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Mosasaurid squamates were the dominant amniote predators in marine
ecosystems during most of the Late Cretaceous. Here, we use a suite of
biomechanically rooted, functionally descriptive ratios in a framework adapted
from population ecology to investigate how the morphofunctional disparity of
mosasaurids evolvedprior to theCretaceous–Palaeogene (K/Pg)massextinction.
Our results suggest that taxonomic turnover in mosasaurid community compo-
sition from Campanian to Maastrichtian is reflected by a notable global
increase in morphofunctional disparity, especially driving the North American
record. Ecomorphospace occupation becomes polarized during the late
Maastrichtian, with morphofunctional disparity plateauing in the Southern
Hemisphere and decreasing in the Northern Hemisphere. We show that these
changes are not strongly associated with mosasaurid size, but rather with the
functional capacitiesof their skulls.Ournovel approach indicates thatmosasaurid
morphofunctional disparity was in decline in multiple provincial communities
before theK/Pgmassextinction,highlighting region-specificpatternsofdisparity
evolution and the importance of assessing vertebrate extinctions both globally
and locally. Ecomorphological differentiation in mosasaurid communities,
coupled with declines in other formerly abundant marine reptile groups, indi-
cates widespread restructuring of higher trophic levels in marine food webs
was well underway when the K/Pg mass extinction took place.
1. Introduction
Marine ecosystems were dominated by reptiles during the entire Mesozoic [1–3].
Despite important turnovers at its base [4,5], the Late Cretaceous is no exception,
as mosasaurid squamates rapidly diversified [6,7], achieving a cosmopolitan
distribution prior to the Campanian (ca 83.5 Mya) [6,8], and colonized several eco-
logical guilds until their global extinction at the Cretaceous–Palaeogene (K/Pg)
boundary mass extinction (66 Mya) [7,9]. Prior to the Campanian, mosasaurid
taxonomic richness sawa steep increase [6], with speciation in theWestern Interior
Seaway (WIS) in central North America triggering a diversification during the so-
called ‘Niobraran Age’ [10,11]. High taxonomic richness persisted through the
mid-Campanian [12], where an abrupt taxonomic turnover is observed in central
NorthAmerica at the onset of the ‘NavesinkanAge’ [11]. The abrupt shift observed
in the WIS mosasaurid community is echoed in northern Europe [13], Japan
[14,15], South America [16], and to some extent in Oceania [16]. Mosasaurids
seem to maintain a high diversity throughout the Maastrichtian, yet with
varying assemblages [17]. Despite abundant remains, it is unknown whether
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Figure 1. Linear measurements of the mosasaurid skull were used for quantitative trait comparisons and disparity analyses. Measurements on the skull and exem-
plar dentition are shown: (a) skull in dorsal aspect, (b) dentition in lateral and occlusal aspect, and (c) skull in left lateral aspect. Filled squares denote
measurements taken perpendicular to one another or to the edge of a bone. Black lines describe measurements used for trait quantification; dotted grey lines
are used to clarify where specific measurements are recorded from and to. Functional traits and their ecomorphological importance are presented in table 1.
Linear measurements are detailed in the electronic supplementary material, figure S1. Models based on IRSNB R33b Prognathodon solvayi. (Online version in colour.)
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these local changes in taxonomic composition resulted in con-
striction of functional or ecomorphological variation of these
top oceanic predators on provincial or global scales leading
up to the end-Cretaceous mass extinction.

Here, we explore global mosasaurid ecomorphological vari-
ation throughout the final chapter of theMesozoic (84–66 Ma) at
both local and global scales, using a set of cranial measurements
including data from 37 high-precision three-dimensionalmodels
(figure 1). Because of the strong conservative forces governing
mosasaurid bauplan evolution (e.g. hydrodynamic performance
and phyletic heritage, e.g. [3]), we did not anticipate significant
temporal changes in craniodental morphofunctional disparity,
nor didwe expect declines in disparity leading to the end-Cretac-
eous (in line with previous studies on mosasaurid craniodental
disparity [3,7]). Yet, our results demonstrate polarization of eco-
morphospace occupation accompanied by significant decreases
in disparity, with the consequent restructuring of mosasaurid
communities just before the K/Pg mass extinction, most
notably in the Northern Hemisphere.
2. Methodology
(a) Taxonomic and morphological sampling
Skull and jaw material from 93 mosasaurid specimens were
collected, representing 56 species and all subfamilies and tribes
[6,18]. Previous studies have focussed on mosasaurid mandible
form and function [3,7]; here we chose an approach quantifying
function across the entire skull. Due to the current lack of a
phylogeny resolving the placement of all taxa represented in
this study, and because our analyses focus on global to regional
patterns, we opted against the inclusion of a composite phylo-
genetic tree in favour of broad-scale clade assignments. The
taxonomic composition of mosasaurid clades in this study fol-
lows the results of Simões et al. [18]; we consider halisaurines
as basal mosasaurids and treat Russellosaurina (including Tethy-
saurinae, Tylosaurinae, Plioplatecarpinae and Yaguarasaurinae)
and Mosasaurina (including Mosasaurini and Globidensini,
after [19]) as monophyletic groups. Morphometric information
was collected from two main sources: three-dimensional laser
and structured light surface scans, as well as photogrammetric
models, were the preferred methodology. Laser scanned
specimens were digitized using a Creaform HandySCAN 300
handheld laser scanner at resolution 0.2–0.5 mm; structured
light scanning was performed using an Artec Eva handheld scan-
ner, at resolution 0.5 mm; photogrammed models were captured
using a Nikon D3000 DSLR camera (burst mode with light-
ring), with three-dimensional models generated using Agisoft
Metashape 1.6.3., scaled in MeshLab 2020.06 [20]. Three-
dimensional data were supplemented with two-dimensional
published images and first-hand photographs (see electronic sup-
plementary material, Information S1: specimen list for metadata).
All three-dimensional models are available on MorphoSource
(project ID: 000398695).



Table 1. Functional traits derived from linear measurements of mosasaurid skulls and jaws. Definitions, calculations and diagrammatic representations for each
trait can be found in the electronic supplementary material, Information S3: functional ratios. % cov. = percentage of specimens represented by each trait.
Percentages in italics fall outside the completeness threshold of 40%.

character function % cov.

jaw depressor lever arm ratio proxy for jaw-opening mechanical advantage 77.2

jaw adductor lever arm ratio proxy for jaw-closing mechanical advantage 73.7

functional toothrow defines proportion of jaw used for prey capture/processing 89.5

jaw robusticity proxy for jaw bending resistance 85.9

supratemporal fenestra area cross-sectional area of jaw adductor muscles 77.2

longirostry defines hydrodynamic potential of pre-orbital snout 87.7

gullet size proxy for volume of water expulsion, prey size etc. 80.7

tooth crown shape proxy for tooth narrowing; hard versus soft food items 96.5

tooth blade shape describes dental compression; conical versus blade-like teeth 61.4

tooth crown curvature describes dental curvature 96.5

nares position proxy for ease of inhalation during steady-state swimming 78.9

relative orbit size defines importance of vision for taxon 75.4

pupil size (sclerotic ring diameter) defines amount of light able to enter the pupil 15.8

tympanic resonator area proxy for area of quadrate available as resonator 73.7

premaxillary elongation proxy for area available for anterior pressure sensation 75.4

parietal foremen proxy for relative size of pineal eye 70.2
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(b) Linear measurements and functional ratios
Twenty-four linear measurements were taken across the mand-
ible, cranium and dentition (figure 1; electronic supplementary
material, figure S1). Linear measurements on three-dimensional
scans were taken using MeshLab 2020.06; measurements on
two-dimensional images were performed in ImageJ [21]. These
measurements were then used to generate 16 ratios describing
the craniodental architecture and functional capacities (table 1).
All these traits have clearly established functional importance
or outcomes (figure 1; for further details, see electronic
supplementary material, S3: functional ratios). Examples
include the ratio of mandibular lever arms (proxies for mechan-
ical advantage, i.e. ratio of muscular input force to output force
on prey items), supratemporal fenestrae area (proxy for cross-
sectional area of combined jaw adductor musculature) and
relative orbit size (amount of the skull dedicated to visual
acuity).

All 56 taxa cleared the 40% trait completeness threshold we
established beforehand (a limit consistent with recent studies
[4,22,23]); the dataset contains only 18.2% missing data (percen-
tages of missing data per species can be found in electronic
supplementary material, S4: species coverage). Trait ratios were
standardized using a z-transformation to assign all characters a
mean of 0 and a variance of 1; data were used to compute a Eucli-
dean distance matrix for ordination analyses and disparity
calculation.

(c) Ecomorphospaces
Ordination of trait data was visualized in two dimensions in two
ways: a principal coordinates analysis (PCoA) and a non-metric
multi-dimensional scaling approach (NMDS). NMDS are used
for visualization here as they pack more variation of the data
into a two-dimensional graph, with an associated stress value for
a given number of axes (see electronic supplementary material,
figure S2). However, as NMDS coordinates are not ideal to use
for quantitative analyses due to their non-metric properties,
PCoA results were chosen for assessment of disparity. PCoAs
were performed using a cailliez correction criterion to correct for
negative eigenvalues (using ape v. 5.3 [24] and were preferred to
principal components analysis as PCoA allows missing values in
the Euclidean distance matrix. Comparisons between PCoA
and NMDS ordination demonstrated comparable patterns of eco-
morphospace occupation. NMDS analyses were performed in
‘vegan’ v. 2.5-6 [25]; graphical results from PCoA ecomorphos-
paces can be found in the electronic supplementary material,
figure S3. Kernel two-dimensional density estimates were used
to visualize density-based macroevolutionary landscapes through
time, plotted onto NMDS ecomorphospaces from Campanian to
Maastrichtian, following the methodology of Fischer et al. [4]).
Mandible length (proxy for body size) was used both in scaling
datapoints to visually inspect the spread of large-sized mosasaur-
ids and additionally to compare the spread of body sizes in
mosasaurids through the Campanian–Maastrichtian.
(d) Disparity
Morphofunctional disparity was calculated based on PCoA axes.
In this study, we take an unprecedented regional and global
approach to quantifying marine reptile disparity. The selection of
geographic regions in this study reflects four of the most well-
known and well-sampled assemblages of mosasaurids and
enables the investigation and interpretation of local and global dri-
vers of marine reptile ecomorphological variation: the WIS;
Northern Tethys Province (NTP); Southern Tethys Province (STP;
[26]) and Weddellian Province (consisting of Southeast Oceania,
the Antarctic peninsula and Patagonia; WED). Disparity was
measured through time, focusing on time bins bearingmosasaurid
fossils during the latest Cretaceous: early Campanian (83.60–
77.85 Mya, n = 34 spp.); late Campanian (77.85–72.10 Ma, n = 31
spp.); early Maastrichtian (72.10–69.05 Ma, n = 38 spp.) and
late Maastrichtian (69.05–65.50 Ma, n = 26 spp.). The focus was
made on these time periods as they encompassed the mosasaurid
taxonomic turnover in the mid-Campanian and enabled the inves-
tigation of disparity in the lead up to the end-Cretaceous
mass extinction. Total disparity within mosasaurid clades and
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geographic regions during these time periods was also calculated.
Disparity analyses were performed in R using the dispRity pack-
age (v. 1.5.0) [27]. The sum of variances (SoV) disparity metric
was preferred, as it demonstrates robusticity to sample size vari-
ation between time bins [28], but pairwise dissimilarity (PD) and
sum of ranges (SoR) were also tested (table 1; electronic sup-
plementary material, table S1). Bootstrap iterations were set at
1000 replications; additional bootstrapping procedures were per-
formed to account for false-positive results (see electronic
supplementarymaterial, table S2). Here, we adapt the terminology
from population ecology to assess disparity at the regional level
(here termed ‘α-disparity’) and global level (‘γ-disparity’). In
order to examine how mosasaurid ecomorphological disparity
was differentiated across regional communities, γ-disparity per
time bin was divided by mean α-disparity across all provinces
per time bin (see e.g. [29]), creating ‘β-disparity’. Beta-disparity
can be defined as a measure of disparity differentiation; a high
β-disparity indicates a greater range of mean α-disparity values
within a specific time bin, whereas low β-disparity indicates
more uniformity in mean α-disparity values, suggesting less
ecomorphological differentiation between disparities across com-
munities. Mean bootstrap iteration values were used for α- and
γ-disparity calculations and compared through four time bins
(early Campanian; late Campanian; early Maastrichtian; late
Maastrichtian). Changes in disparity between subsequent time
bins and between clades/geographic regions were tested for
using non-parametric Wilcoxon tests [30], with Bonferroni
corrections for multiple comparisons.
3. Results
(a) Morphospace occupation
Wequantifiedmosasaurid craniodental disparity from the early
Campanian through the late Maastrichtian. Our aims were to
establish whether faunal transitions yielded changes in dis-
parity in mosasaurids as well as the state of global and
provincial mosasaurid disparity prior to the end-Cretaceous
mass extinction. Most notably, large ‘megapredatory’ taxa
with cutting dentition, including almost all tylosaurines
(figure 2a; filled purple squares) and themajority of largemosa-
saurines, group together in the ecomorphospace (figure 2a).
These results suggest that overall skull functional morphology
within these two (occasionally contemporaneous) clades of
megapredatory marine reptiles converged, despite distant phy-
logenetic relatedness. Several brevirostrine mosasaurines
occupy regions of positive NMDS axis 1, typified by relatively
large supratemporal fenestrae, deep jaws, blunt rostra and
crushing dentition (e.g. Globidens spp.). The upper half of
the ecomorphospace (positive values along NMDS axis 2) is
occupied predominantly by primitive mosasaurids (halisaur-
ines and tethysaurines) and Plioplatecarpus spp., which all had
relatively large orbits, gracile skulls and recurved, piercing
teeth (figure 2a; see also electronic supplementary material,
figure S3A); they constitute our ‘grasping’ group (figure 2a,e).

The density of ecomorphospace occupation though
time (figure 2b–e) reveals a series of changes across the
Campanian–Maastrichtian interval. Many mosasaurines and
russellosaurines occupy a large ‘megapredatory’ region
through the early Campanian to the early Maastrichtian. The
majority of russellosaurines disappear afterwards, strongly
altering the pattern of ecomorphospace occupation (figure 2e)
by creating a clear divide between two main ecomorphologies
in the late Maastrichtian bin: the ‘megapredatory’ group,
formed predominantly by Tylosaurus and Mosasaurus, and the
‘grasping’ group, formed by Plioplatecarpus, halisaurines and
several Weddellian taxa. In addition to this polarization of
mosasaurid craniodental shape, a few taxa are clearly grouped
in longirostrine (e.g.Gavialimimus) and brevirostrine (likely dur-
ophagous; e.g. Globidens spp.) ecomorphologies (figure 2a,b).
Clade disparity appears coupled to taxonomic diversity, but
nevertheless add support to the ecomorphospace signal with
decreases in tylosaurine, plioplatecarpine and mosasaurin dis-
parity through the Maastrichtian using multiple disparity
metrics (electronic supplementary material, figure S4).

(b) Evolution of skull size
Changes in mosasaurid communities also resulted in slight
variation in skull size distributions (proxy for body size)
across the Campanian–Maastrichtian interval (figure 2f ).
early Campanian size distribution is notably more uniform,
with comparable densities of large and small mosasaurids
(figure 2f; blue line). By comparison, density of smaller
species is lower in the late Maastrichtian, leading to a peak
in mid-sized and very large species (figure 2f; yellow line).
This pattern tracks the presence of multiple very large late
Maastrichtian tylosaurines and mosasaurins (a pattern mir-
rored in sharks; [17]), and highlights the extinction of
smaller species which were abundant during the Campanian
(e.g. Clidastes and Plesioplatecarpus) (figure 2b,c). However,
these differences are not significant, indicating that the
changes in ecomorphospace occupation and disparity we
observe are not associated with strong changes in mosasaurid
sizes, but rather with the functional capacities of their skulls.

(c) Spatio-temporal evolution of disparity
We find a significant increase in global (γ) ecomorphological
disparity in mosasaurids (figure 3a) coincident with taxonomic
turnovers known to have occurred at the mid-Campanian
boundary. The observed increase in γ-disparity is common
across all disparity metrics we computed (SoV, SoR, PD:
table 2; electronic supplementarymaterial, table S3). Our results
demonstrate that γ-disparity of mosasaurid ecomorphologies
increased from early to late Campanian and continued increas-
ing until the earlyMaastrichtian,mirroring the expansion of the
craniodental ecomorphospace occupation (figure 2b–d). Mosa-
saurid diversity (in this sample) somewhat tracks fluctuations
in disparity, but not to the same magnitude (figure 3). By the
late Maastrichtian, γ-disparity is higher than that recorded
throughout theCampanian, despite fewer species being present
in the late Maastrichtian (figure 3a and table 2).

While disparity increases on global (γ) and provincial
(α) scales from the Campanian to the Maastrichtian (table 2),
we observe significant declines in γ-disparity from early to late
Maastrichtian leading up to the K/Pg mass extinction
(figure 3a–e). When examined at the provincial level
(figure 3b–e), the early–late Maastrichtian transition records
declines in α-disparity for all provinces (with the exception of
STP; table 2) using almost all disparity metrics, reinforcing the
global outlook of a significant decline in ecomorphological dis-
parity in mosasaurids in the latest Maastrichtian. This
disparity decrease is found within all well-sampled clades as
well, no matter the disparity metric used, except for the PD
metric which slightly increased for the hyper-disparate group
Globidensini through the Maastrichtian (figure 2d,e). Sharp
decreases in tylosaurine and plioplatecarpine presence in the
WIS contribute to the decline in α-disparity in this region; by
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contrast, the presence ofhighlydisparate globidensins in the STP
contributes toward more stable overall γ-disparity during the
Maastrichtian (figure 3a,d). Differentiation of disparity across
regions (i.e. β-disparity) increases from early to late Maastrich-
tian (table 2) and can be attributed to several factors: decreases
in α-disparity in several (but crucially, not all) observed
provinces; reductions in taxon count (figure 3b–e); decreased
occupancy of previously commonly exploited niches (e.g.
reduction of ‘megapredators’; figure 2e); and increased
endemism (e.g. Moroccan fauna of the STP; [19,31–33]).
4. Discussion
(a) The necessity for regional and global assessments of

pre-extinction diversity and disparity
The influenceof localized faunal assemblages in the fossil record
is well known to affect global patterns diversity and disparity
[34–37]. For many groups of large tetrapods, the global fossil
record is notwell resolved,whereas regional sampling in certain
geographic areas is strong, and consequent global biodiversity/
disparity estimates can be heavily reliant on those few regions
[34,38]. In many studies, including ours, it is clear that the
sampling effort in North America over the past 150 years is an
important factor in estimatingpre-Maastrichtian tetrapoddiver-
sityanddisparity [36,39,40].Regional diversitypatterns are thus
likely to contain an important signal, as the highly fragmented
world of the Mesozoic and Cenozoic likely resulted in ecosys-
tems with distinct environmental parameters [41]. This reality
has often been overlooked when analysing tetrapod diversity
and disparity patterns leading up to and across the K/Pg
mass extinction. Indeed, a series of studies on the extinction of
non-avian dinosaurs have recovered conflicting results
[37,39,40,42,43], notably because of their varying treatment of
regional differences and their sampling.

The fossil record of mosasaurids appears only weakly
biased [12], and marine reptile sampling indicators are
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generally excellent for the Campanian–Maastrichtian interval
[5]. Our results clearly indicate regional variations in the
ecomorphological disparity patterns of mosasaurids not
recovered in previous ecomorphological studies of the
group, potentially due to the incorporation of a coarser
time-binning protocol, e.g. [3,7,44]. The drivers of ecomor-
phological differences we observe should not necessarily be
regarded as global; a telling example is the provincial
disparity patterns during the Maastrichtian (figure 3b–e),
which may be associated with the magnitude of the environ-
mental changes resulting from the sea-level regressions [6].
Indeed, the epicontinental WIS greatly changed in extent
and shape during the Maastrichtian [45,46], and this region
records the steepest decrease in α-disparity, while deeper
basins such as Northern and STPs were seemingly less
affected [8,13,26,47]. In this context, focussing on the



Table 2. Mosasaurid population disparity (alpha, gamma and beta) from early Campanian to late Maastrichtian. Three disparity metrics were used, with 1000
bootstrap replications. Highest mean disparity values highlighted in bold. WIS = Western Interior Seaway; NTP = Northern Tethys Province; STP = Southern
Tethys Province; WED = Weddellian Province. Provincial disparities are in italics; highest disparity values highlighted in bold.

disparity early Campanian late Campanian early Maastrichtian late Maastrichtian

SoV

gamma (γ) 18.90 19.30 21.19 20.12

alpha (α) mean 15.94 16.17 19.26 14.63

WIS 18.43 19.57 18.52 9.76

NTP 22.03 21.60 23.35 17.50

STP 10.22 10.44 22.04 21.51

WED 13.07 13.06 13.13 9.75

beta (β) 1.186 1.194 1.100 1.375

SoR

gamma (γ) 68.26 64.92 75.72 67.49

alpha (α) mean 35.42 34.80 53.35 34.77

WIS 55.94 53.01 53.50 23.64

NTP 44.42 44.23 56.49 45.48

STP 8.78 9.51 49.93 51.33

WED 32.53 32.46 32.25 18.63

beta (β) 1.92 1.86 1.57 1.94

PD

gamma (γ) 5.84 5.85 6.27 6.01

alpha (α) mean 4.63 4.75 5.71 4.72

WIS 5.65 5.91 5.76 3.65

NTP 5.97 6.06 6.35 5.47

STP 2.52 2.50 6.19 6.12

WED 4.41 4.51 4.54 3.65

beta (β) 1.26 1.23 1.09 1.27
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abundant North American record to reconstruct the
global diversity or disparity patterns of mosasaurids would
result in a steeper late Maastrichtian decrease than that
which was computed for other regions, hence confounding
regional and global factors at play prior to the K/Pg
mass extinction.

(b) Pre-Cretaceous–Palaeogene mosasaurid turnovers
and crises

The ‘Niobraran–Navesinkan’ (early to late Campanian) taxo-
nomic transition from russellosaurine-to-mosasaurine-
dominated communities was initially identified in the WIS
[11,48] and notably involved selective extinction of smaller
taxa. Since then, similar turnovers have been identified in
multiple other regions across the globe [13–16], yet without
clear reductions of smaller species [13,49]. We show that,
far from experiencing a global γ-disparity decline during
this turnover, mosasaurids increased in disparity across this
transition (non-significantly using SoR metric, significantly
using the SoR and PD metrics; electronic supplementary
material, table S3). This increase is likely in part due to the
extinction of more ‘generalist’ and small-sized plioplatecar-
pines and tylosaurines (figure 3a). These extinctions in the
WIS reduced the density of ‘megapredatory’ and ‘generalist’
ecomorphologies in the late Campanian bin (figure 2b,c),
causing increased polarization of the remaining phenotypes
exhibited by mosasaurid taxa. Actually, the increase in
morphofunctional disparity at the ‘Niobraran–Navesinkan’
transition is a phenomenon local to the WIS, with a high
enough amplitude to influence global patterns; other regions
maintain stable morphofunctional disparity through this
interval (figure 3 and table 2) while experiencing similar
taxonomic composition shifts, e.g. [13,15,16]. Within the
North American continent, evidence from western and cen-
tral Alabama not only support the abrupt shift in taxon
abundance at the Niobraran–Navesinkan transition, but
also highlight the likelihood of community segregation and
habitat partitioning prior to this transition within the russel-
losaurine-dominated communities [11]. The cause behind the
abrupt shift in mosasaurid community composition across
the ‘Niobraran–Navesinkan’ is as yet unclear. A decrease
in global oceanic temperature between the mid- and late
Campanian is coincident with the turnover [6,50]. Such a
shift in temperatures would have affected multiple habitats,
potentially driving a pre-Maastrichtian restructuring of
marine reptile communities in deep- and shallow-water
biomes [11]. High global sea levels in the mid-Campanian
may have played a role in maintaining ecomorphological
stability on a global scale [6], although recent analyses
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suggest physical drivers did account for large-scale patterns
of mosasaurid morphofunctional disparity [7]. The onset of
localized regressions (e.g. triggered by the Laramide Orogeny
in the WIS [46]) may have promoted ecomorphological
diversification in the wake of population/community iso-
lation there [11]. Such an effect would be consistent with
our mid-Campanian disparity results for the WIS (table 2),
although assigning it as a causative agent is highly speculat-
ive at present, especially for taxa likely possessing high
dispersal capabilities such as derived mosasaurids [51].

We do not find evidence for a long-term ecomorphologi-
cal decline of mosasaurids across the entire Campanian–
Maastrichtian interval, as the early Maastrichtian is identified
here as the time of greatest γ-disparity of mosasaurids
(figure 3a). This time interval witnessed the expansion of eco-
morphospace occupation by longirostrine and brevirostrine
mosasaurid ecomorphologies, in addition to the diversi-
fication of ‘grasping’ halisaurines and plioplatecarpines
(figure 2A +D). In studies using coarser temporal and
geographic frameworks [7], this would result in high mosa-
saurid disparity up to the K/Pg extinction. Our time-
binning approach recovers a within-Maastrichtian decrease
in global γ-disparity and α-disparity, in nearly all regions
and across all clades. When the differentiation of ecomorpho-
logical disparity between geographical regions is considered
(i.e. β-disparity; table 2), it is clear that the late Maastrichtian
was a time of increased regionalization of mosasaurid
disparity, rather than a consistent, globalized decline. Com-
munities of mosasaurids in the WIS, NTP and WP are
shown to be notably more phenotypically homogeneous in
the late Maastrichtian than those of the early Maastrichtian
(figure 3b–e), with the WIS and WED communities rep-
resented by few taxa within only two tribes (Mosasaurini +
Globidensini, and Mosasaurini + Tylosaurini, respectively).
By contrast, the late Maastrichtian mosasaurid community
of the STP comprised an ecomorphologically diverse assem-
blage of globidensins (e.g. Globidens and Prognathodon),
mosasaurins (Mosasaurus and Eremiasaurus), halisaurines
(e.g. Pluridens and Halisaurus) and plioplatecarpines (e.g.
Gavialimimus) [19,31,33], yielding a high α-disparity in this
region (figure 3d ). The retention of disparate ecomorpholo-
gies of STP mosasaurids through the Maastrichtian drive
peak in provincial differentiation (table 2). The predomi-
nantly bimodal landscape of mosasaurids in the late
Maastrichtian (figure 2e) suggests that, while a variety of
niches were still being occupied by low densities of disparate
mosasaurids, numerous Northern and Southern Tethys mosa-
saurids essentially exhibited ‘megapredatory’ or ‘grasping’
functional adaptations (figure 2; also [7,8,13,26]). Becoming
increasingly apparent is the importance of the STP (including
Afro-Arabia, Morocco, Niger–Nigeria, Angola and eastern
Brazil) in driving the late Maastrichtian marine reptile diver-
sity and disparity [26]. Understanding patterns such as these
are vital for the accurate interpretation of faunal dynamics
and functional variation before and after extinction events. If
only γ-disparity of mosasaurids were considered, then this
group could be simply interpreted as experiencing a global
ecomorphological decline just prior to their ultimate demise
at the K/Pg boundary (or not in decline at all if a single and
global ‘Maastrichtian’ bin was used; see [7]). However, it is
apparent that, when both α- and β-disparities are taken into
account, some regional communities were most certainly
declining in taxonomic diversity and ecomorphological
disparity, whereas others were only minimally affected on
both counts.
(c) How selective are the pre-Cretaceous–Palaeogene
extinctions in marine reptiles?

Ichthyosaurians and pliosaurids were long gone by the
Maastrichtian [4,5,52], restricting the predominant marine
reptile groups to xenopsarian plesiosaurians, mosasaurids,
chelonioids and crocodylomorphs [8]. These clades do not
seem to follow a disparity pattern similar to that recovered
here or elsewhere [7] for mosasaurids. Indeed, polycotylid ple-
siosaurians were already in decline in both phylogenetic
diversity and ecomorphological disparity during the
Campanian–Maastrichtian interval [22], with only two species
potentially being present during the Maastrichtian [22,53].
Robust evaluations of elasmosaurid disparity are still lacking,
but the range of phenotypes (either in terms of phylogenetic
diversity, osteology or relative neck length) appears to still
be broad during the Maastrichtian [54], although within-
Maastrichtian changes have not yet been computed. Similarly,
within-Maastrichtian disparity dynamics have not been
explored formarine testudines, although previous assessments
of testudines indicate a peak in cranial morphological variation
in the Maastrichtian [55], and a consistent contribution to the
diversity of feeding morphologies across marine reptiles from
Campanian to Maastrichtian [3]. By contrast, aquatic crocody-
lomorphs exhibit comparatively low and declining disparity
during the latest Cretaceous [56], with the exception of dyro-
saurid tethysuchians, which exhibited a rapid burst of
morphological evolution during the Maastrichtian [56]. The
increased endemism and expansion into ‘grasping’ and ‘long-
irostrine’ ecomorphologies by Southern Tethys mosasaurids in
the late Maastrichtian combines with isotopic analyses of
trophic structure in the Maastrichtian of the same region [9],
suggesting increased dietary specialization in this region as
multiple predators coexisted and often fed upon prey from a
single trophic level. Patterns of taxonomic diversity and eco-
morphological disparity across multiple marine reptile
groups and multiple geographic regions indicate that whole-
sale (and in some cases fragile) restructuring of marine
trophic webs was underway before the K/Pg mass extinction
event, which subsequently annihilated numerous highly
disparate marine reptile groups.
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