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Abstract

Water column imaging multibeam echo sounder systems (MBESs) are a promising technology for quantitative
estimates of the gas bubble volume flow within large gas seepage areas. Considerable progress has been made in
recent years toward applicable calibration methods for MBESs as well as developing inversion models to convert
acoustically measured backscattering cross sections to gas bubble volume flow. However, MBESs are still not com-
monly used for quantitative gas flow assessments. A reason for this is the absence of published processing methods
that demonstrate how MBES data can be processed to quantitatively represent bubble streams. Here, we present a
novel method (echo grid integration) that allows for assessing the aggregated backscattering cross section of targets
within horizontal water layers. This derived value enables quantifying bubble stream gas flow rates using existing
acoustic inversion methods. The presented method is based on averaging geo-referenced volume backscattering
coefficients onto a high-resolution 3D voxel-grid. The results are multiplied with the voxel volume to represent
measurements of the total backscattering cross-section within each voxel cell. Individual gridded values cannot be
trusted because the beam pattern effects cause the values of individual targets to “smear” over multiple grid-cells.
The true aggregated backscattering cross-section is thus estimated as the integral over the grid-cells affected by this
smearing. Numerical simulation of MBES data acquisition over known targets assesses the method’s validity and
quantify it’s uncertainty for different, realistic scenarios. The found low measurement bias (< 1%), and dispersion

(< 5%) are promising for application in gas flow quantification methods.

Underwater gas bubble release is a worldwide phenomenon
in oceans, seas, and lakes. It can be found at naturally occurring
seep sites that are commonly found along shelfs and continen-
tal margins (e.g., Suess 2018), but also at man-made installa-
tions such as oil/gas wells and pipelines (e.g., Vielstadte
et al. 2015). The released gas, typically methane but also carbon
dioxide, can have a significant influence on the local marine
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ecosystem by providing methane as an energy resource and cre-
ating hard grounds through carbonate precipitation
(Campbell 2006). In addition, such methane can end up in the
atmosphere and—to a small percentage—contribute to global
warming (e.g., Hornafius et al. 1999; Shakhova et al. 2010,
2014; Kirschke et al. 2013; Global Carbon Project 2021), can
influence acidification (e.g., Biastoch et al. 2011; Pohlman
et al. 2011) and might support deoxygenation (e.g., Boetius
and Wenzhofer 2013; Yamamoto et al. 2014) of our oceans.
Typical forms of submarine gas seepage are distinct gas
bubble release vents, which emit continuous or temporally
active bubble streams into the water column (e.g., Leifer
et al. 2004; Greinert 2008; Schneider von Deimling
et al. 2010; Bayrakci et al. 2014). Such bubble streams can be
found and studied even at great water depth using active
acoustic systems such as single beam echo sounder systems
(SBESs; e.g., Hornafius et al. 1999; Greinert et al. 2006;
Ostrovsky et al. 2008; Veloso-Alarcon et al. 2019) and/or
MBESs (see Colbo et al. 2014 and following paragraph). Of
these two widely used active acoustic system types, MBESs
highly outperform SBESs with respect to seafloor and water
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column coverage (e.g., SBES beam width typically ~ 7°; MBES
swath opening angle typically ~ 120°).

This difference makes MBESs a good tool for finding and map-
ping seep areas (Nikolovska et al. 2008; Gardner et al. 2009;
Weber et al. 2012; Dupré et al. 2015; Romer et al. 2020), counting
gas release vents (e.g., Sahling et al. 2014; Weber et al. 2014;
Rémer et al. 2017) and to support advanced 3D interpretations of
gas bubble streams (e.g., Schneider von Deimling et al. 2015; Wil-
son et al. 2015; Li et al. 2020; Tréhu et al. 2021). In recent years,
semiautomated and even fully automated methods have been
developed to increase the potential of finding gas bubble streams
in large MBES datasets (e.g., Schneider von Deimling and
Papenberg 2012; Urban et al. 2016; Zhao et al. 2017;
Zwanzig 2018; Xu et al. 2020; Weber 2021). However, methods
that use MBESs for quantitative assessments of the detected
underwater seepage are currently not as advanced as methods
that use scientific SBESs (e.g., Ostrovsky 2009; Muyakshin and
Sauter 2010; Leblond et al. 2014; Veloso et al. 2015; Padilla
et al. 2019; Weidner et al. 2019; Li et al. 2020).

Scandella et al. (2016) used a method for computing gas flux
from a stationary, horizontally looking MBES in lakes. Their
method includes assumptions about static overlap of the acous-
tic samples and is therefore only suitable for statically placed
observatories, but not for analyzing MBES data acquired with a
moving vessel. Urban et al. (2016) published a method to create
“acoustic flare maps” from MBES water column images (WClIs),
which allows for a qualitative comparison of the received signal
amplitudes from bubble streams. However, the authors did not
investigate if and how such acoustic flare maps could be used
for quantitative estimates of the mapped bubble streams. Multi-
ple authors have extrapolated camera—or SBES—based quanti-
fications toward the number of acoustic flares detected in WCI
data (e.g., Sahling et al. 2014; Weber et al. 2014; Romer
et al. 2017; Turco et al. 2022). While these are reasonable and
effective approaches, they do not integrate the heterogeneous
signal strength of the acoustic flares in the MBES data, leading
to an extrapolation error that is difficult to quantify. Leifer
et al. (2017) compared the acoustic signals received by a MBES
from an artificially created bubble source and fitted a depth
dependent calibration factor for converting the received data to
gas fluxes. Their extensive work highlights the enormous num-
ber of practical challenges and factors to consider for such a
conversion; but little methodological details are given on the
exact processing of the acoustic raw data.

These details, and how they influence the reliability of gas
flow quantification, are the topic of this work. To the best of
our knowledge, no comprehensive method for processing
MBES echo amplitudes to reach quantitative estimates of gas
flow has so far been described in the accessible literature. We
therefore investigated the basic sampling principles of a MBES
water column survey to derive a new quantitative processing
method, which we call echo grid integration. This method is
based on averaging geo-referenced, measured volume back-
scattering coefficients from an MBES onto a regular voxel grid
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(similar to Urban et al. 2016). The gridded measurements are
multiplied with the voxel volume to represent a measurement
of the total backscattering cross-section within each voxel-cell.
These individual gridded measurements are erroneous because
the beam pattern and pulse overlap cause the acoustic
response of individual targets to “smear” over multiple grid-
cells. The true aggregated backscattering cross-section of tar-
gets within this grid is therefore estimated as the integral over-
all grid-cells that are affected by this smearing.

For simplification, we assume a calibrated MBES that can pro-
vide real target- and volume backscattering strength values in the
description of this method. The challenges of calibrating a MBES
and the applicability of our method toward uncalibrated MBESs
are described in the comments and recommendation section.

It should be noted that this work does not focus on investi-
gating the different acoustic inversion techniques in detail.
Rather, we present a method for preprocessing the WCI data
in such a way that correct backscattering cross section values
of single bubbles and bubble streams are derived. Only such
correctly derived data allow for applying quantification
methods (model inversion or direct calibration) as they have
previously been used for SBES data (comments and recom-
mendations section 5.4).

The performance of the proposed method is assessed by a
numerical simulation of the MBESs data acquisition over tar-
gets of known backscattering cross-section in different, realis-
tic survey scenarios. The results from this error assessment are
used to derive guidelines for choosing processing parameters
and designing a good MBES gas flow quantification survey.

Similar simulations have previously been used to investi-
gate uncertainties of echo integration methods for biomass
estimations (e.g., Diner 2001, 2007; Holmin et al. 2012, 2016;
ICES 2021 Annex 17). However, to the best of our knowledge,
this is the first time that a numerical simulation is used to
assess uncertainties associated with acoustically quantifying
underwater bubble seepage.

Materials and procedures

Gas flow quantification of bubble streams using acoustic
inversion

Acoustic inversion in the context of this work describes
techniques for inverting the backscattering cross section o of
(gas bubble) targets in the water column to physical properties
of the target. For single targets, op; can be measured using cali-
brated active acoustic systems by inverting the sonar equation
(Urick 1996):

EL, =SL—2TL(R,) + TS, (1)
TS, = 1010g(0bs;a) (2)
TL(Rs) = aR, + 2010g(R,) 3)

where,
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EL, Target echo level caused by target a (dBreuPa at 1 m distance

from the transducer)

SL Transmitted source level (dB re yPa2 m2 at 1 m distance from the
transducer)

TL(R)  Transmission loss associated with specific range R (dB re m2)

Ra Range of target a from the transducer (m)

TSa Target strength of target a (dB re m?)

Obs;a Backscattering cross section of target a (m2)

a Logarithmic absorption coefficient (dB m™")

For simplification, we here assume spherical targets such that
the property oy, is independent of the acoustic incidence
angle. If it is known that a received echo level has been caused
by a single spherical bubble, ops can be used to compute the
bubble radius/gas volume by inverting a spherical bubble
model (e.g., Anderson 1950; Thuraisingham 1997; Ainslie and
Leighton 2011; Li et al. 2020). However, the received target
echo level alone does not allow for distinguishing if it was
caused by a bubble or another type of target.

For bubble streams, the shape of the “acoustic flare”—
which is the acoustic representation of the bubble streams
in an echogram—can be used to detect and separate the
related acoustic signals from other targets (e.g., Veloso
et al. 2015 for SBESs; Urban et al. 2016 for MBESs). Since the
individual bubbles of a bubble stream are usually too close
to be acoustically separated, their acoustic return signals
superpose on the measured signal. For simplification, we
assume that multiple scattering (e.g., De Rosny and
Roux 2001), target induced acoustic absorption (e.g.,
Toresen 1991) and coherent interferences between the ret-
urned acoustic signals (e.g., Gorska and Chu 2005) are
neglectable. Under these assumptions, the total target echo
level received from multiple bubbles at similar range can be
approximated as integral over the individual echo contribu-
tions (“echo integration assuming perfect linearity”, see
e.g., Foote 1983; Simmonds et al. 2005):

ELy=10log Y 107

acT

where,

ELr  Total target echo level received by multiple ensonified targets
(dB re pPa2 1 m distance from the transducer)
T Set of targets that have been ensonified and contribute to ELy

To enable gas flow estimates from recorded echo levels, the
data must be processed to represent the aggregated backscattering
cross section of all bubbles within an ensonified water column
(EWC) layer (oac;pL, Fig. 1). This value can then be inverted
toward the gas volume flow rate of the bubbles passing
through this layer using existing model inversion approaches
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Fig. 1. oac;sL represents the aggregated backscattering cross section of
the bubbles from a bubble stream within the water column layer BL of

size D. It can be used to estimate the flow rate (V> of the bubble stream

using different methods (see comments and recommendations sections).

or empirical direct calibration against bubble streams of
known flow rates (see comments and recommendations
sections 5.4).

To investigate how MBES data can be processed to repre-
sent oac;L, we here examine the basic principles of how MBES
WCI surveys sample targets in the water column.

A simple forward model for water column imaging MBESs
Most MBESs use a mills-cross configuration (e.g., Clarke
2006; Lurton 2010). The systems emit an acoustic pulse of a
certain duration that ensonifies a swath that is wide open in
the across-track direction and narrow in the a long-track direc-
tion (Fig. 2). The angular shape of the transmitted power into
the water column is called transmit beam pattern (BZ). The
MBES forms a set of receive beams that are steered in different
angular directions and together form a fan along the across
track direction below the vessel (Fig. 2). Each beam has a

receive beam pattern (fo; hn) that—in opposite to the transmit

beam pattern—is narrow in the across-track direction but wide
in the along-track direction (Fig. 2). For investigating targets
that are far away from the transducer, the receive- and trans-
mit unit can be seen as one monostatic transducer unit. The
two-way beam pattern (beam response function) of this trans-
ducer unit can then be described as the product of the
transmit- and receive beam pattern:

2 2

Bth(e, 9)= th(el (/’) X Brx;bn(el (l’) (5)
where,
BFp, Beam response function of beam b, (dimensionless)
[ Polar angle (rad)
@ Azimuthal angle (rad)
fo Beam pattern of the transmit unit (dimensionless)
B2 Beam pattern of the receive unit for beam b, (dimensionless)

rx; bn
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Fig. 2. MBES operating in mills-cross setup. (a) View from front. The transmitted pulse ensonifies a wide swath (red) in across-track direction, while the
receive beams only cover a narrow angular fraction (blue and gray) of the across-track water column. (b) View from side: In a long-track direction, the
receive beams receive signals in a wide opening angle (blue) while the transmitted pulse only covers a very narrow part of the water column (red). £
values describe the beam Tx and Rx equivalent one-way beam angles (Egs. 15 and 16).

BF}, describes the sensitivity of a specific beam toward
targets at a specific angular position relative to the trans-
ducer. For simplification, the transmit- and receive-beam
pattern are here approximated to be perfectly isotropic in
the across-track and along-track direction, respectively.
This allows for expressing BFp, using the transmit and
receive beam pattern as two orthogonal components (for
angle definitions/conversions see Supporting Information
Data S1):

BFpn (8ﬂ:y’18w’) :B%xo (‘%;y/) X foo;bn(sa;x’) (6)

where,

Yq;y Along-track angle of target a within the transmit beam pattern
(Fig. 2a; Supporting Information Data S1) (rad).

g% Across-track angle of targe a within the receive beam pattern
(Fig. 2b; Supporting Information Data S1) (rad).

foo Transmit beam pattern (isotropic in 8, direction)
(dimensionless)

foo;bn Receive beam pattern (isotropic in 8, direction) (dimensionless)

The time that the acoustic pulse needs to travel to a target
at a specific range (R) and back to the transducer (two-way
travel time) can be computed using the known speed of sound
underwater (c):

tZRZZXE; (7)

where,

tor Two-way travel time for target at range R (s)
R Range from transducer (m)

c Speed of sound underwater (m s

To create a WCI, the MBES samples the received acoustic signal
at a constant time interval (sampling rate) typically until the sea-
floor is observed in the outer beams. Eq. 7 allows for associating
the sampling time points (¢;;) of each acoustic sample with a
range from the transducer (Fig. 8). Because of the limited length of
the transmitted pulse, each acoustic sample acts as a range filter for
targets in the water column. The sensitivity of an acoustic sample
toward targets at range R is thereby determined by the transmit-
ted pulse envelope (p,,,) and the difference between the tq,
and the two-way travel time associated with R:

RFsn(R) :Pgnv(Atsn,ZR) (8)
Atsn,ZR = tsn —tor (9)
where,
RFsn(R) Range response function for sample sn as a function of R
(dimensionless)
Penv(Atsn2r)  Pulse envelope as function of time (dimensionless)
Atgnr Time difference between t, and tz (s)
tsn Sampling time of sample sn (s)
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D Covered volume of selected samples

Fig. 3. MBES sample locations and sample volumes of four selected example samples (a,b). The sample volumes are simplified to the exact shape
described by the pulse length, the transmit and receive equivalent two-way beam angles, and the respective sample range (c).

The MBESs records an acoustic sample value for each sam-
pling time point for each beam. The total set of all acoustic
samples along all beams of one ping is called MBES WCI
(Fig. 3). To distinguish between different acoustic samples,
we define a three-dimensional sample index pn,sn, bn, which
relates to the sample of ping number pn, sample number sn,
and beam number bn, respectively (Fig. 4).

Calibrated MBES can account for the acoustic sensitivity of
the transducer and for internal gains such that the received
raw acoustic sample values can be converted to a calibrated,
recorded echo level for each sample (ELPn,m,bn). Under the
same assumptions made for Eq. 4 and neglecting noise and
reverberation, ELy, s, is equal to the sum of the individual
recorded echo level contributions (ELg,.P,,,m,bn) from all targets
in the water column.

ELpn o = 10log 31075 - b) (10)
acA

where,

ELpn,sn,bn Total echo level recorded by the sample pn, sn, bn (dB re uPa2
at 1 m distance from the transducer)

ELg;pnsnbn  Target echo level contribution of individual target a to
sample pn, sn, bn (dB re yPa2at 1 m distance from the
transducer) (Eq. 11)

A Set of all targets in the water column

The individual contribution of a target a toward a specific
sample pn, sn, bn is equal to the echo level contribution (Eq. 1)
filtered by the beam- and range-response functions of the
respective sample (Egs. 6 and 8):
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ELg; psn,bn = ELpn;a + 10108 (BF py (S pn; s, Sp; i) )

+10log(Ran(Rp,,;a)) (11)
where,

ELpn;a Target echo level for target a (Eq. 1) for the transducer
position at ping number pn (dB re pPa? at 1 m distance
from the transducer)

pn,sn,bn  Index of sample at ping number pn, sample number sn and
beam number b,

Ron;a Range of target a to the transducer for ping number pn (m)

Sz a;y Along-track angle of target g, at ping number pn (°)

Spna;x Across-track angle of target g, at ping number pn (°)

In this work, Egs. 6-11 are used to describe and simulate
MBES WCI data using synthetic targets of known position and
backscattering strength (forward modeling, see assessment sec-
tion). The reverse processing—to estimate the backscattering
cross-sections of targets using multibeam data—is described in
the following sections.

Echo integration for individual MBES samples

Inverting Eqs. 6-11 to compute the backscattering cross
section of the targets that caused a specific received echo level
is difficult because the exact position of the targets is
unknown such that the influence of the beam-/pulse-response
functions cannot be corrected.

To reach an approximate inversion for individual samples,
we compute the volume backscattering coefficient (sy), which
is defined as the sum of all discrete backscattering cross sec-
tions within the acoustically sampled volume divided by the
size of this volume (Maclennan et al. 2002):
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b)
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Pulse

overlap ...l

Beam - .

overlap - Ping
------ overlap

D Influenced volume of a selected pulse, beam or ping
D Influenced volume of another selected pulse, beam or ping

. Overlap of influenced volumes

Fig. 4. MBES samples and sample volume overlap. (a) Front view, the samples of an individual ping are distributed in the water column at regular range
(sample sn) and at regular angular distance (beam nr. bn). The samples at two ranges and at two beam angles are highlighted to show that the volumes
associated with these sample ranges and beam angles overlap even within the same ping. This happens because the pulse length and the beam opening
angles are larger than the sample distance (sample time) and beam spacing, respectively. (b) Side view: Multiple pings along a survey path create sam-
ples at regular distance (ping spacing) in the water column (ping nr. pn). The covered sample volumes of the last two pings are highlighted to show how
samples from consecutive pings additionally overlap depending on the range from the transducer. Vessel motion—which is not depicted in this image—

would make the exact volume overlap even more nonuniform.

Z Obs;a

acAsy

Sy = v (12)

where,

Sv Volume backscattering coefficient for the {m—i]
Asy Set of all targets within the sampled volume (V)
% Sampled volume (m3)

Vsnpn is defined as the volume that would produce the
same echo integral as the real acoustic sample, assuming tar-
gets are randomly distributed in space (compare “equivalent
beam angle” in Simmonds et al. 2005). Vg, ,,, can be computed
as the integral over the entire beam- and range-response func-
tions of each sample (Egs. 6 and 8):

0

z 2n
Vinon = J JZ [ R25in(g) % BEyn(0,¢) x RFs(R)ddOdR
6=0J =0

R=0
(13)

where,

Vsnbn Equivalent acoustic sampling volume of sample sn of beam b,

Equation 13 can be solved numerically for arbitrary 3D beam
patterns, pulse shapes and different transmit and receive beam
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steering angles. However, for commonly used mills-cross
MBESs, this equation is well approximated by integrating over
the transmit and receive beam pattern and the pulse envelope
separately (Supporting Information Data S1):

T
Vsn,bn NRS,IZ X QTX X QRX;bn X C X off (14)
3
Qrx :J B (8 )ddy (15)
-3
3
QRX;bn = [ foo;bn (Sx’)d'gx’ (16)
-3
Tas= | Pny(t)i (17)
where,
Qrx  Equivalent one-way beam angle of the main axis transmit beam

pattern (rad)

Qpx  Equivalent one-way beam angle of the main axis receive beam
pattern of beam b, (rad)
Ter  Equivalent pulse duration of the MBES (s)

These approximations allow for a visual understanding of
MBESs water column data where each acoustic sample repre-
sents the aggregated backscattering cross section of the targets
within an equivalent acoustic sample volume (Fig. 3). The
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physical constraints of this volume (Fig. 3c) can be described
by approximating the beam- and pulse-response functions to
equivalent rectangular functions:

Test Test
=2 1, — <t<
pgnv(t) zpenv(t) = 2 2 (18)
0, else
Qrx Qrx
52 1, ——<9,<——
Bio(9y) #Biyo (9y) = 2 "7 2 (19)
0, else
QRx; bn ‘RX; bn
=2 1, — — <Yy — Y £ ——
B%xo;bn ('9)(’) zBer;bn (’9)(') = 2 oo 2 (20)
0, else
where,
Pony (1) Approximated pulse envelope
Buo(6) Approximated transmit beam pattern
Bixo,n(9) Approximated receive beam pattern for beam b,

Using the spatial domain of the idealized equivalent acous-
tic sample volumes, Eq. 11 can be simplified and combined
with Egs. 1 and 10 to:

ELpysn,n % SL— 2TL(Rsy) +1010g | > 6psa (21)
ac Apn,m,bn
where,
Apnsnbn  Set of all bubbles within the spatial domain of the idealized
acoustic sample volume described by Eqgs. 18-20 (Fig. 3c)
TL(Rsy)  Transmission loss approximated using the sample’s range R;,

Equation 21 can be solved to compute an approximation of
the aggregated backscattering cross section and thus of the
volume backscattering coefficient (Eq. 12) for each acoustic
sample volume:

ELpy s, ~SLH2TLRsn) - 1010g (Vi )

SV;pn,sn,bn ~ gV;pn,sn,bn = 1o (22)
where,
GaG;pn,snbn  Estimated aggregated backscattering cross section for
sample pn, sn, bn
SV; pn,sn,bn True volume backscattering coefficient for the idealized
acoustic sample pn, sn, bn (Fig. 3¢)
Sv; pr,sn,bn Estimated volume backscattering coefficient for sample

pn,sn,bn
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Equations 21 and 22 include an approximation error that
depends on the exact distribution of the targets in the water
column. This error is small for acoustic samples that are
located within large clouds (relative to the sample volume) of
homogeneously distributed targets. For such a target cloud, it
is possible to derive the aggregated backscattering cross-sec-
tion by multiplying the mean sy value with the cloud’s physi-
cal size (e.g., Diner 2007). However, target clouds that are
smaller than the acoustic sample volume (e.g., individual bub-
ble streams) are typically underestimated by such an approach
(comparable to small fish shoals in Diner 2007).

We are not aware of an existing MBES WCI processing
approach that applies well to measuring the aggregated back-
scattering cross section of gas bubble streams, which are nei-
ther segregated small targets, nor large, homogeneously
distributed target clouds. We therefore propose a novel inver-
sion approach in the following section.

Echo grid integration for estimating backscattering
cross-sections from MBES WCI surveys

Consider a MBES WCI survey that consists of straight sur-
vey lines where the vessel is emitting pings at a regular time
interval while moving forward. To avoid missing small bubble
streams, the ping rate should be chosen such that the acoustic
sample volumes of consecutive pings overlap in the water col-
umn (Urban et al. 2016). The exact overlap of the acoustic
samples varies with range and beam angle and is non-
uniformly influenced by vessel’s motion (heave, yaw, pitch,
and roll) which occurs while moving forward. Thus, each loca-
tion in the observed water volume is covered by a varying
amount of acoustic sample volumes (Fig. 4). Simply integrat-
ing backscattering cross-section measurements from these
samples would thus lead to an overestimation, since each tar-
get is counted by multiple samples.

To prepare these samples for quantitative processing, they
are converted to represent Sypueapn (EQ. 22) and geo-
referenced using the ship’s navigation and motion data and
ray tracing routines (see Urban et al. 2016). The measurements
now represent 3D scatter points that are nonuniformly distrib-
uted in space.

Now, a high-resolution spatial 3D voxel grid is defined
where each grid cell (voxel) represents a cuboid volume that
connects to the neighboring voxels without empty space or
overlap (Fig. 5). The size of the voxels is adapted to the density
of the acoustic samples in the water column (see comments
and recommendation section 5.2).

The acoustically measured volume backscattering coeffi-
cients are now used to estimate the volume backscattering
coefficients for the spatial domain of each voxel cell. For this
estimation, we investigated two different averaging methods,
which are described below. The comparison of these two
gridding methods is presented in the assessment chapter.
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Fig. 5. 2D sketch of the gridding methods at the example of one voxel i, j, k. Method 1 (block mean): The value is computed as average over the acous-
tic samples within the spatial domain of the voxel (blue samples). Method 2 (weighted mean): A voxel sized cube is placed at the center of each sample
(three examples are highlighted in image c). The amount of shared volume (V’pn,sn,bn;i,/,k) between this cube and the voxel i,j, k is used as weight for a
weighted mean overall samples where Vi, 54, b, > 0. Unlike for method 1, each sample may influence up to eight surrounding voxels.

Block mean gridding

The Sv,pusupn value of each acoustic sample is assigned to
the voxel i,j,k that contains the sample’s center position
(Fig. S). Sv;ijx is then computed as the mean of all Sy, pn
values assigned to the respective voxel:

- 1 -
Method 1: Sviijk = N— E SV;pn,sn,bn (23)
i/i'kpn sn,bn € M;
,S1, ijk

(X,"/’k — AX/Z <Xpn,sn,bn < Xijk + AX/Z) and

Mirirk =4 pn,sn, bn (yi,j,k - AY/Z < ypn,sn,bn < Yijk + A}//z) and (24)
(Zijk = DZ/2 < Zpp s pon < Zijx+ DZ/2)

where,

i,j k Three-dimensional index for the grid voxels

Sviijk Estimated volume backscattering coefficient for voxel grid
cell i,j, k

Ni,jk Number of acoustic samples, which fall within the spatial
domain of the voxel i, j, k

Mik Set of the acoustic sample indices, which belong to the
samples which fall within the spatial domain of the
voxel i,j, k

%y, z]i’/,k X, ¥, and z position of voxel i, j, k (m)

xy, z]pnlm’bn X, ¥, and z position of acoustic sample pn, sn, bn (m)
[Ax, Ay, AZ] X, ¥, and z grid cell size of the voxel grid (voxel
dimensions) (m)
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x,v, z]p",m,bn,x, y, and z position of acoustic sample pn, sn, bn (m);
[Ax,Ay,AZ], x, y, and z grid cell size of the voxel grid (voxel
dimensions) (m).

This is the same gridding method used by Urban et al.
(2016) to create acoustic flare maps. However, it was not inves-
tigated how suitable this approach is for reaching quantitative
estimates.

Weighted mean gridding

A virtual cube with the dimensions of a voxel grid cell is
placed at each acoustic sample’s center position. Sy, ¢,5n Of each
sample is then assigned to the eight regular grid cells that volu-
metrically overlap with this ungridded cube (Fig. 5). The amount
of shared volume is used as weight for a weighted mean over the
GV prsnbn Values associated with each voxel i, j, k:

Method 2: §V; ijk

1 < 25
= Wi Z (SV;pn,sn,bn X VIpn,sn,bn;i,j,k) (25)
"l'kpn,sn, bne O,“/’,k
Wijk= Z Vi sn,bm;i,j,k (26)
pn,sn,bn € O; ik
Ax — |Xi,i,k — Xpn,sn,bn} Ay — Vijk = Ypn,snbn
len,sn,bn; ijk = Ax X Ay
AZ—\Zjix—Z b
x ‘ L], pn,sn, ”| (27)
Az



Urban et al.

(w) yadap / z

(a) -100 -75 =50 -25
[\
20 s
Target position
20 ;
~
- [
%
- 0
3
AQ0
A20
A00
0
+
“% 9
(©)
)
%
(72 0

N ]00

Echo grid integration

25 50 75 100
"y [ across track (m)

Qe 2550775 100
x / alongtrack (m)

-60 -80

10log(Sy x Vio,) (dB)

Fig. 6. Resulting 3D voxel grid for the numerical simulation for a single target at 1x,25y,75z. The ship moved along the x-axis and created a ping every
0.8 m. Other parameters: Exp. beam pattern, 3 m voxel grid cell size. (a) Resulting weighted mean voxel grid (Threshold for visualization: —80 dB); (b,c)
each represent a one voxel wide slice through the grid at the true target position. The slices show the side-lobe pattern of the receive- (b) and transmit-
(c) beam pattern that are typical for mills-cross MBES WCls and are the cause for the spreading of the targets influence in the EWC. Reconstructing the
true backscattering cross section (6ac;ewc) of the target requires summing overall these (influenced) voxel values.

Xijk — DX < Xpy sn,bn < Xi jx + Ax and
O;jx = { pn,sn,bn Vijk —Ay< Yonsnon <Vijk T Ay and
Zijk — AZ< Zpy snon < Zijk +AZ

(28)

where,

Vipn,snprijk  Volume intersection between a voxel sized cube at the

position of the acoustic sample pn, sn, bn and the

voxel i, j, k

Wik Sum overall volume intersections of the samples related
to {pn,sn,bne O;;«}

Ojjk Set of the acoustic sample indices pn, sn, bn where a voxel-

sized cube with the center position of the acoustic
sample shares volume with the voxel i, j, k

The gridded volume backscattering coefficients can be
multiplied with the voxel volume to compute estimates of
the aggregated backscattering cross section of the targets
for each voxel cell. However, the beam pattern and pulse
shape of the MBESs cause the acoustic measurements to
spread over multiple voxels that did not contain the origi-
nal targets (Fig. 6). This effect can be compared with
smearing the true backscattering cross section of a target
over multiple influenced voxel cells. Consequently, we
hypothesize that the true backscattering cross section of
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the targets in the EWC can be reconstructed by summing
up all gridded values that have been influenced by respec-
tive targets (Fig. 6):

OAG;EWC R OAGEWC = Zg Viijik X Vvox (29)
ij,k
where,
oac;ewc  True aggregated backscattering cross section of the targets
in the EWC
Sac;ewc  Estimated aggregated backscattering cross section of the
targets in the EWC
Vvox Volume of a voxel element from the grid

We further hypothesize that for bubble streams of constant
flow rate, the aggregated backscattering cross sections of the
bubbles within a water column layer BL (Fig. 1) can be
reconstructed by summing up only the gridded values that
belong to the respective horizontal layer:

OAG;BL X OAG;BL = E Sv;ijk X Vvox
i,j,k € Kpr,

(30)

where,
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oageL  True aggregated backscattering cross section of targets within
the water column layer BL

oac;eL  Estimated aggregated backscattering cross section of targets
within the water column layer BL

KsL Set of voxel indices i, j, k that belong to the horizontal water

column layer BL

Equations 29 and 30 represent what we define as “echo grid
integration”. This term was chosen to emphasize the similarity
and the difference to classic echo integration methods
(e.g., MacLennan 1990; Simmonds et al. 2005). For these
methods the acoustic measurements are typically integrated/
averaged to larger measurements directly. The applied high-
resolution spatial gridding of the acoustic measurements pro-
duces distinctly different integration results.

In this work, we investigate the validity of Eqs. 29 and 30—
and the related approximation errors for different realistic
scenarios—empirically by a numerical simulation in the
assessment chapter. Note that Eqs. 29 and 30 describe esti-
mates; errors in individual measurements are thus expected.
The questions assessed in this work are therefore: Do these
errors fall within a reasonable error interval? And: Do they
cause statistical biases in repeated measurements? (See results
3.1 for Eq. 29 and 3.5 for Eq. 30).

An invalid estimation method could also introduce mea-
surement biases that depend on survey- or processing parame-
ters (e.g., vessel motion or grid-cell size) or the position of the
targets relative to the survey path (depth, range, or beam
angle). Such dependencies would make the comparison of
measurements from different surveys or different target loca-
tions difficult. The assessment will thus specifically investigate
if these parameters influence the echo grid integration results
(see results 3.2-3.4). Note that this assessment focuses on the
effects caused by geometric constraints, sample volumes, beam
pattern, pulse envelope, vessel motion, and relative target
location. Noise sources that will influence weak targets in a
noisy environment are not directly simulated. However, the
effect of detection thresholds—that separate the target signals
from noise—is discussed in section 3.6.

Assessment

Simulation, settings, and scenarios

A python based numerical simulation of the MBES data
acquisition process was created to verify that echo grid inte-
gration allows for deriving the aggregated backscattering cross
section of targets/bubble streams in the water column. This
program is publicly available here: Urban and Peschke (2023).
The created simulation computes the WClIs along a virtual sur-
vey path for each acoustic sample using Egs. 1, 10, and 11.
The simulated acoustic sample values are converted to
Sv;pnsnbn using Egs. 22 (assuming complete knowledge of SL
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and TL). Subsequently, they are geo-referenced and interpo-
lated onto a regular 3D voxel-grid (Sy;;jx values) using the pre-
viously described echo-gridding approaches. Finally, Egs. 29
and 30 are applied to the grids respectively to estimate the
summed backscattering cross-section of all simulated targets
(Eq. 29) or of the target layer (Eq. 30). The different simulation
settings used in the simulation are described in the following
paragraphs.

To verify Egs. 29 and 30 two distinct target scenarios were
implemented:

1. Single target scenario: A survey over a single static target in
the water column with a virtual backscattering cross
section =1 is simulated (Fig. 6). éag;swc is estimated by
summing all voxel values of the created echo-grid (Eq. 29).
This scenario causes worst-case errors for the echo grid inte-
gration method. Because of the assumed perfect linearity
(Eq. 4), using multiple targets, or target clouds would be
equivalent to averaging over multiple single-target mea-
surements and thus lead to a reduction of the echo grid
integration error.

. Bubble stream scenario: A single bubble stream is simulated
as a set of static targets, vertically spaced in 10 cm distance
in a straight line within a water depth of 1-125 m (Fig. 15).
Each individual target was randomly shifted in x, y, and
z direction using a Gauss normal distribution with a sigma
of 10 cm. In this scenario, 6ag;p1 is computed for predefined
water column layers (BL) by summing up all voxels of the
respective layer (Eq. 30). This setting thus allows for investi-
gating biases caused by cutting voxel layers through the
water column.

Furthermore, three different vessel motion scenarios were
implemented for the simulated data acquisition:

1. Survey path with ideal vessel motion: The ship track is sim-
ulated as a straight line where the vessel/MBES moves in
x direction over simulated targets and pings at fixed inter-
vals/spacing. The starting position of the track is varied ran-
domly in x, y, and z direction by + 0.5 the grid cell size for
each simulation iteration.

. Survey path with real vessel motion: Same as the previous
scenario, but includes real vessel motion data (roll, pitch,
yaw, heave, and ping spacing) from a survey line recorded
during Meteor Expedition M143 (Riedel et al. 2018). For
each simulation, a different random period within the
recorded motion data is chosen to modify the MBES move-
ment. The values varied between +/-1° yaw, +/—0.2°
pitch/roll, +/—70 cm heave (Fig. 7).

. Survey path with exaggerated vessel motion: Same as the pre-
vious scenario but the vessel pitch, roll and heave motion
data have been exaggerated by a factor of 3 to simulate
rougher sea conditions. The motion values vary between
+/—1°yaw, +/—0.6° pitch/roll +/—2.10 m heave.
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Fig. 7. Recorded yaw/pitch/roll values from a survey track of Meteor
M143. Gray depicts the data over the entire survey line. The colored lines
mark the data of a random time block chosen for one simulation iteration.

The pulse envelope of the MBES was simulated to be Hann
shaded (Fig. 8). For the beam response functions three settings
were implemented using scipy.signal.windows (Virtanen
et al. 2020) to investigate the effects of different beam patterns
(Fig. 9) on the echo grid integration performance:

1. Unshaded beam pattern: The receive- and transmit beam

pattern are computed as the response of a steered-line array

(128 elements with a spacing of half the wavelength) using

Delay-and-Sum beamforming with no shading function

applied (Fig. 9). This results in a beam pattern with a nar-

row main lobe and strong side-lobes (~—13 dB, Fig. 9).

. Exponentially shaded beam pattern: Same as 1., but an
exponential window (r =number of transducer elements/2)
on the transducer elements. This shading slightly increases
the width of the main beam lobe but improves the side-
lobe suppression (~—20dB, Fig. 9).

. Hann shaded beam pattern: Same as 1., but a Hann win-
dow was applied to the transducer elements. This shading
results in strong suppression of the side-lobes (~—31 dB)
but strongly increases the width of the main lobe (Fig. 9).

Range (m)
-0.5 0.0 0.5
100 <~
1 --- Rect. pulse
3 | — Hann pulse
2 0.75 - | E
[e] 1
a :
¢ 0.50 1
b
S 0.25 1
a
0-00 -I T T --I--- T
-1.0 -0.5 0.0 0.5 1.0
Time (ms)

Fig. 8. Pulse envelope/range response function for a Hann shaded pulse
compared to rectangular pulse of the same effective pulse length (750 us).
The time to range conversion assumes a sound velocity of 1500 m s™".
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Fig. 9. Comparison of receive beam pattern (128 transducer elements)
at beam steering angle 0°. The exponential shading reduces the highest
side lobe from —13 to —20 dB but slightly increases the beam width of
the main lobe (unshaded: 1.1°, exponential window: 1.2°). Hann shading
suppresses the first side lobe by an additional 11 dB at the cost of a signif-
icant increase of the main lobe beam width. (Hann window: 1.7°).

The remaining simulated survey settings and MBES parame-
ters (Table 1) represent conditions of a real water column
imaging survey that was conducted to detect and quantify gas
bubble streams at the shelf of the Black Sea during M143 using
a Kongsberg EM710 MBES (Riedel et al. 2018).

Statistical evaluation of the simulation results

All above-mentioned setup options are combined to differ-
ent simulation scenarios to assess the method performance
under varying conditions. The conducted assessment for each
scenario can be summarized as:

1. Place the virtual target/bubble stream at a random position
in the water column. The location of the targets remains
static during this simulated survey.

Simulate an MBES survey over the target/targets and geo-

referenced the simulated WCIs to 3D scatter points.

Table 1. Simulation parameters, which mimic a survey with a
Kongsberg EM710 during Meteor expedition M143.

Simulation parameter Values
Maximum recording 125 m

range of MBES (Rviges)
Survey speed 3 knots

Ping interval 2 pings/s = > 0.8 m/ping

Size of the transmit and 128 elements = > beam width ~ 1°x1°
receive line array
MBES beams 256 beams, equiangularly spacing from
—60° to 60° (aswath)- This results in an
equiangular beam spacing of ~0.47°
0.432 ms

0.75 ms

MBES sample interval
Effective pulse
duration T
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3. Grid the data and estimate the aggregated backscattering
cross section using echo grid integration. (Egs. 29 or 30
depending on the target scenario).

4. Compare the estimated backscattering cross section with
the true aggregated backscattering cross section of the sim-
ulated target/targets.

For statistical analysis, these steps were repeated ~ 1200
times for each scenario whereas the target, or the bubble
stream, was placed at a new random position in the observed
water column for each simulation iteration.

The measurement bias (Mp;,s) of the proposed method is
quantified for each simulation scenario as the difference
between the mean measured aggregated backscattering cross
section and the true aggregated backscattering cross
section of the simulated targets. The measurement disper-
sion is described using twice the standard deviation (2SD)
and the maximum absolute deviation (MDp,x) of the mea-
sured backscattering cross sections. Thus, +2SD describes a
confidence interval containing ~95% of the measurements
(assuming a normal distribution) while the interval of
+MDnax contains all simulated measurements and therefore
describes the extremes of the error distribution. All statistical
parameters in this manuscript are presented in %, relative to
the true aggregated backscattering cross section of the simu-
lated targets.

For the assessment, only targets within the acoustically
observed water column (Vy,s, Fig. 10; Table 2) were consid-
ered since targets outside this volume cannot be measured cor-
rectly (see also Urban et al. 2016). As shown in results
section 3.2, targets that occur close to the boundaries of Vyeas.
are subject to significant measurement errors when applying
echo grid integration. Using the results from section 3.2, we
defined the water volume where targets can be correctly mea-
sured as Vyfeas.opt (Fig. 10; Table 2). Note, that the exact extent
of VMeas_opt may vary with survey and system parameters (see
section 3.2).

Echo grid integration

Table 2. Extends of Vjeas.opt Where the measurements of tar-
gets were found to be free of boundary effects for the simulated
scenarios (Fig. 10; see results section 3)

VMeas. aNd Vieas.opt Variables Values
Maximum recording range of MBES 125m
(Rmges)
Limited minimum range (Riim;min) 45 m
Limited maximum range (Riim;max) 120 m
Swath opening angle of MBES (aswatn) + 60°
Limited across-track angle from the + 50°

survey path (aiim;max)
Along track extend of Vieas. and Vieas.

Opt (Dx)

+/-0.5 of the voxel size of
the used grid

Results

Validation and comparison of the two gridding methods

For initial validation of the proposed method, the single tar-
get scenario with the ideal vessel motion setting and a 3 m voxel
size was used. The simulation was conducted for each beam pat-
tern setting and 6ac.gwc was computed using both proposed
voxel gridding methods. As described in the previous section,
the simulation results were filtered to only include measure-
ments for targets from within Vyjeas.ope (Table 2; Fig. 11b); this
filtering resulted in ~ 800 accepted measurements per simula-
tion (Supporting Information Table S2).

My;,s for both gridding methods and all simulated scenarios
was <+0.7% (Supporting Information Table S2). This low
measurement bias validates Eq. 29 and shows that echo grid
integration can be used for estimating the true backscattering
cross section of targets within Vyeas.opt-

However, the measurement dispersion for block mean
gridding was significantly higher compared to weighted mean
gridding. For the exponentially shaded beam pattern (Fig. 11),
MDpmax was only ~2.6% for the weighted mean method

()

VMeas.Opt

O
'X

Fig. 10. Water volume where a virtual target was randomly placed for each simulation iteration (Vjeas) and the limited volume where targets were
found to be optimally measured by the survey (Vieas.opt, S€e results section 3). (a) Front view. (b) Side view.
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Fig. 11. (a) Histogram of the measured &ac,ewc for ~ 800 simulations using the exponentially shaded beam pattern. The red line marks the true back-
scattering cross section of the simulated target. The measurements using weighted mean gridding have a significantly lower measurement dispersion
compared to block mean gridding. (b) The water volume where targets may occur was limited to Vieas.opt. to avoid boundary effects for this evaluation.

compared to a MD ,x of ~43% for block mean method. Simi-
lar differences between the gridding methods were found for
the other tested beam pattern scenarios (Supporting Informa-
tion Table S2). Because of this significant outperformance of
weighted mean gridding over block mean gridding, the mean
gridding—which was used in Urban et al. (2016)—is not fur-
ther considered in this work.

Influence of the relative target position

The density of the acoustic samples, their volume and over-
lap vary strongly throughout the water column (Fig. 4). In this
section, we evaluate if these conditions influence the quantifica-
tion results for targets in different regions of the EWC. For this,
we used the same simulation scenario described in the previous
section. However—to investigate the boundary effects—also the
results from targets outside Vyfeas.ope Were considered. The Hann
shaded (strong side-lobe suppression and wide main lobe) and
the unshaded (weak side-lobe suppression and narrow main
lobe) beam pattern settings are used in this comparison.

Influence of target across-track angle

To investigate the influence of the target across-track angle,
the volume in which targets may occur was limited by the
range limits Rpim;min and Ryim;max (Table 2) but not by limiting

the swath angle (Veas.Fuiangle, Fig. 12b). Results were sorted
by the target across-track angle and—to better highlight
trends—smoothed using a 2° wide block mean filter along the
across-track angle axis (Fig. 12a).

For the Hann shaded beam pattern setting, the measured
oaG;ewc were stable with a low measurement bias (~—0.1%)
for targets along the across-track angular axis except for the
outer parts of the swath (>50°; Fig. 12a). For the unshaded
beam pattern setting, a small measurement bias (~ —0.5%)
was observed for targets between 0° and ~ 35°; this increased
to ~—1% for larger target across-track angles (Fig. 12a). The
strong measurement deviation at the outer parts of the swath
(>50°) is likely caused by incompletely covered voxels at the
outer swath boundary.

Influence of target range

To investigate the influence of the target range, the consid-
ered volume where targets may occur is restricted by limiting
the across-track angle to apjm:max (Table 2) but not the range
(VLim;FullRange, Fig. 13b). The measured 6ag;gwc values are then
sorted by the target range (Fig. 13a).

Results for the measurement performance were stable
between a beam pattern dependent upper range limit (27 m
for Hann shaded beam pattern and 41 m for the unshaded

1.04
(a) —— Unshaded array

1.03 A —— Hann shaded array
1.02

1.01 A

Measured G6.ewc

——- True opc.ewc

2° block average sorted by a
T T

(b)

3
aoﬂe

¢ ot
[\ .\; ‘3(9? o0
b(* a“g

VMeas.FulIAngIe

0.98 T T T
0 10 20 30 40

Target rx angle a (°)

50 60

Fig. 12. Angular dependency of Gag;ewc for unshaded and Hann shaded beam pattern (3 m grid, weighted mean gridding). The red line marks the true
backscattering cross section of the simulated target. The results are sorted by the target receive angle and averaged over 2° blocks to highlight angular
dependent trends. Nearly, no influence of the across-track angle can be seen except for targets at the outer extend of the swath (>50°).
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Fig. 13. (a) 6ac;ewc measured by weighted voxel averaging method for unshaded and Hann shaded beam pattern scenario (ideal motion; 3 m voxel
size). The red line marks the true backscattering cross section of the simulated target. The measured values were sorted by the range of the simulated tar-
get; 27 m and 41 mark the range where pings overlap for the Hann shaded/unshaded beam, respectively (c). (b) The water volume where targets may
occur was extended to the full range (Vyieas.rulirange) but limited by the maximum across-track angle. (c) Ping overlap range is reached where two consec-
utive pings overlap. It depends on the vessel speed, ping rate, and transmit beam width.

beam pattern) and a deeper range limit (120 m for both beam
pattern settings, Fig. 13a). The larger errors for targets at close
range can be explained as an incomplete coverage of the water
column where the MBES pings do not overlap (Fig. 13c). The
ping overlap depth (Eqgs. 31-33) was determined by the ping
spacing (here 0.8 m) and the beam width. It was reached at
41 m for the unshaded beam pattern (beam width 1.12°) and
27 m for the Hann shaded beam pattern (beam width 1.69°).
These computed ranges fit well with the simulation results
(Fig. 13a). The larger echo grid integration errors for ranges
> 120 m are again attributed to incompletely covered voxels at
the outer swath boundary.

In conclusion, the range and beam angle of measured tar-
gets have nearly no effect on the measurement performance;
except for targets found at the outer extends of the swath. The
limits found of these investigations were used to define the
angular range and the sample range where targets can be opti-
mally measured for the simulated MBES survey (Viseas.opts
Table 2). Note that still all beams and all acoustic samples of

the MBES swath must be used for computing the voxel grids,
because excluding MBES samples would decrease Vyfeas.opt-

Influence of real vessel motion and chosen voxel size

The performance of the proposed processing method was
evaluated under more realistic conditions by introducing ves-
sel motion. For this, the single target scenario (restricted to
VMeas.opt) Was simulated for all vessel motion and all beam
pattern settings. The data were gridded using the weighted
mean method for three different voxel sizes (1, 1.5, and 3 m).
The complete results can be found in the Supporting Informa-
tion Table S3.

Myias was found to be largely independent of the vessel
motion and the chosen voxel size (<< 1% for all simulated sce-
narios and settings, Supporting Information Table S3).

The measurement dispersion was found to be dependent
on the simulated vessel motion and the chosen voxel size.
This is shown here for the example of the exponentially
shaded beam pattern setting in Fig. 14; Table 3. For the ideal

E‘ 3m grid resolution H‘lm grid resolution
14 —— Ideal survey 14 —— Ideal survey
—— With exagg. vessel motion —— With exagg. vessel motion
S 1.3 A 1.3
o
& 121 1.21
o]
v 114 pi B
2 1.0 1 8 Ay 1.0
o YT W iL 99
= N Ik I |
0.9 A 0.9 1
0.8 — == True oac.ewc 0.8 ——- True oag.ewc
40 60 80 100 120 40 60 80 100 120

Target range (m) Target range (m)

Fig. 14. 6ac,ewc measured for the ideal vessel motion and the exaggerated vessel motion setting (single target within VMeas.optr Weighted mean
gridding). (a) Results for the 3 m grid cell resolution indicate a low measurement dispersion for the ideal vessel motion scenario that significantly increases
if vessel motion alters the survey path. (b) Results for a 1 m grid cell resolution. Compared to the 3 m voxel size, the measurement dispersion is higher for
the ideal vessel motion scenario but remains stable even for the exaggerated vessel motion scenario.
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Table 3. Measurement dispersion for the exponential beam pattern setting and a single target for different voxel sizes and vessel
motion scenarios (lowest measurement dispersion per motion setting is highlighted bold).

Voxel size
Vessel motion setting Measurement dispersion property Tm 1.5m 3m
Ideal vessel motion MD max (%) + 8.1 + 3.6 + 2.6
25D (%) +4.9 +£26 +25
Real vessel motion MD max (%) +7.5 +10.2 +16.2
25D (%) +438 +4.8 +£9.2
Exaggerated vessel motion MD max (%) +13.8 +220 +74.8
25D (%) +6.2 +£9.9 +243

vessel motion scenario, smaller voxel sizes showed an
increased measurement dispersion compared to larger voxel
sizes. However, when introducing real vessel motion, the mea-
surement dispersion increased significantly for the larger voxel
sizes but remained relatively stable for the 1 m grid cell resolu-
tion (Fig. 14; Table 3). The measurement dispersion increased
slightly with the target range for the 3 m and the 1.5 m voxel
size settings. This range dependency was not observed for the
1 m grid-cell resolution. Note that the 1m voxel size is
remarkably similar to the spacing between consecutive pings
(0.8 m). These findings are used for a discussion on the opti-
mum voxel size in practical applications in comments and rec-
ommendation section 5.2.

Influence of different beam pattern

T he beam pattern setting—and more specifically the sup-
pression of side-lobe levels—was found to be the determining
factor for My;,s for all simulated scenarios (Supporting Infor-
mation Table S3). The unshaded beam pattern, which features
the highest side-lobe levels (Fig. 9), thereby caused the highest
(~—0.6% for all scenarios) and the Hann shaded beam pat-
tern, with the strongest side lobe suppression, the lowest mea-
surement bias (£ 0.1% for all scenarios).

The influence of the beam pattern setting on the measure-
ment dispersion was compared for the 1 m grid-cell resolution.
The Hann shaded beam pattern and the unshaded beam pat-
tern settings showed the lowest and highest measurement

dispersions, respectively (Table 4). We attributed this to signal
smoothing caused by the size of the main lobe (largest for the
Hann shading, smallest for no shading, see Fig. 9). The perfor-
mance difference between different beam pattern settings was
more pronounced when realistic vessel motion was considered
in the simulation (Table 4).

Measurement performance for bubble streams

In this section, the measurement performance is investi-
gated for estimating ;. (Eq. 30) of water column layers
that cut through simulated bubble streams (Fig. 15). The bub-
ble stream scenario was simulated for all vessel motion and all
beam pattern settings and the data were gridded using the
weighted mean method and a 1m voxel size. a3, was
inspected for three different water column layers with a cen-
tral water depth of 42, 60, and 108 m. The vertical thickness
of the layer was always 12m (Fig. 16).

The simulation results were first investigated for positional
dependencies of the bubble stream by sorting the results by
the across-track position (y) of the simulated bubble stream
(Fig. 16). As for the single target scenario, no positional depen-
dency was found except for y-positions that were not covered
by the respective layer (Fig. 16). The y-positions where these
boundary effects occurred depended on the depth and size of
the respective water column layer (Fig. 16b).

For investigating the measurement performance, we only
used measurements of bubble streams within a limited y-

Table 4. Measurement dispersion for a 1 m voxel size and a single target, for different beam pattern and vessel motion settings (lowest

measurement dispersion per motion setting is highlighted bold).

Measurement No beam Exp. beam Hann beam

Vessel motion setting dispersion property shading shading shading
Ideal vessel motion MDmax (%) + 8.5 + 8.1 + 4.9

25D (%) +4.9 +4.9 +3.6
Real vessel motion MDmax (%) + 14.7 +7.5 + 6.8

25D(%) +5.1 +4.8 +3.9
Exaggerated vessel motion MD max (%) + 24.6 +13.8 +12.2

25D (%) +723 +6.2 +4.6
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Fig. 15. (a): 3D water column layer (BL) at 108 m water depth that cuts through a bubble stream as simulated for an MBES with exponentially shaded
beam pattern (1 m voxel; weighted mean gridding). (b) Voxel-sized vertical x/y layer cut through the simulation at the bubble stream x position. (c) Ver-
tically averaged view of a horizontal water column layer.

position range (+ 49 m) where all three water column layers The measurement dispersion for the bubble stream scenario
were completely covered by the simulated surveys (Fig. 16). was reduced compared to the single target setting (compare
The results can be found in Supporting Information Table 5 with Table 4). This was expected since, in the created
Table S4. simulation, the sum over multiple targets reduces the overall

Myi,s for estimating 6ag;s. of water column layers was error in the same way as averaging over multiple measure-
found to be similar to My;,s of the single target setting ments does. Note that in reality, the linear integration of mul-
(~—0.6% for unshaded beam pattern, ~—-0.2% for exp. tiple received echo levels (Eq. 4) would include a random
shaded and ~—0.1 for Hann shaded beam pattern). This low statistical uncertainty (e.g., Gorska and Chu 2005; Simmonds
bias validates Eq. 30 and shows that the proposed method et al. 2005) that was not considered here.

can estimate the aggregated backscattering cross sections of A comparison of the three water column layers shows that
targets from bubble streams within horizontal water column the measurement dispersion can, by a small degree, vary with
layers. depth (Supporting Information Table S4). The exact
1.15 1 1 1 1
(@F Ei B —BL4zizm  {EIE ©) Bubble =3
£ 110 ol <l BL: 60/12 m IS o ~stream
- Pl — BL:108/12m | | e ]
¢ 1057 Lo Lo
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Fig. 16. (a) Simulation results for the bubble stream scenario using three 12 m water column layers (1 m voxel size, exponential beam pattern, and real
vessel motion). The &ac;sL Values have been normalized by the true backscattering cross section of the bubbles within the respective layer bubble stream
layer. The measurements have been sorted by the y-position (across-track) of the simulated bubble stream. (b) View of the size and position of the three
water column layers. The red marks show the y-positions where the water column layers intersect with the multibeam swath. For bubble streams outside
of these y-positions the measurement dispersion strongly increases.
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Table 5. Measurement dispersion (maximum dispersion MDnax and twice the standard deviation 2SD) for the “bubble stream” setting
at t“ree water col”’mn layers (12 m vertical layer size, 1 m voxel size, exp. beam pattern, real vessel motion; lowest measurement disper-

sion of each water column layer is highlighted bold).

Measurement No beam Exp. beam Hann beam
Water column layer dispersion property shading shading shading
42 m depth MD max (%) +39 +45 +29
25D (%) +22 +24 +20
60 m depth MD max (%) +3.0 +32 +3.0
25D (%) +2.1 +2.1 +1.9
108 m depth MD max (%) +4.0 +34 +3.4
25D (%) +2.0 +£2.0 +1.7

relationship seems to depend on the strength of the vessel
motion. For the ideal vessel motion scenario, the measure-
ment dispersion decreases with increasing layer depth; con-
versely, it increases with layer depth for the exaggerated vessel
motion scenario (Supporting Information Table S4). For the
real vessel motion scenario, an increase in layer depth lowered
the standard deviation but increased the maximum measure-
ment dispersion (Table 5).

Like the single target scenario, the Hann beam pattern set-
ting caused the lowest measurement dispersion for all simu-
lated scenarios (Table 5).

Influence of detection thresholds

In practical application, an intensity threshold must be
applied to the acoustic data to separate signals of targets from
the background noise level. Applying such a threshold to the
gridded data leads to excluding voxels from the measurements
(Fig. 17) and can thus lead to underestimating the aggregated
backscattering cross section of targets in the water column
using the proposed echo grid integration method.

Layer average

With thresholds

Along-track / x (m)

-50 50
Across-track /y (m)

10l0g(3, X V) (dB) 100

Fig. 17. (a) Vertical average of a 12 m water column layer that cuts
through a bubble stream at 108 m water depth (exp. shaded beam pat-
tern and 1 m voxel size). (b-e) Zoom with applied thresholds; underesti-
mation caused by the thresholds is: B=-0.8%, C=-2.0%,
D=—-4.8%, E= —14.5%.

The impact of such a threshold depends on the strength of
the acoustic signal returned from the targets in the water col-
umn; less voxels are cut by a fixed threshold for strong targets
compared to weaker targets, which are visible just above the
background noise level. To get an understanding on how high
the underestimation caused by a threshold can be, we investi-
gated the measurement bias for the example of measuring a
bubble stream after thresholding the results of the 108 m
water column layer (Fig. 18 and Supporting Information
Table S1). The threshold is given relative to the highest
Sv;pnsnpn value within the layer to make it representative to
the backscattering strength of the bubble stream. The results
are compared for the different beam pattern scenarios. For the
unshaded beam pattern setting, a threshold of —20dB leads to
an underestimation of nearly 10%, while the same threshold
only caused 1% underestimation for the Hann shaded beam
pattern. This is likely caused by the higher side-lobe levels for

S
3
s 5] 77" No bias h\\\‘
-l- Unshaded array \ \Q
=301 -#- Exp.shaded array \‘*
_354 —A- Hannshaded array i

=50 -40 -30 -20 -10 0
Threshold (db)

Fig. 18. My,5;8. values computed from ~ 600 simulations for each beam
pattern setting, after applying a threshold to the grids. Threshold dB is rel-
ative to maximum Sy, p,snbn Vvalue within the layer. A high threshold
means that more grid cells are excluded from the computation, such that
the result is underestimated. The results for shaded beam pattern are
more robust against this underestimation. Even at a threshold level of
—20dB, the underestimation is still <1% for the Hann-shaded and <5%
for Exp. shaded beam pattern. Processing parameters: 108 m depth, 12m
layer, and 1 m voxel size.
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the unshaded beam pattern which causes a stronger dispersion
acoustic energy over multiple voxels.

Summary and discussion

In this work, we presented and investigated a novel method
(echo grid integration) to estimate the aggregated backscatter-
ing strength of ensonified targets. Echo grid integration can be
summarized in the following steps:

1. The multibeam water column data is converted to volume
backscattering coefficients and geo-referenced to represent
spatial measurement points in 3D space.

. The volume backscattering coefficients are averaged onto a
3D, high resolution voxel grid. (Two wvalid gridding
methods are described.)

. Each gridded value is multiplied with the voxel volume to
obtain a measurement for the aggregated backscattering
cross section within each voxel cell. These individual esti-
mates are erroneous due to signal smearing caused by the
acoustic beam pattern and pulse envelope (sample overlap).

. The aggregated backscattering cross section of the targets
that caused this signal is estimated as the integral overall
voxel cells affected by the spread signal (see also comments
and recommendations 5.3).

Gridding acoustic data have been applied many times for
different reasons before (e.g.,, Urban et al. 2016; Ordofiez
et al. 2022). The essence of the echo grid integration method
is the application of Eqgs. 29 or 30 (step 4) to estimate the
summed backscattering cross-section of the targets in the
water column. Note that these equations where specifically
investigated for multibeam surveys that cover the measured
target cloud completely with overlapping pings and over-
lapping beams and overlapping samples. Echo grid integration
is thus a method specifically developed for multibeam systems
and is (at least in the presented form) not directly applicable
to surveys using single beam echosounder systems.

The validity of the echo grid integration method was
assessed using a numerical simulation of MBES data acquisition
surveys over targets of known backscattering cross-section. For
simplification, we ignored nonlinear acoustic effects, noise, and
unwanted targets, assumed spherical bubbles that scatter inde-
pendent of the acoustic incidence angle and ignored the influ-
ence of noise. However, even for such idealized circumstances,
measuring individual targets and/or small target clouds (bubble
streams) causes significant measurement errors for existing
measurement approaches from fishery science. As an example,
Diner (2007) reported a measurement bias of more than —3 dB
(—50%) for fish shoals smaller than ~ 1.3x the beam width for
a SBES based measurement method that was investigated using
a similar simulation assessment as conducted here.

In comparison, the related errors found for MBES echo grid
integration can be considered significantly low. Our simula-
tion results show that echo-grid integrals reproduce (with a
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small approximation error) the total backscattering cross
section of individual targets and of target clouds of all sizes
(e.g., bubble stream sections) if these targets are sufficiently
covered by the acoustic survey. The measurement bias was
found to be < 1% if the returned acoustic signal is well detect-
able above the background noise level. The measurement dis-
persion was < 5% of the true total backscattering cross
section for the simulated scenarios, which mimicked the con-
ditions of a real water column survey (Table 5).

The found echo grid integration error was largely indepen-
dent of the target/bubble stream position relative to the ships
track except for targets occurring close to the outer extends of
the ensonified water volume. The upper range limit where these
boundary effects occur coincided with ping overlap depth,
which is a function of the transmit beam width, the ping rate,
and the vessel speed (see comments and recommendations sec-
tion 5.1). Surveyors should thus make sure that the water col-
umn is covered by overlapping pings in the water depth where
targets/bubble streams are to be investigated. If the ping rate is
reduced due to ping synchronization with other systems, it
might be necessary to reduce the survey speed.

The simulation results indicated a lower measurement bias
and measurement dispersion for beam pattern with a larger
beam width and a stronger suppression of side-lobes. This
demonstrates that for water column applications, the highest
acoustic resolution may not always give the best results. How-
ever, in practical application also the influence of the acoustic
resolution and the signal-to-noise ratio must be considered.
Especially for deep water applications, a narrow beam width
may be key to detect and distinguish bubble streams from, for
example, noise, reverberation, or acoustic artifacts.

The comparison of different gridding methods revealed great
differences in measurement dispersion. Weighted mean gridding
caused a significantly lower measurement dispersion compared
to a simple block mean. It is unfortunate that the exact perfor-
mance of this method is affected by the chosen voxel size,
which can be difficult to determine (see comments and recom-
mendations section 5.2). Finding a gridding method, which per-
forms more independent of this processing parameter could
thus be an interesting future improvement of this method.

While the effect of noise was not directly simulated in this
assessment, we investigated influence of detection thresholds
that are necessary to distinguish target clouds from the back-
ground noise. (see comments and recommendations sec-
tion 5.3). As expected, these thresholds cause a measurement
bias that depends on how much the measurements exceed the
threshold level. However, the strength of this was found to
beam pattern dependent. Using beam pattern with a strong
side-lobe, reduces the negative effect of the detection thresh-
old compared to measurements using unshaded arrays.

In conclusion, echo grid integration is suitable for investi-
gating the aggregated backscattering cross section of bubble
streams. Using this method, it is possible to use MBESs within
existing gas flow quantification methods that have so far been
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applied to SBESs (comments and recommendations section 5.4
and 5.5). This may help to avoid the often large and difficult-
to-quantify uncertainties related to the limited spatial cover-
age of SBES surveys (e.g., discussion in Padilla et al. 2019).

When interpreting the described echo grid integration error,
it is important to note that the investigated uncertainties relate
only to investigating aggregated backscattering cross sections
assuming idealized conditions (no ambient noise, no nonlinear
acoustic effects, perfectly calibrated system, static target clouds,
and isotropic backscattering). Thus, they are only part of a
larger error chain when applying the method for quantitative
applications. Errors related to acoustic inversion can thereby be
high in practical application. Further uncertainties can be cau-
sed by unwanted targets or acoustic artifacts (e.g., from seafloor
induced side-lobes), which were not considered here. For a brief
discussion on detecting and distinguishing bubble stream tar-
gets, see comments and recommendations section 5.3. A brief
discussion on using uncalibrated MBESs can be found in com-
ments and recommendations section 5.5.

Future studies may aim to reproduce the results presented
here, to include more effects for an even more realistic simula-
tion assessment of the expected error, or may aim at assessing
the echo grid integration error for a different survey scenario
(e.g., different MBES parameters, different vessel motion,
and/or a different water depth). Such studies can build on the
simulation presented here, which is available as an open-
source python program at (link to be included in final version)
with example scripts that show how to perform a simulation.

Comments and recommendations
On computing the ping overlap depth

The smallest depth (Doyernap; Fig. 19) where the water col-
umn is covered by the overlap of consecutive pings can be
estimated from the along track beam width using the follow-
ing equations:

Fig. 19. Variables relevant for computing the depth where consecutive
pings overlap (Doverlap.)

Echo grid integration
Doverlap ~ Roverlap + Ztransducer (3 1)
PingSpacing
R N—= 32
overlap 2 % tan (%) ( )
VesselSpeed
PingSpacing = ———— 33
gopacing PingRate (33)
where,
Doverlap Depth at which the pings overlap (m)
Roverlap Range from transducer at which the pings overlap (m)
Zyransducer Depth of the transducer (m)
PingSpacing Distance between two consecutive pings (m)
Qrx Transmit/along track beam width
VesselSpeed Survey speed of the vessel (m s™')
PingRate Ping rate at the survey depth (s7')

These equations show that Dgyerap Can be elevated either by
increasing the transmit beam width (if possible), by increasing
the ping rate or reducing the survey speed. Note, that very
strong vessel movements can cause pings to sporadically over-
lap at a higher or a lower range than estimated here.

On finding the optimal voxel size

For weighted mean gridding, optimizing the voxel size can
reduce the measurement dispersion. It should be noted that,
since the voxel size does not influence the measurement bias,
the overall estimates of gas flow from areas with hundreds of
bubble streams are less influenced by this parameter.

Our findings on the optimal voxel size are summarized as
follows: If the vessel moves in a perfectly straight line, a
larger voxel size could decrease measurement dispersion.
However, of the three voxel sizes tested, the smallest (1 m)
caused the lowest measurement dispersion for the scenarios
with realistic vessel motion (yaw, pitch, and roll). The 1 m
voxel size was thereby remarkably close to the largest void
space between acoustic samples; here, this space was deter-
mined by the ping spacing of 0.8 m. We therefore recom-
mend adapting the voxel size to roughly match the ping
spacing. Users may then use the python simulation to assess
the expected measurement dispersion for their specific case
and, if necessary, investigate if a larger or smaller voxel size
can improve the results.

On distinguishing target blobs and the definition of “target
affected” voxels

Equations 29 and 30 describe the sum overall voxels in the
investigated water volume. Using these equations, determin-
ing the aggregated backscattering cross section of, for exam-
ple, individual targets, fish-shoals, and bubble streams would
not be possible if any other targets are present within the
gridded water column data. However, since most of the energy
of the beam- and pulse-response functions is concentrated in
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a very narrow region of the beam, it is enough to include the
voxels that are “significantly affected” by a target (see also
results section 3).

These ‘target affected voxels are connected (e.g., Figs. 6,
15) and can be detected by applying a threshold followed
by a region growing algorithm on each local maxima in the
voxel grid. The influences of multiple targets cannot be sep-
arated. Thus, if two targets influence the same voxel, the
regions connect to one region. The integral over this region
is still representative to the aggregated backscattering
cross section of all “connected” targets. This simple algo-
rithm does not distinguish between noise, artifacts and tar-
get type (e.g., fish or bubbles), which must be achieved by a
different method (e.g., Urban et al. 2016 for bubble
streams).

On computing gas flow from processed grids

In this section, we discuss a simple example that shows
how an existing quantification method (for SBESs) can be
applied to the grids created here. Following the approach of
Veloso et al. (2015), the volumetric gas flow rate of a bubble
stream can be computed from the aggregated backscattering
cross section within a water column layer of a defined size

(Fig. 1) by:

VZ&AG;BL XB (34)
Jr3f(r)U(r)dr
4 0
lP = ETC > (35)
Jf(r)abs(r)dr
0

where,

v Volumetric gas flow rate (m*s™')

D Vertical size of the depth layer (m)

b g Flow rate conversion factor (note: compared to Veloso
et al. 2015, D has been separated from this factor and put
into Eq. 34)

r Bubble radius (m)

f(r) Probability density function of the bubble-size distribution
(m™)

u(r) Bubble rising speed as function of the bubble radius (m s~")

ops(r)  Backscattering coefficient as function of the bubble radius

according to the used bubble model. (e.g., Anderson 1950;
Thuraisingham 1997; Ainslie and Leighton 2011; Li
et al. 2020) (m?)
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Using these equations, two approaches can be used to com-
pute the volumetric gas flow rate within MBES WCI data
processed with the presented method.

Model inversion approach

The factors U(r) and oy(r) are gained from bubble models.
The most challenging factor is the bubble radii distribution of
the measured bubble streams f(r). A typical assumption is that
bubble streams in an area have a similar bubble size distribution
such that only the distribution of a single bubble stream needs
to be measured. This can be done, for example, using direct cam-
era observations at the release spot at the seafloor. The bubble
size distribution for the depth of the acoustically investigated
water column layer can be predicted from this initial data using
a bubble dissolution model (e.g., McGinnis et al. 2006; Rehder
et al. 2009; Jansson et al. 2019). The found ¥ factor (Eq. 35) can
then be applied to all bubble streams in the area.

Direct calibration approach

If the bubble size distribution f(r), and therefore the factor
¥, can be assumed to be constant for all gas bubble streams in
the area, the relationship between &ag;p. and V can be
expected to be approximately linear. Determining 6ag;p1, for a
single bubble stream of known flow rate would thus be
enough for to determine ¥ and thus to directly calibrate the
voxel grid for gas flow rate assessments.

It should be noted that these approaches assume perfectly
spherical bubbles. Larger gas bubbles may also take an ellipsoi-
dal (nonspherical) shape such that their exact backscattering
cross-section may vary with the incidence angle (e.g., Leblond
et al. 2014). This would influence flow rate measurements at
the outer beams. In practical application, this effect should
therefore be investigated by measuring the same bubble
stream multiple times at different beam angles similar to the
relative calibration described in 5.5. If a consistent depen-
dency on the beam angle is found, it could be used to correct
the measurements.

On using acoustically uncalibrated MBESs
For uncalibrated MBESs, each recorded echo level can be
described using two (unknown) calibration factors.
ELUC;pn,sn,bn = ELpn,sn,bn - CAbs - CRel(Tg) (36)

where,

ELyc;pnsnbn  Received echo level for sample pn, sn, bn recorded by an

uncalibrated system

Chps Absolute calibration offset of the system (calibration offset
of the center beam)
Crel(9) Relative calibration offset (compared to the center beam) of

a beam pointing toward the across-track angle
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Since the exact beam pattern and pulse shape are unknown
for uncalibrated MBESs, the exact sample volume for comput-
ing Sv;pn,sn,pn is also unknown. Combining Egs. 36, 22, 14, and
3 reveals:

- ELyG; pn,sn,bn —SLATL(Rsn) —201og(Rsn) Csv; Abs Csv;Rel ()
SV;pn,sn,bn =10 10 x10710 x 10" © (37)
B Test
Csv;abs = Caps — 10108 Qrx x Qrxjo x € X — (38)
o QRX; bn=3
CSV,‘RE](S) = CRel(B) — 1010g Q— (39)
RX;0

where,

Csv: Abs Absolute (center beam) calibration offset toward volume
backscattering strength (includes the not perfectly known
beam width and effective pulse length)

Csv.rel(9)  Relative (compared to the center beam) calibration offset
toward volume backscattering strength of a beam pointing
toward the across-track angle 9

Qpx;0 Beam width of center beam

QRX; bn—o Receive beam width of a beam pointing toward the across-

track angle 9

Note, for flat transducers, the size of the volumes typically
increases by:

Qpxpn=g 1
Qrx;0 cos(9)

(40)

When gridding uncalibrated measurements using the
proposed method, all voxel cells are equally influenced by
the absolute calibration offset Csyaps. The influence of
Csv;rel(9) on each voxel depends on the across-track angle of
the measurements that contribute to the respective voxel
value.

A relative calibration of the system means that the mea-
surements are consistent for the different beam angles
(Lurton et al. 2015). Using the echo grid integration, the fac-
tor Csy;pe1(9) could be estimated by comparing &ag; s, measure-
ments of an isolated bubble stream of constant flow rate at
different across-track angles. If this calibration can be
achieved (Csy;rei(8)=0), Csyans progresses linearly into
Eq. 34. Thus, a direct calibration against bubble streams of

C

Sv; Abs
10

known flow rates would allow to determine the factor 10~
and thus calibrate uncalibrated 646, gwc values against gas flow
rates.

Data availability statement
The simulation to reproduce the presented results, is publi-
shed on doi:10.3289/SW_3_2023.
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