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Organic carbon (OC) burial efficiency, which relates
the OC burial rate to respiration in the seafloor,
is a critical parameter in the reconstruction of past
marine primary productivities. The current accepted
theory is that sediments underlying oxygen-deficient
(anoxic) bottom waters have low respiration rates
and high OC burial efficiencies. By combining novel
in situ measurements in anoxic basins with reaction-
transport modelling, we demonstrate that sediments
underlying anoxic bottom waters have much higher
respiration rates than commonly assumed. A major
proportion of the carbon respiration is concentrated
in the top millimeter—the so-called ‘reactive surface
layer’—which is likely a feature in approximately
15% of the coastal seafloor. When re-evaluating
previously published data in light of our results, we
conclude that the impact of bottom-water anoxia on
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OC burial efficiencies in marine sediments is small. Consequently, reconstructions of past
marine primary productivity in a predominantly anoxic ocean based on OC burial rates might
be underestimated by up to an order of magnitude.

1. Introduction
The balance between organic carbon (OC) respiration and burial in marine sediments regulates
the atmospheric concentrations of oxygen (O2) and carbon dioxide (CO2) on geological time scales
[1]. The OC burial efficiency, the fraction of OC arriving at the sediment surface that is buried, is
determined by the rate at which OC is respired. The respiration rate is in turn controlled by factors
intrinsic to the OC material, such as type and age, and physical or biogeochemical environmental
conditions [2,3].

Exposure to oxygenated water is seen as one of the most important biogeochemical factors
regulating the OC burial efficiency, as it is believed to stimulate OC respiration [4–6]. A
compilation of OC burial efficiencies suggests that sediments deposited in oxic bottom waters
can have OC burial efficiencies that are 10 s of per cent lower than sediments deposited in
anoxic bottom waters and that the difference becomes negligible at sedimentation rates above
200 g m−2 yr−1 [4,7]. A lower OC burial efficiency with increased O2 exposure is supported
by both field observations [6] and theoretical arguments [8]. Experimental studies have
demonstrated that some fractions of organic matter are degraded less efficiently under anoxic
conditions [9–11]. This observation is in line with thermodynamic arguments that certain OC
compounds only yield enough energy to support microbial growth if they are coupled to the
reduction of O2 [12] and that some OC bonds only can be broken by oxygenase enzymes that
require O2 as substrate [13]. Additionally, sediments underlying oxic bottom waters typically host
a variety of benthic fauna, which contribute to the processing of OC and potentially stimulate
respiration [14,15].

The extent to which O2 exposure decreases the OC burial efficiency under natural conditions
is however poorly constrained. Oxygen-deficient waters only cover less than 0.5% of the present-
day seafloor [16], and OC burial efficiencies have only been determined for a handful of
sites [5]. Moreover, the field data available from oxygen-deficient sites are based on different
methodologies than field data from oxygenated sites, which causes comparability issues. In
sediments underlying oxygenated bottom waters, OC respiration rates are typically derived from
chamber incubations measuring total O2 uptake, or from high-resolution (micrometre scale) O2
profiles measured with microsensors [17,18]. In sediments underlying hypoxic bottom waters
(0 µM < [O2] < 63 µM), OC respiration rates are often derived from fluxes of dissolved inorganic
carbon (DIC) [19,20]. By contrast, respiration rates in sediments underlying anoxic bottom waters
have been derived mainly from vertical sediment core profiles at centimetre-scale resolution [17].
However, this method is generally unable to resolve small-scale biogeochemical processes at the
sediment–water interface (SWI) that result in steep chemical gradients [21,22]. The presence of
such gradients implies that the respiration rate is higher near the SWI resulting in a ‘reactive
surface layer’. Methods that are unable to resolve the reactive surface layer would underestimate
the OC respiration rate, and thus overestimate the OC burial efficiency in sediments underlying
anoxic bottom waters.

To test our reactive surface layer hypothesis, we visited nine field sites along two depth
transects in two archetypical long-term anoxic basins (the eastern and western Gotland Basins
(EGB and WGB), central Baltic Sea). We estimated OC respiration rates and burial efficiencies
by deploying autonomous benthic chamber landers to measure DIC fluxes and compared
these with several core-based methods; sulphate reduction rates (SRRs) from 35S whole-core
incubations, and inverse diagenetic modelling of vertical DIC, dissolved sulphate (SO4

2−) and
particulate OC (POC) sediment profiles, together with measurements of mass accumulation rates
(MARs).
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2. Materials and methods

(a) Field site
The EGB and WGB are situated in the central part of the Baltic Sea (figure 1). The maximum
water depths are 249 m and 459 m in the EGB and WGB, respectively. Both basins have a strong
and permanent halocline at approximately 60–80 m depth. A combination of eutrophication and
stratification has led to prolonged periods of anoxia ([O2] < 0.5 µM) below the halocline. The
sediments above the halocline (less than 80 m depth) are strongly affected by waves and bottom
currents and are generally classified as erosion-transport bottoms. These shallow sediments show
no net long-term sediment accumulation and consist of coarser material since finer material is
rapidly eroded and transported to the deeper basin [23–25].

(b) Benthic lander deployments
Benthic chamber landers were deployed twice per location during each campaign, with a few
exceptions due to ship time scheduling or weather constraints. Before each lander deployment,
water-column profiles of temperature, salinity and oxygen were recorded using a CTD instrument
(SBE 911, Sea-Bird Scientific) equipped with a high-accuracy O2 sensor (SBE 43, Sea-Bird
Scientific). The lander deployment procedure is detailed in [26,27]. Before the incubation, the
lander frame was left hanging for 2 h at a depth of approximately 1 m above the seafloor with
open chambers that were stirred. The frame was then slowly lowered onto the seafloor, and the
chambers were inserted in the sediment. The chamber lids were left open for another 2 h with
continuous stirring. Sediment and water were incubated for 37 h at station EGB-1 and 14 h at all
other stations. After lander recovery, syringe samples were immediately filtered in thoroughly
pre-rinsed cellulose acetate filters (Sartorius, 0.45 mm pore size) and were stored at 4°C until
analysis within 24 h.

Benthic fluxes of DIC were calculated from the concentration change in the chamber water
over time. Concentrations were corrected for the small dilution that took place when new bottom
water entered the chamber during syringe sampling. Data points were first screened for outliers
and leverage points, and subsequently, a least-square regression line was fitted to concentration
data versus time. The data evaluation procedure is outlined in [28].

(c) Sediment sampling
In 2018, sediment was retrieved using a multiple corer (9.9 cm inner diameter) or a modified
box corer [29]. In 2021, sediment was retrieved using a GEMAX gravity corer (9 cm inner
diameter). Sample processing started immediately after sample collection. Two cores for POC
and DIC measurements were sliced in the open air at 0.5 cm resolution from 0 to 2 cm depth,
at 1 cm resolution between 2 and 6 cm depth, and in 2 cm slices from 6 to 20 cm depth. Not all
collected cores (notably in WGB-1 and EGB-1) reached 20 cm depth. Samples for POC were frozen
until further processing, while sediment sections for DIC analysis (only collected in 2021) were
collected in 50 ml centrifuge tubes (polypropylene; VWR) whereafter porewater was extracted
by centrifugation at 2500 g for 10 min (Beckman-Coulter Allegra X-30 series, Switzerland) and
subsequent filtration through 0.45 µm pore size cellulose acetate filters (Sartorius, Minisart). Two
cores were sectioned under an N2 atmosphere in a portable glove bag (Captair Pyramid, Erlab,
France) at the same resolution as above for porewater SO4

2− samples. In the glove bag, the
sediment sections were collected in 50 ml centrifuge tubes into which Rhizons samplers (pore
size approximately 0.15 mm; Rhizosphere Research Products, The Netherlands) were inserted
until the porous part was completely covered. Syringes attached to the Rhizons were drawn back
and fixed in this position, creating a vacuum which extracted the porewater. Porewater samples
for sulphate analysis were stabilized using ZnAc solution (2.25 ml of a 10% ZnAc solution per
0.25 ml sample) and stored at 4°C; porewater samples for DIC analysis were stored at 4°C and
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Figure 1. Bathymetry map of the EGB and WGB with the locations of the sampling stations. Bathymetry is retrieved from
https://portal.emodnet-bathymetry.eu/?menu=19#.

analysed within 24 h. In 2021, one core per station was collected for 210Pb dating at the University
of Linköping, while 210Pb-dating data for the EGB stations were taken from [24]. Three (2018) or
two (2021) subcores (2.5 cm inner diameter) were collected from each station from the box corer
or GEMAX corer for 35S SRR measurements.

(d) Sediment porosity
Sediment–water content was calculated from the weight difference before and after freeze-drying
of the sediment samples. The solid-phase density for EGB sediments was determined previously
to be 1.4 g cm−3 [28] and the density of WGB sediments was assumed to be identical. Sediment
porosity (volume of pore water per volume of bulk sediment) was calculated from sediment–
water content and solid-phase density.

(e) Sediment dating
The determination of the sediment MAR is based on the two 210Pb-dating methods: constant flux
constant sedimentation and constant rate of supply (CRS) [30,31]. The determination of 210Pb
was done through its progeny 210Po. About 0.5 g of sediment from each sediment layer was used
for the determination of210Po. After sample dissolution using the microwave digestion method,
polonium was self-deposited from weak HCl solution onto silver disc [32–34]. As chemical yield
determinate, 209Po was used. The Po discs were measured by alpha spectrometry between 1 and
2 days. To determine the support level of 210Pb, the determination of 226Ra concentration was
evaluated as the weighted mean activity concentration of the daughters (214Pb and 214Bi). The
samples were put in radon-tight vacuum-sealed containers and left for three weeks, ensuring
secular equilibrium between 226Ra and its progenies and no radon from the sample containers
[35]. The vacuum-sealed sample was then measured in a calibrate geometry on a high-purity
gamma detector (HPGe) for 2–3 days.

(f) Sulphate reduction rates
SRRs in the sediment were determined with the 35S radiotracer method [36]. Overlying water was
removed from the sediment core and 5 µl of radiotracer was injected at 1 cm depth increments for

https://portal.emodnet-bathymetry.eu/?menu=19#
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approximately 10 cm to reach a total activity of 60 kBq per depth horizon. The cores were wrapped
in aluminium foil and were then placed in a cold room at in situ temperature for approximately
12 h. The incubation was halted by slicing the cores at 1 cm intervals and collecting the sediment
layers into 50 ml plastic centrifuge tubes filled with 20 ml zinc acetate (20% w/w). Samples were
kept frozen at −20°C until analysis using the hot chromium distillation method [37]. SRRs are
reported per volume sediment (nmol S cm−3 d−1).

(g) Geochemical analyses
DIC concentrations in the lander samples from 2018 and porewater samples from 2021 were
determined onboard the ship by non-dispersive infrared spectrometry (LI-COR 6262) after
acidification with phosphoric acid [24]. A two-point calibration and correction for potential drift
in the system were obtained by repeated measurements of certified reference material (Dickson
Laboratory, Scripps Inst. of Oceanography). The analytical precision was 0.6% (relative standard
deviation). In 2021, DIC concentrations in lander samples were measured onboard using the same
principle using an Apollo AS-C5 (Apollo SciTech) with a precision of 0.4% (relative s.d.).

Samples for SO4
2− analysis were diluted 10 times and separated by ion chromatography

using an isocratic eluent (3.5 mM Na2CO3/1 mM NaHCO3) combined with Dionex AS-14
analytical column (Thermo Scientific). Quantification was done by a conductivity detector (ED40
electrochemical detector) [38] with an analytical precision of 8%.

Freeze-dried samples were analysed for POC by elemental analysis isotope ratio mass
spectrometry (Sercon). Samples were exposed to acid fumes of 37% HCl for 48 h to remove the
inorganic carbon. The POC values are expressed as mass % of the dry weight of the sediment
sample. The precision was less than 5% for the POC measurements.

(h) Rate estimations
The burial efficiency of OC was calculated as the ratio between the OC burial flux (Jburial

OC ) and
the OC input flux (JOC

in ). The latter was calculated as the sum of the OC burial flux and integrated
respiration rate (Rint

min):

BE(%) = 100
JOC
burial

JOC
in

= 100
JOC
burial

JOC
burial + Rint

min

. (2.1)

The burial flux of OC (Jburial
OC ) was calculated based on the sedimentation flux (JS, or MAR; in

g m−2 d−1) and the concentration of OC at the bottom of the sediment column (COC
bottom; in dry wt

%), and converted to mmol C m−2 d−1:

JOC
burial = JSCOC

bottom
12

10−2103. (2.2)

The integrated respiration rate Rint
min was estimated via a lander-based method, i.e. the in situ

measured DIC flux, and via four different core-based methods, based on the (i) vertical POC
profile, (ii) porewater DIC profile, (iii) porewater SO4

2− profile and (iv) 35S radiotracer method.
The lander-derived DIC flux was assumed to be entirely generated by the respiration of

OC, which is a valid assumption in these sediments, given there are no carbonate minerals or
significant deep sources of DIC (e.g. methane hydrates) [24]. The integrated respiration rate can
then be estimated as

Rint
min = JDIC

up . (2.3)

Except for stations EGB-1 and WGB-1, our field sites were unbioturbated, which means solid-
phase transport is only governed by the downward advection of accumulating sediment. If we
assume that the OC concentration in the top layer is representative of the sediment surface and
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the sediment is in a steady state, the integrated respiration rate in the whole sediment interval can
be calculated as

Rint
min = JOC

input − JOC
burial = JS

COC
top − COC

bottom

12
10−2103. (2.4)

Alternatively, since there are no other sources of DIC in the sediment, the integrated respiration
rate can be estimated from the integrated DIC production (RDIC

prod) in the sediment.

Rint
min = JDIC

prod. (2.5)

Our field sites were almost entirely anoxic (aside from EGB-1), contain negligible amounts of
reactive iron oxides [28], and SO4

2− does not become depleted. Under these conditions, organic
matter respiration is almost entirely driven by sulphate reduction [39]. Hence, the integrated

respiration rate can be estimated from the integrated sulphate production (R
SO2−

4
prod ) as follows

Rint
min = 2R

SO2−
4

prod , (2.6)

where the two accounts for the stoichiometric ratio of carbon versus sulfur during sulphate
reduction, and the negative sign is because SO4

2− is consumed as OC is respired. The production

rates RDIC
prod and R

SO2−
4

prod were calculated by inversely fitting a diagenetic model to the measured
porewater profile using the R-script FLIPPER [40], which follows a similar procedure as outlined
in [41]. FLIPPER analysis results are shown in the electronic supplementary material, figures S3
and S4. Finally, we measured sulphate reduction directly using the 35S isotope method [36]. Based
on this measurement, the integrated respiration rate can be calculated as follows:

Rint
min = 2

∑bottom

top
SRR(x)�x. (2.7)

(i) Reaction-transport models
To test the impact of diffusive boundary layer (DBL) erosion on the benthic DIC flux measured
using the benthic chamber lander, we designed a one-dimensional reaction-transport model for
DIC, which was calibrated to the deepest station of the WGB (WGB-2). The model is described in
detail in the electronic supplementary material, information, section S1. In short, a fixed rate of
OC respiration was applied and transport of DIC only happened via diffusion and advection. The
model was run to a steady state with four different DBL thicknesses (0.2 – 0.5 mm – 1.0 – 2.0 mm).
Afterwards, the DBL was removed and the benthic DIC flux was simulated for 10 h.

To test the hypothesis of the reactive layer, we designed a one-dimensional reaction-transport
model that simulated the coupled C-S cycle. The model is described in detail in the electronic
supplementary material, section S2. In short, the model comprised five state variables (less
reactive and highly reactive POC, DIC, dissolved sulphate and dissolved sulfide) and two
reactions (respiration of less reactive POC coupled to sulphate reduction and respiration of highly
reactive POC coupled to sulphate reduction). The model was calibrated for the field site with the
largest difference between lander-based and core-based respiration rate estimates, and for which
we had the most complete dataset (WGB-5). The model was run to a steady state with only less
reactive POC (amount and reactivity calibrated to the field data), and with the addition of 20, 40
and 60 mmol C m−2 d−1 of highly reactive POC.

3. Results
Four stations were sampled in the EGB in April 2018, and five stations in the WGB in August
2021 (figure 1 and table 1). The number of datapoints per site is limited, yet the observed patterns
are consistent among all visited field sites, which indicates our results are robust. Station EGB-
1 is the shallowest and underlies a fully oxygenated water column. EGB-1 is categorized as an
‘erosion-transport’ bottom, meaning that there is very little long-term accumulation of sediment
[23,28]. The other EGB stations are long-term anoxic accumulation sediments at increasing water



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230189

..........................................................

Table 1. Field site characteristics at the time of sampling. Bottomwater salinity, temperature and oxygen concentrations were
measured using CTD and with sensors on the benthic landers. Range of estimated MARs per site, determined with the CRS
method (see methods for details). For calculations, the mean MAR is used. BW, bottom water; SRR, sulphate reduction rate;
MAR, mass accumulation rate; DIC, dissolved inorganic carbon.

water
depth sal. temp. [O2]BW MAR SRR DIC fluxa

station coord. year (m) — (°C) (µM) (g m−2 yr−1) (mmol S m−2 d−1) (mmol C m−2 d−1)

EGB-1 N 57°23′ 2018 60 7.5 3.0 ∼355 n/ab 0.7 – 1.8 8 – 16
. . . . . . . . . . . . . . . . .

E 19°05′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EGB-2 N 57°20′ 2018 130 12 6.7 anoxic 29–136 3.3 – 5.1 14 – 30
. . . . . . . . . . . . . . . . .

E 19°19′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EGB-3 N 57°02′ 2018 170 13 6.9 anoxic 51–150 4.7 – 7.6 37 – 56
. . . . . . . . . . . . . . . . .

E 19°30′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EGB-4 N 57°17′ 2018 210 13 6.9 anoxic 79–94 5.1 – 5.9 19 – 68 (127)
. . . . . . . . . . . . . . . . .

E 19°48′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WGB-1 N 58°31′ 2021 75 10 5.7 0–20 108–285 1.3 6
. . . . . . . . . . . . . . . . .

E 17°48′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WGB-2 N 58°04′ 2021 170 11 6.3 anoxic 59 – 285 4.8 – 7.3 14 – 36 (143)
. . . . . . . . . . . . . . . . .

E 17°49′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WGB-3 N 57°56′ 2021 160 11 6.2 anoxic 84–226 2.3 – 2.6 8 – 75
. . . . . . . . . . . . . . . . .

E 17°58′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WGB-4 N 57°50′ 2021 100 11 6.2 anoxic 70–230 0.8 – 2.0 18 – 38
. . . . . . . . . . . . . . . . .

E 18°05′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WGB-5 N 57°45′ 2021 110 11 6.1 anoxic 60–180 0.9 – 1.2 23 – 72
. . . . . . . . . . . . . . . . .

E 18°08′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aValues between brackets are outliers.
bThe MAR for station EGB-1 is highly uncertain, because regular erosion occurs at this site, leading to high amounts of sediment removal from
the seafloor (see [23] for a more detailed discussion).

depth from EGB-2 to EGB-4. The bottom water at station WGB-1 is hypoxic, while the other WGB
stations are long-term anoxic (table 1). At each station, we deployed the autonomous Gothenburg
benthic chamber landers [26] to measure sediment–water fluxes of DIC. We further collected
sediment cores to determine the vertical profiles of POC, DIC and SO4

2−, estimated the SRR
using 35S tracers [36], and determined the MAR through 210Pb-dating.

The POC concentrations at the shallow station EGB-1 are low (less than 1 wt%; figure 2a),
consistent with the erosion of finer silt particles with which OC is associated [23,24]. The sediment
at the deeper stations contains more POC, up to 20 wt% near the SWI at the deepest station
(EGB-4; figure 2a). The trend of increasing sediment POC content with water depth is a
consequence of constant particle shuttling, which transfers silt and organic matter to the deeper
parts of the Baltic Sea subbasins [23]. The porewater concentrations of SO4

2− and estimated SRR
indicated that the sedimentary OC respiration also increases with water depth (figure 2c,d). At
station EGB-1, there is no trend in the porewater SO4

2− profile and the SRR decreases rapidly
with sediment depth. By contrast, at the deeper EGB stations, SO4

2− concentrations show a clear
decrease with sediment depth, and SRRs remain high in the upper 5–10 cm of the sediment,
corresponding to the sediment layer with elevated POC concentrations (figure 2a,d). The trend
of increasing OC respiration rates is confirmed by the in situ benthic DIC fluxes, which increase
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Figure 2. Results from the EGB, showing vertical sediment profiles of (a) POC, (b) DIC (not determined in the EGB sediments),
(c) dissolved sulphate (SO2−4 ) and (d) volumetric SRR determined by the 35S radiotracer method. The white, grey and black
circles indicate replicate measurements. (e) Summary of the estimated OC respiration rates using lander-based and core-based
methods. The bar height indicates the median value, points are individual measurements, and arrows and numbers indicate
outliers. Note the difference in the y-axis for all sites. Red lines in (b) and (c) indicate diagenetic model fits used to derive
production profiles with FLIPPER [40].

from approximately 13 mmol C m−2 d−1 at station EGB-1 to approximately 60 mmol C m−2 d−1

at station EGB-4 (figure 2e). Intriguingly, while the core-based and lander-based estimates of
OC respiration show the same qualitative trend, the absolute rates estimated from cores are
consistently lower than those measured in situ by the lander (figure 2e).

Data from the WGB show the same general trend as observed in the EGB sediments (figure 3).
The shallow station WGB-1 contains less POC than the deeper stations (figure 3a), although the
POC content is higher than at EGB-1. The DIC, SO4

2− and SRR profiles also indicate higher
respiration rates at stations WGB-2, WGB-3 and WGB-5 (figure 3b–d), the three deepest stations
of the transect (table 1), than at station WGB-1. The in situ DIC fluxes follow the same pattern but
indicate much higher respiration rates than those derived from the core-based methods (figure 3e).
The only exception is station WGB-1, where the lander-derived respiration rate is comparable
with the core estimates (figure 3e). Note however that only one chamber at WGB-1 yielded a DIC
flux that is statistically significant.

4. Discussion
We estimated OC respiration rates using a lander-based in situ method (DIC flux) and several
core-based methods (POC profile, DIC and SO4

2− porewater profiles, and 35S incubations). While
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Figure 3. Results from the WGB, showing vertical sediment profiles of (a) POC, (b) DIC, (c) dissolved sulphate (SO2−4 ) and (d)
volumetric SRR determined by the 35S radiotracer method. The white, grey and black circles indicate replicate measurements.
(e) Summary of the estimated OC respiration rate using lander-based and core-based methods. The bar height indicates the
median value, points are individual measurements and arrows and numbers indicate outliers. Note the difference in the y-axis
for all sites. Red lines in (b) and (c) indicate diagenetic model fits used to derive production profiles with FLIPPER [40]; arrows
indicate bottom-water concentration.

each method has drawbacks and assumptions that may or may not be valid in our case, they
should yield broadly similar results. Indeed, the core-based methods (POC, DIC, and SO4

2−

profiles and 35S incubations) give highly similar results. The lander-based method (in situ DIC
flux), however, suggests respiration rates that are up to an order of magnitude higher than the
core-based methods (figure 4a).

The discrepancy between the lander-based and core-based estimates could be driven by
the alteration of the DBL thickness—the layer where advective transport becomes inefficient
and transport is driven mainly by diffusion—during closed chamber incubations [21]. Under
steady-state conditions, the effect of the DBL thickness on the exchange of a solute is negligible
[43]. However, when the DBL thickness is altered, the transient effects on the sedimentary
uptake of a compound can be significant [43,44]. Altering the DBL thickness can cause
the sedimentary O2 uptake to transiently vary by approximately 30% [43,44]. Similarly, the
sedimentary release of a dissolved compound (like DIC) will be affected by transient changes
in DBL thickness. The water in the lander chambers is stirred to prevent chemical gradients
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from developing. While all care is taken to match the stirring inside the chambers to the current
speed outside of the chambers [26], the DBL thickness may be altered during lander incubations.
To determine the effect of DBL erosion on the lander-measured DIC flux, we used a reaction-
transport model and simulated the impact of eroding a range of DBL thicknesses commonly
found in marine environments. A DBL thickness of 0.2–1.0 mm is generally encountered
under natural conditions [45], and DBL thicknesses of at most a few mm are measured in
unmixed (and thus very stagnant) benthic chambers [44]. For the deeper part of the EGB,
near-bottom current velocities are at most in the order of 2–6 cm s−1 [46,47], which would
translate into a DBL of 0.5–1.2 mm [48]. Conditions in the WGB are very similar to the EGB,
and so we assume the DBL in the WGB would be of a similar magnitude as in the EGB.
If the lander completely erodes a DBL of 1.0 mm, the DIC flux can be overestimated by
8–20% throughout an incubation (figure 5). The stirring inside the landers’ chambers is set at
a very low speed while still maintaining homogeneity of chamber water, which means that
complete erosion of the DBL is highly unlikely, and DBL erosion can thus only explain a small (less
than 10%) fraction of the discrepancy between the lander-based and core-based OC respiration
estimates.

The most plausible explanation for the discrepancy between the different estimates of OC
respiration rates is instead that estimations from core-based methods are too low. The relative
offset between lander-based and core-based methods is the smallest at the site with the highest
MAR (WGB-1; figure 4b), suggesting that transport processes within the sediment are causing the
underestimation in the core-based methods. In a sediment deposited under anoxic conditions,
transport of POC away from the SWI is a result solely of slow vertical advection through sediment
accumulation. By contrast, sediments deposited under (hyp)oxic conditions are often bioturbated,
and POC arriving at the sediment surface is rapidly transported to the deeper sediment layers
[49,50]. Even at low bottom-water O2 concentrations (less than 20 µM), the mixed layer can be
deeper than 2 cm [51]. The solid-phase and porewater gradients under anoxic conditions are thus
expected to be much steeper than under (hyp)oxic conditions. The limited vertical resolution
when sectioning cores will therefore lead to underestimated respiration rates in sediments
underlying anoxic bottom waters, due to dilution of the highly reactive surface layer (figure 6a).
This difference in gradient steepness between sediments underlying oxygenated and anoxic
bottom water also allows us to explain the negative global correlation found between surface
sediment POC concentrations and bottom-water oxygen concentrations [52] without invoking
higher OC preservation in sediments with low bottom-water O2 concentrations.
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To test our reactive layer hypothesis, we set up a one-dimensional reaction-transport model
and calibrated it to the site where the difference between lander-based and core-based respiration
rates was the largest, and for which we have the most complete dataset (WGB-5; figure 3).
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When calibrating the model to the core-based data, we were able to reproduce the observed
profiles (figure 6b–e) but underestimated the lander-measured DIC flux by more than an order of
magnitude (2.5 versus 23–72 mmol C m−2 d−1; figure 6f ). When we subsequently added an influx
of highly reactive OC with a reactivity constant of 10 yr−1, which is representative for highly
reactive marine OC [53], the change in down-core profiles was limited, but the simulated DIC flux
fell within the measured range (figure 6b–f ). We only found a major impact on the SRR near the
SWI, with simulated rates of 1–3 µmol S cm−3 d−1 in the first centimetre (two orders of magnitude
higher than the measured SRR). However, when the top 0.5 mm was excluded, the surface
simulated rates were comparable with the measured SRR (figure 6e). Several manipulations
during the 35S incubation are likely to reduce the SRR in the top 0.5 mm, such as the removal
of the overlying water or potential oxidation artefacts during incubation (which were not kept
in an anoxic atmosphere). In summary, our model experiment shows that the majority of OC
respiration can occur in the upper 0.5 mm below the SWI, or directly at the SWI, without having
a major influence on the down-core profiles. Hence, the use of core-based profiles to derive OC
respiration rates can underestimate the actual OC respiration rate substantially in unbioturbated
settings such as in anoxic environments. Since around 15% of the coastal ocean has a negligible
mixed layer [54], we propose that the reactive surface layer is an important feature in the global
coastal seafloor.

The predominant use of core-based methods when estimating OC respiration rates in
sediments underlying anoxic bottom waters [5,17] has led to the global impact of bottom-water
anoxia on OC burial efficiencies being overestimated. Other studies comparing lander-based
OC respiration rate estimates with core-based estimates at unbioturbated sites are rare, yet the
literature supports our interpretation [55–57]. Higher phosphate fluxes—a possible proxy for
OC respiration—have been measured in chamber incubations than calculated from sediment
profiles in unbioturbated sediments underlying hypoxic or anoxic bottom waters in the Peruvian
oxygen-minimum zone (lander-based estimates were 50–210% higher; [55]) and the Pakistan
margin oxygen-minimum zone (lander-based estimates were orders of magnitude higher; [56]).
Additionally, a recent study in the hypoxic Gulf of Mexico estimated a seven times higher
respiration rate based on high-resolution oxygen microsensor profiles compared with core-based
DIC profiles [57]. Because of the higher vertical advective velocity at higher MARs, the respiration
rate offsets are expected to decrease with increasing MARs. The offset between core-based and
lander-based OC respiration rate estimates is indeed small at our site with the highest MAR
(WGB-1). Observations from the unbioturbated southern California borderland basins also show
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a negligible offset in respiration rate estimates in San Pedro, a basin with high MAR (approx.
400 g m−2 yr−1) [42] (figure 4b).

The methodological artefacts in estimating OC respiration rates translate into a substantial
difference between calculated OC burial efficiencies (figures 6a and 7a). Using the core-based
estimate, we obtain burial efficiency values in line with previous estimates for OC burial
efficiencies in sediments underlying anoxic water columns (5–50%, median: 8.4%) [4]. When we
use the lander-based estimates, however, the OC burial efficiencies become substantially lower,
of the order of 0.5–15% (median: 1.2%), contrary to existing literature (figure 7a; [4,7]). Therefore,
we propose that the apparent difference in OC burial efficiencies for sediments deposited in oxic
versus anoxic conditions in the literature is caused by methodological artefacts. Indeed, when we
omit the OC burial efficiencies that have been calculated based on core-based methods alone and
include our new lander-based estimates (figure 7b), we draw the following conclusions: (i) the
OC in the anoxic Baltic Sea sediments is more reactive than expected compared with oxygenated
sediments with similar MARs and (ii) there is no clear influence of bottom-water O2 conditions
on OC burial efficiency.

5. Conclusion
We demonstrate that a reactive surface layer of submillimetre scale, which accounts for greater
than 50% of the respiration rate of the entire sediment column, exists in sediments without a
mixed layer. By not accounting for the presence of this reactive surface layer, the OC burial
efficiency can be overestimated by a factor of 10. Around 15% of the modern coastal seafloor
does not have a mixed layer [54]. In these regions, respiration rates, and thus OC rain rates,
are likely underestimated. Our findings are especially pertinent in the context of past O2-poor
oceans. A limited impact of oxygen on OC burial efficiency provides support for the hypothesis
that aerobic respiration drove Earth’s oxygenation [64]. Additionally, our results question the
assumption of enhanced OC burial efficiency in a seafloor underlying anoxic bottom waters,
which is used in recent reconstructions of marine primary productivity during periods of
extensive ocean anoxia in the Cretaceous, the Proterozoic and Archean Eon [65,66]. These studies
suggest marine primary productivities that were 100 times (for the Proterozoic) to 1000 times
(for the Archean) lower than today, mainly because of the assumption of enhanced OC burial
efficiencies in anoxic oceans [66]. Our results and re-interpretation of literature data show that
water-column O2 concentrations are not a major factor controlling OC burial (figure 7b) and that
OC burial efficiencies are likely overestimated by an order of magnitude (figure 4a). As a result,
the difference in oxygenation in the deep ocean in the past would have had little impact on OC
burial, and primary production rates in the past oceans were likely 10 times higher than currently
assumed.
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