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Abstract: Exploration of seaweeds to unravel their bioactive metabolites from the perspective of
wider applications gained substantial importance. The present study was performed to investi-
gate the total phenolic, flavonoid, tannin content, antioxidant activity and antibacterial potential
of various solvent extracts of green seaweed Caulerpa racemosa. The methanolic extract showed
higher phenolic (11.99 ± 0.48 mg gallic acid equivalents/g), tannin (18.59 ± 0.54 mg tannic acid
equivalents/g) and flavonoid (33.17 ± 0.76 mg quercetin equivalents/g) content than other extracts.
Antioxidant activity was determined by using 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay with different concentrations of C. racemosa
extracts. The methanolic extract showed higher scavenging potential in both the DPPH and ABTS
activity with the inhibition value of 54.21 ± 1.39% and 76.62 ± 1.08%, respectively. Bioactive profiling
was also identified by using Gas chromatography-mass spectrometry (GC-MS) and Fourier transform
infrared (FT-IR) techniques. These studies revealed the presence of valuable bioactive compounds
in C. racemosa extracts and these compounds might be responsible for antimicrobial, antioxidant,
anticancer and anti-mutagenic properties. Major compounds identified in GC-MS were 3,7,11,15-
Tetramethyl-2-hexadecen-1-ol, 3-hexadecene and Phthalic acid. In terms of antibacterial activity,
C. racemosa has promising antibacterial potential against aquatic pathogens Aeromonas hydrophila,
Aeromonas veronii and Aeromonas salmonicida. Further evaluation studies focusing aquatic related
aspects would reveal the novel bioproperties and applications of C. racemosa.

Keywords: antibacterial activity; antioxidant activity; bioactive compounds; GC-MS; seaweed

1. Introduction

The marine environment is rich in biodiversity with numerous potentials and contains
bioactive compounds of unique structural and physical properties that are inimitable to
the natural molecules derived from terrestrial sources [1]. Macroalgae collectively known
as seaweed are an integral part of the marine ecosystem. Seaweeds are considered as
non- flowering, photosynthetic plant-like organisms which play a vital role as (i) primary
producers in the marine niche; (ii) food sources for herbivorous organisms and (iii) habitats
for many microorganisms [2]. Seaweed consumption as food or medicine was already
recorded since ancient times and now, it became a popular ingredient in the preparation
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of food and beverages [3]. In Western countries, macroalgae became prevalent foods lat-
terly due to the presence of many beneficial properties. Every year, 20 million tons of
seaweed were harvested and half of them were intended for human consumption [4,5].
In addition, compounds and metabolites present in seaweeds are in high demand with
extensive applications in cosmetics and pharmaceutical industries [6]. Seaweeds contain
high-quality proteins, dietary fibers, polysaccharides, macro and micronutrients, vitamins,
minerals, fatty acids and phytochemical constituents/bioactive compounds which pos-
sess a wide spectrum of activities [7–9]. The seaweed shows extensive species diversity
distribution and abundance. Depending on species, season, temperature and geographic
locations, the biochemical contents may vary, and these factors influence their minerals
and elements. Furthermore, seaweeds are the only source of compounds such as agar,
algin and carrageenan, which are used as gelling and stabilizing agents [10]. Seaweeds
provide cobalamin (vitamin B12) which is not synthesized or acquired by higher plants [11].
Seaweeds are also used as a productive source of biomass for its simple depolymerization
ability owing to the absence of hard lignocellulose [9].

Depending on pigments, seaweeds are classified into three groups, such as red
(Rhodophyceae), brown (Phaeophyceae) and green algae (Chlorophyceae) [12]. Each
macroalgae has unique biological properties with a wide range of applications. Macroalgae
were utilized in various fields based on their characteristics features and chemical com-
positions. Altogether, these macroalgae provide many socio-economic values. In recent
years, macroalgae garnered huge interest due to their potential use in feed, pharmaceutics
and an increased application in health-promoting functional foods. Proportionately, the
aquaculture farming of green seaweeds was expanded over the last decade for commer-
cialization [13]. Green algae of the genus Caulerpa, family Caulerpaceae, are distributed
worldwide in shallow water subtropical and tropical marine habitats and they are con-
templated as better alternative food with therapeutic properties [14]. The species Caulerpa
racemosa commonly referred to as “sea grapes” is one of the dominant edible marine green
seaweeds on the Indian coastline and a good source of magnesium, iron and calcium.
It is consumed in raw or cooked forms across the Indo-pacific regions [15]. It displays
invasive behavior and has the tendency to propagate clonally by fragmentation and become
a major feeding habit of demersal species [16]. The C. racemosa contains phytoconstituents
(ceramides, sesquiterpenes etc), amino acids (alanine, phenylalanine, glutamic acid, glycine,
serine, isoleucine, lysine, aspartic acid, leucine and valine) and peptides [17]. C. racemosa is
known for its polyunsaturated fatty acids (PUFA), secondary metabolites which are respon-
sible for its antibacterial, anticancer, antinociceptive, antimutagenic, anti-inflammatory and
cytotoxic properties. The antioxidant capacity of C. racemosa highlights its potential utiliza-
tion as nutraceuticals. C. racemosa was shown to have anti-aging and anti-obesity properties
by altering glucose and lipid profiles [18]. Recent evidence suggested that C. racemosa could
be used as a functional food with beneficial applications in human health [19].

In particular, specific bisindole alkaloid compounds such as caulerpin, caulersin and
caulerpenyne are rich in C. racemosa. They exert a wide array of bioactivities and are highly
desirable in multi-industrial applications [20]. Racemosin A & B and caulerprenylols A & B
isolated from C. racemosa exhibited neuroprotective and antifungal activity, respectively [21].
The extracts of C. racemosa inhibit the growth of bacterial pathogens which cause infections
in humans, plants and animals. It was reported that the bacteria associated with C. racemosa
have the capacity to inactivate the pathogens causing disease in Gracillaria verrucosa species.
Thus, co-culturing of C. racemosa and G. verrucosa may benefit to meet out the demand of
Gracillaria species for export by reducing the disease occurrence [2]. The polysaccharides
of C. racemosa have immunomodulatory or immunostimulatory effects that contribute in
a great manner for the pharmaceutical industries to treat different types of diseases [22].
Moreover, the supplementation of C. racemosa to the Vibrio parahaemolyticus infected white
shrimp (Litopenaeus vannamei) can increase the survival rate by increasing the macrophage
activity with the help of sulfate polysaccharides [23]. Although much research endeavors
were studied in C. racemosa, there are still some gaps to fill the existing knowledge concern-
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ing its bioactive constituents. In order to investigate the medicinal properties of C. racemosa,
it is necessary to study the active biomolecules and its interactions [19]. Therefore, the
present investigation was carried out to study the metabolites of different solvent extracts
of C. racemosa through GC-MS profiling and in vitro studies that will provide important
biomolecules insights and exploit its further potential in the aspects of human and animal
health.

2. Results and Discussion
2.1. Pigments Determination

Pigments are used to absorb the light for photosynthesis in seaweeds. They can act
as an antioxidant by removing free radicals and preventing oxidative damage [24,25].
Chlorophyll and carotenoids (carotenes and xanthophylls) are the major pigments present
in green seaweeds [26]. In this study, chlorophyll a, chlorophyll b, chlorophyll c1+c2,
total chlorophyll and carotenoids were evaluated and results are manifested in Figure 1.
Chlorophyll c is a pigment-protein light-harvesting complex which allow light to penetrate
underwater habitats due to its spectroscopic properties and structures [27]. Verma et al. [28]
reported that Caulerpa vervelansis possess higher chlorophyll a pigment. These pigments in
seaweeds contain various health benefits.
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Figure 1. Pigments content of collected green seaweed Caulerpa racemosa.

Provitamin-A carotenoid, and β-carotene are a significant source of vitamins. Xan-
thophyll pigments efficiently absorb the blue light and impede the formation of reactive
oxygen species in the photoreceptors that helps to defend from light-induced oxidative
damage in the retinal pigment epithelial cells [29,30]. These macroalgae pigments show
diverse activities such as antioxidant activity, neuroprotective effects and cardiovascular
protection [31].

2.2. Biochemical Constituents Analysis

The proximate composition of C. racemosa (CR) powder is presented in Table 1. Proxi-
mate composition analysis is very crucial for the assessment of nutritional value of macronu-
trients and could be used to formulate feed. Dried powder of C. racemosa contained 7.04%
of moisture, 12.64% of crude protein, 2.85% of crude fibre, 1.8% of ether extract, 48.41% of
total ash and 2089 Kcal/kg of gross energy. Our results were in line with Hao et al. [32] in
C. racemosa var peltata. Regal et al. [33] evaluated the proximate composition of seaweed
Asparagopsis taxiformis and reported the similar level of ash content (47.3 to 48.7%).
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Table 1. Biochemical constituents’ analysis of Caulerpa racemosa.

Biochemical Constituents Caulerpa racemosa

Moisture 7.04%
Crude protein 12.64%

Crude fibre 2.85%
Ether extract 1.80%

Total ash 48.41%
Nitrogen free extract 27.26%

Gross energy 2089 Kcal/kg

2.3. Preliminary Phytochemical Analysis

Seaweeds contain unique phytochemicals that are associated with a plenty of biological
activities and they are believed to hold various health benefits [34]. The phytochemicals
include tannins, flavonoids, saponins, phytosterol, terpenoids, phenol, phenolic flavonoids,
alkaloids and steroids of various extracts of C. racemosa were screened and depicted in
Table 2. All the phytochemicals screened in this study were present in polar solvent
(methanol and ethanol) extracts. Terpenoids, steroids, phytosterols, tannins and flavonoids
were present in ethyl acetate extract. Acetone extract showed the absence of saponins
and alkaloids. Petroleum ether extract exhibited the presence of tannins. Terpenoids and
tannins were present in the hexane extract of C. racemosa.

Table 2. Preliminary phytochemical analysis of various extracts of Caulerpa racemosa. “+”—indicates
presence of phytochemicals. “–”—indicates the absence of phytochemicals.

S. No Test Methanol Ethanol Acetone Ethyl
Acetate

Petroleum
Ether Hexane

1. Saponins + + – – – –
2. Terpenoids + + + + – +
3. Steroids + + + + – –
4. Phytosterol + + + + – –
5. Tannins + + + + + +
6. Flavonoids + + + + – –
7. Phenol + + + – – –

8. Phenolic
flavonoids + + + – – –

9. Alkaloids + + – – – –

According to Nagaraj and Osborne. [10], the methanolic extract of C. racemosa demon-
strated the presence of saponins, alkaloids and terpenoids. These secondary metabolites
have numerous therapeutic benefits and are used tremendously in the drug and pharmaceu-
tical industry. Tannin and saponins are the excellent anti-microbial agents, while flavonoids
and polyphenols are antioxidant agents. Flavonoids are water-soluble antioxidants that
can scavenge free radicals. Flavonoids in human diet may prevent menopausal symptoms
and reduce cancers [35,36]. Alkaloids were nitrogenous compound that contains anti-
inflammatory, anti-fungal and antibacterial activities [37]. The macroalgae genus Caulerpa
contains a high amount of indolic alkaloid compound caulerpin, which was reported to
possess anti-inflammatory activity. Caulerpin was reported in various species of Caulerpa
genus of green seaweeds such as C. racemosa, C. lentillifera, C. peltata, C. paspaloides, C.
cupressoides, C. sertularioides, C. prolifera and C. mexicana [38].

2.4. FT-IR Analysis

Based on the wavelength and intensity of the absorption bands of different molecular
groups, FT-IR spectroscopy can reveal the presence of chemical components. This method
is extensively used in food authentication and efficient in capturing the entire composition
of chemical compounds [39,40]. Functional groups were detected by the infrared radiation
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ranges from 4000 to 500 cm−1 (Figure 2). Based on the FT-IR results obtained in this study,
methanolic and ethanolic extracts of CR showed the absorption band at 3325 cm−1 (OH
stretch alcohol). All extracts of CR showed a strong peak between 2972.73 and 2943.8 cm−1

(NH stretch amine salt).

Mar. Drugs 2023, 21, x  5 of 24 
 

 

2.4. FT-IR Analysis 
Based on the wavelength and intensity of the absorption bands of different molecular 

groups, FT-IR spectroscopy can reveal the presence of chemical components. This method 
is extensively used in food authentication and efficient in capturing the entire composition 
of chemical compounds [39,40]. Functional groups were detected by the infrared radiation 
ranges from 4000 to 500 cm−1 (Figure 2). Based on the FT-IR results obtained in this study, 
methanolic and ethanolic extracts of CR showed the absorption band at 3325 cm−1 (OH 
stretch alcohol). All extracts of CR showed a strong peak between 2972.73 and 2943.8 cm−1 
(NH stretch amine salt). 

 
Figure 2. FT-IR spectrum of various extracts of Caulerpa racemosa. 

C=O stretch indicated the presence of aliphatic ketones in ethyl acetate, acetone, hex-
ane and petroleum ether extract of C. racemosa at the band range of 1710.55, 1736.58, 
1763.58 and 1763.85 cm−1, respectively. The OH bend represented the carboxylic group at 
the peak of 1449.24 cm−1 in ethyl acetate extract and 1425.14 cm−1 in acetone extract. The 
peaks were observed around 1242.9 to 1221.68 cm−1 in hexane, petroleum ether, ethyl ac-
etate and acetone extract of C. racemosa, indicating the presence of alkyl ether. A strong 
peak at 1021.12 cm−1 (C-O) in the methanol extract of CR indicated the presence of ether 
[41]. In the ethanol extract of CR, the medium peak at 879.38 cm−1 represented the C-S 
bend [42]. Halo compounds were observed at the peak range of 609.39 cm−1 in ethyl acetate 
extract of CR. The FT-IR results revealed the presence of various bioactive molecules in 
the extracts of C. racemosa. These compounds are responsible for its anti-bacterial, antiox-
idant and other medicinal properties. 

2.5. GC-MS Analysis 
The GC-MS chromatogram and detected compounds of C. racemosa extracts are given 

in Figure 3 and Table 3. In total, 74 compounds were identified from various extracts of 
C. racemosa. The highest number of compounds were detected in the methanol extract (29 
compounds) and the lowest number of compounds were detected in hexane (7 com-
pounds) extract of C. racemosa. In the present study, all the CR extracts contained bioactive 

Figure 2. FT-IR spectrum of various extracts of Caulerpa racemosa.

C=O stretch indicated the presence of aliphatic ketones in ethyl acetate, acetone, hexane
and petroleum ether extract of C. racemosa at the band range of 1710.55, 1736.58, 1763.58
and 1763.85 cm−1, respectively. The OH bend represented the carboxylic group at the peak
of 1449.24 cm−1 in ethyl acetate extract and 1425.14 cm−1 in acetone extract. The peaks
were observed around 1242.9 to 1221.68 cm−1 in hexane, petroleum ether, ethyl acetate
and acetone extract of C. racemosa, indicating the presence of alkyl ether. A strong peak at
1021.12 cm−1 (C-O) in the methanol extract of CR indicated the presence of ether [41]. In
the ethanol extract of CR, the medium peak at 879.38 cm−1 represented the C-S bend [42].
Halo compounds were observed at the peak range of 609.39 cm−1 in ethyl acetate extract of
CR. The FT-IR results revealed the presence of various bioactive molecules in the extracts of
C. racemosa. These compounds are responsible for its anti-bacterial, antioxidant and other
medicinal properties.

2.5. GC-MS Analysis

The GC-MS chromatogram and detected compounds of C. racemosa extracts are given
in Figure 3 and Table 3. In total, 74 compounds were identified from various extracts
of C. racemosa. The highest number of compounds were detected in the methanol ex-
tract (29 compounds) and the lowest number of compounds were detected in hexane
(7 compounds) extract of C. racemosa. In the present study, all the CR extracts contained
bioactive compounds that exhibit antimicrobial, antioxidant, anticancer and anti-mutagenic
properties.
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Table 3. GC–MS analysis of various extracts of Caulerpa racemosa.

Extract Compound Name Molecular Formula Molecular Weight Area %

Methanol

Oxalic acid, allyl ethyl ester C8H10O4 170 0.11
3-Butynoic acid C4H4O2 84 0.03
3-Hexadecene C16H32 224.42 0.8
Phthalic acid C8H6O4 166.14 0.23

Dodecane C12H26 170.33 2.16
3-Octadecene, (E)- C18H36 252.5 3.3

Pentadecane C15H32 212.41 12.99
Heptadecane, 7-methyl- C18H38 254.5 0.48

Carbonic acid, decyl vinyl ester C13H24O 228.33 0.15
1-Heptadecene C17H34 238.5 32.37

1-Decene, 3,3,4-trimethyl- C13H26 160.21 0.27
Pentadecane C15H32 212.42 2.72

Neophytadiene C20H38 278.5 0.60
2-Tridecenal, (E)- C13H24O 196.33 0.39
9-Heptadecanone C17H34O 254.5 1.11

Tetradecane C14H30 198.39 0.28
9-Octadecenoic acid (Z)- methyl ester C19H36O2 296.5 0.22

Tridecanoic acid, methyl ester C14H28O2 228.37 8.53
1,1-Diisobutoxy-butane C12H26O2 202.33 0.36
Nonane, 3,7-dimethyl- C11H24 156.31 0.18
1-Dodecene, 2-ethyl- C12H24 168.32 0.29

8,11,14-Eicosatrienoic acid, methyl ester, C21H36O2 320.5 0.60
11,14-Eicosadienoic acid, methyl ester C21H38O2 322.5 0.43
7-Hexadecenoic acid, methyl ester, (Z)- C17H32O2 268.4 0.24

Tetracosanoic acid, methyl ester C25H50O2 382.7 0.26
1-Nonadecene C19H38 266.5 0.80

2-Aminophenol, 2TBDMS derivative C18H35NOSi2 337.6476 12.77
Heneicosane C21H44 296.57 6.37

Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11
13,13,15,15- Hexadecamethyl(Alpha
reductase inhibitor, 5-HT inhibitor)

C16H50O7Si8 578 27.47

Ethanol

3-Hexadecene C16H32 224.42 1.92
Acetic acid 13.57

2-(Benzyloxy)ethanamine C9H13NO 151 13.27
Propiolactone C3H4O2 72 4.98

N-(4-Tolylsulfonyl)azetidin-3-one C10H11NO3S 225 10.38
1H-Tetrazole CH2N4 70 2.87

N-Methylene-2-phenylethanamine C9H11N 133 1.43
Butanenitrile C4H7N 69.11 2.90
Hexadecane C16H34 226 1.17

Neophytadiene C20H38 278 5.63
3,7,11,15-Tetramethyl-2-hexadecen-1-ol C20H40O 296.5 11.06

Hexadecanoic acid, ethyl ester C18H36O2 284 2.10

Acetone

Propanoic acid C3H6O2 74.08 6.15
2-Pentanone, 4-hydroxy-4-methyl C18H20O2 116.16 25.88

Acetic acid, hydroxy-, methyl ester
(methyl glycolate) C3H6O3 90.08 0.90

(3S,4S)-3,4-
Bis(methoxymethoxy)pyrrolidine C8H17NO4 191 0.34

Oxalic acid, diallyl ester C8H10O4 170.16 1.28
Butanenitrile C4H7N 69.11 1.84
Heptadecane C17H36 240.471 7.57

3,7,11,15-Tetramethyl-2-hexadecen-1-ol C20H40O 296.5 5.78
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Table 3. Cont.

Extract Compound Name Molecular Formula Molecular Weight Area %

Ethyl acetate

1H-Tetrazole CH2N4 70 8.20
Propiolactone C3H4O2 72 4.42

2-Butanol, 4-chloro-3-methyl- C5H11ClO 122.59 4.08
Hexahydro-1,3,5-trinitroso-1,3,5-triazine C3H6N6O3 174 7.45

2-Butanone, 3-hydroxy C4H8O 88.11 3.19
2-Benzyloxyethylamine C19H13NO 271 10.05

Propanoic acid C3H6O2 74.08 7.76
1-Tridecene C13H26 182 6.96

1-Heptadecene C17H34 238.5 5.45

Petroleum
ether

Propiolic acid C3H2O2 70.05 0.87
2-Pentanone, 5-hydroxy- C5H10O2 102 19.53

1H-Tetrazole CH2N4 70 5.87
2-Tetradecanol C14H30O 214 1.06

Tricosane C23H48 324 1.27
Hexanoic acid C6H12O2 116.15 3.25

Isopropyl myristate C17H34O2 270.45 4.16
Pentadecanoic acid, methyl ester C17H34O2 270 3.58

Hexanedioic acid, bis(2-ethylhexyl) ester C22H42O4 370.6 2.35

Hexane

Cyclopentane, 1-acetyl-1,2-epoxy C7H10O2 126 54.36
N,N′,N”-Trinitro-1,3,5-

triazacycloheptane C4H8N6O6 36 6.89

1H-Tetrazole CH2N4 70 6.66
Propiolactone C3H4O2 72 2.12
Butanenitrile C4H7N 69 0.64

Tricosane C23H48 324 1.77
Pentadecane C15H32 212 3.50
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The major metabolite identified was carboxylic acid and it is an important antioxi-
dant [43]. 3-hexadecene shows numerous medicinal properties to cure cancer, inflamma-
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tory diseases and diabetes [44]. Phthalic acid has antibacterial and antioxidant properties.
Phthalic acid inhibits the oxidation by stabilizing the phenoxyl radicals [45]. Methyl gly-
colate is a potential antioxidant reported by Shah et al. [20]. Tetrazole has antimicrobial
property [46]. 8,11,14-docosatrienoic acid methyl ester is one of the (n-6 fatty acids) polyun-
saturated fatty acids [47,48]. 3,7,11,15-Tetramethyl-2-hexadecen-1-ol displays antimicrobial
activity [49]. The GC–MS results from the various extracts of CR confirmed that they all
possessed numerous beneficial compounds.

2.6. Total Phenolic Content

In higher plants, phenolic compounds in the secondary metabolite forms are prevalent
bioactive compounds [50]. In recent years, bioactive polyphenols received importance
due to their protection efficiency against oxidative stress, which is responsible for many
diseases including aging, cancer and congestive heart failure [51]. In seaweeds, phe-
nolic compound production may differ based on varying environmental factors such
as salinity, herbivory pressure, nutrients, UV radiation, etc. [52,53]. Results are shown
in Figure 4A. In this study, the highest phenolic content was estimated in methanol
extract of C. racemosa (11.99 ± 0.48 mg GAE/g) followed by ethanol (9.70 ± 0.45 mg
GAE/g), acetone (9.40 ± 0.42 mg GAE/g), ethyl acetate (9.40 ± 0.38 mg GAE/g), hexane
(8.48 ± 1.23 mg GAE/g) and petroleum ether (7.73 ± 0.38 mg GAE/g).
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Phenols are natural antioxidants, which produce OH functional groups in seaweed
that inhibit oxidative stress by donating hydrogen to stabilize and prevent free radical
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generation. It lowers the disease risk and promotes health [20]. Vega et al. [53] reported that
2.26% of total phenol was evaluated in C. racemosa. According to Akbary et al. [54] polar
solvent extract of brown seaweed Stoechospermum marginatum exhibited higher phenolic
content than other solvents used. Marinho et al. [55] reported that higher phenolic content
was obtained in the methanol extract than ethyl acetate extract. Rodríguez-Bernaldo de
Quirós et al. [56] evaluated the phenolic compounds of brown seaweed Sargassum pallidum
extracts using various solvents, such as 30% ethanol, 30% methanol and 70% acetone, and
reported higher phenolic content in 70% acetone extract.

2.7. Total Tannin Content

Tannins are the kind of water-soluble polyphenols present in terrestrial plants and
marine algae. They play a crucial role in vascular plants’ defense mechanism [57]. The
results of tannin content in the current study are given in Figure 4B. The levels of tannin con-
tent were higher in the ethanol extract of CR (21 ± 1.21 mg TAE/g) followed by methanol
(18.59 ± 0.54 mg TAE/g), acetone (11.95 ± 1.99 mg TAE/g), ethyl acetate
(11.87 ± 0.023 mg TAE/g), hexane (8.77 ± 0.89 mg TAE/g) and petroleum ether
(7.49 ± 0.35 mg TAE/g). Bharath et al. [58] reported that the ethanol extract of Turbinaria
ornata (28.01 ± 0.20 mg TAE) showed higher tannin content. Consumption of tannins-
containing beverages may encourage, as it is believed, to cure or prevent plenty of dis-
eases [59]. The highest tannin content was recorded in green seaweed C. duthieae by
Rengasamy et al. [60]. Tannin has a potential anti-inflammatory activity [61]. Tannins
are also used to treat burns as it forms a protective covering by precipitating proteins
of exposed tissues [62]. It is an essential compound in antimicrobial activity owing to
its inactivation of membrane-bound enzyme, cell envelope transport and microbial cell
adhesions [58]. Higher and lower tannin content was reported in the 70% acetone soxhlet
extract of C. peltata and C. latum, respectively [57].

2.8. Total Flavonoid Content

Secondary metabolites, such as flavonoids, are strong antioxidants and crucial di-
etary supplements for humans. In Caulerpa spp., luteolin, apigenin, quercetin, cyani-
din, malvidin, myricetin, kaempferol and quercetagetin flavonoids were detected. These
metabolites demonstrated a variety of biological functions such as immune-modulation,
anti-inflammatory, antioxidant and anticancer [63]. CR methanol extract of this study exhib-
ited higher flavonoid content (33.17 ± 0.76 µg QE/g) than other solvents and lower content
of flavonoid was revealed by non-polar solvent petroleum ether (23.64 ± 0.66 µg QE/g).
The levels of total flavonoid contents of various CR extracts were given in Figure 4C. Sobuj
et al. [64] also obtained higher flavonoid content in methanol seaweed extract of Padina
tetrastromatica (41.77 ± 1.59 mg of Q/g) and Gracilaria tenuistipitata (36.17 ± 2.38 mg of
Q/g). Furthermore, the present study findings are hand in hand with the results reported
by Marinho et al. [55] in which the methanol extract of Saccharina latissima seaweed showed
higher activity than ethyl acetate. Yap et al. [65] also reported higher total flavonoid con-
tent in the aqueous extract of C. racemosa and C. lentillifera. According to the report of
Suraiya et al. [9] fermented seaweed Squatina japonica showed higher flavonoid content
than unfermented seaweed S. japonica.

2.9. Antioxidant Activity

The phenolic acids and flavonoids have electron donating capacity and prevent cells
from reactive oxygen species either by inhibiting or reducing free radicals. The antioxidant
activity is determined by the free radical scavenging capacity or inhibition of oxidation by
different biological mechanisms [19].

2.9.1. DPPH Activity

DPPH assay is a simple and prominent method to evaluate free radical scavenging
ability. The hydrogen-donating capacity of extracts was thought to be responsible for the
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DPPH radical scavenging activity. The antioxidant compound reacts with radical DPPH
that reduces to DPPH-H, which could be observed by reduction in absorbance values [66].
Figure 5 shows the result of DPPH activity of various extracts of C. racemosa. It was
found that the CR extracts exhibited DPPH scavenging effect in a concentration dependent
manner.

In this study, all the CR extracts showed significantly lower activity than the standard
in all the different concentrations. The CR extracts showed higher activity at 100 µg/mL
in which the methanol extract showed activity at 54.21 ± 1.39% followed by ethanol
47.59 ± 1.78%, acetone 46.23 ± 0.46%, ethyl acetate 44.04 ± 2.01%, petroleum ether
38.79 ± 0.77% and hexane 31.86 ± 3.32%. The lowest IC50 value was observed in the
methanol extract of CR (86.33 µg/mL) and highest IC50 value was obtained in the hexane
extract (173.21 µg/mL) (Table 4). In our study, the total phenolic content was also higher in
the methanol extract of CR, which serves as evidence of the value of phenolic compounds
as antioxidants. Similar results were proclaimed by Fonseca et al. [67] in Atlantic brown
seaweed species Zonaria tournefortii and Cystoseira abies-marina. Tanna et al. [63] reported
that the methanol extract of C. racemosa var. macrophysa showed 60% of DPPH scavenging
activity.
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Table 4. IC50 values of Caulerpa racemosa extracts of DPPH & ABTS radical scavenging activity.

Extracts of Caulerpa
racemosa DPPH Assay (µg/mL) ABTS Assay (µg/mL)

Vitamin C (standard) 36.79 32.06

Methanol 86.33 54.51

Ethanol 104.46 75.10

Acetone 102.52 73.64

Ethyl acetate 111.59 74.41

Petroleum ether 124.41 69.92

Hexane 173.21 76.28

2.9.2. ABTS Activity

The decolorization of bluish-green ABTS due to polyphenolic compounds present
in algal extracts was measured at 734 nm to determine the ABTS activity [68]. Similar to
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DPPH activity, ABTS also performed in a dose-dependent manner. The results of ABTS
scavenging activity were represented in Figure 6. Highest ABTS activity was recorded in the
C. racemosa methanol extract (76.62 ± 1.08%) followed by ethanol (68.44 ± 3.23%), acetone
(66.16 ± 2.96%), ethyl acetate (64.92 ± 2.82%), petroleum ether (57.98 ± 2.69%) and hexane
(54.94 ± 5.65%). Lowest IC50 value was expressed in methanol extract (54.51 µg/mL) and
the highest IC50 was observed in hexane extract (76.28 µg/mL) (Table 4). According to
Maheswari and Salamun. [68] the highest ABTS radical scavenging activity (96.95 ± 0.41%)
was observed in C. verticillata than standard ascorbic acid (90.99 ± 0.30%). Mani et al. [69]
evaluated the antioxidant potential of various species of tropical green seaweeds, in which
C. antennia showed higher ABTS activity (IC50 0.93 mg/mL). Subcritical water extraction of
U. lactuca displayed a higher ABTS activity than C. racemosa [70].
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2.10. Antibacterial Activity

Aquatic bacterial pathogens can cause severe economic loss in the aquaculture industry.
Aeromonas is a major bacterium that causes septicaemia and ulcer in Indian major carps and
other fish species. Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa
are also identified as fish pathogens. P. aeruginosa cause red skin infection in Oreochromis
mossambicus [71]. Divya et al. [72] stated that P. aeruginosa cause friable liver, gill necrosis,
abdominal distension, splenomegaly and hemorrhagic septicemia in Indian major carp
Labeo rohita. Kukułowicz et al. [73] and Sivaraman et al. [74] isolated S. aureus from
edible fish. It affects Oreochromis niloticus and causes severe mortality with pathological
alterations [75]. K. pneumoniae can also cause severe mortality in Indian major carps
through causing hemorrhagic infection. The present study divulged the antibacterial
potential of different extracts of C. racemosa against all tested aquatic bacterial pathogens.
The CR methanol extract showed better activity than other extracts against all tested
organisms, especially Aeromonas veronii. Significant variations were observed depending on
solvent and pathogens when compared with control (streptomycin). The present study’s
results are represented in Table 5. A higher inhibition zone was observed in methanol
(27 ± 0.71 mm) and ethanol (25 ± 0.35 mm) extract of C. racemosa (200 µg/mL) against A.
veronii. Petroleum ether extract (200 µg/mL) showed the lowest inhibition zone against K.
pneumoniae (11 ± 1.41 mm). These results were similar to those obtained in the analysis of
antibacterial activity of C. racemosa against S. aureus [9]. Several studies were conducted
on antibacterial activity of C. racemosa extracts which exhibited better inhibition activity
against most of the pathogenic organisms [76]. Belkacemi et al. [77] stated that methanol and
hexane extract of C. racemosa showed inhibition zone at 10 mm and 9.33 mm, respectively,
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against P. aeruginosa. In our present study, preliminary phytochemical analysis revealed
the presence of secondary metabolites such as saponins, tannins, terpenoids, etc.; these
metabolites may inhibit the growth of the bacterial pathogens. Our study also disclosed
the higher tannin and phenolic content in methanol extract, the same extract showed
better antibacterial activity against all tested organisms. Tannin plays a major role in
antimicrobial activity by inactivating membrane-bound enzymes, transport proteins and
cell-to-cell adhesions [58]. Fatty acid derivatives were also identified in the GC-MS analysis,
which may contribute to the antimicrobial activity of solvent extracts [78]. Talreja et al. [79]
investigated the antibacterial potential of Ulva lactuca, and methanolic extract showed
strong activity against S. aureus.

Table 5. Antibacterial activity and MIC of the various extracts of Caulerpa racemosa against tested
microorganisms.

Zone of Inhibition (mm)

Extract Bacterial
Strain

Control
(Streptomycin) 50µg/mL 100 µg/mL 150 µg/mL 200 µg/mL MIC

µg/mL

Methanol

Aeromonas
hydrophila 25.5 ± 2.12 - 15.5 ± 0.72 ** 17.5 ± 2.12 ** 21.5 ± 2.12 * 100

Aeromonas
veronii 29 ± 1.41 - 20 ± 2.82 * 24 ± 2.83 * 27 ± 0.71 * 100

Aeromonas
salmonicida 26.5 ± 0.70 - 16 ± 1.41 ** 17.5 ± 2.12 ** 23.5 ± 0.71 * 100

Pseudomonas
aeruginosa 29 ± 1.41 - 11.5 ± 2.12 ** 14 ± 0.70 ** 19.5 ± 2.12 * 200

Staphylococcus
aureus 26.5 ± 0.70 - 12.25 ± 1.06 ** 15 ± 1.41 ** 17.5 ± 0.71 ** 200

Klebsiella
pneumoniae 26 ± 2.83 - 12 ± 1.41 ** 14 ± 1.41 ** 17.75 ± 1.06 ** 200

Ethanol

Aeromonas
hydrophila 30 ± 2.83 - 12.5 ± 0.71 ** 16 ± 1.41 ** 19.5 ± 0.71 * 100

Aeromonas
veronii 29.5 ± 2.12 - 16.5 ± 2.12 ** 19 ± 2.83 * 25 ± 0.35 * 100

Aeromonas
salmonicida 32.75 ± 0.35 - 14.5 ± 2.12 ** 17.5 ± 0.71 ** 21.25 ± 0.35 * 100

Pseudomonas
aeruginosa 24.5 ± 0.71 - 12 ± 1.41 ** 14 ± 1.41 ** 16.5 ± 0.71 ** 200

Staphylococcus
aureus 24.5 ± 0.71 - 10.75 ± 0.35 ** 11.5 ± 0.71 ** 13.5 ± 0.71 ** 200

Klebsiella
pneumoniae 29.5 ± 0.71 - - 11.25 ± 1.06 ** 13.5 ± 2.12 ** 200

Acetone

Aeromonas
hydrophila 28.5 ± 2.12 - 11 ± 1.14 ** 13.5 ± 0.71 ** 16 ± 1.41 ** 100

Aeromonas
veronii 31 ± 1.41 - 14.5 ± 2.12 ** 18 ± 2.83 ** 21.5 ± 0.71 * 100

Aeromonas
salmonicida 27.5 ± 2.12 - 15.5 ± 0.71 ** 16 ± 1.41 ** 18 ± 1.41 ** 100

Pseudomonas
aeruginosa 29 ± 1.41 - - 10.5 ± 0.71 ** 11.5 ± 0.71 ** 200

Staphylococcus
aureus 25.5 ± 2.12 - 10.5 ± 0.71 ** 11.5 ± 0.71 ** 11.75 ± 1.06 ** 200

Klebsiella
pneumoniae 28.5 ± 0.71 - - 10.5 ± 0.71 ** 13.5 ± 0.71 ** 200
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Table 5. Cont.

Zone of Inhibition (mm)

Extract Bacterial
Strain

Control
(Streptomycin) 50µg/mL 100 µg/mL 150 µg/mL 200 µg/mL MIC

µg/mL

Ethyl
acetate

Aeromonas
hydrophila 29 ± 0.71 - 11 ± 1.41 ** 12 ± 2.82 ** 15.5 ± 0.71 ** 200

Aeromonas
veronii 30.5 ± 0.71 - 12 ± 2.83 ** 15.5 ± 2.12 ** 20 ± 1.41 * 100

Aeromonas
salmonicida 29.5 ± 2.12 - 12.5 ± 0.71 ** 13.5 ± 2.12 ** 15.5 ± 0.71 ** 100

Pseudomonas
aeruginosa 29 ± 1.14 - - - 10.5 ± 0.71 ** 200

Staphylococcus
aureus 27.25 ± 0.35 - 11 ± 0.35 ** 11 ± 0.35 ** 11.5 ± 0.71 ** 200

Klebsiella
pneumoniae 26 ± 2.83 - - 11.5 ± 0.71 ** 11 ± 1.41 ** 400

Petroleum
ether

Aeromonas
hydrophila 26.5 ± 0.71 - - - 12 ± 1.41 ** 400

Aeromonas
veronii 28.5 ± 0.71 - 11.5 ± 2.12 ** 11.5 ± 0.71 ** 14.25 ± 1.06 ** 200

Aeromonas
salmonicida 26.5 ± 0.71 - 11.5 ± 0.71 ** 10.75 ± 1.06 ** 11.5 ± 0.71 ** 200

Pseudomonas
aeruginosa 29.5 ± 2.12 - - 11 ± 0.71 ** 12 ± 1.41 ** 400

Staphylococcus
aureus 28.5 ± 2.12 - - 10.5 ± 0.71 ** 12.5 ± 0.71 ** 400

Klebsiella
pneumoniae 27 ± 1.41 - - - 11.5 ± 2.12 ** 400

Hexane

Aeromonas
hydrophila 27.5 ± 0.71 - - 10.5 ± 0.71 ** 12 ± 1.41 ** 400

Aeromonas
veronii 30 ± 0.71 - 10.5 ± 0.71 ** 13.5 ± 0.71 ** 16 ± 1.41 ** 200

Aeromonas
salmonicida 32 ± 1.41 - 10.5 ± 0.71 ** 10.5 ± 0.71 ** 12 ± 1.41 ** 400

Pseudomonas
aeruginosa 29 ± 1.41 - - - 13.5 ± 0.70 ** 400

Staphylococcus
aureus 26 ± 1.41 - - 11 ± 1.14 ** 12 ± 2.82 ** 400

Klebsiella
pneumoniae 27.5 ± 0.71 - - - 12.5 ± 2.12 ** 200

Each result represents the mean±standard deviation (n = 3), and asterisks indicate significant differences between
the control and different concentrations of Caulerpa racemosa extracts. “-” indicates no activity.

2.11. MIC Determination

Minimum inhibitory concentration (MIC) is the lowest concentration of an agent that
prevents microbial growth [80]. The MIC of CR extracts was determined by the Resazurin-
based 96-well plate dilution method [81]. The MIC of each CR extract was determined
visually by the color change in the 96-well plate. Positive control streptomycin showed MIC
at 25 µg/mL against A. hydrophila, A. veronii and A. salmonicida; 50 and 100 µg/mL of MIC
were determined against Staphylococcus aureus and Klebsiella pneumoniae, respectively. The
results are shown in Table 5. Methanol, ethanol and acetone extracts of C. racemosa exhibited
similar MIC values (100 µg/mL) against all the tested Aeromonas strains. Hexane and
petroleum ether extract showed the MIC value at 400 µg/mL against P. aeruginosa, S. aureus
and K. pneumoniae. Antibacterial compounds present in various extracts of seaweed might
interdict the growth of bacterial pathogens via diverse mechanisms such as inhibition of
DNA, RNA and protein synthesis, interference with cell-wall synthesis, lysis of the bacterial
membrane and inhibition of metabolic pathways. Antibacterial properties of bioactive
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compounds significantly influenced the interactions with hydrophobic structures of bacte-
rial strains [82–84]. The antibacterial activity of seaweed was due to the presence of fatty
acids (Hexadecanoic, 9-octadecenoic, Tetradecanoic and Tetracosenoic acid) [79,80,85,86].
The same result was reported by Raj et al. [87] in which the 500 µg/mL was the minimum
inhibitory concentration of Caulerpa chemnitzia hexane extract against S. aureus, and K.
pneumoniae.

3. Materials and Methods
3.1. Collection of Seaweed Caulerpa racemosa

Seaweed samples were collected from coastal area of Sambai, Ramanadhapuram
(9◦31′15.3′′ N 78◦56′08.1′′ E) (Figure 7), Tamil Nadu, India. The seaweed was identified by
Botanical Survey of India, Southern Regional Station, Tamil Nadu Agricultural University
Campus, Coimbatore, India, as Caulerpa racemosa var. Chemnitzia. The collected seaweed
was washed thoroughly with running faucet water to eliminate surface contaminants. Then,
distilled water was used to clean the seaweed, which was then shade dried and cut into
small pieces before being ground into fine powder. The powder was stored at −20 ◦C for
further use.
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the vials then covered with aluminium foil to prevent light penetration and stored at 4 ◦C
for 24 h [88]. Next day, the absorbance was measured spectrometrically (Shimadzu-160A,
Japan) at 663, 645, 452.5, 630, 664, 470, 631, 581, 664, 615, 652 and 562 nm.

Chlorophyll a, chlorophyll b, chlorophyll c1+c2, total chlorophyll and carotenoid con-
tents were calculated by using the following formulae according to Arnon’s [89], Dexbury
and Yentch [90] and Jensen and Jensen [91]:

Chlorophyll a (mg/g) = 12.7 (A663) – 2.69 (A645)
Chlorophyll b (mg/g) = 22.9 (A645) – 4.68 (A663)
Total chlorophyll (mg/g) = 20.2 (A645) + 8.02 (A663)
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Carotenoids (mg/g) = 4.2 × (A452.5) – (0.0264 × chl. a) + (0.426 × chl. b)
Chlorophyll c1+c2 (mg/g) = (24.36 × A630) – (3.73 × A664)

3.3. Biochemical Constituents Analysis

The proximate composition includes moisture, crude protein, crude fibre, ether extract,
total ash and gross energy of CR powder was estimated by using standard AOAC [92]
methods.

3.4. Preparation of Caulerpa racemosa Solvent Extracts

Based on the polarity, six solvents such as methanol, ethanol (polar), ethyl acetate,
acetone (mid polar), petroleum ether and hexane (non-polar) were selected for extraction.
Extracts were prepared by maceration method, briefly dissolving 10 g of C. racemosa
powder in 100 mL of solvent (1:10 W/V) [93]. Extracts were kept in a shaker for 24 h at
room temperature. Then, the extracts were filtered by Whatman No. 1 filter paper. The
filtrate was concentrated with the help of a rotary vacuum evaporator at 40 ◦C. Desiccated
samples were stored at −20 ◦C until further analysis. For the GC-MS analysis, Soxhlet
extraction method was adopted, and the samples were stored at −20 ◦C until use.

3.5. Preliminary Phytochemical Analysis

The prepared CR extracts were investigated to determine the presence of saponins,
steroids, terpenoids, phytosterols, flavonoids, tannins, phenol, phenolic flavonoids and
alkaloids according to the methods of Sadasivam [94]. The positive results of these tests
were considered by observing precipitate formation or any colour change.

3.5.1. Saponins

About 2 mL of distilled water was mixed with 1 mL of CR extracts. The mixture was
mixed well for few seconds and allowed to stand for 5 to 10 min. The presence of saponins
was determined by foam formation [94].

3.5.2. Terpenoids

Each 1 mL of CR extracts was added to the equal volume of concentrated sulfuric acid
(H2SO4). Terpenoids were detected by the appearance of reddish-brown colour [94].

3.5.3. Steroids

An amount of 0.25 mL of concentrated sulphuric acid (H2SO4) was added to 0.5 mL
of CR extracts along with 1 mL of chloroform. The upper layer turns to yellow, and the
lower layer turns to green, fluorescent colour. These colour changes confirm the presence
of steroids [94].

3.5.4. Phytosterols

An amount of 1 mL of chloroform was added to the equal volume of CR extracts
followed by few drops of H2SO4. This mixture was allowed to stand for few minutes.
Presence of golden yellow tint indicates the presence of phytosterol [94].

3.5.5. Tannins

An amount of 1 mL of freshly prepared 5% ferric chloride (FeCl3) was added to 1 mL
of CR extracts. The dark green or greenish black colour formation indicates the presence of
tannin [94].

3.5.6. Flavonoids

Few drops of 10% sodium hydroxide (NaOH) were added to 1 mL of CR extracts. The
presence of flavonoids was indicated by a brown precipitate [94].
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3.5.7. Phenol

The phenol was detected by adding few drops of alcoholic FeCl3 solution to the 2 mL
of CR extract. Formation of bluish colour suggests the presence of phenols [94].

3.5.8. Phenolic Flavonoids

Few drops of freshly prepared 10% lead acetate were added to 1 mL of CR extracts.
Brown precipitation indicates the presence of phenolic flavonoids [94].

3.5.9. Alkaloids

A total of 1 mL of Mayer’s reagent was added to 1 mL of CR extracts. The existence of
alkaloids was confirmed by the formation of a white precipitate [94].

3.6. FT-IR Detection

The functional groups present in the different solvent extracts of CR were analyzed by
Fourier transform infrared (FT-IR) spectrophotometer (Perkin Elmer, Waltham, MA, USA)
by adopting potassium bromide (KBr) pellet method in the spectral range of 4000–500 cm−1.

3.7. GC-MS Analysis

Shimadzu (QP2020) instrument integrated with a mass spectrometer was used to
perform gas chromatography-mass spectrometry (GC-MS) analysis for different solvent
extracts of CR. In brief, 100 µL of the filtrate was suspended in 900 µL of respective solvents
(ethanol, methanol, acetone, ethyl acetate, hexane and petroleum ether). To eliminate
the impurities, the mixture was filtered by a syringe filter (0.25 µM). Then, the filtered
samples were injected into Shimadzu (QP2020) GC-MS instrument equipped with 30 m
long SH-Rxi-5Sil-MS capillary column (0.25 µm film thickness and 0.25 mm inner diameter)
by auto injector in 1:10 split ratio. The inlet temperature program was at 50 ◦C initially and
it was increased gradually (6 ◦C /min) up to 280 ◦C. Injector temperature was maintained
at 250 ◦C, pressure at 68.1 kpa and helium was used as a carrier gas with 1.2 mL/min flow
rate (linear velocity of 39.7 cm/s). The ionization energy of 70 eV was used to perform
ionization in an electron impact mode at 200 ◦C. The results obtained for CR extracts were
compared with the standard mass spectra (NIST 2005 MS collection) libraries. The relative
percentage of each compound was determined by calculating the average peak area to total
area ratio.

3.8. Total Phenolic Content

Folin–Ciocalteu method was used to detect the total phenolic content as described by
Salar et al. [95] with slight modifications. The CR extracts of 0.1 mL were added to 0.5 mL
of Folin–Ciocalteu reagent. The mixture was kept at 37 ◦C and incubated for a period of
5 min. Then, 1.5 mL of 7.5% sodium carbonate was added to it and the total volume was
made up to 10 mL using distilled water. The absorbance was recorded at 765 nm against
blank using Synergy HT Multimode Reader (Bio Tek Instruments, Inc., Winooski, VT, USA).
The amount of total phenolic content was calculated using standard gallic acid calibration
curve. The results were expressed as mg gallic acid equivalents per gram (mg GAE/g).

3.9. Total Tannin Content

Total tannin content of different solvent extracts of CR was determined by the method
of Amorim et al. [96]. Briefly, 0.1 mL of CR extract was diluted with 7.5 mL of distilled
water. Then, 0.5 mL of Folin–Ciocalteu reagent was added followed by 1 mL of 35% sodium
carbonate. The mixture was mixed well and kept at 25 ◦C for 30 min. The absorbance was
measured at 725 nm. Tannic acid was used as standard, and the results were expressed as
mg tannic acid equivalents per gram (mg TAE/g) using the calibration curve of tannic acid.
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3.10. Total Flavonoid Content

Aluminium chloride (AlCl3) colorimetric assay of Lamaison and Carnart [97] was
adopted to determine the total flavonoid content of CR solvent extracts. In brief, 0.2 mL of
CR extracts were added to a test tube containing 4.8 mL of distilled water. Then, 0.3 mL of
5% sodium nitrite (NaNO2) was added and mixed well using a vortex mixer. After 5 min,
0.3 mL of 10% AlCl3 ·6H2O was added, followed by the addition of 2 mL of 1M NaOH and
the total volume was made up to 10 mL with distilled water. The absorbance was measured
at 414 nm. Quercetin was used as standard, and the total flavonoid content was expressed
as mg quercetin equivalents per gram (mg QE/g) using the calibration curve of quercetin.

3.11. In Vitro Antioxidant Activity
3.11.1. DPPH Radical-Scavenging Activity

DPPH (2, 2-diphenyl-1-picryl-hydrazile) activity was estimated according to the
method of Brand-Williams et al. [98]. The reaction was performed in a 96-well microtiter
plate containing 100 µL of different concentrations (20 to 100 µg/mL) of CR extracts. Then,
100 µL of 2mM DPPH solution was added to each well. The reaction mixture was incubated
at room temperature in dark conditions for 30 min. The coloration from violet to yellow
indicates free radical scavenging activity by the compounds present in the CR extracts. The
change in absorbance was read at 517 nm using HT Multimode Reader (Bio Tek Instru-
ments, Inc., Winooski, VT, USA). Vitamin C (Ascorbic acid) was used as standard. The
following formula Equation (1) was used to calculate the percentage of CR extracts’ radical
scavenging ability,

% o f DPPH scavenging =
Ab− As

Ab
× 100 (1)

where Ab—absorbance value of blank and As—absorbance value of sample.

3.11.2. ABTS Radical Scavenging Activity

ABTS [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] radical scavenging
activity was determined by cation decolorization assay with slight modifications in Aru-
mugam et al. [99] to analyze the antioxidant potential of various solvent extracts of CR. The
ABTS stock solution was prepared by mixing equal volumes of 7 mM ABTS and 140 mM of
potassium persulfate solution and allowed them to react in dark conditions at 25 ◦C for
12–16 h before use. The working solution was prepared by diluting the stock using 50%
ethanol to obtain an absorbance of 0.7 ± 0.02 at 734 nm using HT Multimode Reader (Bio
Tek Instruments, Inc., Winooski, VT, USA). Subsequently, 200 µL of ABTS solution was
added to 100 µL of various concentrations of CR extracts in a 96-well microtiter plate. The
mixture was incubated in a dark condition for 10 min and then, the absorbance was read at
734 nm. Ascorbic acid was used as standard. The percentage of inhibition was calculated
using Equation (1).

3.12. Anti-Bacterial Activity

The antibacterial potential of various solvent extracts of CR was studied against aquatic
Gram-negative pathogens such as Aeromonas hydrophila, Aeromonas salmonicida, Aeromonas
veronii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Gram-positive pathogen Staphylo-
coccus aureus, by agar well diffusion method according to Logaranjan et al. [100] with slight
modifications. Briefly, the bacteria were pre-cultured overnight at 37 ◦C. The culture strain
was adjusted to obtain a final concentration of 1 × 108 cells/mL using 0.5 McFarland stan-
dards and inoculated in triplicates on Muller-Hinton agar plates using a sterile cotton swab.
Then, a well was created using corkborer in the inoculated plates. The sample extracts were
resuspended in Dimethyl sulfoxide (DMSO) with a concentration of 1 mg/mL to reduce
the evaporation rate. Different concentrations (50, 100, 150 and 200 µg/mL) of CR extracts
were added to the wells. DMSO and streptomycin (1 mg/mL) were used as a negative and
positive control, respectively. Then, the plates were incubated at 37 ◦C overnight. Finally,
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the antibacterial activity was determined by measuring the zone of inhibition (mm) formed
around the wells.

3.13. Minimum Inhibitory Concentration (MIC) Determination

Resazurin-based 96 well microtiter plate method of Chakansin et al. [101] was adopted
to determine the MIC of various extracts of CR with slight modifications. In brief, 100 µL
of nutrient broth was added to the sterile 96-well microtiter plate. First row of the plate
acted as negative control (nutrient broth). Second row of the plate acted as positive control
(streptomycin). Serial dilutions were made from third row of the plate containing 100 µL
of CR extracts which was resuspended in DMSO. Finally, 50 µL of bacterial suspension
was added to all the wells resulting in a final concentration of 1 × 107 CFU/mL. To avoid
dehydration, the plate was loosely wrapped with aluminium foil, and it was incubated at
37 ◦C for 24 h. After incubation, 20 µL of resazurin indicator solution was added to all the
wells. Then, the plate was incubated again for 2–4 h at 37 ◦C. The results were examined
visually. The colour change from purple to pink indicates the reduction in resazurin by
bacteria. The experiment was performed in triplicates and the lowest concentration that
prevented the colour change was considered as the MIC value.

3.14. Statistical Analyses

Experiments were performed in triplicates and the results were presented as mean ±
standard deviation. The data were analyzed by applying two-way ANOVA with Tukey’s
multiple comparisons test using GraphPad Prism version 8 (GraphPad Software, Inc., San
Diego, CA, USA). The data are presented in the form of descriptive statistics through tables
and graphs. *, **, ***, and **** indicate p-values of, respectively, ≤0.05, ≤0.01, ≤0.001 and
≤0.0001.

4. Conclusions

In this study, our results demonstrated that the various solvent extracts of C. racemosa
exhibited significant in vitro properties. Among all the extracts evaluated, the methanol
extract showed better results than other solvent extracts both in antioxidant and antibac-
terial activities. The levels of tannin and flavonoid content in the methanol extract might
be responsible for its increased biological activities. The GC-MS analysis revealed the
presence of pentadecane, 1-heptadecene, tridecanoic acid, methyl ester, 2-aminophenol and
hexadecamethyl compounds in the solvent extracts of C. racemosa endowed with potential
antioxidant and antibacterial properties, which are responsible for the wider production
of novel drugs that could be facilitated to treat or prevent infectious diseases for humans
and animals. In futuristic strategies, the marine seaweed would be utilized as a sustainable
novel natural drug development approach for therapeutics, nutraceutical and pharma-
ceutical large-scale industrial applications. However, extensive investigations should be
warranted to exploit the action mechanisms of the C. racemosa extracts and its bioactive com-
pounds and evaluate the effects in biological systems in vivo using experimental animal
models.
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