRL indicates in which phase a technology is sit- 

ated in the framework of plastic monitoring. The exact TRLs are 

isted below and illustrated in Fig. A.1 of Appendix A [38] : 

Basic research (TRL 1–3) 

1. Basic principles presented 

2. Concept and application formulation 

3. Proof of concept / Feasibility 

Applied research (TRL 4–5) 

4. Method validation in the laboratory / Experimental pilot 

5. Method validation in relevant environment / Demonstration pi- 

lot 

Development (TRL 6–7) 

6. Demonstration in relevant environment / Record(s) of success- 

ful monitoring 

7. Operational in environment / Widely applied in field studies 

Implementation (TRL 8–9) 

8. Method complete and qualified / Records of successful monitor- 

ing 

9. Standard protocol enforced and applied / Widely used for mon- 

itoring operations 

Lastly, a decision tool was established to determine the most 

uitable technique for a range of different situations. The decision 
4 
ool is a scheme based on three questions, and their possible an- 

wers, which correspond with the first three objectives of this re- 

iew paper. 

1. What differentiation level of plastic litter is needed? (Objective 

1) 

a. Material level 

b. Polymer level 

2. What area should be covered? (Objective 2) 

a. < 1 km ²
b. > 1 km ²

3. What plastic object sizes do you want to detect? (Objective 3) 

a. Microplastics 

b. Mesoplastics 

c. Macroplastics 

d. Widest possible size range 

For each combination of answers the suitable techniques were 

erified based on the established dataset. The implementation of 

he objectives was then used as a step-by-step process to ex- 

lude unsuitable techniques. The remaining techniques were sub- 

equently placed in the respective boxes of the scheme to pro- 

ide the different possibilities. In several scenarios multiple tech- 

iques can be put forward. However, the decision tool does not 

onvey preferences. Depending on the region or situation, a dif- 

erent detection technique may be identified as most favorable. To 

nhance the use of the tool, three example scenarios (i.e. Southern 

orth Sea region, the Azores and Central Arctic Ocean) are used 

s demonstration regions, with each being completed by experts 

rom Flanders Research Institute for Agriculture, Fisheries and Food 

ILVO), University of the Azores (OKEANOS) and Norwegian Insti- 

ute for Water Research (NIVA), respectively. 

. Results 

Several acoustic and electromagnetic techniques may be eligi- 

le for plastic detection in the marine environment ( Fig. 2 ). These 

echniques can be divided into two different approaches: (i) exist- 

ng marine monitoring equipment (e.g. sonar systems) that might 

eed some modifications to meet the requirements for plastic de- 

ection, and (ii) less elaborated techniques that have a documented 

apacity to differentiate plastic under laboratory conditions, but 

ight need adjustments to be deployable in the marine environ- 

ent (e.g. spectral imaging techniques). In both cases, the key 

haracteristics of these techniques, from the perspective of usabil- 

ty for this study, were collated and listed in Table B.1 of Ap- 

endix B. 

.1. Objectives and criteria toward innovation 

Establishing a robust and accurate technique for plastic litter 

etection on the seafloor is a step-by-step process that must meet 

everal requirements. To work toward this innovation, several ap- 

roaches are possible, with each having their own advantages and 

imitations. An overview of the intended objectives, based on the 

pplication requirements and assessment criteria, as well as their 

mplementation through the current detection techniques is there- 

ore provided. The objectives represent crucial aspects of a mon- 

toring method and are therefore stepping-stones toward innova- 

ion. 

.1.1. Objective 1. Identification and differentiation of plastic litter in 

he marine environment 

• Criteria 1.1. Differentiation between object and environment 

To be eligible for seafloor detection, a technique or a combi- 

ation of techniques needs to be capable of differentiating plastic 
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Fig. 2. Conceptual overview of the different technologies that are suitable or have potential to detect plastic on the seafloor. 
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tems (e.g. tires, plastic bottles, fishing nets, etc.) from natural fea- 

ures present in the environment (e.g. rocks, sediment, fish, etc.). 

onar systems generate an image based on the reflection of sound 

aves. These images show different shapes along the seafloor that 

an be identified as objects and classified by processing algorithms 

43 , 44] . Spectral imaging systems collect a wide spectrum of re- 

ected light to obtain both imaging and spectroscopic data for 

heir surroundings. Given that these spectroscopic data directly 

orrespond to the material type of an object, a more precise classi- 

cation is possible (e.g. [45–47] ). Capacitive proximity sensors use 

 different method than the ones above. This type of sensor detects 

 target based on the permittivity of each material and is widely 

sed in the food industry [48] . 

• Criteria 1.2. Differentiation between plastic and other litter ob- 

jects 

In marine litter monitoring, the differentiation of plastic ob- 

ects from other materials (e.g. glass or metal objects) is required 

 Fig. 3 ). This material classification can be directly for the gener- 

ted outcome (e.g. hyperspectral imaging, [45 , 47] ) or indirectly by 

rocessing the generated image with artificial intelligence (AI) (e.g. 

onar images, [43 , 44] ). Generating data that are directly linked to 

he chemical composition of an object may enable a more accu- 

ate classification. Techniques where the outcome needs additional 
5 
rocessing by AI may miss certain objects or even count/include 

ncorrect objects (e.g. biota or rocks), which will result in a lower 

uccess rate. Furthermore, algorithms that classify objects based 

n their shape may not consider fragmented objects that lack the 

haracteristic features associated with pristine consumer products. 

dditional challenges, such as biofouling, partial burial and accu- 

ulation, may also influence the success rate of detection systems 

49] . 

• Criteria 1.3. Differentiation between synthetic polymer types 

Some spectral imaging technologies can identify individual syn- 

hetic polymer types (i.e. PET, PVC, PP, etc.) ( Fig. 3 ) [45–47 , 50] . Un-

il now, testing of these methods has only been performed under 

aboratory conditions [45 , 47 , 50] . Furthermore, these detailed clas- 

ification levels are not yet mandatory, which has implications for 

onitoring and reporting obligations [27 , 51] . 

.1.2. Objective 2. Spatial coverage 

When reflecting over future monitoring and research needs, it 

s important to consider the spatial coverage of detection systems 

 Fig. 4 ), where the extent of spatial coverage is subject to a com-

ination of the method’s display resolution and the distance to the 

arget [43] . The display resolution defines the dimensions of a pixel 

n an obtained image and therefore the precision of an individ- 
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Fig. 3. Material differentiation capacity for each seafloor detection technique. (Green: positive differentiation, Blue: differentiation only based on the shape of target, Orange: 

not tested, Red: no differentiation). 

Fig. 4. Detection size range and spatial coverage (in km ²/h) by seafloor detection technique. Blue bars show the detection range reported in literature to date. Orange bars 

show the possible extension of size range based on expert judgement of the co-authors. 
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al technique. Techniques that can operate further away from a 

arget (e.g. sonar systems, [29] ), will generally cover larger areas 

han short-range technologies (e.g. hyperspectral imaging, [45 , 47] ). 

urthermore, the method’s display resolution will commonly be 

igher for systems operating close to the target. The synthetic 

perture sonar (SAS), however, represents an exception, as it com- 

ines a high spatial coverage due to its ability to operate further 
6 
rom the target with a high resolution by virtue of a strong pro- 

essing capacity [29 , 52–55] . 

An additional factor that affects the spatial coverage of a sen- 

or is the platform it operates from. This platform can be ROVs, 

SVs, AUVs, ships, towed systems, etc. However, not all sensors 

an be integrated in every platform ( Fig. 5 ), resulting in various 

overage ranges for different combinations of detection techniques 
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Fig. 5. Cost of purchase and compatibility of detection techniques with marine platforms based on literature data and expert judgement. ( €: < 10.0 0 0 euro, €€: 10.0 0 0–

10 0.0 0 0 euro, €€€: > 10 0.0 0 0 euro; and shallow waters: < 200 m, deep waters: > 200 m). 
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nd platforms. Finally, the coverage area also depends on the costs 

f operation, the monitoring budget, and the logistics of a specific 

eployment. 

.1.3. Objective 3. Detection size range 

The detection size range of a technique is a decisive objective 

n selecting the right system for monitoring plastic litter. Unlike 

he display resolution, the detection size range describes the min- 

mum and maximum size of an object that can be detected and 

dentified. The detection size range is, therefore, commonly larger 

han the display resolution. Depending on the size range of plas- 

ic items targeted in an individual study or monitoring campaign, 

 particular technique or a combination of techniques may be re- 

uired for detection. In Fig. 4, the reported sizes of the detected 

bjects of each reviewed study ( Table B.1 , Appendix B) are plotted 

eparately for each detection system (blue bars). In addition, the 

heoretical extension of the detection size range was added (or- 

nge bars) based on literature findings and expert judgment. 

For each technique, different object sizes can be detected with 

he correct adjustment of the sensor [29] , acknowledging that the 

ntire size range of plastic objects may not always be detected 

ith one specific adjustment. This also means that the additional 

heoretical range ( Fig. 4 , orange bars) may require a certain ad- 

ustment or modification. It is important to note that the size 

requency distribution approach proposed by Kooi and Koelmans 
7 
56] is not yet clarified for seafloor plastics. Based on such distri- 

utions, one could focus on a specific/defined size range, and then 

xtrapolate towards larger or smaller plastic objects to provide an 

stimate of the entire size distribution. However, this requires an 

xisting understanding of the average frequency with which plastic 

bjects from specific size classes occur in the environment. 

As for spatial coverage, the method’s display resolution is an 

mportant factor for the detection size range of a technique. The 

igher the resolution of the sensor, the more detailed the devel- 

ped images will be and the easier (small) objects can be detected 

r even identified. However, a higher resolution typically implies 

n increase in the time required for data collection and analysis, 

hich increases the overall cost of the operation. Furthermore, the 

istance to the target and the visibility in the water column also 

ave an influence on the detection size range. 

.1.4. Objective 4. Artificial intelligence for plastic detection 

Innovation in the field of seafloor plastic detection is often 

riven by the need for more labor- and cost-efficient methodolo- 

ies. Therefore, investments in autonomous in situ detection tech- 

iques and even autonomous platforms are essential [37] . The use 

f smart devices may enable immediate and remote identification 

f plastics [57] , allowing fast state-of-the-art assessments and swift 

ction against plastic accumulation on the seafloor. Automatic ob- 

ect recognition and/or material identification by the system is 
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herefore desirable. Besides generating an image or data outcome 

y using a sensor, the detection systems need to process and an- 

lyze the data. In general, this can be done by various machine 

earning algorithms (i.e. support vector machine (SVM), conven- 

ional neural network (CNN), etc.) and several studies have already 

ested the feasibility of these algorithms for seafloor plastic detec- 

ion ( Table B.2 , Appendix B). For example, Valdenegro [43] con- 

luded that Deep Neural Networks are a sufficiently thorough tech- 

ique to survey and detect marine litter on the bottom of wa- 

er bodies from Forward-Looking Sonar (FLS) images. Aleem et al. 

44] even achieved a success rate of 96% with their proposed deep 

earning algorithm for FLS images. Furthermore, such algorithms 

ave also been demonstrated to be applicable for images from a 

owed camera, showing similar success rates (e.g. [58 , 59] ). How- 

ver, there remains a degree of uncertainty about whether these 

lgorithms are sufficiently capable of detecting fragmented objects. 

ragments of ’known’ objects (e.g. bottles, tires etc.) that retain suf- 

cient characteristics of the original object can be more readily de- 

ected, but this reduces as the fragments become smaller and/or 

ontain fewer diagnostic characteristics. 

.2. Compatible platforms for detection techniques 

In situ identification and quantification of marine plastics re- 

uires the sensor array or instrument to operate under marine 

onditions [42] , often in combination with a dedicated platform 

e.g. USV, AUV, ROV, ships, and towed systems). A first overview 

n existing methods, specifically to locate derelict pot items, was 

ompleted as part of a dedicated workshop in 2009 organized by 

he US National Oceanic and Atmospheric Administration (NOAA) 

60] . 

Subject to the scale, region and budget of a monitoring or re- 

earch activity, a certain platform may be favored, but not always 

ompatible with the intended detection technique. Based on the 

nalyzed studies in this review and the expert judgement of the 

o-authors, Fig. 5 provides an overview of the platforms that can 

e used for each detection technique. Depending on the distance 

eeded between the system and the target – and therefore the 

ater depth of the sampling site – a sensor can operate from a 

OV or AUV for short-range detection systems (i.e. 2D imaging 

onars, hyperspectral imaging systems), and from a ship, USV, AUV 

r towed system for long-range systems (i.e. multibeam sonar sys- 

em (MBSS), SSS, SAS). In shallow waters ( < 200 m), it might even

e possible to use surface vessels for short-range sensors, i.e. 2D 

maging sonar on a USV [57] . In deep waters ( > 200 m), a ROV,

UV or towed system is required to map the seafloor in sufficient 

etail [61] . Consequently, there are fewer detection possibilities in 

eep waters as not all techniques are suited for these platforms 

 Fig. 5 ). 

In addition, some platforms (i.e. AUV and USV) provide a certain 

evel of autonomy and can therefore reduce the labor-intensity of 

he sampling process. Furthermore, the cost of the different plat- 

orms is of importance. In its guidance, the EU MSFD Technical 

roup on Marine Litter analyzed the costs of monitoring the differ- 

nt compartments of the environment through diving, trawling and 

OVs [22] . Finally, the use of multiple, complementary monitoring 

ystems in a synergistic approach implemented at sufficient spatial 

nd temporal scales could contribute to a better understanding of 

he scale of the problem. 

.3. Cost of purchase 

Besides the intrinsic objectives and requirements, financial fac- 

ors can also influence the choice of a particular detection tech- 

ique. Both operating and non-operating expenses (e.g. mainte- 

ance) should be considered when an overall cost is estimated 
8

62] . Given the complexity of a cost-effectiveness analysis and the 

cope of this review, however, only the cost of purchasing a specific 

etection technique is reviewed. To increase the interpretability of 

he deployment possibilities of the techniques, three categories for 

ost of purchase were determined and added to Fig. 5 ; i.e. low ( €,
 10.0 0 0 euro), medium ( €€, 10.0 0 0 - 10 0.0 0 0 euro) and high ( €€€,
 10 0.0 0 0 euro) cost. 

.4. State-of-the-art detection techniques 

Examining the current state of each detection technique for re- 

ponding to the different objectives allows for benchmarking and 

efining the required innovation pathways. Each technique can ful- 

ll these objectives differently, showing its strengths and weak- 

esses, as well as its suitability for plastic monitoring in a marine 

nvironment ( Fig. 6 ). Fig. 6 uses a specific color for each objective, 

ith green indicating a complete implementation of the objective, 

range representing an almost complete realization of the objective 

nd red indicating that only a small part of an objective is covered. 

s a result, whenever a technique is awarded ’green’ for a certain 

bjective, it will be applicable in diverse cases (e.g. differentiation 

t the polymer level and material level, capable of covering both 

mall and large areas, or detecting both micro- and macroplastics). 

n contrast to monitoring data produced by trawling, these digital 

nalysis techniques will allow a revision of data if any improve- 

ents in software processing tools for data analysis are developed 

n the future. 

. Discussion 

.1. Potential detection techniques for the future monitoring of plastic 

eafloor litter 

.1.1. Sonar systems 

Acoustic sonar systems are typically capable of differentiating 

itter objects from the general natural environment, but cannot 

lassify objects based on their material type (Objective 1, Fig. 3 ). 

owever, studies have shown that the use of AI (Objective 4, 

able B.2 , Appendix B) offers the possibility to classify certain 

itter objects based on their shape [29 , 43 , 44 , 63–67] . Nonetheless,

his indirect classification does not consider fragmented litter 

bjects. Hence, there is a high probability that a large proportion 

f litter objects would be ignored or misclassified using this 

echnique. In addition, trying to decrease the number of missed 

argets will increase the false alarm rate. To minimize this effect, 

onsiderable training datasets would be needed to improve the 

ccuracy and reliability of the AI for litter detection based on 

coustic sonar systems. 

The actual detection size range of acoustic techniques is rela- 

ively large compared to other methods (Objective 3, Fig. 4 ), rang- 

ng from a lower limit of 1–2 cm for 2D imaging sonars and SAS, 

o an upper limit of several meters. To reach these lower limits, 

owever, ideal circumstances are required. In the case of a 2D 

maging sonar, this requires the use of a high-resolution model 

e.g. Blueprint Oculus, Teledyne Blueview or Sound Metrics ARIS), 

 short distance to the target (0.1 - 1 m), and a down angle 

f 15 ° [36 , 68] . For a SAS system, a stable platform (towed sys-

em or AUV), precise micro-navigation, a relatively low speed ( < 5 

nots) and a long transducer are required to reach the lower limit. 

owever, micro- and mesoplastics are untraceable with sonar sys- 

ems. In addition, the maximum distance to the target, and there- 

ore the spatial coverage range, decreases when the detection of 

maller objects is desired [43] . Nonetheless, these methods are 

ighly suited to the identification of larger objects and cover larger 

reas (Objective 2, Fig. 4 ) compared to electromagnetic techniques, 

hus allowing large-scale monitoring activities. The 2D imaging 
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Fig. 6. The implementation of objectives and Technology Readiness Level (TRL) of the different detection techniques based on literature and expert judgement, with the 

objectives being 1) Identification and differentiation of plastic litter in a marine environment, 2) Spatial coverage of detection techniques, 3) Detection size range of detection 

techniques, and 4) Artificial intelligence for plastic detection; with green indicating a complete implementation of the objective, orange representing an almost complete 

realization of the objective and red indicating that only a small part of an objective is covered. Definitions of each TRL level are presented in Fig. A.1 of Appendix A [38] . 

9 
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Fig. 7. Decision tool: suitable detection techniques for seafloor litter assessments in different scenarios. Green border: classification of items possible based on Artificial 

Intelligence (Objective 4), blue border: material or polymer level, red border: combination not possible, dashed border: not applicable in turbid waters. 
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onars achieved the largest detection size range (objects greater 

han 1 cm) of the sonar systems, while the SAS demonstrated the 

ighest spatial coverage with 2.25 km ²/h. Given that SAS also has 

 large detection size range (objects greater than 2 cm), it makes 

t the most promising sonar system for seafloor plastic detection 

 Fig. 4 ) [29 , 52 , 55] . 

Sonar systems are easily compatible with different platforms 

 Fig. 5 ), providing a wide range of possibilities for in situ detec- 

ion. Given their high TRL, sonar systems are easily deployable in 

everal scenarios. Based on the available resources and the dis- 

ersed importance of the different objectives in a given scenario 

 Figs. 6 and 7 ), different sonar systems may be eligible for plastic

onitoring on the seafloor. Currently, SAS has been demonstrated 

o be the most promising technique for monitoring plastic seafloor 

itter, followed by side scan sonars, 2D imaging sonars and single 

eam sonars. For mapping marine plastic litter in sufficient detail 

n deep areas with a rocky, rough, or steep seabed, a 2D imaging 

onar mounted on a ROV may be preferable. 

.1.2. Spectral imaging systems 

Hyperspectral and X-ray imaging techniques can differentiate 

nd identify objects on a synthetic polymer level, but currently 

ack development for in situ applications underwater (Objective 

, Fig. 3 ). While, Huang et al. [47] have shown the potential of

nderwater hyperspectral imaging for in situ detection of small 

lastic particles, further research must determine the suitability 

f these imaging techniques in marine environments. Pakhomova 

t al. [69] demonstrated the possibility of using a miniaturized 

andheld near-infrared spectrometer (MicroNIR) for on-site identi- 

cation of different plastic polymers. Nonetheless, when analyzing 

lastic items from the seafloor a preliminary extraction step from 

he sample matrix is still required owing to the presence of bio- 

ouling on the surface of the plastic object that will interfere with 

he analysis. Furthermore, the short distance required between the 

ystem and the target (20–30 cm) means that the spatial coverage 

s low compared to other detection methods (Objective 2, Fig. 4 ) 

47] . Therefore, these systems are only applicable with platforms 
10 
hat can come within less than 0.5 m of the seafloor (i.e. ROVs). 

yperspectral imaging techniques have a high detection size range 

Objective 3, Fig. 4 ) but are mainly focused on the smaller ob- 

ects (1 mm – 15 cm). In contrast, the broad detection size range 

f ground penetrating radar (GPR), which has already been tested 

n the marine environment [70] , is more suited to the identifica- 

ion of larger-sized objects (7 – 100 cm). However, the differentia- 

ion of GPR is less accurate than hyperspectral imaging techniques 

 Fig. 3 ). Finally, portable Raman and FTIR spectroscopy instruments 

ave been shown to meet the objectives at a comparable level to 

he hyperspectral imaging techniques, but are less suitable for in 

itu monitoring because water absorbs IR and measurements re- 

uire the separation and clean-up of microplastics from the matrix 

rior to analysis [46] . Nonetheless, Iri et al. [71] have reported the 

rst steps in the development of a portable Raman sensor capable 

f detecting microplastics in a water-filled quartz cuvette. More- 

ver, a recent study developed an in situ underwater Raman sys- 

em compatible with a ROV that could be used for the detection of 

eafloor objects [72] . 

Based on their characteristics, hyperspectral imaging techniques 

re complementary to sonar systems ( Figs. 4 and 6 ). Hence, the 

ost complete approach to monitor the seafloor may be the com- 

ination of a sonar system (i.e. SAS or 2D imaging sonars) and 

yperspectral imaging. For example, a 2D imaging sonar deployed 

n a ROV can scavenge the seafloor, and subsequently, hyperspec- 

ral imaging can be conducted to gain more detail once an object 

s detected to gain more detail. Alternatively, an area can first be 

creened by a SAS-equipped AUV, allowing an area of interest to 

e selected based on the outcome and then subsequently screened 

sing hyperspectral imaging. 

.1.3. Capacitance systems 

Capacitive proximity sensors are widely used in the food pro- 

essing industry to detect dielectric materials like liquids, glass or 

lastics [73] . Although this sensor is applicable to underwater con- 

itions, little is known about the possibilities of these sensors in 

erms of underwater plastic detection [74 , 75] . This review indicates 
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hat capacitive sensors can classify objects based on their material 

ype, if they are larger than 2 cm ( Fig. 6 ). Given the short dis-

ance required between the sensor and the object, however, ca- 

acitance systems would only be able to document smaller ma- 

ine areas when operated from a ROV. Further research is recom- 

ended to determine the exact boundaries of such systems and 

heir potential future applications. Similarly, examining the possi- 

ilities of other detection techniques from terrestrial food or waste 

reatment industries may create new opportunities for the moni- 

oring of plastic seafloor litter. 

.1.4. Optical sensing systems 

Conventional camera systems are widely used as a detection 

ethod in the framework of plastic monitoring (e.g. [12 , 14 , 58 , 76–

8] ). This optical sensing system is affordable, easy to deploy and 

sable in rough terrains and remote areas when installed on a ROV, 

UV or towed system. However, this system is highly dependent 

n water turbidity [78] , only being usable in clear waters. To date, 

mage analysis is predominantly conducted manually, but more re- 

ent automation of image annotation using machine learning al- 

orithms has proved successful for classifying objects (Objectives 1 

nd 4, Fig. 3 and Table B.2 , Appendix B) and is therefore capable of

ifferentiating some plastic objects from other objects. In addition, 

amera systems can detect objects starting from just a couple of 

entimeters and, when deployed on a USV, AUV or towed mecha- 

ism, can cover a relatively large area of up to 0.1125 km ²/h (Objec-

ives 2 and 3, Fig. 4 ) [58] . In the LIFE DEBAG project, for example,

 seafloor area of 83 km ² was covered with a towed underwater 

amera [13] . It is important to note that visual detection can pro- 

ide additional information about the local environmental and bi- 

logical setting. In this sense, optical systems can provide valuable 

upporting information that can be used to help determine the im- 

act of marine litter on biota [79] . Recently, underwater polariza- 

ion camera systems have been put forward to maximize object 

etection [80 , 81] . Polarization differences allow better distinction 

etween objects and enhance image quality in turbid waters [81] . 

his image restoration technique can therefore be relevant in some 

ases as an additional step between imaging and image processing. 

Other optical sensing techniques rely on laser light and pho- 

oplethysmograms (PPG) to detect underwater objects [37 , 82–87] . 

oth technologies can classify objects based on their material and 

ence differentiate plastic objects from non-plastic objects (Objec- 

ive 1, Fig. 3 ). In addition, the detection size range is large (2 mm

o multiple meters) compared to other detection methods (Objec- 

ive 3, Fig. 4 ). However, additional scientific evidence is needed to 

onfirm the complete range in both cases. Given the short distance 

equired between these optics and the target, the spatial coverage 

f these systems is small (Objective 2, Fig. 6 ). Nonetheless, these 

ystems demonstrate great potential for further examination con- 

idering their low-cost (i.e. PPG sensor [87] ) and efficiency (i.e. 

aser system [86] ). 

.2. Decision tool and scenarios 

To integrate all information gathered on the detection technolo- 

ies and to increase the applicability of this data, a decision tool 

as been created ( Fig. 7 ). This decision tool enables easier iden- 

ification of the most appropriate detection techniques for a cer- 

ain region or scenario. To clarify its methodology, three different 

eafloor litter assessment scenarios are demonstrated: (i) Southern 

orth Sea, (ii) Arctic area, and (iii) the Azores. The decision tool is 

ased on the findings from the state-of-the-art ( Fig. 6 ). 

Scenario 1: The Southern North Sea is typified by shallow 

 < 40 m) and turbid waters, with currents dominated by semi- 

iurnal (double) tides. The seabed relief is characterized by a com- 

lex system of gullies and sandbanks. Currently, seafloor litter in 
11 
he North Sea is intensively monitored by registering marine lit- 

er collected as bycatch in the net during scientific fisheries sur- 

eys, especially the International Bottom Trawl Survey (IBTS) and 

he Beam Trawl Survey (BTS) coordinated by ICES. Given the draw- 

acks associated with this way of collecting meso– and macrolit- 

er ( > 2.5 cm), underwater technologies might provide a promis- 

ng alternative. In this scenario, litter registration should optimally 

ollow the categorization as described in the ICES Times protocol 

27] and enable identification of the material type of the litter ob- 

ects. A trawl track covers on average 1.47 ha with 5 to 10 tows 

eing conducted on an average sampling day. The covered surface 

rea during a monitoring campaign day is therefore between 15 

nd 30 ha. As a full monitoring campaign requires several days, 

echniques with a large spatial coverage are considered necessary. 

ased on this information, the decision tool recommends the use 

f SAS for this seafloor litter assessment. This system is compatible 

ith an AUV or can be towed behind a surface vehicle. If the avail-

ble budget does not allow for the purchase of an expensive SAS 

ystem ( Fig. 5 ), a SSS can be considered a good alternative, with

he small trade-off that only objects greater than 5 cm will be de- 

ected ( Fig. 4 ). A camera system is not applicable because of the 

igh level of turbidity in this area, and a MBSS is as expensive as 

 SAS ( Fig. 5 ), but less suitable for plastic detection ( Fig. 6 ). 

Scenario 2: The Azores is a group of volcanic islands emerging 

rom the mid-Atlantic ridge. The Azorean Exclusive Economic Zone 

EEZ) comprises an area of approximately 1 million km 

2 with an 

verage depth of about 30 0 0 m. The seafloor topography is very ir- 

egular with narrow island shelves and steep slopes made of hard 

ubstrates, as well as other features such as seamounts and banks. 

he seafloor communities within the Azores EEZ are rich in bio- 

iversity and consist of complex deep-sea habitats which include 

ydrothermal vents, coral gardens and sponge grounds. In this sce- 

ario, the aim is to develop a monitoring program of seafloor 

itter on selected marine litter hotspots ( < 1 km ²) along the is- 

and shelves and on offshore seamounts at a depth of 50–800 m. 

iven the seafloor topography, macroplastic monitoring activities 

 > 10 cm) can only be performed with a ROV, AUV or a towed

ystem. To perform this litter assessment, the decision tool indi- 

ates that most detection techniques would be suitable. Based on 

ig. 6 , the most developed technologies are the camera, 2D imag- 

ng sonar, SAS, SSS and GPR. When operating on rough terrain, a 

amera or 2D imaging sonar operating from a ROV will be most 

uitable, while monitoring areas with a flatter seabed will be faster 

ith a towed camera or sonar system. 

Scenario 3: The Central Arctic Ocean ecoregion encompasses 

he area of the “Central Arctic and Canadian High Arctic–North 

reenland” according to the Large Marine Ecosystems [88 , 89] . This 

s mostly a high seas area, remote from landmasses. The Arctic 

egion has a large depth range, consisting of two principle deep 

asins (Eurasian Basin and Amerasian Basin, between 3800 and 

500 m deep), divided by the Lomonosov Ridge (1300 m deep 

hich rises 30 0 0 m above the seafloor), as well as slopes at 500 m,

nd shallower shelf areas which boarder the Beaufort/Chukchi and 

ast Siberian/Laptev seas. Reports from both AMAP (Arctic Moni- 

oring and Assessment Programme) and PAME (Protection of the 

rctic Marine Environment) called for work to address the trans- 

ort, pathways, fate and effect of litter and plastics [90 , 91] . AMAP 

ecommends that methods should be refined for future source and 

urveillance monitoring as sampling and measurement develop- 

ent is needed. Furthermore, the remoteness and climate of the 

rctic poses challenges for establishing monitoring programs [92] . 

s suggested by PAME [91] , this type of monitoring should be em- 

loyed in regions where abandoned, lost or discarded fishing gear 

ALDFG) that is > 10 cm may be concentrated ( > 1 km ²). Based on

his, the decision tool recommends the use of a camera or a sonar 

ystem (SAS, SSS or MBSS) for a seafloor litter assessment targeting 
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LDFG ( > 10 cm). Given the depth range and surface area in the 

elected region, an SAS or SSS would be the most advantageous 

hoice. As the monitoring area is large and deep, a towed system 

r an AUV would be the most convenient platforms. 

. Conclusions 

The current review has identified 14 technologies that are po- 

entially suitable for in situ plastic detection in marine environ- 

ents. However, most of these technologies are currently at low- 

iddle TRLs, requiring several more development, testing and 

ommercialization steps before they can be applied effectively 

n marine field conditions and achieve a level of identification 

nd quantification that is comparable to the existing seafloor lit- 

er monitoring programs. Although each technique has advantages 

nd disadvantages when applied for detecting plastic litter on the 

eafloor, all provide a level of information that can be relevant for 

nvironmental status assessments and for guiding management ac- 

ions to tackle plastic pollution. Several objectives were defined 

n this study to determine the TRL of each technology and sub- 

equently which would represent the most suitable for different 

cenarios or regions. 

For technologies targeting micro- and mesoplastics, further re- 

earch is urgently needed. In general, sonar systems (e.g. 2D imag- 

ng sonars) and optical sensing systems (e.g. camera) have the 

ighest TRL for in situ meso– and macroplastic detection. SAS has 

een shown to be the most promising for seafloor plastic detec- 

ion given its differentiation possibilities, along with the broad de- 

ection size range and spatial coverage. Spectral imaging and ca- 

acitance systems look promising at the proof-of-concept level, but 

urrently lack validation in an operational environment. 

Nonetheless, there is an urgent need to move away from cur- 

ent seafloor litter monitoring approaches based on trawls linked 

o fish stock assessments. New, less invasive, and environmentally 

amaging methods must form the basis of this shift. This review 

ndicates that the most suitable system is often very scenario- 

pecific and, therefore, demands investment in more than one spe- 

ific group of technologies. Given that current environmental mon- 

toring programs do not focus on polymer specific plastics, several 
12 
echnologies (e.g. spectral imaging techniques) may be of less in- 

erest as a stand-alone technique. To enable the comparison of data 

enerated by these different technologies as they develop further, 

here is a need for harmonization of the categories of seafloor lit- 

er items and units. These technologies, alone or in combination, 

ave the potential to contribute to the establishment of more ro- 

ust global environmental indicators and monitoring programs for 

lastic pollution. The monitoring, research and regulatory commu- 

ities need to view such technologies as the future for marine lit- 

er monitoring and already start to develop a road map for their 

armonization, validation, approval and inclusion in official moni- 

oring programs. 
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n of plastic analysis procedures for use in monitoring [38] . 
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Fig. A1. Technology Readiness Level (TRL) for evaluatio
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A

T

A

Detection 

size range 

Spatial 

coverage 

Processing algorithms Number of 

publications 

Literature 

SONAR 

> 2 m 0.097 - 0.728 

km ²/h 
4 [29 , 36 , 93 , 94] 

 > 1 cm 0.073 km ²/h Faster-RCNN, VGG-16 and 

ResNet-50, CNN-Softmax, 

CNN-SVM, RBoxNet, 

YOLOv2, RCNN, RRPN, 

MRF-Net, CenterNet-dla, 

YOLOv3, RFBNet, SSD300, 

MAFR-TM, MS-10 0 0 

20 

[29 , 36 , 43 , 44 , 57 , 

63–68 , 95–103] 

> 5 cm 0.125 km ²/h Radial Basis Function 

Neural Network (RBFNN), 

Spatial variability 

analysis (SVA), CSS, MRF, 

kernel classifier, SVM, 

CNN, unnamed algorithm 

14 

[29 , 55 , 57 , 68 , 104–

113] 

> 2 cm 1.428 - 2.25 

km ²/h 
SURF, NSEM, CNN, 

unnamed algorithm 

11 [29 , 52–55 , 57 , 

64 , 95 , 113–115] 

> 8 cm K-Means clustering 

algorithm 

2 [116 , 117] 

SPECTRAL IMAGING 

1 - 5 mm SVM (e.g. K-PCA), NN, 

L S-SVM, PL S-DA, Spectral 

angle mapper (SAM), ML 

7 [45 , 50 , 69 , 118–

121] 

1 - 15 cm SVM (e.g. k-PCA), NN, 

Partial least 

squares-discriminant 

analysis 

(PLS-DA), Mahalanobis 

distance (MD), SAM, 

Maximum likelihood 

(ML) 

7 [45 , 50 , 69 , 118–

121] 

1 mm - 2.5 

cm 

4 [46 , 71 , 72 , 122] 

> 1 mm 3 [123–125] 

10 - 100 cm 2 [70 , 126] 

CAPACITANCE 

> 2 cm 3 [48 , 74 , 75] 

OPTICAL SENSING 

> + - 10 cm 0.001 - 0.1125 

km ²/h 
CNN (Mask R-CNN, 

YOLOv2, Tiny-YOLO, 

Faster R-CNN, SSD, CNN, 

ResNet50-YOLOv3, 

YOLOv4, 

InceptionResNetV2), 

SURF, Iterative Closest 

Point (ICP), GLCM, DWT, 

SVM, LR, KNN, RF, NB 

29 [13 , 36 , 58 , 59 , 

76–78 , 80 , 81 , 

127–147] 

> 0.25 mm 9 [36 , 82–85 , 

148–151] 

2 mm - 4 

cm 

KNN, Random forest 2 [37 , 87] 
ppendix B 

able B1 

 subset of the collected data during this systematic review. 

Technique Detected material types Method 

resolution 

ACOUSTIC 

Multibeam sonar 

system (MBSS) 

Large pieces of macro 

litter (tires, metal plates) 

> 1 cm 

2D imaging sonar Metal (cans, hooks, 

pipes, etc.), plastic 

(bottles, pipes, etc.), 

rubber (tires), glass 

(bottles) and cardboard 

(drink cartons) 

0.23 - 10 cm

Side scan sonar (SSS) Large pieces of macro 

litter 

> 3 cm 

Synthetic aperture 

sonar (SAS) 

Plastics (pipes, cones, 

wedges), steel, rocks, 

macro litter 

> 1 cm 

Single beam sonar 

system (CHIRP 

modulated) 

Plastic (Bottles, cups, 

wrapper, containers), 

rubber, metal (cans) 

> 1 cm 

ELECTROMAGNETIC 

VIS Hyperspectral 

imaging 

Plastics (PS, PET, PA, 

PBMA, PE, PP), metal, 

rubber, fabric, rock, glass 

> 0.2 mm 

NIR Hyperspectral 

imaging 

Plastics (PE, PS, PP, PET, 

PVC, PA, PC, PUR), 

metals, rubber, fabric, 

rock, glass 

> 0.2 mm 

Raman & FTIR 

spectroscopy 

Plastics (HDPE, LDPE, PP, 

PS, PET) 

> 1 mm 

X-ray imaging Plastics (PVC, PTFE, 

PET,PC, HDPE, LDPE), 

metals (ferrous and 

non-ferrous, stainless 

steel, aluminum), 

ceramic, glass, stone 

> 1 mm 

Ground penetrating 

radar (GPR) 

Plastic, glass, aluminum > 10 cm 

ELECTROMAGNETIC 

Capacitance proximity 

sensor 

Plastics, paper > 1 mm 

ELECTROMAGNETIC 

Camera Plastics (bottles, bags, 

cups, etc.), tires, fabric 

(nets), metal (cans, etc.) 

Laser detection (and 

LIDAR) 

Plastic (PET, LDPE), 

metals (steel), rubber, 

wood 

PPG sensor Plastic (PET, HDPE, PVC, 

LDPE, PP, PS) 

> 2 mm 
14 
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Table B2 

Existing processing algorithms for macroplastic detection by underwater technologies. 

Technique Processing algorithms Literature 

ACOUSTIC SONAR 

Multibeam sonar system 

(MBSS) 

2D imaging sonar Conventional neural networks (CNN) 

e.g. Fast R-CNN, Faster R-CNN, YOLO, YOLOv2, RBoxNet, RRPN, 

Mask-RRPN, FireNet-BN, SSD, CNN-Softmax, CNN-SVM, etc. 

[43 , 44 , 57 , 64 , 65 , 67 , 95 , 97–

102] 

Multilayer perceptrons (MLP) 

e.g. combinations of FC10, FC256, FC512, FC1024 

[43 , 65] 

Support vector machines (SVM) [43 , 95 , 100 , 101] 

Multiple receptive field network (MRF-Net) [66] 

Multiple-aspect fixed-range template matching (MAFR-TM) [63] 

Depth-first search (DFS) [103] 

Markov Random Field (MRF) [103] 

Otsu algorithm [103] 

C-means algorithm [103] 

Side scan sonar (SSS) Radial basis function neural network (RBFNN) [111] 

Spatial variability analysis (SVA) [105] 

Co-operating statistical snake model (CSS) [110] 

Markov random field model (MRF) [110] 

Unnamed detection algorithm [55 , 113] 

Kernel ridge regression classifier [106] 

Support vector machines (SVM) [108] 

Conventional neural networks (CNN) [107] 

Synthetic aperture sonar 

(SAS) 

Speed up robust feature algorithm (SURF) [54] 

Unnamed detection algorithm [55 , 113] 

Normalized shadow-echo matching (NSEM) [53] 

Conventional neural networks (CNN) [114 , 115] 

Single beam sonar system 

(CHIRP modulated) 

K-Means clustering algorithm [116 , 117] 

ELECTROMAGNETIC SPECTRAL IMAGING 

VIS Hyperspectral imaging Support vector machines (SVM) e.g. k-PCA [47 , 120 , 121 , 152] 

Neural networks (NN) [47 , 121 , 153] 

Least squares-support vector machine (LS-SVM) [47] 

Partial least squares-discriminant analysis (PLS-DA) [47 , 118] 

Spectral angle mapper (SAM) [121 , 154] 

Gaussian process or maximum likelihood (ML) [121 , 155] 

NIR Hyperspectral imaging Support vector machines (SVM) e.g. k-PCA [45 , 120 , 121 , 152] 

Neural networks (NN) [121 , 153] 

Partial least squares-discriminant analysis (PLS-DA) [118] 

Mahalanobis distance (MD) [45] 

Spectral angle mapper (SAM) [121] 

Gaussian process or maximum likelihood (ML) [45 , 121 , 155] 

Raman & FTIR 

spectroscopy 

X-ray imaging 

Ground penetrating radar 

(GPR) 

ELECTROMAGNETIC CAPACITANCE 

Capacitance proximity 

sensor 

ELECTROMAGNETIC OPTICAL SENSING 

Camera Conventional neural networks (CNN) 

e.g. Faster R-CNN, Mask R-CNN, SDD, YOLO, YOLOv2, YOLOv3, 

YOLOv4, ResNet50-YOLOv3, Tiny-YOLO, VGG, ResNet, 

InceptionResNetV2, Shuffle-Xception, MobileNet, LeNet, 

DenseNet, InceptionV3, ConvNet, etc. 

[58 , 59 , 127–129 , 131 , 132 , 

134 , 135 , 137 , 140 , 143–147] 

Gray level co-occurrence matrix (GLCM) [136] 

Discrete wavelet transform (DWT) [136] 

Support vector machine (SVM) [59] 

Logistic regression (LR) [59] 

K-nearest neighbor (KNN) [59] 

Random forest (RF) [59] 

Naïve bayes (NB) [59] 

Speed up robust feature algorithm (SURF) [138] 

Iterative Closest Point (ICP) [138] 

Laser detection (and 

LIDAR) 

PPG sensor K-nearest neighbor (KNN) [37 , 87] 

Random forest (RF) [37 , 87] 

15 
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