
Citation: De Cock, A.; Vandeputte,

R.; Bruneel, S.; De Cock, L.; Liu, X.;

Bermúdez, R.; Vanhaeren, N.; De Wit,

B.; Ochoa, D.; De Maeyer, P.; et al.

Construction of an

Orthophoto-Draped 3D Model and

Classification of Intertidal Habitats

Using UAV Imagery in the Galapagos

Archipelago. Drones 2023, 7, 416.

https://doi.org/10.3390/

drones7070416

Academic Editor: Sanjay Sharma

Received: 17 May 2023

Revised: 19 June 2023

Accepted: 21 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Construction of an Orthophoto-Draped 3D Model
and Classification of Intertidal Habitats Using UAV Imagery
in the Galapagos Archipelago
Andrée De Cock 1,* , Ruth Vandeputte 1, Stijn Bruneel 1 , Laure De Cock 2 , Xingzhen Liu 1 ,
Rafael Bermúdez 3,4 , Nina Vanhaeren 2, Bart De Wit 2, Daniel Ochoa 5, Philippe De Maeyer 2 ,
Sidharta Gautama 6,7 and Peter L. M. Goethals 1

1 Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University,
Coupure Links 653, 9000 Ghent, Belgium; stijn.bruneel@ugent.be (S.B.)

2 Department of Geography, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
3 Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral ESPOL,

Guayaquil ECO90211, Ecuador
4 Galapagos Marine Research and Exploration, GMaRE, Joint ESPOL-CDF Program, Charles Darwin Research

Station, Puerto Ayora 200102, Ecuador
5 Facultad de Ingeniería Eléctrica y Computación, Escuela Superior Politécnica del Litoral (ESPOL,)

Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil 090101, Ecuador
6 Department of Industrial Systems Engineering and Product Design, Ghent University, 9052 Ghent, Belgium
7 FlandersMake@UGent—Corelab ISyE, 3920 Lommel, Belgium
* Correspondence: andree.decock@ugent.be; Tel.: +32-9264-9001

Abstract: Worldwide, an increasing number of marine islands suffer from various pressures on the
environment, driven by climate change and increasing land demands. The Galapagos Archipelago
is one of the most iconic group of islands, yet population growth and tourism have resulted in a
rising need for efficient environmental monitoring of its fragile ecosystems, such as the intertidal
zone which harbors diverse and unique fauna. The purpose of this study was to investigate the
image classification opportunities for these intertidal habitats using Uncrewed Aerial Vehicle (UAV)
imagery. The data for this research were collected in Puerto Ayora on Santa Cruz in August 2017, the
most urbanized island of the Galapagos. An orthophoto, a digital elevation model (DEM), and an
orthophoto-draped 3D model of the intertidal zone were obtained using image registration software.
Based on the orthophoto, an initial classification of the intertidal zone was performed using the
spectral angle mapper algorithm. A habitat map with four classes (water, sand, rock, and vegetation)
was created with an overall classification accuracy of 77%, indicating the suitability of UAV high
resolution aerial imagery for the classification of intertidal habitats. The developed method could be
applied to map and monitor other coastal regions and islands systems.

Keywords: Uncrewed Aerial Vehicle imagery; categorization; intertidal areas; island system; Ecuador;
orthophoto; habitat map

1. Introduction

The fragile ecosystems of coastal regions worldwide are endangered by population
growth, tourism, and economic development of the region [1]. The environmental chal-
lenges are even more critical for small island countries, because their entire territory
typically consists of coastal areas [2]. According to the most recent geographical mapping
assessments, more than 340,000 marine islands may exist [3]. Islands are among the most
vulnerable systems to climate change and suffer substantially from the pressures originat-
ing from the worldwide population growth and its increasing land demands [4,5]. It is
expected that in the near future, applied research that assesses the effect of anthropogenic
environmental changes on ecosystem dynamics will become more important [6]. The

Drones 2023, 7, 416. https://doi.org/10.3390/drones7070416 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7070416
https://doi.org/10.3390/drones7070416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-7911-4219
https://orcid.org/0000-0002-8226-8080
https://orcid.org/0000-0002-6511-6974
https://orcid.org/0000-0003-2037-0634
https://orcid.org/0000-0002-8109-5819
https://orcid.org/0000-0001-8902-3855
https://orcid.org/0000-0001-5628-6974
https://doi.org/10.3390/drones7070416
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7070416?type=check_update&version=1


Drones 2023, 7, 416 2 of 22

need for efficient environmental monitoring of sensitive coastal ecosystems worldwide
is rising in order to support successful management strategies. A better understanding
and visualization of the spatial and temporal variability of coastal and intertidal habitats
may improve the resilience to natural and anthropogenic disturbances through the support
of decision-making processes, such as prioritization of the management of endangered
areas [7] and urban planning. Intertidal areas are highly dynamic and complex ecosys-
tems with a large biodiversity over small areas, consisting of mosaics of different habitats,
shaped by complex interactions of biotic and abiotic variables [8]. For this reason, the
description of the physical extent of habitats is highly important and should be available
at a relatively fine scale (several meters). Especially for those habitats that are known to
be important for the distribution of biodiversity. Rocky reefs are globally found at more
than one-third of the coastlines most frequently at islands on hot spots, island arcs, and
convergent-plate margins associated with subduction [9]. Shallow reef habitats are most
severely disturbed by human activities (e.g., bathing and fishing) given their limited depth,
global warming, and ocean acidification, which may lead to species composition shifts and
functional collapse in reefs in the near future [10,11]. Considering the global changes and
local pressures, these valuable ecosystems should be sustainably managed through the
assessment of their ecological status using spatially explicit observations and models [7].
Different types of uncrewed vehicles such as uncrewed aircraft systems, autonomous
underwater vehicles, and unmanned surface vehicles can be used for data collection pur-
poses [12]. Each of those systems has its respective strengths and restraints. Recently,
the usefulness of Uncrewed Aerial Vehicle (UAV) imagery for habitat classification has
become apparent, mainly because of its high resolution and lower cost compared to satellite
imagery [13,14]. In situ collected data of water and ecosystem quality from UAVs can be
beneficial in closing spatial data gaps through obtaining near-real-time, fine resolution, and
spatially explicit information [15]. UAV imagery is commonly used in coastal zones due to
being less time-consuming and labor-intensive compared to other coastal habitat mapping
methods such as in situ sampling techniques, acoustic system techniques, underwater
video monitoring techniques, and other remote sensing techniques [16]. Remote sensing
platforms based on UAVs present an alternative to traditional approaches that can quickly
and inexpensively monitor coastal areas. Moreover, drones can support conservation
actions and reinforce effective management in protected areas [17]. Hitherto, the number
of studies on the application of UAV imagery for intertidal habitat monitoring has been
limited [18]. UAVs offer a flexible, intermediary spatial scale between satellite imagery
and photographic surveys conducted on the ground [19]. Furthermore, they offer the
possibility to acquire imagery at different altitudes and therefore different spatial resolu-
tions [19]. High-resolution imagery is of interest because of its ability to capture the typical
fine-scale heterogeneity of intertidal areas. Globally, scientists have been recognizing those
advantages of UAV use and during the last years the use of UAV imagery to perform fast,
accurate, and detailed biological scans, covering large spatial areas of intertidal habitats
has been increasing [18]. Examples include European researchers mapping large algae
communities in Ireland and France [20,21], Chinese and Japanese researchers mapping
3D morphological characteristics of the intertidal zone [22,23], North American researchers
quantifying eelgrass wasting disease on the Pacific coast [24], and Australian scientists
using UAV multispectral imaging to map intertidal salt marshes to prevent mosquito-borne
diseases [25]. The current study was performed along the coastline of Puerto Ayora, a
small town situated on Santa Cruz island, which forms part of the Galapagos Archipelago.
The predominant habitat type along the Galapagos coastlines is shallow subtidal rocky
reef habitat. Since in the Galapagos Islands, 97% of the land is protected and ecosystem
dynamics are highly vulnerable, methods to collect information in a timely and accurate
way are essential for sustainable management and decision making [26]. In this research,
we examined the suitability of UAV high resolution aerial imagery for the classification
of intertidal areas of coastal regions of the Galapagos archipelago by developing an or-
thophoto, a digital elevation model (DEM), and an orthophoto-draped 3D model of the
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intertidal zone [27]. Additionally, the accuracy of the created operational framework was
studied and future optimizations and recommendations were discussed. The generated
visual outputs can be used in various environmental monitoring and modeling (e.g., cli-
mate change) applications and might function as a baseline for restoration projects as
well. For example, the provided data could be used for sea level rise predictions, habitat
deterioration follow-ups, hydrodynamic models, and sediment transport models. These in
turn can aid safeguarding the local municipalities through improved coastal defenses and
can protect intertidal zone ecosystems from the effects of climate change.

2. Materials and Methods
2.1. Study Area

The Galapagos archipelago consists of 13 major volcanic islands and more than
300 islets and rocks. It is located approximately 1000 km from the Ecuadorian mainland
and characterized by high levels of biodiversity and endemism [28]. Santa Cruz is one of
the major inhabited islands in Galapagos and it is the main island for tourism. The island
has an area of 1794 km2 and about 15,701 inhabitants [29]. This study was performed along
the coastline of Puerto Ayora, a small town situated on Santa Cruz island (Figure 1). The
port area of Puerto Ayora has been changing throughout the years due to urbanization
(Figure A1). The increasing urbanization intensifies the pressures on the Galapagos ecosys-
tems. For example, the discharge of ballast water coming from tourism cruises has already
resulted in the introduction of non-endemic fauna and flora species to the coasts of the
Galapagos Islands [30]. Moreover, as more waste is created and no sewage treatment is
present yet in Puerto Ayora, the demand increases [1].
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2.2. GNSS Measurements for Georeferencing

Ground control points (GCPs) were placed to serve as base for georeferencing the
model through the use of UAV imagery. To mark the GCPs, squared sheets of light color
were used. With black paint, we assured that the middle of the sheet could be easily
recognized on the aerial pictures. On the days before the UAV flights, twenty targets
were placed in the field. Most GCPs were placed on the roofs of houses and hotels for
optimal visibility, accurate GPS measurements, and to avoid disturbance of the targets by
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tourists or inhabitants during the flight period. Possible interference of wind was taken
into account by placing heavy stones on the sides of the sheets. Because of the densely built
and crowded location, little accessible roofs and roof top terraces were preferred. Several
easily identifiable points, such as street corners and paintings on the road, were chosen as
additional GCPs to ensure sufficient coverage of the whole study area. Seventeen easily
identifiable points were selected based on the aerial pictures of flights with insufficient GCP
coverage (Figure A3). Twenty of the GCP target sheets were placed along the coastline;
however, six of the targets were not used for georeferencing due to movement by wind,
inhabitants, etc. To compensate, an additional easily identifiable point on the corner of a
roof was measured. In total, 14 targets and 18 easily identifiable points were suitable for
further use in this study.

The coordinates of all GCPs were measured with a global navigation satellite sys-
tem (GNSS) receiver. The geodetic materials used in this study were the Trimble 8 and
Trimble 10 [31]. The Trimble 8 was used as rover and was taken to all the GCPs, whereas
the Trimble 10 was used as base station by being placed on the exact same location during
all GNSS measurements (Figure 2). That particular location was chosen to be central in the
study area on a roof of a high hotel building (gcp53 in Figure A3). The coordinates of the
GCP were obtained in four steps. Firstly, the position of the base station was logged during
a short time period (ca. 1 min) to determine a rough estimate to save time and to be able
to start the measurements shortly after the set-up. Secondly, the coordinates of all GCPs
were measured with the rover and corrected by simultaneous measurements of the base
station, using the real time kinematic (RTK) method [32]. Regardless of the apt position
of the base station, occasionally it was not possible to make a radio connection between
rover and base station. In that case, the coordinates of the GCP were determined without
real-time corrections from the base, using the post processing kinematic (PPK) method. In
a third step, the position of the base station was logged for several hours and its accurate
position was calculated via use of the AUSPOS web service of Geoscience Australia [33].
Finally, the rough estimate of the base coordinates, used for obtaining the corrections for
RTK and PPK, were replaced in post-processing by the accurate coordinates. All rover
measurements were shifted according to the correct base position and corrections were
applied for the points that were measured via PPK, which was the case for three points
(gcp51, x8, and x9). This process was executed in Leica Geo Office. The precision of the
measurements for both RTK and PPK is shown in Table A1. The corrected coordinates of
all GCPs in the UTM 15S coordinate reference system are found in Table A2.
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2.3. Imagery Collection with Uncrewed Aerial Vehicle

The DJI 550, a small rotary-wing UAV with 6 motors, was used for the study
(Figure A2 and Table A3). The small size of this UAV was considered to be practical for
transportation by plane and by boat. Aerial pictures were taken with a RGB camera: the
Sony NEX 5R (Table A4). The flight routes were drawn in QGIS 2.18.16 and a Python script
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was used to transform the shapefiles into waypoint files. The waypoints were imported in
the flight control software, Mission Planner. By using QGIS together with Mission Planner,
we had more control over the complex flight plan. Images were captured on the 9th and
10th of August 2017 at 120 m.a.s.l. (meters above sea levels) with an image pixel size of
2.86 cm. The tidal information of those days is summarized in Table A5. Nine flights were
executed to obtain imagery of the whole shoreline of the study area (Figure 3 and Table A6).
The parameters used for the flight planning of all nine flights via Mission Planner are
described in Table A7. The nine flights that were executed for this research resulted in nine
sets of RGB images. After deleting several pictures during tests, take off, and touch down,
1172 images were retained. Only areas not covered by water at the time of flight were
considered. Therefore, all images were scanned and the water was masked manually on the
images which had not been collected during low tide flights. Additionally, several moving
boats were masked. Six images were fully masked, because they only showed water surface
taken in a non-low tide flight. Those were not incorporated in the creation of the model.
Finally, 1166 images were retained and used for the orthophoto-draped 3D modeling. The
used drone covered a total area of 1.19 km2.
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2.4. D Modeling of the Coastal Region

The processing of the UAV imagery was done via Agisoft Metashape (version 1.2.5
build 2735), which is a commercially available software package for automated photogram-
metry based on image matching and bundle adjustment [34]. In a pre-processing step, the
UAV camera is calibrated to determine the parameters of the interior orientation of the
camera: focal length, frame size, pixel size, coordinates of principal point, and values of
lens distortions. This is supported in Metashape on a procedure based on chessboard pat-
terns [14]. With this information, Metashape combined all images via an aligning process
based on pixel-based stereo image matching [35]. Firstly, all photographs of the nine flights
were aligned and fused into one model. Matching points between the photographs were
searched for. GCP coordinates were added to the project and GCPs were manually tied
to the corresponding images for the production of the georeferenced outputs. The guided
approach was used to predict the UAV images showing the same GCP.

Secondly, the model was georeferenced by applying a seven-parameter similarity
transformation (three parameters for translation, three for rotation, and one for scaling).
Georeferencing corrected for linear errors. During this optimization, Metashape adjusted
the estimated point coordinates and camera parameters by minimizing the sum of the
reprojection error and the reference coordinate misalignment error. Due to this optimization,
the georeferencing accuracy improved from around 33 cm to 2.65 cm (Table A8). Thirdly,
a dense cloud and a mesh were built and texture was added. To start, the process was
tested and optimized for a subarea of the study area, the coastline of the Charles Darwin
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Research Station (Figure 4). After the creation of a dense point cloud, we deleted all points
that were not of interest. To reduce the computing time, we clipped out the points that
were too far from the intertidal zone. This step was done by manual drawing of polygons
while taking into account a safety margin. Afterwards, orthophoto-draped 3D models
were created using all the UAV imagery, including those further away from the intertidal
zone. Table A9 summarizes the selected parameters for the creation of the model. After
optimization of the process for the subarea, the complete study area was processed with the
same parameters, excluding the building of the mesh. Separately, the mesh of the complete
study area was computed with a lower polygon count than the subarea. Finally, three
outputs were created: a rectified image or orthophoto, a DEM, and an orthophoto-draped
3D model. The orthophoto and the DEM were both developed for a subarea of the study
area, the coastline of the Charles Darwin Research Station, and for the complete coastline.
The area around the research station was considered to be relatively pristine and therefore
the number of anthropogenic structures (i.e., landscape elements we were not interested in)
was limited. That is the reason why the classification and its validation were focused on
this specific area. The final orthophoto-draped 3D models have been shared open-access:
10.5281/zenodo.7924523 (accessed on 15 May 2023).
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2.5. Automatization of the Habitat Classification
2.5.1. Preprocessing of the Orthophoto

The created orthophoto and DEM were processed in order to perform habitat classifi-
cation using GIS software [36]. All the areas on the orthophoto that were not included in the
intertidal zone were cut out of the image by use of GIS software (ArcMap 10.5.1 and QGIS
2.18.16). As most imagery was captured at low tide, the DEM and orthophoto resulting
from the modeling also shows the area at low tide. From the tidal forecast of Puerto Ayora,
a maximum tidal range of 2.42 m was derived [37]. Therefore, the intertidal zone could be
identified on the DEM as the area between sea level at low tide and about 2.50 m above that
level. To extract the intertidal zone from the DEM, the following expression was used in the
ArcMap 10.5.1 raster calculator: ‘(“DEM.tif >= 0”) & (“DEM.tif” <= 2.5)’, which resulted in
a binary raster. This binary raster was multiplied with the three bands of the orthophoto in
the QGIS raster calculator to extract the cells that correspond with the DEM cells between
0 and 2.5 m. The bands were afterwards recombined using the tool ’Build Virtual Raster’
in QGIS. The obtained output (Figure 5A) was used to manually draw the upper and lower
bound of the intertidal area in ArcMap.
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information from DEM (B).

The extraction tool ’Clipper’ was used to extract the intertidal zone between these
boundaries from the orthophoto (Figure 5B). This last step was necessary as in the result of
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the DEM extraction (Figure 5A), the neighboring pixels of the DEM, with values between
0 and 2.5 m, were not retained. This made the image less suited as a base layer for
classification [19]. This effect could have been caused by water or vegetation covering
the surface or by errors in the DEM. Due to the manual process, several buildings were
included in the image. However, those were eventually excluded prior to the classification.

2.5.2. Classification Procedure

In line with ecological habitat monitoring and assessment protocol, a distinction was
made between four physical habitat classes: sand, vegetation, rock, and water. The latter
class was used for deeper sites that remained under water during the flights. Buildings
and boats on the images are strictly seen as not part of the intertidal zone, but some were
still present on the intertidal orthophoto. Those vary highly in spectral characteristics, so it
was decided to not include them as a separate class. They are expected to be classified as
another class or to remain ’unclassified’. A choice for supervised object-based classification
was made based on promising results in previous research [38–40] and because no extra
post-processing steps are required with this technique. The segmentation process in the
object-based image analysis (OBIA) approach involves grouping adjacent pixels based
on their similarity, considering both color and shape characteristics [41]. This approach
effectively averages the pixel values while incorporating geographic information, resulting
in the creation of objects that closely resemble real-world features in the imagery. As a
result, segmentation produces cleaner classification results [42]. Different segmentation
procedures were tested in order to find one that was acceptable in terms of computing
time and effectiveness. Although different segmentation algorithms were already available
in the open source software QGIS, they all occupied longer computing times or a higher
computing memory compared to the ‘Segment Mean Shift’ algorithm (ArcMap® software
10.5.1) [43]. Therefore, in this study, it was chosen to work with the latter. The tool ‘Segment
Mean Shift’ grouped adjacent pixels with similar spectral characteristics together. It allowed
for controlling the amount of spatial and spectral smoothing via three input parameters
(Table A10). The parameters for spectral and spatial detail could vary from 0 to 20. For
spatial detail, a high number was desired because some features were small (e.g., small rocks
on sandy parts). The minimum size of the segments was found to be optimal at a value of
3 pixels. Once a segmented image was created, the supervised classification process could
start using the ‘Semi-Automatic Classification’ (SCP) plug-in (QGIS ® Software 2.18.16) [44].
The objective of SCP is to provide a set of intertwined tools for raster processing in order
to make an automatic workflow and ease the land cover classification, which can also be
performed by researchers outside of the remote sensing field [45]. Firstly, the segmented
image was selected as the input image. Subsequently, a new training signature file was
created. For the creation of a training set, ROIs (regions of interest) were selected. Ten
ROIs per class were created by the automatic region growing algorithm. The parameters
used for the application of the algorithm (Table A11) were optimized through use of the
classification preview option. For the vegetation and the water classes, a greater maximum
spectral distance was used compared to the sand and rock classes, due to the spectral
variety within those last two classes. To both classes, five extra manually drawn and more
spectral varied polygons were added as training data, as it was noticed that rock and water
were often misclassified. While creating the ROIs, a warning often mentioned that the
selected ROI was too homogeneous, meaning that the ROI had a singular covariance matrix
and the maximum likelihood classifier could not be used. The other available options in
the ‘Semi- Automatic Classification’ plug-in were the minimum distance technique and
the spectral angle mapper (SAM). The spectral angle mapper (SAM) was chosen due to its
relative insensitivity to illumination and albedo effects.

2.6. Validation

A validation was applied based on the UAV imagery and the derived orthophoto. To
obtain an independent validation dataset, 40 ROIs were randomly created and an automatic
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region growing algorithm was used (Table A12). All of the ROIs were manually assigned
to their class based on a visual inspection of the orthophoto. This process is facilitated by
adding the validation ROIs as a semi-transparent layer on the original orthophoto. Several
ROIs were replaced by new random ROIs because they selected a part of a building or boat.
The overall accuracy was calculated by dividing the total number of correctly classified
pixels by the total number of reference pixels [38]. The producer’s accuracy is expressed as
the conditional probability of an area classified as a type of category when the reference
data are classified into the same category by the map. The user’s accuracy, on the contrary,
is the conditional probability of an area classified by the map as a type of category while
being classified into the same category by the reference data [46]. The kappa coefficient
of agreement allowed for comparison of the used classification method with a random
assignment of the pixels into the categories [38]. In case the kappa coefficient is close to
0, the classification can be assessed as very bad. In contrast, values close to 1, indicate a
quasi-perfect classification [47]. The classification accuracy was subsequently calculated
through the ‘Semi-Automatic Classification’ plug-in in QGIS.

3. Results
3.1. D Modeling of the Coastal Region

After the allocation of the GCPs on the UAV images, a georeferencing accuracy or root
mean square (RMS) error, indicating the difference between the actual location and the
modeled location, was calculated in Agisoft Metashape (Table A8). The total georeferencing
accuracy (RSME) was 0.027 m. The largest RMSE was found for GCP ‘x9’ (0.062 m). The
orthophotos (Figure 6), DEMs (Figure 7), and orthophoto-draped 3D model (open access:
10.5281/zenodo.7924523 (15 May 2023)) were successfully constructed for the Charles
Darwin Research Station sub area and the complete study area. The orthophoto-draped
3D model was developed for the complete study area. Computing times of the different
modeling steps can be found in Table A13. The steps for building the dense cloud were
similar for the subarea and the complete study area. For the creation of the mesh and
adding its texture, fewer face counts were included for the complete study area (Table A9).
The two DEMs had a resolution of 11.2 cm per pixel and a point density of 80.4 points
per m2. The obtained orthophotos (Figure 6), DEMs (Figure 7), and the orthophoto-draped
3D model (open access: 10.5281/zenodo.7924523 (15 May 2023)) are considered to be useful
for further applications.
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3.2. Automatization of the Habitat Classification

The intertidal habitat map of the coastline of the Charles Darwin Research Station
using the spectral angle mapper classifier was obtained (Figure 8). Out of the four classes
that were considered, the area of rock habitat appeared to be the largest with 20,496 m2 and
the vegetated habitat the smallest with 9807 m2 (Table A14).
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3.3. Validation

Based on the validation datasets, an error matrix and classification accuracies could be
computed in QGIS. Concerning the pixel-based validation (Table 1), the sand pixels were
all correctly classified. However, only 60% of the rock pixels were correctly classified and
33% were misclassified as water. Vegetation pixels were well classified, considering a few
exceptions. Based on the classified areas (Table 2), an overall kappa of 0.66 and an overall
classification accuracy of 77% was obtained, indicating a relatively good classification by
the model. When each class is given an equal weight in the calculation of the overall
accuracy, a value of 83.64% is obtained.
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Table 1. Error matrix of the intertidal habitat classification (in pixels) (the first column refers to
ground truth data and the upper row refers to model data).

Sand Vegetation Rock Water Total

Sand 34,307 130 7628 92 42,157
Vegetation 0 8058 118 0 8176

Rock 0 0 65,790 7514 73,304
Water 0 0 36,370 67,146 103,516
Total 34,307 8188 109,906 74,752 227,153

Table 2. Classification accuracy of intertidal habitat classification.

Class Producer’s Accuracy (%) User’s Accuracy (%) Kappa Hat

Sand 100.00 81.38 0.78
Vegetation 98.41 98.56 0.99

Rock 59.86 89.75 0.80
Water 89.83 64.87 0.48

Overall accuracy
(%) 77.17

Kappa hat 0.66

4. Discussion
4.1. GNSS Measurements for Georeferencing

The coordinates of the GCPs were determined efficiently, except for six targets that
had been moved by the wind and/or inhabitants or that became inaccessible. Trimble
8 and 10 delivered high precision outcomes (Table A1). Due to the universal use and
time-efficiency of the UTM coordinate system, the applied method is applicable at any
other study area. Direct georeferencing using the accurate positioning capability of the UAV
itself has the potential to make the use of GCPs unnecessary [48]. This alternative would
allow for geotagging of the images using onboard RTK-GNSS measurements. Problems
with unreachable target sheets could be avoided. However, direct georeferencing requires
obtaining the coordinates of a GNSS receiver at the exact moment the image is acquired,
and there might be distortions in signals from satellite constellations and interruptions in
RTK connections for a fast-flying UAV [48]. Thus, further optimization of the proposed
technology is needed before use.

4.2. Data Collection with Uncrewed Aerial Vehicle

Due to pre-programming of the flights and the use of the Mission Planner software, the
UAV flights could be executed within two days. In this study, due to the unstable weather
conditions, limited battery life of UAVs, and relocation of materials to new take-off points,
several flights were delayed and took place outside the tidal period of interest. Future
applications should look into the use of waterproof materials for fast-changing weather.
According to Murrfit et al. [7], this could even make emergency landings in the oceans
possible.

4.3. D modeling of the Coastal Region

The documentation of GCPs immediately after the execution of the flights appeared to
be highly useful during the allocation process. The guided approach for marker placement
is recommended for use in future studies. Furthermore, the largest georeferencing error
(RMSE) was found for GCP ‘x9’ (0.062 m) (Table A8), which could be explained by its
difficult allocation (Figure A3). The accuracy of the georeferenced orthophoto appeared
to depend mainly on the accuracy of the manual allocation of GCPs on the UAV imagery.
By increasing the number of GCPs, accuracy can be increased. We consider that the
31 GCPs used in this study were sufficient since the total RSME amounted to 0.027 m,
which, according to the conventional requirements for georeferencing accuracy, meets
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the requirement of a value below 1 pixel [49]. Moreover, to improve the accuracy of the
classification, it has been recommended to adjust the RGB values according to the thickness
of the water package above the area [40]. All images could be aligned after masking the
boats and water surfaces in the images that were not taken at low tide. Parameter testing
for a subarea was essential to obtain valuable results. The obtained DEM, orthophoto,
and orthophoto-draped 3D model could potentially be used for a variety of applications.
For example, the data could be used for spatial planning of monitoring efforts and spatial
analysis of the environment of Puerto Ayora such as modeling of biodiversity changes
related to climate change impacts [50]. Moreover, the developed DEMs could be used for
prediction of habitat loss under different scenarios of sea-level rise [51]. Those estimations
of sea-level rise for the next decennia could be used to investigate the potential loss of
intertidal habitats.

4.4. Automatization of the Habitat Classification

The ‘Semi-Automatic Classification’ plug-in proved to be a user-friendly plug-in with
a useful classification preview option. Aside from the applied classification algorithm, other
classification algorithms software exist, such as ArcMap and eCognition, which can be
applied depending on the required result [52]. Moreover, we advise further study to obtain
a sufficiently high number of ground-truth data in order to improve the classification and
validation processes, and also to measure in the near-infrared (NIR) part of the spectrum.
This could facilitate the classification of boats and buildings. Studies have been performed
using UAV imagery for intertidal area mapping for a wide range of applications, e.g., to
map large algae communities [21] or to show the distribution patterns and patchiness of
seagrass [18]. To the best of our knowledge, this study is the first one which aimed to classify
UAV imagery of intertidal habitats on the Galapagos archipelago [26,53]. Comparing the
overall accuracy of intertidal habitat classifications is challenging as the results strongly
depend on the study area. Each biotope has unique characteristics and different land cover
types around the globe [41]. Therefore, instead of comparing the overall accuracy, a focus
was put on the individual categories. The results indicated that the category with the
highest error rate was ‘water’. Various pixels that were identified as water during the
validation were classified as rocks by the model. The reason for this can be that these two
categories physically overlapped most, the water washed over the rocky coastline. It is
often the case in tropical coast areas that no clear boundaries exist between the different
types of land cover. Additionally, most land cover types in those areas have similar spectral
signatures, which is a challenge for automated image classification [54]. More recently
developed classification methods, which capture images in the near-infrared band and
enable the calculation of the normalized difference water index (NDWI), can be applied to
detect the presence of water [55]. In addition, to correct the RGB values for the presence of
water, the collection of bathymetric data can be considered [7,40]. For the intertidal area of
the Charles Darwin Research Station, the least represented habitat class was vegetation.
As the intertidal area was delineated based on the DEM, it might be that parts of the
vegetated area could have been cut out. In conclusion, the visual outputs produced in
this study can have diverse applications in environmental monitoring and modeling for
climate change, serving as a fundamental source of data for restoration initiatives. One
such application could be the utilization of data to predict sea-level rise, monitor habitat
deterioration, and develop hydrodynamic and sediment transport models. These models
can contribute to strengthening coastal defenses and safeguarding local communities, as
well as protecting intertidal zone ecosystems from the detrimental impacts of climate
change. Furthermore, biological studies on underwater surveys enabling the mapping of
biological communities’ distribution across habitats with potentially varying conditions
could benefit from combining and integrating the obtained visual results [56].
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4.5. Validation

The quality of the obtained habitat map depended on the quality of the UAV imagery,
the photogrammetry process, the quality of ground-truth, and the applied classification
algorithm [57]. The error matrix (Table 1) showed a high accuracy of classifying the
vegetation due to its spectral differences. The classification of awash rock systems was
the hardest due to misclassification as rocks instead of water. The limitations of UAV
imagery technology could be attributed to various environmental factors, including light,
weather, and wind. These factors can have a significant impact on image clarity and stability,
ultimately affecting the accuracy and reliability of image analysis [58]. Moreover, human
intervention, including drone take off and landing, data calibration, and verification, could
also affect the autonomy of the technology [59]. Additionally, issues such as battery capacity,
high cost, and insufficient computing power due to large data samples should also be fully
considered in future research [60,61]. Future validation could be made via underwater
monitoring based on camera systems on underwater vehicles, autonomous underwater
vehicles (AUVs), or remotely operated underwater vehicles (ROV), and snorkeling [12,58].
Extensive review has shown the potential of current UAV technologies for monitoring and
tracking alterations in coastal environments at high spatial and temporal resolution [13].
The combined use of different UAV technologies that are generating spatially linked
information can be of high added value for both the validation as well as the generation of
complementary data that are useful to obtain a more complete picture of these ecosystems
and their physical, chemical, and biological conditions [12]. The complementary advantages
of various types of uncrewed vehicle systems could partially resolve the challenges or
limitations of one single type to advance system stability and efficiency [12]. An equilibrium
has to be found between innovation and feasibility.

The legal and policy-related challenges of UAV technology need to receive sufficient
attention and regulation. This involves addressing privacy protection, security concerns,
data collection and usage, environmental protection, intellectual property ownership, and
airspace management [62–64]. For future research, it is important to take into account the
previous elements to strengthen regulation and control on the use of UAV technology [65].

5. Conclusions

The processing of UAV photographs of the coastline of the Charles Darwin Research
Station via photogrammetry resulted in orthophoto-draped 3D models, DEMs, and or-
thophotos of the coastal zone (open access: 10.5281/zenodo.7924523 (15 May 2023)). The
generated visual outputs had high resolutions and were considered to be highly valuable
for visualization of the study area. A classified habitat map was achieved with an overall
accuracy of 77%. The results indicated that the category with the highest error rate was
‘water’. It can be concluded that the UAV high-resolution aerial imagery collected on the
Galapagos Islands was valuable to classify intertidal habitats of its coastal regions. The
developed method could be applied to map coastal regions all over the world. The data
obtained can be applied in environmental monitoring and modeling for climate change,
serving as a fundamental source of data for restoration initiatives.
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Table A1. Precision of RTK and PPK measurements (RMS = root mean square). Source: R8 and R10
User Guides, 2018, www.trimble.com (15 May 2023).

Device Horizontal Vertical

Trimble 8—RTK 8 mm + 1 ppm RMS 15 mm + 1 ppm RMS
Trimble 8—PPK 8 mm + 1 ppm RMS 15 mm + 1 ppm RMS

Trimble 10—RTK 8 mm + 1 ppm RMS 15 mm + 1 ppm RMS
Trimble 10—Static and Fast Static 3 mm + 0.5 ppm RMS 5 mm + 0.5 ppm RMS

Table A2. GCP coordinates after processing: labels with ‘gcp’ for the target sheets; labels with ‘x’ for
the extra easily identifiable points.

Label x (m) y (m) z (m)

gcp31 799,051.572 9,917,348.444 12.495
gcp33 799,167.133 9,917,438.823 13.911
gcp34 799,286.202 9,917,562.073 7.574
gcp35 799,321.482 9,917,795.994 10.908
gcp39 799,872.905 9,917,850.448 5.525
gcp40 799,607.303 9,917,900.804 7.143
gcp41 799,511.031 9,917,762.844 3.326
gcp42 798,964.022 9,917,263.031 13.240
gcp43 799,369.041 9,916,998.423 7.375
gcp45 799,213.977 9,917,625.279 10.077
gcp46 799,611.387 9,917,781.724 3.148
gcp50 799,404.836 9,916,934.678 16.418
gcp51 799,042.448 9,916,630.257 5.030
gcp52 799,280.290 9,917,471.070 11.390
gcp53 799,190.859 9,917,608.680 17.326

x1 799,104.596 9,917,340.420 3.181
x2 799,178.385 9,916,663.176 7.001
x3 798,992.051 9,917,221.791 11.980
x4 799,086.871 9,917,326.735 2.211
x5 799,197.161 9,917,333.538 2.588

www.trimble.com
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Table A2. Cont.

Label x (m) y (m) z (m)

x6 799,061.097 9,917,179.476 2.971
x7 798,706.702 9,917,273.955 2.032
x8 798,589.225 9,917,522.339 7.357
x9 799,359.393 9,916,832.773 1.910

x10 799,114.913 9,916,440.213 2.908
x11 800,049.947 9,917,852.916 6.058
x101 800,213.769 9,917,682.033 1.917
x102 800,215.203 9,917,848.795 6.686
x103 799,805.455 9,918,081.176 5.227
x104 799,341.435 9,917,942.760 6.648
x105 799,091.362 9,917,880.390 8.327
x106 799,008.321 9,917,614.719 7.487

Table A3. Specifications of Hexacopter DJI 550 Source: Flame Wheel Arf Kit, 2017, www.dji.com
(15 May 2023).

Total Weight 2583 g
Diameter 550 mm
Batteries 2 × (4 Ah, 16,8 V)

Flight Controller Pixhawk with GPS (uBLOXNEO-M8N)
Hexacopter DJI 550 1673 g

2 Batteries 2 × 283 g
Camera with Lens 344 g

Table A4. Specifications of Sony NEX 5R Source: Sony NEX 5R, 2018, www.dpreview.com
(15 May 2023).

Sensor Type CMOS
Sensor Size 15.6 mm × 23.4 mm

Camera Resolution 16 MP
Shutter Speed 30 s—1/4000 s
Focus Distance 20 mm

Weight 276 g

Table A5. Tidal information of Santa Cruz island during the flights Source: Isla Baltra—Galapagos
Islands Tide Chart, 2017, Available online: tides.mobilegeographics.com (accessed on 8 May 2012).

Date High Tide Low Tide

9 August 2017 a.m. 3:37 a.m. GALT/2.03 m 9:43 a.m. GALT/0.34 m
9 August 2017 p.m. 3:46 p.m. GALT/1.99 m 9:57 p.m. GALT/0.22 m
10 August 2017 a.m. 4:11 a.m. GALT/2.06 m 10:20 a.m. GALT/0.31 m
10 August 2017 p.m. 4:23 p.m. GALT/1.99 m 10:33 p.m. GALT/0.22 m

Table A6. Flight schedule.

Flight Number Date Take Off Touchdown Tide

Flight 1 9 August 2017 1:23:44 p.m.
GALT

1:29:40 p.m.
GALT Rising

Flight 2 9 August 2017 1:59:34 p.m.
GALT

2:07:28 p.m.
GALT Rising

Flight 3 9 August 2017 3:03:46 p.m.
GALT

3:09:30 p.m.
GALT Rising

Flight 4 9 August 2017 3:36:10 p.m.
GALT

3:42:42 p.m.
GALT Rising/High

www.dji.com
www.dpreview.com
tides.mobilegeographics.com
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Table A6. Cont.

Flight Number Date Take Off Touchdown Tide

Flight 5 10 August 2017 9:39:32 a.m.
GALT

9:44:44 a.m.
GALT Falling

Flight 6 10 August 2017 10:32:00 a.m.
GALT

10:39:12 a.m.
GALT Low/Rising

Flight 7 10 August 2017 10:50:46 a.m.
GALT

10:59:30 a.m.
GALT Low/Rising

Flight 8 10 August 2017 11:43:20 a.m.
GALT

11:49:44 a.m.
GALT Low/Rising

Flight 9 10 August 2017 11:58:02 a.m.
GALT

12:03:28 p.m.
GALT Low/Rising

Table A7. Parameters used for flight planning via Mission Planner.

Altitude 120 m
Ground Sampling Distance 2.86 cm

Ground Width 140.4 m
Ground Length 96.6 m

Distance between Flight Lines 55 m
Overlap between Flight Lines 33 m, 60%

Distance between Image-Centers 10 m
Overlap within Flight Lines 8 m, 80%

Table A8. Accuracy of georeferencing: root mean square errors.

Label x Error (m) y Error (m) z Error (m) Total Error (m)

gcp31 −0.0297 0.0333 0.0111 0.0460
gcp33 0.0093 0.0028 −0.0011 0.0098
gcp34 0.0030 0.0043 −0.0030 0.0060
gcp35 0.0128− 0.0035 −0.0011 0.0133
gcp39 −0.0005 −0.0013 −0.0027 0.0031
gcp40 −0.0296 0.0116 0.0029 0.0320
gcp41 −0.0065 0.0029 0.0012 0.0072
gcp42 −0.0038 −0.0074 0.0054 0.0099
gcp43 −0.0099 0.0034 −0.0067 0.0125
gcp45 −0.0139 0.0183 0.0082 0.0244
gcp46 0.0204 −0.0117 −0.0017 0.0236
gcp50 0.0294 −0.0412 −0.0049 0.0509
gcp51 0.0089 0.0003 0.0063 0.0109
gcp52 −0.0102 −0.0017 0.0030 0.0108
gcp53 0.0064 −0.0049 −0.0076 0.0110

x1 0.0258 −0.0275 0.0147 0.0405
x2 −0.0123 −0.0188 −0.0101 0.0247
x3 0.0069 0.0216 −0.0095 0.0246
x4 0.0210 −0.0119 −0.0230 0.0334
x5 −0.0282 0.0013 −0.0025 0.0284
x6 −0.0009 −0.0176 0.0038 0.0180
x7 0.0005 −0.0009 −0.0004 0.0011
x8 −0.0036 0.0090 −0.0083 0.0127
x9 −0.0144 0.0582 0.0164 0.0622

x11 0.0450 −0.0116 0.0009 0.0465
x101 −0.0139 −0.0235 −0.0022 0.0274
x102 −0.0218 0.0342 −0.0019 0.0406
x103 −0.0046 −0.0048 0.0006 0.0067
x104 0.0047 0.0038 −0.0014 0.0061
x105 0.0009 −0.0021 0.0021 0.0031
x106 0.0054 −0.0123 −0.0012 0.0135
Total 0.0170 0.0189 0.0075 0.0265
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Table A9. Parameters for modeling process in Agisoft Metashape.

Align Photos

Accuracy Medium
Pair selection Disabled

Keypoint limit 0 (infinite number of points)
Tiepoint limit 10,000

Constrain features by mask Yes
Build dense cloud

Quality Medium
Depth filtering Mild (not filtering out too many details)

Build mesh
Surface type Arbitrary
Source data Dense cloud

Polygon count Medium for subarea; low for full area
Interpolation Enabled
Point classes All
Add texture

Mapping mode Generic
Texture size 20,000 × 20,000

Create orthophoto
Pixel size 2.79 cm × 2.79 cm

Table A10. The parameters for segmentation process in ArcMap.

Segment Mean Shift

Spectral Detail 18
Spatial Detail 18

Minimum Segment Size In Pixels 3

Table A11. Parameters and numbers of ROIs (for subarea around Charles Darwin Research Station)
for creation of training data with automatic region growing algorithm (ARGA) and by manual
drawing of polygons (MDP) in QGIS.

General Parameters for ARGA

Minimum number of pixels 60

Maximum number of pixels 400

Class 1: sand

Maximum spectral distance 10

Number of ROIs with ARGA 10

Number of ROIs with MDP 0

Class 2: vegetation

Maximum spectral distance 20 (needed for diverse vegetation reflectance)

Number of ROIs with ARGA 10

Number of ROIs with MDP 0

Class 3: rock

Maximum spectral distance 10

Number of ROIs with ARGA 10

Number of ROIs with MDP 5

Class 4: water

Maximum spectral distance 20 (needed for stormy water)

Number of ROIs with ARGA 10

Number of ROIs with MDP 5
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Table A12. Parameters and number of ROIs (for subarea around Charles Darwin Research Station)
for creation of validation data with automatic region growing algorithm in QGIS.

General Parameters

Maximum spectral distance 10
Minimum number of pixels 60
Maximum number of pixels 400

Number of ROIs 40

Table A13. Computing times for modeling process in Agisoft Metashape.

Align Photos

All 19 h 36 min

Build Dense Cloud

All 52 min

Build Mesh

Subarea 12 h 35 min

Full study area 7 h 35 min

Eastern part 4 h 43 min

Western part 3 h 50 min

Add Texture

Subarea 15 min

Full study area 9 min

Eastern part 23 min

Western part 10 min

Table A14. Overview of classified map of intertidal habitats.

Class Number of Pixels Percentage Area (m2)

Sand 21,712,072 25.63 16,895

Vegetation 12,603,259 14.87 9807

Rock 26,339,652 31.09 20,496

Water 24,073,987 28.41 18,733

References
1. Creel, L. Ripple Effects: Population and Costal Regions; Population Reference Bureau: Washington, DC, USA, 2003.
2. Curran, S.; Kumar, A.; Lutz, W.; Williams, M. Interactions between coastal and marine ecosystems and human population systems:

Perspectives on how consumption mediates this interaction. Ambio 2002, 31, 264–268. [CrossRef]
3. Sayre, R.; Noble, S.; Hamann, S.; Smith, R.; Wright, D.; Breyer, S.; Butler, K.; Van Graafeiland, K.; Frye, C.; Karagulle, D. A new

30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological
coastal units. J. Oper. Oceanogr. 2019, 12, S47–S56. [CrossRef]

4. Veron, S.; Mouchet, M.; Govaerts, R.; Haevermans, T.; Pellens, R. Vulnerability to climate change of islands worldwide and its
impact on the tree of life. Sci. Rep. 2019, 9, 14471. [CrossRef]

5. Steibl, S.; Laforsch, C. Disentangling the environmental impact of different human disturbances: A case study on islands. Sci. Rep.
2019, 9, 13712. [CrossRef] [PubMed]

6. Damgaard, C. Integrating hierarchical statistical models and machine-learning algorithms for ground-truthing drone images of
the vegetation: Taxonomy, abundance and population ecological models. Remote Sens. 2021, 13, 1161. [CrossRef]

7. Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of unmanned aerial vehicles in
intertidal reef monitoring. Sci. Rep. 2017, 7, 10259. [CrossRef]

8. Airoldi, L. Effects of patch shape in intertidal algal mosaics: Roles of area, perimeter and distance from edge. Mar. Biol. 2003, 143,
639–650. [CrossRef]

9. Johnson, M.E. Why are ancient rocky shores so uncommon? J. Geol. 1988, 96, 469–480. [CrossRef]

https://doi.org/10.1579/0044-7447-31.4.264
https://doi.org/10.1080/1755876X.2018.1529714
https://doi.org/10.1038/s41598-019-51107-x
https://doi.org/10.1038/s41598-019-49555-6
https://www.ncbi.nlm.nih.gov/pubmed/31548552
https://doi.org/10.3390/rs13061161
https://doi.org/10.1038/s41598-017-10818-9
https://doi.org/10.1007/s00227-003-1119-3
https://doi.org/10.1086/629241


Drones 2023, 7, 416 20 of 22

10. Edgar, G.; Banks, S.; Fariña, J.; Calvopiña, M.; Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate
communities in the Galapagos archipelago. J. Biogeogr. 2004, 31, 1107–1124. [CrossRef]

11. Couce, E.; Ridgwell, A.; Hendy, E.J. Future habitat suitability for coral reef ecosystems under global warming and ocean
acidification. Glob. Chang. Biol. 2013, 19, 3592–3606. [CrossRef] [PubMed]

12. Ubina, N.A.; Cheng, S.-C. A Review of Unmanned System Technologies with Its Application to Aquaculture Farm Monitoring
and Management. Drones 2022, 6, 12. [CrossRef]

13. Adade, R.; Aibinu, A.M.; Ekumah, B.; Asaana, J. Unmanned Aerial Vehicle (UAV) applications in coastal zone management—A
review. Environ. Monit. Assess. 2021, 193, 154. [CrossRef] [PubMed]

14. Douterloigne, K.; Gautama, S.; Philips, W. On the accuracy of 3D landscapes from UAV image data. In Proceedings of the 2010
IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 589–592.

15. Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.; Mabhaudhi, T. A comparative estimation of
maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely
sensed data. Remote Sens. 2021, 13, 4091. [CrossRef]

16. Coggan, R.; Populus, J.; White, J.; Sheehan, K.; Fitzpatrick, F.; Piel, S. Review of Standards and Protocols for Seabed Habitat Mapping;
Mapping European Seabed Habitats (MESH): Peterborough, UK, 2007.

17. Yang, Z.; Yu, X.; Dedman, S.; Rosso, M.; Zhu, J.; Yang, J.; Xia, Y.; Tian, Y.; Zhang, G.; Wang, J. UAV remote sensing applications in
marine monitoring: Knowledge visualization and review. Sci. Total Environ. 2022, 2022, 155939. [CrossRef]

18. Konar, B.; Iken, K. The use of unmanned aerial vehicle imagery in intertidal monitoring. Deep. Sea Res. Part II Top. Stud. Oceanogr.
2018, 147, 79–86. [CrossRef]

19. Azhar, M.; Schenone, S.; Anderson, A.; Gee, T.; Cooper, J.; van der Mark, W.; Hillman, J.R.; Yang, K.; Thrush, S.F.; Delmas, P. A
framework for multiscale intertidal sandflat mapping: A case study in the Whangateau estuary. ISPRS J. Photogramm. Remote
Sens. 2020, 169, 242–252. [CrossRef]

20. Diruit, W.; Le Bris, A.; Bajjouk, T.; Richier, S.; Helias, M.; Burel, T.; Lennon, M.; Guyot, A.; Ar Gall, E. Seaweed Habitats on the
Shore: Characterization through Hyperspectral UAV Imagery and Field Sampling. Remote Sens. 2022, 14, 3124. [CrossRef]

21. Rossiter, T.; Furey, T.; McCarthy, T.; Stengel, D.B. UAV-mounted hyperspectral mapping of intertidal macroalgae. Estuar. Coast.
Shelf Sci. 2020, 242, 106789. [CrossRef]

22. Chen, C.; Zhang, C.; Schwarz, C.; Tian, B.; Jiang, W.; Wu, W.; Garg, R.; Garg, P.; Aleksandr, C.; Mikhail, S. Mapping three-
dimensional morphological characteristics of tidal salt-marsh channels using UAV structure—From-motion photogrammetry.
Geomorphology 2022, 407, 108235. [CrossRef]

23. Koyama, A.; Hirata, T.; Kawahara, Y.; Iyooka, H.; Kubozono, H.; Onikura, N.; Itaya, S.; Minagawa, T. Habitat suitability maps
for juvenile tri-spine horseshoe crabs in Japanese intertidal zones: A model approach using unmanned aerial vehicles and the
Structure from Motion technique. PLoS ONE 2020, 15, e0244494. [CrossRef]

24. Yang, B.; Hawthorne, T.L.; Aoki, L.; Beatty, D.S.; Copeland, T.; Domke, L.K.; Eckert, G.L.; Gomes, C.P.; Graham, O.J.; Harvell, C.D.
Low-Altitude UAV Imaging Accurately Quantifies Eelgrass Wasting Disease From Alaska to California. Geophys. Res. Lett. 2023,
50, e2022GL101985. [CrossRef]

25. Sarira, T.V.; Clarke, K.; Weinstein, P.; Koh, L.P.; Lewis, M. Rapid identification of shallow inundation for mosquito disease
mitigation using drone-derived multispectral imagery. Geospat. Health 2020, 15. [CrossRef] [PubMed]

26. Ballari, D.; Orellana, D.; Acosta, E.; Espinoza, A.; Morocho, V. UAV monitoring for environmental management in Galapagos
Islands. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences,
Prague, Czech Republic, 2–19 July 2016; Volume 41.

27. Vandeputte, R.; Sidharta, G.; Goethals, P. Classification of Intertidal Habitats Using Drone Imagery in the Galapagos Archipelago; Ghent
University: Ghent, Belgium, 2018.

28. Riascos-Flores, L.; Bruneel, S.; Van der Heyden, C.; Deknock, A.; Van Echelpoel, W.; Forio, M.A.E.; De Saeyer, N.; Berghe, W.V.;
Spanoghe, P.; Bermudez, R.; et al. Polluted paradise: Occurrence of pesticide residues within the urban coastal zones of Santa
Cruz and Isabela (Galapagos, Ecuador). Sci. Total Environ. 2021, 763, 142956. [CrossRef]

29. INEC. Censo de Población y Vivienda Galápagos 2015 (CPVG Noviembre 2015); INEC: Abeokuta, Nigeria, 2015.
30. IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution.

Protecting the Oceans from Land-Based Activities: Land-Based Sources and Activities Affecting the Quality and Uses of the Marine, Coastal
and Associated Freshwater Environment; GESAMP: Norwich, UK, 2001.

31. Trimble. Trimble. Available online: https://www.trimble.com/en (accessed on 30 March 2023).
32. Landau, H.; Chen, X.; Klose, S.; Leandro, R.; Vollath, U. Trimble’s RTK and DGPS solutions in comparison with precise point

positioning. In Observing Our Changing Earth; Springer: Berlin/Heidelberg, Germany, 2009; pp. 709–718.
33. Jia, M.; Dawson, J.; Moore, M. AUSPOS: Geoscience Australia’s on-line GPS positioning service. In Proceedings of the 27th

International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA,
8–12 September 2014; pp. 315–320.

34. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003.
35. Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F.; Gonizzi-Barsanti, S. Dense image matching: Comparisons

and analyses. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28
October–1 November 2013; pp. 47–54.

https://doi.org/10.1111/j.1365-2699.2004.01055.x
https://doi.org/10.1111/gcb.12335
https://www.ncbi.nlm.nih.gov/pubmed/23893550
https://doi.org/10.3390/drones6010012
https://doi.org/10.1007/s10661-021-08949-8
https://www.ncbi.nlm.nih.gov/pubmed/33649893
https://doi.org/10.3390/rs13204091
https://doi.org/10.1016/j.scitotenv.2022.155939
https://doi.org/10.1016/j.dsr2.2017.04.010
https://doi.org/10.1016/j.isprsjprs.2020.09.013
https://doi.org/10.3390/rs14133124
https://doi.org/10.1016/j.ecss.2020.106789
https://doi.org/10.1016/j.geomorph.2022.108235
https://doi.org/10.1371/journal.pone.0244494
https://doi.org/10.1029/2022GL101985
https://doi.org/10.4081/gh.2020.851
https://www.ncbi.nlm.nih.gov/pubmed/32575964
https://doi.org/10.1016/j.scitotenv.2020.142956
https://www.trimble.com/en


Drones 2023, 7, 416 21 of 22

36. Steiniger, S.; Bocher, E. An overview on current free and open source desktop GIS developments. Int. J. Geogr. Inf. Sci. 2009,
23, 1345–1370. [CrossRef]

37. METEO365. Meteo365.com. Available online: Meteo365.com (accessed on 15 August 2022).
38. Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015.
39. Weih, R.C.; Riggan, N.D. Object-based classification vs. pixel-based classification: Comparative importance of multi-resolution

imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, C7.
40. Ventura, D.; Bruno, M.; Lasinio, G.J.; Belluscio, A.; Ardizzone, G. A low-cost drone based application for identifying and mapping

of coastal fish nursery grounds. Estuar. Coast. Shelf Sci. 2016, 171, 85–98. [CrossRef]
41. Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and classification of ecologically sensitive marine

habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA). Remote Sens. 2018, 10, 1331.
[CrossRef]

42. ArcGIS Pro. Overview of Image Classification. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/
image-analyst/overview-of-image-classification.htm#:~:text=The%20object%2Dbased%20approach%20groups,deciding%20
how%20pixels%20are%20grouped (accessed on 3 March 2023).

43. Visalli, R.; Ortolano, G.; Godard, G.; Cirrincione, R. Micro-Fabric Analyzer (MFA): A new semiautomated ArcGIS-based edge
detector for quantitative microstructural analysis of rock thin-sections. ISPRS Int. J. Geo-Inf. 2021, 10, 51. [CrossRef]

44. Congedo, L. Semi-automatic classification plugin for QGIS. Sapienza Univ. 2013, 1, 25.
45. Congedo, L. Semi-automatic classification plugin documentation. Release 2016, 4, 29.
46. Chust, G.; Galparsoro, I.; Borja, A.; Franco, J.; Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and

intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 2008, 78, 633–643. [CrossRef]
47. Ukrainski, P.; Classification Accuracy Assessment. Confusion Matrix Method. Available online: http://www.50northspatial.org/

classification-accuracy-assessment-confusion-matrix-method/ (accessed on 24 January 2023).
48. Liu, X.; Lian, X.; Yang, W.; Wang, F.; Han, Y.; Zhang, Y. Accuracy assessment of a UAV direct georeferencing method and impact

of the configuration of ground control points. Drones 2022, 6, 30. [CrossRef]
49. Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs.

Appl. Geogr. 2011, 31, 533–544. [CrossRef]
50. McMahon, S.M.; Harrison, S.P.; Armbruster, W.S.; Bartlein, P.J.; Beale, C.M.; Edwards, M.E.; Kattge, J.; Midgley, G.; Morin, X.;

Prentice, I.C. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol.
2011, 26, 249–259. [CrossRef]

51. Young, S.S.; Wamburu, P. Comparing Drone-Derived Elevation Data with Air-Borne LiDAR to Analyze Coastal Sea Level Rise at
the Local Level. Pap. Appl. Geogr. 2021, 7, 331–342. [CrossRef]

52. Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline zones identification and 3D coastal mapping using UAV
spatial data. ISPRS Int. J. Geo-Inf. 2016, 5, 75. [CrossRef]

53. Laso, F.J.; Benítez, F.L.; Rivas-Torres, G.; Sampedro, C.; Arce-Nazario, J. Land cover classification of complex agroecosystems in
the non-protected highlands of the Galapagos Islands. Remote Sens. 2019, 12, 65. [CrossRef]

54. Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in
tropical coastal zones. Appl. Geogr. 2011, 31, 525–532. [CrossRef]

55. Ismail, A.; Rashid, A.S.A.; Sa’ari, R.; Mustaffar, M.; Abdullah, R.A.; Kassim, A.; Yusof, N.M.; Abd Rahaman, N.; Apandi, N.M.;
Kalatehjari, R. Application of UAV-based photogrammetry and normalised water index (NDWI) to estimate the rock mass rating
(RMR): A case study. Phys. Chem. Earth Parts A/B/C 2022, 127, 103161. [CrossRef]
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