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Abstract

With the development of sensors, recording and availability of high-resolution movement

data from animals and humans, two disciplines have rapidly developed: human mobility and

movement ecology. Addressing methodological gaps between these two mobility fields

could improve the understanding of movement processes and has been defined as the Inte-

grated Science of Movement. We apply well-known human mobility metrics and data pro-

cessing methods to Global Positioning System (GPS) tracking data of European Herring

Gulls (Larus argentatus) to test the usefulness of these methods for explaining animal mobil-

ity behavior. We use stop detection, spatial aggregation, and for the first time on animal

movement data, two approaches to temporal aggregation (Next Time-Bin and Next Place).

We also calculate from this data a set of movement statistics (visitation frequency, distinct

locations over time, and radius of gyration). Furthermore, we analyze and compare the gull

and human data from the perspective of scaling laws commonly used for human mobility.

The results confirm those of previous studies and indicate differences in movement parame-

ters between the breeding season and other parts of the year. This paper also shows that

methods used in human mobility analysis have the potential to improve our understanding

of animal behavior.

Introduction

Movement is an integral part of human and animal lives. Uncovering movement patterns

opens up a wealth of opportunities to better understand our world. Improvements in tracking

technology over the past two decades have enabled humans to collect high-resolution data on

animal mobility using miniaturized tags [1]. In parallel, the prevalence of personal devices has

allowed collecting of human location data with high temporal and spatial resolution [2]. These

technological advances have led to the development of two parallel disciplines: movement

ecology and human mobility. Despite the similarities in data types and structures, there is a

visible gap in the methods used in these disciplines. To address this problem and bridge the

methodological gap between these disciplines, Miller et al. [3] and Demšar et al. [4] have

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0286239 August 2, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Łoś M, Smolak K, Mitrus C, Rohm W, Van

de Weghe N, Sila-Nowicka K (2023) The

applicability of human mobility scaling laws on

animals—A Herring Gull case study. PLoS ONE

18(8): e0286239. https://doi.org/10.1371/journal.

pone.0286239

Editor: W. David Walter, US Geological Survey,

UNITED STATES

Received: March 7, 2022

Accepted: May 11, 2023

Published: August 2, 2023

Copyright: © 2023 Łoś et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Seagulls mobility

data are openly available in the Movebank Data

Repository and Zenodo https://doi.org/10.5281/

zenodo.3541811. The calculations are based on the

code from HuMobi programming library, which is

available at the GitHub repository, https://doi.org/

10.5281/zenodo.5788670.

Funding: The research was financed under the

National Science Centre, Poland research grant

"Beyond machine learning in mobility behaviour

prediction" no. 2019/35/O/ST6/04127, https://

https://orcid.org/0000-0001-9057-6051
https://orcid.org/0000-0001-9113-6090
https://orcid.org/0000-0002-9864-5696
https://orcid.org/0000-0002-2082-6366
https://orcid.org/0000-0002-1850-1765
https://doi.org/10.1371/journal.pone.0286239
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0286239&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0286239&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0286239&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0286239&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0286239&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0286239&domain=pdf&date_stamp=2023-08-02
https://doi.org/10.1371/journal.pone.0286239
https://doi.org/10.1371/journal.pone.0286239
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.3541811
https://doi.org/10.5281/zenodo.3541811
https://doi.org/10.5281/zenodo.5788670
https://doi.org/10.5281/zenodo.5788670
https://www.ncn.gov.pl/en


proposed a step forward to bring together research on animal and human movement into an

Integrated Science of Movement. Establishing the new interdisciplinary science can lead to

more holistic approaches and a better understanding of movement patterns and the underly-

ing behaviors.

In movement ecology, movement patterns are studied to understand animal behavior and

their responses to environmental changes [5]. One of the main tasks is to determine space use

of animals by mapping their distribution of movement through space and time to identify bio-

logically important areas used for breeding, resting, and foraging [6, 7]. Animal tracking data

can be used to examine animals habitat selection and determine conservation strategies [8, 9].

This has been done for small animals such as the Organ Mountains Colorado chipmunk (Neo-

tamias quadrivittatus australis) [10] and larger animals such as mountain lions (Puma conco-

lor) [11].

A common method of determining animal space use is to estimate home range, defined by

Burt as an area that animals use for their normal activities such as food gathering, reproduc-

tion or caring for the young [12]. Over the years, several habitat characterizaiton and visualiza-

tion methods have been developed [13]. These techniques fall into two classes: geometric and

probabilistic estimators [14]. Most of the early attempts used geometric approaches such as

minimum convex polygons (MCP) [15]. More recently, probabilistic methods have been

developed. They allow to estimate the utilization distribution (UD), which describes the inten-

sity with which an animal uses space [13]. Currently, the most popular probabilistic technique

to estimate home ranges is a kernel density estimator [16, 17].

Research in the field of movement ecology is often concerned with identifying unique

movement behaviors [4]. These behaviors can be described using a set of parameters (e.g., step

length, turn angle, velocity) calculated from a movement trajectory [3]. Ecologists usually

define behavioral states from observed movement trajectories using path segmentation meth-

ods (e.g., encamped and exploratory states in African savanna elephant movements [18], active

and resting phases in moose trajectories [19]). In these methods, the movement path is decom-

posed into homogeneous segments reflecting different animal behaviors [20]. Seasonal or

annual changes in animal movements can correspond to global environmental changes. Cli-

mate change has been shown to affect animal migrations, for example by delaying the arrival

of golden eagles to their breeding grounds [21] or extending the time between blue whale calv-

ing and foraging places as krill populations change [22]. Understanding animal behavior can

help analyze and predict the spread of infectious diseases (e.g., bovine tuberculosis in cattle

populations [23] or avian influenza in poultry [24]). In addition to studying migration patterns

or their impact on the spread of diseases, animal movement data can also be used to predict

natural disasters. Wikelski et al. [25] compared animal movement profiles with volcanic activ-

ity in northern Italy. Using dynamic body acceleration, they estimated the daily movement

patterns of three animal species (cows, dogs and sheep) and detected abnormal movement

activity when volcanic activity was higher. These analyses show the potential for short-term

earthquake predictions based on animal movement observations. The increasing number of

animals tracked by GPS provides the opportunity to improve weather monitoring systems

around the world. In [26] soaring birds, data have been used to evaluate wind speed and direc-

tion. The measurements derived from bird flights are rare and provide information about

atmospheric conditions that is hard to obtain. Therefore, avian tracking data may contribute

to high-resolution weather observation.

In our research, we focus on birds and their regular movements. Birds are a group of ani-

mals that move frequently and often travel long distances. Therefore, migratory birds play a

key role in the transport of many pathogens and the spread of viruses [27]. These animals

move mainly to obtain food, reproduce, disperse, and migrate. Especially during their
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migration season, they often travel thousands of kilometers (even between continents) in a

short period [28]. Through the use of various technical tools (such as GPS, geolocators, Argos,

ICARUS), the movements of birds can be accurately tracked in space and time [1, 29, 30]

enabling discovery of new migration routes for numerous species [31]. As mentioned earlier,

moving animals can transport other organisms and thus serve as vectors of disease or disperses

of seeds [32]. Knowledge about animals’ migratory patterns is becoming increasingly impor-

tant for predicting epidemics allowing for an understanding of how viruses spread. One of the

most dangerous diseases transmitted by animals is avian influenza [33]. Newman et al. sug-

gested that spring outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in Asia, may

be related to the overlap of wintering grounds between wild birds and domestic poultry [34].

The authors applied common methods such as MCP and UD to determine migration corri-

dors for two bird species: bar-headed geese and ruddy shelduck. By overlaying HPAI H5N1

outbreaks with UDs (with a time lag of a few days to account for the incubation period of the

viruses), they found a clear link between the bird occurrence and outbreaks.

Similar to movement ecology, data about people move can be used for variety of purposes.

For example, understanding human movement helps control the spread of epidemics [35] or

monitor transportation systems [36]. Raw movement trajectories have to be processed to iden-

tify patterns and unique behaviors from movement data in human mobility studies [37]. The

first step in this process is trajectory segmentation. Raw mobility data are segmented into

states—stops or movements. Furthermore, the segmented trajectory is combined with addi-

tional information to create a contextually enriched trajectory, that includes information

about travel modes and trip purposes assigned to the move and stop segments respectively. A

common approach for identifying stops in movement trajectories is based on spatial and spa-

tiotemporal clustering [38]. Clustering algorithms such as k-means or density-based methods

allow for spatial grouping of location data [39, 40] resulting in groups of points classified as

individual stay-regions, representing the locations visited by each person. In these methods,

data are clustered based on spatial information only, whereas methods such as ST-DBSCAN

use spatial and temporal information to perform spatiotemporal clustering [41]. After the

detection of stay-regions, the movement data are usually temporarily aggregated. This results

in a discrete sequence of temporally ordered symbols, where each symbol represents a stay-

region visited by a person [42]. Such a sequence represents a movement. There are two com-

monly used approaches for temporal aggregation of movement trajectories: the Next Time-

Bin (NTB) and the Next Place (NP) methods [43].

Human mobility represented as a sequence of places and trips can be analyzed to uncover

the mechanisms underlying movement (e.g., the need to explore of new locations or returns to

previously unvisited locations [44]). Inferring mobility patterns from the population can be

done using mobility models.

In geography and transportation, spatial interaction (SI) models are used to model human

flows and movement between places. The most widely used of these models is the gravity

model, whose name corresponds to Newton’s law of gravity. The basic assumption of this

model is that the flow between two places is directly proportional to their population and

inversely proportional to the power function of the distance between them [45]. Over the

years, improvements in calibration methods for spatial interaction models have led to fully

developed entropy maximization and discrete choice models that are widely used in geography

and transportation studies [46]. Another commonly used spatial interaction model known as

intervening opportunities makes different assumptions than gravity-type spatial interaction

models. In intervening opportunities models the number of people visiting a location at a

given distance is directly proportional to the opportunities at that location and inversely pro-

portional to the number of intervening opportunities. To constraint the lack of universality of
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the gravity model, Simini et al. [47] presented another spatial interaction model: the parame-

ter-free radiation model. This model states that the flow between places also depends popula-

tion distribution between these two locations.

From a statistical physics perspective, it has been suggested that human trajectories are best

modeled as Levy Flights (LF) or Continuous-Time Random Walk (CTRW) [48], which are a

type of Random Walk (RW) models. However, mobility studies have shown that human

mobility exhibits a high degree of temporal and spatial regularity in contrast to the random

trajectories of LF, CTRW or Brownian motion models [49]. The statistical patterns of human

mobility have been found to exhibit scaling properties [44, 48, 49]. Humans unconsciously fol-

low a set of mobility laws such as the power-law-like motion distribution [48, 49], dwell time

distributions [49] or visitation frequency distributions [44, 49]. Uncovering scaling laws leads

to a better understanding of spatio-temporal phenomena of movement and enables a universal

description of movement. Song et al. [44] showed that empirical observations: visitation fre-

quency and distinct locations over time follow highly reproducible scaling laws and highlight

the limitations of the CTRW model. The frequency of visits to the rth most popular location

follows Zipf’s law, suggesting that human visitation patterns are nonuniform, unlike the LF

and CTRW models. In the case of the number of distinct locations, the tendency to explore

new places decreases over time. Random walk models or Brownian Motion models do not

account for the scaling properties of human mobility, which states further shortcomings of

these models. Incorporating scaling laws into mobility models better captures the pattern of

basic mobility features (high degree of regularity and predictability).

In this research, we aim to search for mobility laws in animal movement using commonly

applied methods to human mobility. In human data, the visitation frequency of empirical

observations fr and distinct locations over time S(t) show that trajectories follow collective

scaling laws: 1) the visitation frequency at different locations decreases with the rank of pref-

erence for a single individual, similar to Zipf’s law (Fig 1); 2) there is a decreasing tendency

Fig 1. Zipf’s diagram showing the visitation frequency (fr) to the r-th most visited location of a user who is

stationary and works as a taxi driver. A person who is stationary (orange dots) has higher (fr) at the first and second

most visited places and for further places (fr) decreases significantly. For a taxi driver (blue dots) the first and second

place in the ranking has lower (fr) and for further places the (fr) is higher compared to the person working stationary.

https://doi.org/10.1371/journal.pone.0286239.g001

PLOS ONE Mobility scaling laws of animals

PLOS ONE | https://doi.org/10.1371/journal.pone.0286239 August 2, 2023 4 / 19

https://doi.org/10.1371/journal.pone.0286239.g001
https://doi.org/10.1371/journal.pone.0286239


in time to explore new locations by individuals, which means that the longer trajectory of an

individual is, the more difficult it is to find a place that has never been visited. In the classical

gravity model, the frequency distribution presents the probability of visitation frequency at a

location. According to this law, the number of visitors to any location decreases with the dis-

tance traveled. The visitation frequency law in this paper defines a relationship between fr
and a ranking of locations. This scaling law varies across empirical studies, while the proba-

bility distribution of frequency generally follows a power law [50]. In [44] the exponents of fr
and S(t) are z and μ respectively and were calculated based on empirical data giving the value

of z� 1.2±0.1 and μ� 0.6±0.1 for human mobility. In most cases, people have few frequently

visited locations and visit their first and second locations in rank order, usually home and

work, with similar frequency [51]. The scaling laws describe collective behavior, and thus

focus on individuals, who may have show different movement patterns. A person who works

stationary might have a higher visitation frequency in the most visited places (home and

work). In contrast, for a person who is nor stationary (e.g. taxi driver) may have a signifi-

cantly higher number of visited locations, resulting in a lower visitation frequency for these

places (Fig 1). The shape of the curves describing these dependencies varies depending on

the mobility patterns of the person. The fr curve for a person, who spends most time in one

place and therefore has lower mobility, will be steeper with z> 1.2, whereas for a person

who visits numerous locations and revisits them frequently, z will be lower. S(t) captures the

tendency to explore new places. For humans μ<1, it shows a decreasing tendency to of visit

places not previously visited [44].

The goal of this work is to take a step toward the integrated science of movement by

applying methods for aggregating spatio-temporal data and metrics to animal tracking data

to investigate whether animal behavior follows scaling laws. By analysing relatively small

datasets of gull and human movement data, we aim to test whether this approach can con-

tribute to a better understanding of animals’ daily and seasonal routines and predict their

behavior.

Materials and methods

Data and study area

The data used for this study are openly available on the Movebank data repository and come

from the bird tracking dataset published by the Research Institute for Nature and Forest

[52]. The birds since have been tracked using the University of Amsterdam Bird Tracking

System since 2013. The dataset contains 60 individuals of European Herring Gull (Larus

argentatus), tagged in or near their breeding area at the southern North Sea coast (Ostend

and Zeebrugge in Belgium) (Fig 2). The European Herring Gull is a large bird (weight 800–

1250 g, and wingspan of 137–146 cm) and belongs to the order Charadriiformes and family

Laridae [53]. This gull species breeds mainly in northwestern Europe covering areas from

southern Spain through Great Britain and Iceland, to northern Finland and northwest Russia

[54]. Herring Gulls breed in colonies where each female lays 2–3 eggs that are incubated for

about 30 days [54]. After another 35–40 days the young leave their nests and become inde-

pendent after the next 20 days [55]. After the breeding season individuals of coastal popula-

tions gather in flocks and stay in a wide strip of European coasts, only sometimes flying deep

inland [56].

Raw data consisted of 2-dimensional location coordinates collected during the day and

night at irregular intervals, 2 minutes on average. In order to have continuous coverage of

data, we selected 11 Herring Gulls (4 females, 7 males) covering a period from January to

November 2017 (Table 1). The mobility of selected gulls in May 2017 is shown in Fig 3.
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Human data for comparison

As this study aims to verify the use of human mobility metrics and processing methods on ani-

mal data, a human mobility dataset with similar sample size was processed and used for com-

parison. We use data collected via smartphones in the area of London, UK. The data cover

month-long movement trajectories from 11 people from a large urban area. The data contain

location coordinates collected at irregular intervals (5 minutes on average). These trajectories

represent a randomly selected sample. The only requirement is that the data be complete with

at least 50% of the data points in hourly intervals. The data were recorded from January to

March 2020. For privacy reasons, the data are not mapped.

Data processing

The raw GPS data of each Herring Gull were processed into the trajectory sequence, which is

a time-ordered sequence of symbols, where each symbol represents a location visited by a

gull (Fig 3). These trajectory sequences were divided into months rather than season-related

periods to simplify the approach and make it comparable between animals and humans. One

month of raw human movement data was processed in the same way and used for

Fig 2. Herring Gull with a UvA-BiTS GPS tracker in Ostend. Photo by Misjel Decleer, Vlaams Instituut voor de Zee

Photo Gallery (Stienen et al., 2016) [57].

https://doi.org/10.1371/journal.pone.0286239.g002

Table 1. Herring Gull selected for analysis.

id name sex id name sex
900926 Hilde female 903622 Tjess male

905324 Veronic female 903149 Ceryl male

905201 Tessa female 903134 Suk-hyo male

903297 Mirte female 903132 Hein male

905203 Maurice male 903128 Dre male

903644 Jan male

https://doi.org/10.1371/journal.pone.0286239.t001
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comparison purposes. The scheme of this process is presented in Fig 4 and the methods used

in this work are implemented by us as a part of a python-based human mobility library

(HuMobi)[58].

In the first step of data processing, we detected stops (locations where animal/human

stops for a certain time) (Fig 5a). The stop detection algorithm starts with the first point in

a trajectory (Fig 5a) and iterates through every chronologically ordered point, each time

calculating the distance between the current point and the first point in the trajectory. If the

computed distance is less than δ meters, then the current point is classified as a currently

processed stop. When the distance exceeds the threshold then the time interval between the

first and the previously processed point in a processed stop is calculated. If this time inter-

val is greater than τ minutes then the process of detecting stop ends and a new stop-point is

created from all points assigned to a currently processed stop. If the time interval is less

than the threshold, all points of this stop are discarded and the process starts again from the

current point in the trajectory. In our work, based on a sensitivity analysis, where we

checked the number of detected stops for given δ and τ, we set δ to 150 meters and τ to 18

minutes.

Further, using the DBSCAN algorithm, the stop-points were aggregated spatially, by cal-

culating the clusters of these points, to create stay-regions. (Fig 5b). A stop is assigned to a

Fig 3. Herring Gull (Larus argentatus) mobility. Belgian coast, May 2017. Inset of European countries contains public sector information licensed

under the Open Government License v3.0.

https://doi.org/10.1371/journal.pone.0286239.g003
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cluster if the distance between it and all other stops is less than �. A stay-region is formed if

the cluster contains at least two stop-points. Based on a sensitivity analysis, checking the

number of detected clusters, we set � = 400 meters for gulls and � = 200 meters for human

data.

Next, the sequences of stay-regions were temporally aggreagated using two approaches: the

Next Time-Bin (NTB) and the Next Place the (NP) (Fig 5c). In NTB, a region is periodically

detected at a selected time interval, which means that there can be so-called self-transitions in

sequences (Fig 5c). When a gull/human has visited more than one place in a selected time

interval, the location with the longer duration of stay is selected. When a gull/human visited

only a few places with the same visiting time in the time interval, the location with a higher fre-

quency of visits is selected. We one hour as the time interval because this is the most com-

monly used value in the literature [59]. In NP, the repeating locations were removed from the

sequence of each gull/human. As a result, the NP sequence contained only transitions between

stay-regions.

Fig 4. Scheme for data processing. The preprocessing of the raw data consisted of three steps: stop detection, spatial aggregation, and two approaches

of temporal aggregation (Next Time-Bin and Next Place). As a result, we obtained a trajectory sequence, based on which the movement statistics were

calculated.

https://doi.org/10.1371/journal.pone.0286239.g004

Fig 5. Three steps of data processing. a: Stop detection. b: Spatial aggregation. c: Temporal aggregation.

https://doi.org/10.1371/journal.pone.0286239.g005
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Movement characteristic

The statistical characteristics of human mobility were quantitatively described using three met-

rics [44], that we applied to our processed datasets to test whether gull movement has similar

characteristics to human mobility. Testing the usability of these metrics and turning them into

curves rather than single-point-in-space measures allows for looking into unseen aspects of

animal behavior.Through comparison of these curves to those obtained from human mobility

analysis we can verify similarity of human and animal mobility characteristics but also suitabil-

ity of these methods to animal mobility analysis. These metrics are:

• Radius of gyration—captures the average distance from the center of mass of a trajectory.

rg ¼
1

N

XN

i¼1

ðri � r0Þ ð1Þ

where ri are the coordinates of the N individual points and r0 is the position vector from the

center of mass of the set of points. In [49] radius of gyration was calculated using mobile

phone call records and was suggested to be common mobility measure describing the dis-

tance typically traveled by each individual.

• Frequency of visit—corresponds to the ratio of visits to a stay-region to the number of visits

in all detected stay-regions during the observation period. For human mobility, the fre-

quency f of the rth most visited stay-region follows Zipf’s law [44]:

fr � r� z ð2Þ

• Distinct locations over time—S(t) shows the total number of locations visited within the

time interval. In human mobility S(t) is expected to follow [44]:

SðtÞ � tm ð3Þ

One of the goals of this research was to look at the animal data from the perspective of the

collective scaling laws that are used in human mobility [44]. For the gull data, we determined z

and μ by calculating the curve factor for every month separately. For comparison, we deter-

mined z and μ for the human data as well. This is the first attempt where these laws are tested

for animal data and compared with human patterns. As the laws hold for a small sample of

individuals for human data (see Song et al. [44], for a comparison), we are confident that

choosing a small set of animals is reasonable [60].

We also tested the results for statistical differences in behavior (rg,fr and S(t)) between

female and male gulls, their behavior during breeding and non-breeding season, and for pos-

sible differences between the mobility behavior of gulls and humans. The tests used are suit-

able for extremely small sample sizes. Kruskal-Wallis is a non-parametric alternative to one-

way ANOVA that tests whether the means of two groups are equal [61]. The Kolmogorov-

Smirnov KS test is a non-parametric test that checks whether any two distributions are iden-

tical [62].
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Results

Mobility metrics for animal movement data

Fig 6 shows monthly changes in rg for each gull. The gulls in this study exhibit different types

of mobility, which can be shown using spatial and temporal analyses of their trajectories.

Hilde (900926) has the smallest average rg of all the birds studied and stays near the port of

Ostend every month. The flight paths of Tessa (905201) show a similar pattern from January

to October when her movements are restricted to an area around Ostend, but at the end of

October, she changes her location and flies for 70 km to Blaringhem (France). In November

she moves back and forth between Ostend and Blaringhem several times. Another example of

a gull with a smaller average rg is Tjess (903622). In most months (January to August and

November), she flies between Ostend and Nieuwpoort (17km), and for two months (Septem-

ber and October) her movements are restricted to the Nieuwpoort area. Maurice (905203) has

the longest average flight duration and the largest rg, in winter (January and February) and

autumn (September October) his flights are over 100km flying along the French and Belgian

coasts. From March to August his flights are shorter (max. 15km) and most of his time is spent

in Ostend. The longest flight distance for Dre (903128) is around 20km at the beginning of the

year. From March to August he covers longer distance and occasionally flies to Blaringhem

(70km). At the end of the year he increases his travel distance and flies between Zedelgem and

Ichtegem (10km). The large differences the in mobility behavior of individual gulls are com-

mon as these animals easily adapt to foraging opportunities [63].

Analyzing the rg chart (Fig 6) we notice the monthly mobility for gulls decreases signifi-

cantly in the spring months (April-June). The lower rg means gulls do not move far from their

most visited location during these months, which coincides with the breeding season. These

differences are statistically significant for rg for the NP approach.

To evaluate the potential of scaling laws statistics for movement ecology we calculated the

exponents z (2) and μ (3) for the study period for gull data using the NTB and NP approaches

(Table 2). The results showed significant differences in mobility between breeding and non-

breeding months but no significant difference in mobility behavior between the sexes of the

birds (Table 3).

The radius of gyration characterizes the typical distance traveled by an individual. Fig 7

shows the monthly averages fr for the first two most popular stay-regions. The results

Fig 6. Radius of gyration rg for all recorded gulls. Each animal is color-coded. The left panel (a) shows a radius of gyration for Next Time-Bin

approach, while the right panel (b) shows the Next Place solution.

https://doi.org/10.1371/journal.pone.0286239.g006
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presented in these figures indicate a peak in the breeding season for the first place in the rank

for NTB (Fig 7a) and NP (Fig 7b). There is a large difference in the values of fr for NTB and

NP which can be attributed to self-transitions in NTB sequences. The presented values of fr
show that individuals during the breeding season spend much more time in breeding areas but

also tend to visit the second most popular region for shorter periods of time but with a similar

frequency of visits. These differences between fr are significant in breeding and non-breeding

months (Table 3).

In the NTB, the average fr for the main location from April to June is higher than 70% and

in May it reaches its peak with more than 80%. In the NP approach the values of fr for the first

place in rank are lower than in NTB, however, they both have a tendency to increase fr in the

breeding season. The differences in average fr for breeding and non-breeding seasons are sta-

tistically significant. For female birds during the breeding season the fr is changing in the mid-

dle of May, when they start visiting more places (S1 Fig). No such change is observed in males

(S2 Fig). On the other hand, the fr in NTB during the breeding season differs between the sexes

Table 2. The values of z and μ factor for Jan-Nov 2017.

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov

z (NTB) 2.20 2.04 2.11 2.74 3.27 2.96 2.39 2.21 2.21 2.30 2.15

z (NP) 2.05 1.99 1.93 1.89 1.88 1.95 1.88 1.91 2.03 2.19 2.01

μ (NTB) 0.46 0.43 0.42 0.41 0.32 0.40 0.43 0.44 0.47 0.52 0.49

μ (NP) 0.45 0.43 0.40 0.40 0.30 0.40 0.42 0.44 0.47 0.51 0.48

https://doi.org/10.1371/journal.pone.0286239.t002

Table 3. Results of significance tests using Kolmogorov-Smirnov and Kruskal-Wallis tests.

Groups Kolmogorov − Smirnov test Kruskal −Wallis test
Breeding vs non-breeding

NP fr ✓ ✓*
NTB fr ✓ ✓*
NP rg — ✓*

NTB rg — —

NP S(t) ✓ ✓

NTB S(t) ✓ ✓

Male vs Female

NP fr — —

NTB fr — —

NP rg — —

NTB fr — —

NP S(t) — —

NTB S(t) — —

Gulls vs Humans

NP fr — ✓

NTB fr — ✓

NP rg ✓ ✓

NTB rg ✓ ✓

NP S(t) ✓ ✓

NTB S(t) ✓ ✓

✓ corresponds to the significance level <0.05 and * to <0.1

https://doi.org/10.1371/journal.pone.0286239.t003
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(S3 and S4 Figs). In males, the visitation frequency for one place is usually around 80–90% (S4

Fig), while in the females it reaches 55–70% (S3 Fig). These differences in behavior between

the sexes are not significant which likely due to a small sample size (7 female and 4 male birds)

(Table 3).

The differences between these two approaches (NP and NTB) are caused by self-transitions.

In the NP approach trajectory sequences consist only of changing stay-regions, whereas in the

NTB approach, the same stay-regions may occur several times in the same sequence resulting

in self-transitions (Fig 5c). The elimination of self-transitions makes NP a better approach to

reflect the characteristics of the movement, especially parameter fr as the values of these met-

rics are artificially inflated for NTB. The second difference in temporal aggregation methods is

the number of detected stay-regions for each sequences. In NTB, if visits are shorter then the

time interval (onehour in our case), only one place is selected resulting in a less unique

sequence compared to the NP approach.

Considering the mobility of gulls shown in Table 2, the value of z in May reaches the maxi-

mum value (3.27) for NTB, while it reaches the minimum value for NP in the same month.

This effect is due to the difference between the NTB and NP sequences. Visitation frequency

curve in NTB sequences is steep because gulls stay in one place for the most of the time during

the breeding season, which increases the number of visits to the most frequently visited place

due to self-transitions. However, as gulls travel less, in the NP sequences the most frequently

visited place will be visited rarely, because gulls rarely leave that place at all. This confirms the

results of previous studies [64, 65]. In terms of S(t), we can see that μ factor decreases from

March to July in NP and in NTB, which also reflects the fact that Herring Gulls tend to travel

less and visit fewer unique locations during the breeding season. These results are statistically

significant (Table 3).

Fig 8 shows the average monthly number of stay-regions. This number is lower from Febru-

ary to August compared to the rest of the year (Fig 8). In May the average number of stay-

regions is minimal. In September and October, the number of visited places increases, and on

average gulls in our study visit 30 stay-regions per month. The changes in the number of stay-

regions could reflect the phenology and life stage individual gulls. In April, during the breeding

season, birds mainly stay near the breeding colony, while in September and October they

Fig 7. The average visitation frequency. The figures show the average visitation frequency for the first (blue) and second (orange) most visited location

during the selected months for the NTB (a) and NP (b) approaches.

https://doi.org/10.1371/journal.pone.0286239.g007
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move around in search of suitable foraging places abundant in food [64, 65]. In this study,

there was no clear sex difference in their behavior and we could see how variable the birds

studied are in terms of activity spectrum: fr, rg etc. Some are more terrestrial and others more

marine which is consistent with the results of other studies with a small sample size of birds

[63].

Comparison with human mobility data

Applying preprocessing methods and metrics commonly used in human mobility studies

allows for studying animal movement from a new perspective. To test their usefulness, we pro-

cessed the data and calculated a number of metrics for both human and animal data. We also

tested whether there are differences in behavior between humans and animals (Table 3).

The results show that human and animal movement data scale similarly, showing compara-

ble dependencies in the number of different locations visited or visitation frequency. The

curves of rg, fr and S(t) for animals and humans follow similar distributions. This proves that

the movement behavior of Herring Gulls and humans can be studied with the same metrics.

There are significant differences in the values of the calculated metrics derived from animal

and human data. These result from differences in behavior between the two species. Gulls

seem to have much higher total number of locations visited per month and spend potentially

less time in these visited regions. For humans, fr in the NTB approach is significantly higher

for the first four, most frequently visited stay-regions (Fig 9). This is consistent with the fact

that humans are less willing to explore unfamiliar areas and more inclined to visit the same

Fig 8. The average number of stay-regions per month. The breeding season is characterized by a decrease in the

average number of visited places.

https://doi.org/10.1371/journal.pone.0286239.g008

Fig 9. Zipf’s plot showing the visitation frequency (fr) of the r-th most visited location of people and Herring

Gulls for NTB (a) and NP (b) approaches. The blue points correspond to gull data and the orange points to human

data.

https://doi.org/10.1371/journal.pone.0286239.g009

PLOS ONE Mobility scaling laws of animals

PLOS ONE | https://doi.org/10.1371/journal.pone.0286239 August 2, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0286239.g008
https://doi.org/10.1371/journal.pone.0286239.g009
https://doi.org/10.1371/journal.pone.0286239


locations for longer periods of time. The difference in mobility behavior between gulls and

humans may also be related to the constraints of the urban environment and the structured

lives of humans.

Discussion

Previous studies on bird movement were primarily related to spatial analyses that focused on

the places used by birds at different times and the distances traveled to migrate [1, 56]. This

work, using commonly applied human data processing methods (NTB and NP approaches),

focuses on studying the frequency of change and number of places visited by birds. The results

show variability in bird activity over time. Studying a sample of the Herring Gull movement

data allowed us to see changes in mobility patterns derived using mobility metrics over nearly

the entire annual cycle (11 months). We found that mobility of birds is reduced from May to

the end of June coinciding with their breeding season (Fig 8). A more detailed analysis (S1–S4

Figs) of this period indicates a decrease in movement activity during the first stages of the

breeding season (April and May) which corresponds to the construction of the nest, laying,

heating and protecting the eggs [56]. In the next period (June) there is a slight increase in activ-

ity by the adults, which is due to obtaining food for the developing chicks. During this period

the adults forage within 20 km of their colony [64]. After the end of the breeding season,

mobility increases and birds change their flight patterns and the locations they visit (Fig 9).

Some birds stay near the breeding area but others leave the colony and move to other suitable

feeding areas. Similar patterns are seen in the results from [55] and can be clearly identified on

Fig 7. During migration and nomadic stay which lasts until the end of January, the birds are

very active and often move from a region to region [64]. In early February, gulls return to their

colonies and prepare for the breeding season, so their mobility decreases and they tend to stay

longer in one place [65].

The methods used in this work allow the analysis of different activity parameters and can

potentially reveal different mobility patterns between sexes. In our case, comparison of the fre-

quency and number of places visited between male and female gulls shows no visible or statis-

tical differences. Results could vary with large numbers of animals, but the lack of visible

differences in this research is consistent with the results of previous studies [63, 66]. This could

be due to the reproductive biology of the species, where both sexes are equally involved in

incubating and caring for their chicks [67]. However, the NTB approach showed that male

birds recorded a greater proportion of visits to a place, especially during the breeding season.

This could be associated with territorialism which is understood as a defence of territory and

nesting place by male birds [68]. This is reflected in NTB, as this approach, self-transitions are

not eliminated. The visitation frequency in NTB is calculated based on one-hour intervals. If a

gull spends in its most visited location few hours in a row, every hour will be treated as the

next visit increasing the visitation frequency of this place. Another explanation for these poten-

tially visible differences between the sexes may be the differences is size and preference for

food competition between female and male birds. Females,being smaller and less aggressive,

can fly farther and spend more time searching for food. Birds are ideal for studying dynamic

changes in movement. They are characterized by a high metabolic rate, and require a constant

supply of energy, associated with frequent food intake and movement [69].

The animal movement seems to scale similarly to human movement, and the dependencies

and trends seen in human data are also found in the data from Herring Gulls. As the scaling

laws for animal and human data follow similar patterns, there is a precedent for using human

mobility metrics and more complicated methods such as spatial interaction models to study

animal movement behavior. Spatial interaction models have rarely been used for animal
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movement studies because in most cases, we only have a small sample of individual animal

movement trajectories and not collective data from the entire population [70]. With ever

increasing samples of animals studied, these models could be used to explain why movements

occur and to study resource use and availability in different places/ecosystems. Resource vari-

ability across landscapes will affect the movement of animals [70]. Animals will forage more

frequently in closer locations with resources than in distant areas without resources. Similarly,

humans plan their shopping or working strategies [71].

Conclusion

To our knowledge, this is the first application of scaling laws for human mobility to animal

movement data. To explore animal movement behavior, in this work we tested three com-

monly used human mobility metrics: radius of gyration, frequency of visits, and distinct loca-

tions over time, using two types of temporal aggregation: Next Time-Bin and Next Place. We

also analyzed the metrics in two time scales: monthly and pentads, separately for male and

female birds and compared these results to metrics derived from a sample of human mobility

data.

The two key metrics in human mobility: 1) the visitation frequency and 2) distinct locations

over time for investigated Herring Gulls represent similar characteristics as human mobility.

The visitation frequency follows Zipf’s law, while the number of distinct locations over time

shows a downward trend, just as in the case of human mobility. The shapes of the curves follow

the same distributions for animal and human data but there are clear differences in the signifi-

cance and the time spent in visited locations. As observed for the NTB sequences, the values of

z and μ are close to those observed for human mobility only during the non-breeding season.

During the breeding season stationary mobility behavior of gulls increases z and decreases μ.

We found that based on the small sample size of studied Herring Gulls, mobility metrics vary

throughout the year and are not sex-dependent.

As far as we know, no scaling laws have yet been calculated using the NP problem formula-

tion, which seems to have an effect on the values of z and μ. The z values of visitation frequency

are lower for the NP problem formulation, which is caused by the fact that all self-transitions

are removed from these sequences, hence there are fewer observations at the locations that are

visited for long periods of time. The μ values are usually higher for the NP problem formula-

tion as this is determined by the number of unique locations present in the movement trajecto-

ries and the NTB approach tends to remove the locations that are visited for short periods of

time.

This research has its limitations. The experimental dataset used in this study is relatively

small and these observations would need to be verified and tested for a larger set of animal

movement trajectories for multiple species. Moreover, the effects of non-breeding and breed-

ing seasons are important. Therefore, data in future studies should be partitioned based on

long-term characteristics of mobility behavior rather than by month to minimize the effects of

rapid changes in mobility.We are not claiming that the scaling laws are there to replace the

current and commonly used methods.They are there to add new insights into animal behavior

but incorporating them to other mobility metrics widely used for animals would allow for

comparison and more comprehensive analysis.

The results of this study show that it is a possible to apply methods widely used to predict

and model human mobility to animal movement data. The movement metrics fr and S(t) used

in our study are explained by Exploration and Preferential Return (EPR) model. The applica-

tion of EPR models to animal data can be useful in monitoring the spread of diseases such as

Avian Influenza and can help control disease outbreaks. However, there are some differences
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in animals movement that would need to be explored in more detail to avoid potential bias in

these applications.

This study used the theoretical discussions from Miller et al. [3] and Demšar et al. [4], and

empirically and successfully tested the applicability of widely used human movement scaling

laws to gain insights into animal behavior.

Supporting information

S1 Fig. Average visitation frequency for female gulls during the breeding season (NP).

(TIF)

S2 Fig. Average visitation frequency for male gulls during the breeding season (NP).

(TIF)

S3 Fig. Average visitation frequency for female gulls during the breeding season (NTB).

(TIF)

S4 Fig. Average visitation frequency for male gulls during the breeding season (NTB).

(TIF)

Author Contributions

Conceptualization: Kamil Smolak, Nico Van de Weghe, Katarzyna Sila-Nowicka.

Funding acquisition: Witold Rohm.

Investigation: Marcelina Łoś, Nico Van de Weghe, Katarzyna Sila-Nowicka.

Methodology: Marcelina Łoś, Kamil Smolak.

Project administration: Witold Rohm.

Supervision: Witold Rohm, Katarzyna Sila-Nowicka.

Writing – original draft: Marcelina Łoś, Cezary Mitrus.

Writing – review & editing: Kamil Smolak, Witold Rohm, Katarzyna Sila-Nowicka.

References

1. Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Sci-

ence. 2015; 348(6240):aaa2478.

2. Zheng Y. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems and Technol-

ogy. 2015; 6(3):1–41. https://doi.org/10.1145/3495160

3. Miller HJ, Dodge S, Miller J, Bohrer G. Towards an integrated science of movement: converging

research on animal movement ecology and human mobility science. International Journal of Geographi-

cal Information Science. 2019; 33(5):855–876. https://doi.org/10.1080/13658816.2018.1564317 PMID:

33013182

4. Demšar U, Long JA, Benitez-Paez F, Brum Bastos V, Marion S, Martin G, et al. Establishing the

integrated science of movement: bringing together concepts and methods from animal and human

movement analysis. International Journal of Geographical Information Science. 2021; 00(00):1–

36.

5. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm

for unifying organismal movement research. Proceedings of the National Academy of Sciences of the

United States of America. 2008; 105(49):19052–19059. https://doi.org/10.1073/pnas.0800375105

PMID: 19060196

6. Prosekov A, Kuznetsov A, Rada A, Ivanova S. Methods for Monitoring Large Terrestrial Animals in the

Wild. Forests. 2020; 11(8). https://doi.org/10.3390/f11080808

PLOS ONE Mobility scaling laws of animals

PLOS ONE | https://doi.org/10.1371/journal.pone.0286239 August 2, 2023 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286239.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286239.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286239.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286239.s004
https://doi.org/10.1145/3495160
https://doi.org/10.1080/13658816.2018.1564317
http://www.ncbi.nlm.nih.gov/pubmed/33013182
https://doi.org/10.1073/pnas.0800375105
http://www.ncbi.nlm.nih.gov/pubmed/19060196
https://doi.org/10.3390/f11080808
https://doi.org/10.1371/journal.pone.0286239


7. Shimada T, Thums M, Hamann M, Limpus CJ, Hays GC, FitzSimmons NN, et al. Optimising sample

sizes for animal distribution analysis using tracking data. Methods in Ecology and Evolution. 2021; 12

(2). https://doi.org/10.1111/2041-210X.13506

8. Griffin LP, Casselberry GA, Hart KM, Jordaan A, Becker SL, Novak AJ, et al. A Novel Framework to

Predict Relative Habitat Selection in Aquatic Systems: Applying Machine Learning and Resource Selec-

tion Functions to Acoustic Telemetry Data From Multiple Shark Species. Frontiers in Marine Science.

2021; 8. https://doi.org/10.3389/fmars.2021.631262

9. Katzner TE, Arlettaz R. Evaluating Contributions of Recent Tracking-Based Animal Movement Ecology

to Conservation Management. Frontiers in Ecology and Evolution. 2020; 7(January).

10. Schweiger BR, Frey JK, Cain JW. A case for multiscale habitat selection studies of small mam-

mals. Journal of Mammalogy. 2021; 102(5). https://doi.org/10.1093/jmammal/gyab071 PMID:

34650347

11. Dellinger JA, Cristescu B, Ewanyk J, Gammons DJ, Garcelon D, Johnston P, et al. Using Mountain Lion

Habitat Selection in Management. The Journal of Wildlife Management. 2020; 84(2). https://doi.org/10.

1002/jwmg.21798

12. Burt WH. Territoriality and Home Range Concepts as Applied to Mammals. Journal of Mammalogy.

1943; 24(3):346. https://doi.org/10.2307/1374834

13. Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F, Mitchell MS, et al. The home-range con-

cept: Are traditional estimators still relevant with modern telemetry technology? Philosophical Transac-

tions of the Royal Society B: Biological Sciences. 2010; 365(1550):2221–2231. https://doi.org/10.1098/

rstb.2010.0093 PMID: 20566499

14. Signer J, Fieberg JR. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ.

2021; 9:1–22. https://doi.org/10.7717/peerj.11031

15. Blair WF. Notes on Home Ranges and Populations of the Short-Tailed Shrew. Ecology. 1940; 21

(2):284–288. https://doi.org/10.2307/1930504

16. Park NZ, Royal F, Fleming CH, Fagan WF, Mueller T, Olson KA, et al. a new autocorrelated kernel den-

sity estimator R eports. Ecology. 2015; 96(5):1182–1188. https://doi.org/10.1890/14-2010.1
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