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Introduction

1.1 Land use intensity: driving, mitigating and
adapting to global change

Today more than 70% of the ice-free land surface has been impacted
more or less intensively by human activities (Figure 1.1). Anthro-
pogenic land use is one of the main drivers of global change (IPCC,
2021). As drivers of environmental change escalate, biodiversity de-
clines at unprecedented rates (Butchart et al., 2010). Experts estimate
that between 16 and 50% of species have been threatened or driven
to extinction since the year 1500 (Isbell et al., 2022). In addition to
climate change, one of the main drivers of biodiversity loss is habitat
change (Duraiappah et al., 2005).

To study the extent and magnitude of those impacts, it is essential
to track land cover (LC) and land use (LU) changes. LC, LU, and their
evolution are crucial elements in land systems and need to be properly
defined. The Food and Agriculture Organization (FAO) defines land
cover as "the observed (bio)physical cover on the Earth’s surface", while
land use is "characterized by the arrangements, activities and inputs
people undertake to produce, change or maintain a certain type of land
cover" (Di Gregorio, 2005). For example, in the case of deforestation in
which the LC changes from forest to grassland, from a LU perspective it
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2 Introduction

can be considered as a conversion from forestry to agriculture, or from
nature conservation to food production. These are categorical changes.
Continuous changes within the same class include LC modifications
such as forest degradation and more subtle land use intensity (LUI)
changes such as agricultural intensification.

Figure 1.1: Spatial extent of land cover change, land management,
wilderness and non-productive areas. Wilderness and non-productive
areas are shown in green and represent land largely unaltered by hu-
mans. The remaining land is used for producing food, fiber, and fuels,
and for hosting infrastructure. The colour scale represents the fraction
of each grid cell for which the original plant cover was converted. Dark
colours indicate regions where most of the original plant cover was
converted; these regions are the subject of typical land cover change
studies. The light colours show areas for which land cover change is
low, but which are nevertheless under anthropogenic land manage-
ment. Source: Luyssaert et al. (2014).

It has been widely shown that drastic changes in LC, such as de-
forestation, have impacts on climate and the Earth system in general
(Brovkin et al., 2004; Ramos da Silva et al., 2008; Mahmood et al.,
2014). More recently, it has become clear that more subtle LU and LUI



1.1 Land use intensity: driving, mitigating and adapting to global change 3

changes can have impacts of similar amplitudes on, e.g., surface tem-
peratures (Luyssaert et al., 2014) or biomass and carbon stocks (Erb
et al., 2018).

While the expansion of crop and pasture land (i.e. LC and LU
changes) has significantly slowed down during the past years, gross
agricultural production continues to increase rapidly to meet the in-
creasing global food demand due to the growing population and per
capita consumption (Rudel et al., 2009; Ramankutty et al., 2018). This
increased production has been achieved mainly through agricultural
intensification (i.e. increasing LUI). Agriculture is now one of the ma-
jor drivers of global change. In 2019, agriculture, forestry, and other
land use (AFOLU) contributed to approximately 22% of global green-
house gas emissions (GHGe) (IPCC, 2022). About 9% of GHGe are due
to land conversion (e.g. deforestation), while more or less 13% can
be linked to agricultural management on already-converted lands (Ra-
mankutty et al., 2018). Habitat fragmentation and biodiversity loss
due to agricultural intensification are also major components of global
change (Tilman et al., 2011). Other environmental impacts of intensive
agriculture are soil degradation and water pollution.

Meeting the projected growth in global food demand without fur-
ther increasing the pressure on the environment is a great challenge
that will require a deep understanding of our production systems and
their impacts (Tilman et al., 2011; Erb et al., 2013; Smith, 2013; Ra-
mankutty et al., 2018; Meyfroidt et al., 2018). In this context it is cru-
cial to consider the multidimensionality of LUI by integrating (i) input
intensity, (ii) output intensity and (iii) associated system level outcome
metrics (Kuemmerle et al., 2013). The conceptual framework for LUI
analysis and measurement, proposed by Erb et al. (2013), systemati-
cally links those three dimensions (Figure 1.2), allowing (a) to inte-
grate synergies and trade-offs between outputs (i.e. land-based produc-
tion) and the associated unintended outcomes (e.g. biodiversity loss or
GHGe), (b) to link input- and output intensity and (c) to study the rela-
tionship between changes in inputs (i.e. alternative management) and
changes in system properties and their socio-ecological effects.

While our land-based production systems are a cause of global en-
vironmental change, they can also be part of the solution to mitigate
those changes and become more resilient (Verburg et al., 2015). For ex-
ample, a study on the impacts of LUI in grassland and forest ecosystems
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Figure 1.2: Conceptual framework for land use intensity analysis and
measurement (Erb et al., 2013).

showed that positive correlations of provisioning services with biodi-
versity and regulating services can be strengthened up to an interme-
diate level of LUI, beyond which strong synergies are lost (Felipe-Lucia
et al., 2020).

Furthermore, the spatial and temporal distribution of LUI cannot
be overlooked. For instance, landscape structural complexity enhances
biodiversity in agricultural ecosystems, which could compensate for lo-
cal high-intensity management (Tscharntke et al., 2005). The structural
complexity of a landscape should therefore be considered when apply-
ing agri-environmental schemes and alternative managements, as their
effectiveness depends on it (Tscharntke et al., 2005; Tuck et al., 2014).
Similarly, varying LUI between seasons might also be a solution to mit-
igate the adverse outcomes of intensification while maintaining a rea-
sonable productivity (Allan et al., 2014).

To further understand these complex systems and work out mitiga-
tion plans, it is crucial to obtain spatially, temporally and thematically
precise information on LC, LU and LUI. Over the last decades, many
efforts have focused on providing global LC maps at various scales,
with different levels of thematic precision (Hansen et al., 2000; Love-
land et al., 2000; Arino et al., 2012; Defourny et al., 2013; Chen and
Chen, 2018; Zanaga et al., 2021). There is, however, a data and knowl-
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edge gap for several land management activities, such as forest harvest,
nitrogen fertilization and grassland mowing and grazing (Kuemmerle
et al., 2013; Erb et al., 2017). Research should therefore further focus
on large-scale LU and LUI monitoring, integrating ground-based and
satellite-based data to create consistent time series (Kuemmerle et al.,
2013; Pongratz et al., 2018).

1.2 Grassland use intensity, ecosystem services
and biodiversity

1.2.1 Grasslands of the world

Grasslands cover 20%-47% of the global ice-free land surface, depend-
ing on sources and definitions (Piipponen et al., 2022). They contribute
to essential regulating ecosystem services (ES) such as carbon seques-
tration and water storage (Bengtsson et al., 2019; Chang et al., 2021),
and they embed rich biodiversity (O’Mara, 2012; Pärtel et al., 2005;
Zeller et al., 2017). Besides these essential ES, grasslands are of course
a key element of most agricultural systems as they provide nearly half
of the feed requirements for global livestock production, and account
for 69% of the world’s agricultural area (O’Mara, 2012; Herrero et al.,
2013).

Grasslands encompass a wide range of LC classes and occur in vari-
ous ecoregions, spread across all continents (except Antarctica) (Dixon
et al., 2014). Depending on scopes and perspectives, there exist nu-
merous definitions for grasslands. In the FAO land cover classification
system (LCCS), grasslands in a broad sense are defined as "A12/A2:
natural and semi-natural herbaceous vegetation". The term "herbaceous"
designates non-woody vegetation, including forbs, graminoids, lichens
and mosses (Di Gregorio, 2005). This very inclusive definition is often
used as a basis for global grassland definitions. For instance, Dixon
et al. (2014) defined grasslands as "a non-wetland type with at least 10%
vegetation cover, dominated or co-dominated by graminoid and forb growth
forms, and where the trees form a single-layer canopy with either less than
10% cover and 5 m height (temperate) or less than 40% cover and 8 m
height (tropical)." These global definitions of grasslands include a vari-
ety of LC classes, ranging from very sparsely vegetated semi-arid grass-
lands, to temperate grasslands, and tropical savannas with up to 40%
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canopy cover (trees or shrubs). Dixon et al. (2014) identified 49 taxo-
nomically and spatially distinct grassland types, including i.a. steppes,
savannas, and alpine meadows.

Grasslands are also diverse in terms of origin, LU, and LUI. Com-
monly, based on their origin and LU, a distinction is made between
natural and semi-natural — or secondary — grasslands (Di Grego-
rio, 2005; Dengler et al., 2020). Natural grasslands occur naturally
due to pedo-climatic conditions, are balanced, and mostly undisturbed
(Di Gregorio, 2005). According to some definitions, the current state
of these grasslands can however be modified by human LU (Dengler
et al., 2020). Secondary grasslands, on the contrary, occur in places
where the natural vegetation is e.g. forest or wetland, and originated
and are maintained, through human LU like mowing, grazing, burning,
or abandoning arable fields (Dengler et al., 2020). Some more inten-
sive grasslands are even seeded and included in crop rotations (Peeters
et al., 2014). The latter (i.e. temporary grasslands and fodder crops) are
however often considered as cropland rather than grassland, especially
in definitions with a global scope (Di Gregorio, 2005; Dengler et al.,
2020). Undisturbed natural grasslands are mostly grazed by wild un-
gulates. The most common anthropogenic use of grasslands worldwide
is livestock grazing. The production systems and associated LUI range
from extensive nomadic pastoral activities to strongly intensified, sown
and fertilized grassland parcels with high stocking densities or mowing
frequencies.

1.2.2 Grassland ecosystem services: synergies and trade-offs

Grasslands deliver crucial provisioning and regulating ES, including
food production, wildlife habitat, carbon sequestration, and water stor-
age. Over the past decades, grasslands have been used more and more
intensively to meet the increasing demands of dairy and meat produc-
tion, often at the expense of climate and biodiversity. Adequate man-
agement can, however, create synergies and balance trade-offs between
provisioning and regulating ES.

Globally, grasslands play an often underestimated role in carbon
storage (Bai and Cotrufo, 2022), as they store approximately 34% of
the terrestrial carbon stock, mostly below ground, as soil organic car-
bon and root biomass (White et al., 2000; O’Mara, 2012). Chang
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et al. (2021), however, showed that the global warming caused by the
GHGe of intensively managed grasslands cancels the climate cooling
from carbon sequestration in natural and semi-natural grasslands. The
main drivers of intensive grassland GHGe are manure and fertiliza-
tion management and CO2 and CH4 emissions from livestock produc-
tion (Chang et al., 2021). The livestock sector in general is responsible
for a significant part of global GHGe and represents more than half of
the technical mitigation potential of the AFOLU sectors (Herrero et al.,
2016). Grasslands carry a significant part of this mitigation potential
(Bai and Cotrufo, 2022). Adequate grassland management through —
e.g. conversion from cultivation to grasslands, increasing plant diver-
sity, sowing legumes and grasses, fertilization, and adapted grazing
rate to maximize forage production — can enhance soil carbon stor-
age, reducing the net GHGe of grasslands (Herrero et al., 2016; Chang
et al., 2021; Bai and Cotrufo, 2022).

Grasslands also play an essential role as habitat for a host of plant
and animal species and thereby present a great potential for the con-
servation of biodiversity. Grasslands ES and biodiversity are however
strongly influenced by their LU and LUI (Hudewenz et al., 2012; Allan
et al., 2014; Chisté et al., 2016; Van Vooren et al., 2018). There is a
large ecological value gradient between species-rich natural grasslands
and intensively used mono-specific temporary grasslands and fodder
crops. Worldwide, natural grasslands are threatened by climate change
and conversion to arable land (Dengler et al., 2014). In agricultural
landscapes, semi-natural grasslands of high ecological value are threat-
ened by intensification or abandonment with potential woody plant
encroachment.

Many studies have related grassland biodiversity to their LUI
(Hudewenz et al., 2012; Allan et al., 2014; Dengler et al., 2014; Chisté
et al., 2016; Van Vooren et al., 2018). For example, an exponentially
declining relationship was found between nitrogen input and grass-
land plant species richness (Kleijn D et al., 2009). Similarly, the timing
and frequency of mowing events can have an impact on certain bird
species’ abundance. In agricultural landscapes, heterogeneous mow-
ing dynamics optimize and maintain flower resources for pollinators
along the season (Horn and Koford, 2000; Johansen et al., 2019).

However, studies conducting meta-analyzes on the effects of LUI
on biodiversity found very heterogeneous results, concluding that the
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links between LUI and grassland species richness are habitat-specific.
There also appears to be no clear consensus on the difference in impact
between grazing and mowing, in terms of species richness. While many
consider extensive grazing as a good practice, as the grazing, tram-
pling and defecation patterns create small-scale heterogeneity, oth-
ers showed that extensive mowing regimes were more effective to en-
hance biodiversity (Dengler et al., 2014). Pedo-climatic conditions,
site-specific potential productivity, and landscape elements need to be
considered for the determination of sustainable management practices
(Humbert et al., 2012; Tälle et al., 2018). For example, Shahan et al.
(2017) found that the occurrence of grassland songbirds on remnant
grassland patches was more linked to landscape characteristics than
to local management practices. Furthermore, varying LUI across years
can also enhance grassland biodiversity (Allan et al., 2014; Johansen
et al., 2019).

Even in a given agro-pedo-climatic context, it is unlikely that there
is a single management solution that optimizes all ES since some trade-
offs are inevitable (Bengtsson et al., 2019; Savage et al., 2021). However,
studies showed that intermediate intensity levels can create synergies
and limit trade-offs among ES (Felipe-Lucia et al., 2020), establishing
floristically diverse grasslands enhances multiple ES, and appropriate
cutting management can boost resources for birds and natural preda-
tors of pests without deteriorating yield and other ES (Savage et al.,
2021).

1.2.3 Grassland use intensity: definitions and measurement

The diversity of grasslands worldwide, and the discrepancies between
definitions and typologies depending on the scope and perspectives,
can lead to confusion and misinterpretations between studies. Before
defining grassland use intensity (GUI) in the framework of this thesis,
it is, therefore, necessary to narrow down the scope, and clearly define
which types of grasslands are considered.

The focus is set on managed grasslands with a closed vegetation
cover and less than 10% woody plant cover. In this context, the term
"managed" refers to sedentary anthropogenic activities with agricul-
tural or ecological purposes. For the sake of readability, unless speci-
fied otherwise, the term "grassland" will refer to this definition in the
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following text of the manuscript. This includes e.g. natural grassland
areas, such as alpine pastures, that are grazed for livestock production,
semi-natural grasslands that are grazed and/or mown for biodiversity
conservation, as well as highly productive permanent grasslands used
as hay meadows or pasture, and intensively fertilized temporary grass-
lands. On the contrary, natural grasslands with no activity, sparse semi-
arid grasslands, and savannas with nomadic pastoral activities are not
considered here. Geographically, the focus is primarily set on Europe,
as this type of grassland are dominant in Western, Eastern, as well as
Mediterranean parts of Europe (Dengler et al., 2020). However, this
type of grassland can also be found in other regions and climates.

Despite the narrower scope, this grassland definition still encom-
passes a large diversity, both from an ecological and agricultural point
of view. The state of grasslands and their ES largely vary depending
on pedo-climatic conditions and GUI. In the literature, most studies on
GUI focus on management practices. The type and quantity of man-
agement practices, particularly grazing, mowing and fertilization, are
commonly used as indicators to classify grasslands, both from an agri-
cultural and an ecological perspective (Blüthgen et al., 2012; Peeters
et al., 2014; Tonn et al., 2020).

For example, the GUI indicator of Blüthgen et al. (2012) is cal-
culated by summing up three regionally standardized GUI factors,
namely mowing (in cuts/year), grazing (in livestock units grazing
days/ha.year), and fertilization (in kg N/ha·yr). This index has been
widely used to measure GUI (Allan et al., 2014; Vályi et al., 2015; Chisté
et al., 2016; Van Vooren et al., 2018; Busch et al., 2019). However, some
studies found it was insufficient to study the impacts of management
practices on ecosystem services (ES) and biodiversity, and it could be
improved by adding more variables (e.g. first mowing date) and as-
signing weights to the different components (Van Vooren et al., 2018).

More recently, Tonn et al. (2020) established a management-based
typology for European permanent grasslands, i.e. grasslands that have
not been included in an arable crop rotation for at least five years (Fig-
ure 1.3). In this typology, managed permanent grasslands with less
than 10% woody plant cover and a renewal interval of more than 15
years are classified by management intensity level, using the nitro-
gen fertilizer input, the number of cuts per year, and the stocking rate
of grazing animals as indicators. To integrate site-specific productiv-
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ity potential, which has an impact on the outputs and outcomes of
a given management intensity level (Erb et al., 2013), two classes of
pedo-climatic productivity potential are considered (productive- and
marginal region). Finally, grasslands are further differentiated based
on the dominant exploitation practice, namely grazing or mowing.

Figure 1.3: Schematic overview of a management-based typology for
European grasslands. First-level classes of the typology are in grey
boxes, subordinate second-level classes are indicated either by text or
by two different sets of symbols (tree- vs shrub-dominated; predomi-
nantly cut vs predominantly grazed) (Tonn et al., 2020).

In previous examples, GUI measurement is limited for the most
part to three management practices: mowing, grazing, and fertiliza-
tion. Other practices, such as irrigation, ploughing, and seeding could
be considered in GUI measurement as well. Moreover, the impacts of
management practices are site-specific and depend on the agro-pedo-
climatic context (Grigulis et al., 2013; Abdalla et al., 2018; Klein et al.,
2020). Therefore, characterizing and quantifying management prac-
tices alone is not sufficient. For example, the stocking density of graz-
ing livestock should be balanced against the site-specific carrying ca-
pacity, i.e. the number of grazing animals a piece of land can support
(Piipponen et al., 2022). Based on the LUI analysis framework of Erb
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et al. (2013) (Figure 1.2), GUI should also be declined in three dimen-
sions. The input intensity is then defined by the type and quantity of
management practices (mowing, grazing, fertilization, ploughing, irri-
gation ...), the output intensity could be measured through grassland
productivity (e.g. in terms of forage yield and quality) and finally, the
impacts on biodiversity and regulating ES are system-level outcomes.

1.2.4 Grassland mapping and monitoring

The ecological state and condition of managed natural and semi-
natural grasslands are threatened by agricultural intensification
(O’Mara, 2012; Silva et al., 2008). Appropriate and spatially optimized
management practices integrating knowledge of ecological processes
are key for creating synergies and balancing trade-offs among the food
production on one hand and regulating ecosystem services and biodi-
versity of grasslands on the other (Bengtsson et al., 2019; Chang et al.,
2021; Pärtel et al., 2005; Savage et al., 2021). It is therefore of great
interest to measure, map and monitor GUI to a large extent and with a
sufficient spatial and temporal resolution to study the effects of changes
in GUI and guide the design of adequate agricultural policies.

In Europe, several efforts aim at collecting LU, LUI, and more specif-
ically GUI data at different levels of spatial, temporal, and thematic
precision and coverage.

In the frame of the European common agricultural policy (CAP),
all Member States use the land parcel identification system (LPIS) to
record all agricultural parcels (Owen et al., 2016). The LPIS is pro-
vided as a vector dataset based on CAP declarations by farmers in each
EU country, including parcel boundaries and crop types. Depending on
the country or region, the thematic precision of the LPIS varies greatly.
While some include one single grassland class, others provide informa-
tion on the type (temporary or permanent), the use (e.g. pasture or hay
meadow), and even the use intensity or the biodiversity value of grass-
lands. Maintaining permanent grasslands is one of the main concerns
of the European CAP.

In the framework of the new CAP of 2023-2027, grasslands and
their management play an essential role in multiple key objectives,
including the contribution to climate change mitigation, halting and
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reversing biodiversity loss, and more specifically maintaining and en-
hancing pollinator populations and diversity. The preservation of per-
manent grasslands is a major aim of the CAP baseline standards, which
set a threshold for conversion to other agricultural uses and prohibit
conversion and ploughing in "environmentally-sensitive permanent
grasslands" in Natura 2000 sites. Furthermore, the agri-environmental
and climatic measures (AECM), i.e. subsidy schemes to encourage
sustainable management practices, include the maintenance of semi-
natural and high nature-value grasslands.

From an ecological perspective, European, national and regional
initiatives carry out field surveys focussed on habitat characterization
and monitoring (e.g. Dufrêne and Delescaille (2005)). The European
nature information system (EUNIS) is often used as basis for habitat
characterization. It describes the "Grasslands and lands dominated by
forbs, mosses or lichens (E)" habitat as "Non-coastal land which is dry or
only seasonally wet (with the water table at or above ground level for less
than half of the year) with greater than 30% vegetation cover. The vegeta-
tion is dominated by grasses and other non-woody plants, including mosses,
macrolichens, ferns, sedges and herbs. Includes semiarid steppes with scat-
tered Artemisia scrub. Includes successional weedy vegetation. Excludes
regularly tilled habitats dominated by cultivated herbaceous vegetation such
as arable fields and artificial grasslands and herb dominated habitats." On
a second level the EUNIS differentiates seven types of habitats, in-
cluding "dry grasslands (E1)", "seasonally wet and wet grasslands (E3)"
and "mesic grasslands (E2)". Mesic grasslands further include "mesic
permanent pasture of lowlands and mountains (E2.1)" and "low and
medium altitude hay meadow (E2.2)" which are the most widespread
traditionally managed grasslands in temperate Europe. These habitats
have been widely transformed by agricultural intensification over the
past decades (Chytrỳ et al., 2020).

The Land Use/Cover Area-Frame Survey (LUCAS) is a European
field survey providing information on land use, land cover, and envi-
ronmental parameters every three years on a statistically representative
sample of points spread across the EU countries (d’Andrimont et al.,
2020). Recently, a new module was added to the survey, specifically
focusing on grasslands (Sutcliffe et al., 2019). It aims to characterize
habitat types (EUNIS), environmental conditions, age of grasslands,
use type, use intensity, vegetation structure, biodiversity value, and
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pollinator value. During the pilot of this new module in 2018, 3734
grassland points in 26 countries were recorded on the field by trained
surveyors following a standard methodology.

These existing datasets are often limited temporally, geographically,
or thematically. Ground-based grassland monitoring methods, such as
visual assessment, floristic inventories, clipping, and field spectrome-
try are very useful at the local scale, but they are much less feasible
over large areas or at regular intervals since they are either subjective
or very costly and time consuming (Ali et al., 2016a). Remote sensing
can therefore be a great asset. The increasing spatial resolution and
revisit frequency of available satellite time series presents a consider-
able potential for large-scale grassland monitoring (Ali et al., 2016a;
Reinermann et al., 2020). High-quality field measurements however
remain essential for calibrating and validating satellite-based mapping
and monitoring methods.

1.3 Remote sensing for grassland monitoring

Remote sensing has allowed tremendous progress in the field of LC,
LU, and LUI mapping and monitoring. Especially over the past decade,
satellites such as the Copernicus Sentinel missions provide extremely
valuable data with global coverage and increasing spatial and tempo-
ral resolution. By measuring reflected (optical sensors), emitted (ther-
mal sensors) or backscattered energy (active radar sensors), remote sen-
sors record different electromagnetic properties of the Earth’s surface,
which can be linked to structural, chemical, or biophysical properties
(Joshi et al., 2016).

1.3.1 Optical and microwave sensors

Optical remote sensing is largely and successfully used in agricultural
mapping and monitoring (Ali et al., 2016a; Reinermann et al., 2020).
The different wavelengths of multi-spectral optical sensors (commonly
ranging from the visible to the near-infrared (0.38 - 2.5 µm)) allow
to reconstruct the spectral signature of a vegetation cover. Figure 1.4
shows a typical grassland reflectance spectrum.

Different parts of the spectrum can be linked to specific proper-
ties of a vegetation cover, and vegetation indices (VI) combining mul-
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tiple wavelengths are used to accentuate particular spectral features
for the retrieval of specific properties. The visible part of the spec-
trum (0.45 - 0.66 µm) is commonly linked to pigments, such as chloro-
phyll and carotenoids (Hank et al., 2019). The red (0.62 - 0.70 µm)
and near-infrared (NIR, 0.75 - 1.3 µm) reflectances are strongly related
to biophysical quantities, such as e.g. the biomass and the leaf area
index (LAI). These reflectances are used to compute the very popular
Normalized Difference Vegetation Index (NDVI) (Rouse Jr et al., 1973),
which is closely linked to green biomass. The red edge (i.e. the rapid
increase in reflectance from the red to NIR (around 0.68 - 0.78 µm))
is particularly sensitive to vegetation chlorophyll content (Filella and
Penuelas, 1994; Clevers and Gitelson, 2013; Hank et al., 2019). Finally,
the short-wave infrared (SWIR) domain (around 0.9 - 2.5 µm) is mostly
influenced by water content and lignin, cellulose, and senescent mate-
rial (Hank et al., 2019).

More than the reflectance spectrum, the evolution of spectral fea-
tures and indices over time is key in agricultural monitoring. Tem-
poral profiles extracted from image time series can be used to classify
crop types (Belgiu and Csillik, 2018; Defourny et al., 2019) and monitor
agricultural practices (Ottosen et al., 2019).

Figure 1.4: Sentinel-2 10 m and 20 m resolution band settings com-
pared to a typical grassland reflectance spectrum (Johns Hopkins Uni-
versity, 2018).
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The launch of the Sentinel-2 (S2) A and B satellites has offered un-
precedented capacities in this domain, as it combines a high spatial
resolution (10 to 20 m) with a short global revisit time (10 days each,
5 days together) and a fine spectral resolution (Figure 1.4). The multi-
spectral imager of S2 measures surface reflectance in blue (B2), green
(B3), red (B4), and NIR (B8) with a 10 m resolution. Six other bands are
measured with 20 m resolution, including three vegetation red edge
bands (B5-7), a narrow NIR band (B8A), and two SWIR bands (B11-
12). Three additional spectral bands (B1, B9, and B10) are intended for
atmospheric corrections with a spatial resolution of 60 m.

Despite the short revisit time of recent satellites, obtaining suffi-
ciently regular and frequent observations can be a challenge when us-
ing optical sensors in regions with frequent cloud cover (Kolecka et al.,
2018; Sano et al., 2007). Synthetic aperture radar (SAR) satellites carry
active sensors, sending electromagnetic microwaves to the Earth’s sur-
face and measuring the backscattered signal amplitude and phase in
different polarizations. Since active sensors are independent of sun-
light and their microwaves can pass through cloud covers, SAR satel-
lites provide regular observations through day and night. The backscat-
tered signal amplitude depends on sensor parameters (wavelength, po-
larization, and incidence angle) and ground parameters (geometry, ori-
entation, and dielectric constant of soil and objects on the surface). A
given signal interacts with objects and surface roughness with sizes
larger or equal to its wavelength. C-band radars, such as Sentinel-1
(S1), emit a signal with a frequency of 5.405 GHz, corresponding to a
wavelength of about 5.55 cm. They penetrate vegetation covers and
interact with multiple structural elements (leaves, branches), before
being scattered back to the sensor. This backscattering mechanism is
referred to as volume scattering. On bare soil or short vegetation, the
backscattered signal amplitude is influenced mostly by surface scat-
tering, as the signal interacts with fewer elements. Depending on the
roughness and the composition of the surface, the scattering is more or
less diffuse. On a smooth surface, such as still water, the incoming sig-
nal is almost completely scattered back in another direction (i.e. specu-
lar scattering), so only a very weak signal is received by the sensor. On
surfaces with roughness around the size of the radar wavelength, the
incoming signal will be scattered in multiple directions. Depending on
the orientation of scatterers, a larger part of the signal is scattered back
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to the sensor. These scattering mechanisms are schematized in Figure
1.5.

Figure 1.5: Schematic representation of SAR scattering mechanisms on
different surfaces.

The electromagnetic signal emitted by SAR antenna is polarized, of-
ten horizontally (H), or vertically (V). Depending on the target’s shape,
roughness, orientation, and dielectric properties, the backscattered sig-
nal either remains polarized in the same direction or is re-polarized in
the opposite way. The sensors also measure the backscattered signal
in different polarizations (H or V). The degree of re-polarization can
thereby be estimated and provide additional information on the tar-
get’s properties.

Interferometric SAR (InSAR) measures the phase difference be-
tween two radar observations of the same area, taken from slightly
different look angles. The interferometric coherence, which is a cross-
correlation coefficient of two consecutive SAR observations, was ini-
tially computed to estimate phase noise for interferogram quality as-
sessment. It has, however, also been exploited directly to estimate
the temporal stability of ground targets. InSAR coherence has thereby
been used for various applications including land cover mapping (Ja-
cob et al., 2020; Strozzi et al., 2000), crop monitoring (Blaes et al., 1999;
Shang et al., 2020) and soil moisture estimation (Barrett et al., 2009;
De Zan et al., 2013; Rabus et al., 2010; Ulaby et al., 1979).

S1 is the first satellite constellation of the Copernicus Programme
(conducted by the European Space Agency). S1 A and B carry C-band
SAR sensors. The interferometric wide swath acquisition mode offers a
spatial resolution of 5 × 20 m in dual polarization (VV + VH). In VV or
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co-polarization, the sensor receives polarized waves in the same polar-
ization as it sent them out (Vertically sent – Vertically received). In VH
or cross-polarization, it receives polarized waves in the opposite po-
larization as it sent them out (Vertically sent – Horizontally received).
The cross-polarization backscattering is particularly useful for vegeta-
tion monitoring, as volume scattering tends to re-polarize the signal
significantly.

1.3.2 Remote sensing of grasslands: overview

As for agricultural monitoring in general, time series with sufficient
temporal resolution are crucial for grassland monitoring, to capture
the different phenological stages and management practices. Until re-
cently, short revisit times were associated with lower spatial resolu-
tions, preventing field-scale applications (Ali et al., 2016a). In recent
years, with the emergence of new satellites combining high spatial and
temporal resolution, such as the Sentinel missions, an increasing num-
ber of studies have shown the potential of remote sensing for grassland
mapping and monitoring (Ali et al., 2016a; Reinermann et al., 2020).
Figure 1.6 provides an overview, illustrating the major aspects of grass-
land monitoring through remote sensing.

Figure 1.6: Overview of satellite remote sensing (optical and SAR) of
major drivers and processes in managed grassland ecosystems (Reiner-
mann et al., 2020).
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Most studies on grassland monitoring focus on outputs of GUI,
through the retrieval of biomass or associated biophysical variables
(e.g. LAI), from reflectances and derived indices (Sibanda et al., 2015;
Zhang et al., 2015; Ali et al., 2016b; Quan et al., 2017; Reinermann
et al., 2020; Hardy et al., 2021). Remote sensing image time series
are, however, increasingly used to map management types and inten-
sities (Stumpf et al., 2020). Grassland management monitoring has
been explored, either through image classification methods (Franke
et al., 2012; Barrett et al., 2014; Dusseux et al., 2014) or by retriev-
ing different factors of GUI (i.e. mowing, grazing or fertilization) sep-
arately from image time series and auxiliary data (Asam et al., 2015;
Gómez Giménez et al., 2017; Estel et al., 2018; Stumpf et al., 2020;
Hardy et al., 2021). Finally, some studies discriminate grassland habi-
tats, based on remote sensing image classification (Rapinel et al., 2019;
Fazzini et al., 2021; Kaasiku et al., 2021).

Overall, recent studies on grassland monitoring show promising re-
sults. However, they are often conducted on relatively small study ar-
eas or lack precise and complete reference data for representative per-
formance evaluation (Ali et al., 2016a; Reinermann et al., 2020).

1.3.3 Grassland use intensity measurement methods

Many studies focus on the retrieval of grassland biophysical variables,
most of which estimate biomass and yield (Sibanda et al., 2015; Zhang
et al., 2015; Ali et al., 2016b; Quan et al., 2017; Hardy et al., 2021).
Biomass and other variables can be related to spectral bands and in-
dices using linear or more complex regression models (Sibanda et al.,
2015; Dusseux et al., 2015; Ullah et al., 2012; Wang et al., 2019). Ul-
lah et al. (2012) used MERIS data to retrieve grassland dry biomass
and nitrogen content through a stepwise multiple linear regression ap-
proach with respective Root Mean Squared Error (RMSE) of 1.36 t/ha
and 42 kg/ha. Radiative transfer models (RTM) are increasingly used
to retrieve biomass and other biophysical variables (Quan et al., 2017;
Schwieder et al., 2020). Schwieder et al. (2020) showed that both empir-
ical regression and RTM approaches are suitable for grassland above-
ground biomass estimation. The normalized RMSE on their small
study site was 47% with the RTM and 17% with the empirical model.
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Fewer studies have tested the retrieval of nitrogen content (Adjor-
lolo et al., 2014). Adjorlolo et al. (2014) retrieved grassland N content
from multispectral WorldView-2 data using random forest regression,
reaching an r2 of 0.68 with the NIR and red edge bands. Pullanagari
et al. (2021) used field spectroscopy and convolutional neural networks
to retrieve canopy nitrogen contents on 17 temperate grasslands with
a normalized RMSE of 14%. Their analysis showed that the most de-
terminant bands were in the red edge, NIR, and SWIR part of the spec-
trum.

Grassland management practices or input intensity, have been as-
sessed and monitored by remote sensing through different kinds of ap-
proaches. Franke et al. (2012) and Asam et al. (2015) used 5 m reso-
lution RapidEye image time series to directly classify grasslands into
a predefined number of management intensity classes, ranging from
semi-natural to intensively managed and even tilled grasslands and
from pastures to hay meadows. While Asam et al. (2015) lacked suf-
ficient field data for a quantitative evaluation, Franke et al. (2012) es-
timated an overall accuracy of 85% for their decision tree classification
using 1500 field data points drawn from a small study area (500 km2)
in Germany. The classification was based on per parcel NDVI and Nor-
malized Red-Edge Vegetation Index time series derived from 5 Rapid-
Eye images. Both studies highlight the importance of dense time series
to estimate GUI.

Different aspects of grasslands input intensity can also be measured
as independent variables. Mowing frequency, grazing intensity, and
fertilization input have been estimated using high-resolution multi-
spectral image time series (MODIS, RapidEye, S2) and agricultural
statistics, regionally (Gómez Giménez et al., 2017) or at a broader scale
(Estel et al., 2018). Gómez Giménez et al. (2017) estimated mowing
dates based on change detection in red edge vegetation index (V Irededge)
time series extracted from 5 RapidEye images. The coefficient of varia-
tion (CV) of the V Irededge time series was used to retrieve grazed parcels
and livestock density was used as a proxy for fertilization input. They
could not validate their method, by lack of field data, but obtained co-
herent results in terms of mowing and grazing activities. No correlation
was however found between livestock density and spectral response.
Estel et al. (2018) estimated GUI at the European scale, using MODIS
(250 m) NDVI time series to detect mowing events at the landscape
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level and regional livestock statistics. Their results were regionally co-
herent but not quantitatively validated.

Recently, in the field of GUI monitoring, particular attention has
been given to mowing detection. A mowing event implies a drastic
change as a significant fraction of biomass is removed from the surface.
Such a change has an impact on the absorption, reflection, and scat-
tering of incoming radiation by vegetation. It is thereby theoretically
possible to monitor mowing events through change detection using op-
tical or SAR image time series with sufficient spatial and temporal res-
olutions. In optical remote sensing, mowing events have been associ-
ated with sudden decreases in NDVI profiles (Estel et al., 2018; Kolecka
et al., 2018; Griffiths et al., 2020; Schwieder et al., 2022) or other vege-
tation indices related to biomass (Gómez Giménez et al., 2017).

For short-term change detection it is crucial to ensure a regular and
dense acquisition frequency, which can be a challenge when using opti-
cal sensors in cloudy regions (Kolecka et al., 2018; Griffiths et al., 2020).
Therefore, it is interesting to assess the potential of radar remote sens-
ing for mowing detection. SAR backscattering is influenced by surface
structure and humidity. Cutting grass changes the vegetation structure
and should thereby influence the radar signal backscattering. Schus-
ter et al. (2011) established a mowing detection rule for a NATURA-
2000 habitat monitoring and surveillance scheme, based on two ax-
ioms, namely the occurrence of a backscattering signal rise, followed
by a signal decrease and a threshold magnitude of the signal changes.
The use of Artificial Neural Networks on S1 backscattering data for de-
tecting mowing events was also explored, showing promising results
on 5 parcels in Germany (Taravat et al., 2019).

In addition to backscattering coefficients, the interferometric coher-
ence between two SAR acquisitions can also be used for mowing detec-
tion (Tamm et al., 2016; Zalite et al., 2016). On tall vegetation, the sig-
nal is dominated by volume scattering. Due to the gradual growth of
vegetation and random movements of tall grass in the wind, the distri-
bution of scatterers changes between two acquisitions, causing tempo-
ral decorrelation of the signal and hence lower coherence values (Blaes
et al., 1999; Monti-Guarnieri et al., 2020; Morishita and Hanssen, 2014;
Voormansik et al., 2020). Zalite et al. (2016) found an inverse logarith-
mic relation between the temporal interferometric coherence and the
vegetation height and wet above-ground biomass. InSAR coherence is
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relatively low on grasslands during their growing phase. After a mow-
ing event, as the grass is cut short, the soil surface scattering, which is
more stable over time, dominates the signal (Blaes et al., 1999). The co-
herence is therefore higher. Typical coherence profiles, showing lower
values during the growing phase and high values after the mowing
event, have been observed on aggregated time series of mown grass-
lands (Tamm et al., 2016).

1.3.4 Knowledge gaps and short-comings

Remote sensing offers great potential for large-scale and cost-effective
grassland monitoring. The unprecedented spatial and temporal res-
olution of Sentinel-1 and Sentinel-2 have opened up new possibili-
ties in this field. Recent studies have already shown the feasibility
of measuring different aspects of GUI, through various approaches
and with different levels of precision. Further research is, however,
needed to bridge knowledge gaps on the relationships between opti-
cal or microwave signal and grassland properties, to improve measure-
ment methods, to assess their potential and identify their limitations,
and to move from LC and LU mapping toward operational large-scale
grassland use intensity monitoring.

Most grassland monitoring studies, although showing promising
results, were performed on relatively small study areas, or lacked suf-
ficient reference data for a robust performance assessment. Studies
on grassland biophysical variable retrieval, for example, were mostly
based on empirical models which are locally tuned or calibrated on
small datasets covering short periods. Grassland management moni-
toring, such as mowing detection methods, were also mostly calibrated
and validated on small reference datasets, or could not be validated
quantitatively at all. Moreover, many studies focus on one type of
grassland and are not representative of the diversity of grassland types
and management practices. Most studies on grassland mowing detec-
tion for example focus only on mown meadows, not taking pastures
and mixed practices into account.

The most frequently used index for GUI measurement seems to be
the NDVI, followed by biophysical indices such as the LAI. In general,
optical remote sensing is used in more than 90% of research on GUI
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measurement (Reinermann et al., 2020). Overall, there is a better un-
derstanding of the relations between reflectance and vegetation prop-
erties, compared to radar remote sensing. Microwave data, such as S1
C-band, can nevertheless be used instead of - or in addition to - optical
imagery since they guarantee regular temporal coverage and provide
complementary information. The latest studies on mowing detection
with SAR imagery provide encouraging results, but have mainly been
carried out on rather limited study areas, covering between 2 and 40
grassland parcels (Schuster et al., 2011; Tamm et al., 2016). Moreover,
while radar acquisitions are completely independent of cloud cover-
age, it is preferable to take precipitation into account, as the signal
backscattering is largely influenced by surface humidity and rain on
the acquisition date might interfere with the actual vegetation moni-
toring (Curnel, 2015; Tamm et al., 2016).

The choice of a spatial unit represents another issue. One of the
main challenges in SAR is the speckle, an inherent variance caused
by constructive and destructive interference between randomly dis-
tributed scatterers within a pixel (Lee et al., 1994). Homogeneous sur-
faces such as intensively managed herbaceous covers, therefore, appear
heterogeneous, which makes it challenging to work at the sub-parcel
level. Therefore, it is useful to smooth the signal by averaging the re-
motely sensed metrics per parcel, which is the case in most studies on
GUI measurement with SAR. However, when working by object, poten-
tial intra-parcel heterogeneity in management practices becomes an is-
sue. Further research should investigate the relationship between SAR
signal and grassland properties and the above-mentioned challenges
need to be tackled to develop robust SAR-based grassland monitoring
methods.
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1.4 Scope and objectives

A better characterization of grassland production systems is essen-
tial to evolve towards more sustainable grassland management, i.e.
adapting inputs to create synergies and balance trade-offs between out-
puts and outcomes of grassland ecosystems. Therefore, temporally
and spatially explicit data on each aspect of GUI are crucial. Exist-
ing datasets are however often limited temporally, thematically, or ge-
ographically and collecting data on the field is extremely costly and
time-consuming.

The overarching objective of this thesis is to measure grassland use
intensity over large areas thanks to satellite remote sensing. Based on a
general LUI measurement framework (Erb et al., 2013) and considering
existing GUI indices and typologies (Blüthgen et al., 2012; Tonn et al.,
2020), we propose a new framework for GUI measurement (Figure 1.7).
GUI is articulated in three dimensions, namely inputs (mowing, graz-
ing, and fertilization), outputs (forage yield and quality), and outcomes
(impact on biodiversity and regulating ES). This framework is primar-
ily intended for managed grasslands, as defined in section 1.2.3, and
focuses on the most common management practices in Europe.

Although they are all important to consider for GUI analysis, not all
aspects shown in Figure 1.7 are directly addressed in this thesis. The
focus is set on inputs, more specifically on management practices (i.e.
mowing and grazing), and on outputs through forage yield retrieval.
The goal is to provide accurate and precise information on these as-
pects, which can allow to derive other aspects, relate GUI inputs and
outputs with outcomes, and contribute to large-scale agricultural and
ecological monitoring.

Previous studies on GUI measurement by remote sensing have
mostly been conducted on relatively small areas and rarely cover the di-
versity of grasslands. One of the main limiting factors in this field is the
validation, as reference datasets are often missing, not representative,
or lack spatial and temporal resolution. Empirical methods are there-
fore often locally tuned and findings can not be generalized. Further
efforts are needed to provide a comprehensive and quantitative evalua-
tion of GUI measurement methods and improve their performances. In
this thesis large and comprehensive field datasets are used to develop,
validate and combine change detection-, classification- and retrieval



24 Introduction

Figure 1.7: Conceptual framework for grassland use intensity analysis
and measurement considered in this research.

methods based on microwave and optical remote sensing time series
and existing ancillary data.

The first specific objective is to differentiate grassland mowing dy-
namics by retrieving the timing and frequency of mowing events. Me-
chanical mowing plays a major role in European grassland manage-
ment from a food production and habitat conservation perspective.
Mowing events cause an abrupt reduction in above-ground biomass,
followed by gradual regrowth. Sufficient temporal resolution is key
to detect such punctual changes. Therefore, an initial mowing de-
tection method is developed based on microwave remote sensing. In
this first study, the potential of S1 for mowing detection is assessed,
and major confounding factors are identified. Secondly, an automated
mowing detection method combining the completeness of S1 and the
higher accuracy of S2 time series is presented and evaluated. In this
second study, the complementarity of S1 and S2 is assessed and the
performances of the combined mowing detection method are evaluated
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across regions and grassland types to test its potential for large-scale
grassland monitoring.

The second specific objective is to differentiate grazing and mowing
practices at the sub-parcel level, corresponding to homogeneous grass-
land management units. Since we focus on managed grasslands, we
assume that all parcels are grazed and/or mown at least once a year.
Most European temperate grasslands are managed by mowing, graz-
ing, or a combination of both within declared parcels of the LPIS. In
the frame of GUI assessment, grazing and mowing can however not
be considered equivalent. While a mowing event causes an abrupt de-
crease in biomass, grazing events are often more gradual (except in
intensive rotational grazing systems). Moreover, in most pastures, se-
lective grazing, trampling, and defecation patterns create small-scale
heterogeneity, whereas mechanical mowing is more uniform and un-
selective. We make the hypothesis that pastures can be differentiated
from hay meadows based on vegetation indices temporal profiles. A
pixel-based classification of S2 image time series is applied to differ-
entiate the two management practices. The classification is then com-
bined with LPIS parcel delineation and high-resolution ancillary data
to retrieve homogeneous management units.

Finally, the third specific objective of this thesis is to evaluate the
variability in growth status and forage yield between management
practices and regions. Grassland outputs (i.e. forage yield and nu-
tritional quality) are strongly related to inputs, i.e. mowing, grazing,
and fertilization practices. These relationships are however complex
and change depending on pedo-climatic conditions. In this last part,
regression models are developed to retrieve grassland biomass yield,
nitrogen concentration, canopy nitrogen content, and nitrogen nutri-
tion index from S2 spectral bands and indices. Using these models in
combination with the management units and mowing dates retrieved
in previous chapters, the spring growth status and the harvested forage
yield of different management classes are compared in three agroeco-
logical regions.
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Outline

This thesis is mainly built from a collection of articles (published or in
preparation) addressing the different aspects of GUI monitoring men-
tioned in section 1.4. Chapter 2 focuses on mowing detection with
Sentinel-1 and chapter 3 presents a mowing detection method com-
bining Sentinel-1 and Sentinel-2. In chapter 4, we develop a classifi-
cation method to retrieve homogeneous management units of pastures
and hay meadows. The retrieval of biomass and nitrogen content from
Sentinel-2 data is addressed in chapter 5. Finally, general conclusions
and perspectives are presented in chapter 6.
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Abstract
The timing and frequency of mowing events are major aspects of
grassland use intensity, which have an impact on their ecologi-
cal value as habitats. Previous studies highlighted the feasibil-
ity of detecting mowing events based on remote sensing time se-
ries, most of which used optical imagery. Regular temporal cov-
erage is crucial for accurate mowing detection. This can be an
issue when using optical data in cloudy regions. In this chapter,
Sentinel-1 C-band microwave data is used for detecting mowing
events in various agricultural grasslands. Several mowing detec-
tion methods, based on SAR backscattering and interferometric
coherence time series, are developed, evaluated, and compared
using a large and diverse field data set for training and valida-
tion. Results show that 54% of mowing events could be detected
in hay meadows, based on coherence jumps. Grazing events were
identified as a major confounding factor, as most false detections
were made in pastures. Parcels with one mowing event in the
summer were identified with the highest accuracy (71%). Over-
all, this study demonstrates that mowing events can be detected
through Sentinel-1 coherence. However, the performances could
probably be further enhanced by discriminating pastures before-
hand and combining Sentinel-1 and Sentinel-2 data for mowing
detection.
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2.1 Introduction

Mowing plays a major role in European grassland management. Grass-
lands are mown, mostly for forage production, but also for ecological
conservation (Savage et al., 2021). The timing and frequency of mow-
ing events are major aspects of grassland use intensity and have signif-
icant impacts on grassland provisioning and regulating ecosystem ser-
vices and biodiversity (Humbert et al., 2012; Van Vooren et al., 2018;
Tälle et al., 2018; Johansen et al., 2019; Savage et al., 2021). These
impacts need to be further studied to adapt grassland management
plans to maximize synergies and limit trade-offs between ecosystem
services. Precise and exhaustive data on grassland mowing dates and
frequency are, however, rarely available to wide extents. Therefore, the
automated detection of mowing events through remote sensing would
present a great asset.

Previous studies have successfully detected mowing events through
sudden decreases in spectral vegetation indices derived from opti-
cal imagery and related to biomass, such as the NDVI (Estel et al.,
2018; Kolecka et al., 2018; Griffiths et al., 2020; Schwieder et al., 2022;
Gómez Giménez et al., 2017). To detect mowing events, it is how-
ever crucial to ensure a regular and high observation frequency, which
can be a challenge when using optical sensors in cloudy regions (Sano
et al., 2007). In that context, Synthetic Aperture Radar (SAR) imagery
presents great potential, since active radar sensors are independent of
sunlight and cloud cover, making them almost all-weather systems, un-
like optical sensors (Ali et al., 2016a; Howison et al., 2018).

A few studies have evaluated the feasibility of detecting mowing
events through changes in microwave backscattering (Schuster et al.,
2011; Taravat et al., 2019) or interferometric coherence time series
(Tamm et al., 2016; Zalite et al., 2016). Although providing encour-
aging results, studies on grassland mowing detection using SAR time
series have mainly been carried out on rather limited study areas and
lack sufficient validation data.

In this chapter, the goal is to differentiate grassland mowing dy-
namics using a mowing detection method based on microwave time
series. We assess the potential of Sentinel-1 C-band SAR for detect-
ing mowing events in various agricultural grasslands in a statistically
sound manner, using a large and diverse reference data set. The aim
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is to answer three questions, namely (1) how accurately can mowing
events be detected based on Sentinel-1 time series only, (2) what are
the main limitations and confounding factors to mowing detection with
Sentinel-1, and (3) can Sentinel-1 based mowing detection be used to
identify different grassland mowing dynamics? For this purpose, an in-
tensive field campaign was carried out, providing timely information
on mowing and grazing events on various grassland parcels. This al-
lowed several methods to be developed and calibrated, based on the
literature and preliminary observations, and to carry out thorough per-
formance analysis, providing a statistically significant evaluation of
Sentinel-1’s mowing detection potential.

2.2 Study Area

The main study area of this thesis is located in Wallonia, the south-
ern region of Belgium (Figure 2.1). Permanent grasslands cover 35% of
the UAA of the Walloon region (Statbel, 2020). The number of parcels
and the intensity of management vary between the different agroeco-
logical areas of the region (delineated in Figure 2.1). The delimita-
tion of these areas is based on agroecological conditions and cropping
systems. The low and relatively flat northern areas of Wallonia (Silty
plateaux of Hainaut and Brabant and Hesbaye) are characterized by
large cereal and beet crops and few grasslands. Pays de Herve, in the
northeast, presents characteristic features of bocage landscapes with
very productive pastures and hay meadows. In the Condroz, the to-
pography becomes more rugged and grasslands more frequent. The
Fagne-Famenne is dominated by forest and meadows and most of the
agricultural area of Ardennes and Lorraine is occupied by pastures and
more extensive meadows. The present study encompasses a signifi-
cant diversity of agro-ecological and farming conditions as it includes
Condroz, Fagne-Famenne, and Ardennes, with respectively about 37%,
71%, and 88% of the UAA occupied by grasslands (Statbel, 2015). The
other agricultural areas dominated by grasslands (Pays de Herve and
Lorraine) were not covered in this study for field campaign feasibility
reasons.

Most grasslands in Wallonia are managed through relatively in-
tensive mowing, grazing, or a combination of both (i.e. EUNIS class
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"Permanent mesotrophic pastures and aftermath grazed meadows"). Exten-
sive hay meadows that are strictly mown without grazing activity (i.e.
"Low and medium altitude hay meadows") have become scarcer in recent
decades (DEMNA, 2010). In most common grasslands, exploitation ac-
tivities (grazing or mowing) start in mid-April. In grasslands of high
biological interest, supported by the EU CAP, mowing is only allowed
after the 16th of June, for flowering purposes, and before the 31th of
October.

Figure 2.1: Study area. Location of the grassland parcels monitored
during the windshield survey across 3 main agroecological regions of
Wallonia (Condroz, Fagne-Famenne, and Ardennes). The set of 426
observed parcels includes hay meadows, pastures, and mixed practices.

2.3 Data

2.3.1 Field campaign

An intensive field campaign was carried out to collect an exhaustive
reference dataset on grassland management practices. From the 9th of
April to the 19th of July 2019, 426 permanent grassland parcels, in-
cluding pastures, extensive hay meadows, and mixed practices, were
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monitored through a windshield survey (Figure 2.1). Each parcel was
observed 11 times during the study period. The field visits were car-
ried out with intervals of 6, 12, or 18 days in order to match as much as
possible Sentinel-1 A and B combined revisit cycles, with the highest
frequency in May and June, when the first cuts are expected to occur
and the regrowth would be relatively fast (Figure 2.2). On each visit,
the management status of each grassland parcel was recorded (’grow-
ing’, ’recently cut’, ’being cut’, ’grazed’). This resulted in a time series
of field observations for each parcel. Three types of intervals were de-
fined based on subsequent field observations:

• Mowing intervals, corresponding to the time between the last
observation marked as ’growing’ (start date) and a ’recently
cut’/’being cut’ observation (end date) (Figure 2.3 (a));

• Grazing intervals, corresponding to a ’grazed’ observation (end
date), preceded by any other observation (start date) (Figure 2.3
(b));

• No activity intervals, corresponding to any observation (start
date) followed by an observation marked as ’growing’ (end date)
(Figure 2.3 (c)).

Figure 2.2: Sentinel-1 A and B (descending) acquisition dates over the
study area and corresponding field observation dates between April
and July 2019.

This survey resulted in a total of 4260 observation intervals (10 in-
tervals for each of the 426 parcels) including 261 mowing intervals.

Based on observations, four types of grasslands could be differen-
tiated: parcels where only grazing was observed (pastures, n=201),
grazed parcels with at least one mowing event (mixed practices, n =
61), and parcels without grazing, but with at least one mowing event
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Figure 2.3: Schematic representation of the reference intervals derived
from the field observations.

(hay meadows, n = 154). On 10 parcels, the management practice could
not be defined with certainty based on field observations. These parcels
were discarded from the reference dataset.

Approximately half of the observed parcels were randomly selected
for calibration (n = 220) and the remaining parcels were kept for val-
idation (n = 196). The selection was stratified to ensure that the three
types of grasslands were represented in each subset.

2.3.2 Sentinel-1 Time Series

Sentinel-1 data was acquired in Single Look Complex (SLC) format and
interferometric wide (IW) swath mode with dual polarization (verti-
cal transmission with vertical reception (VV) and horizontal reception
(VH)). The processing to Ground Range Detected (GRD) backscattering
coefficient (γ0) and interferometric coherence with a resolution of 15
m was performed using the Sentinel-1 Toolbox of the Sentinel Applica-
tion Platform (SNAP version 6.0). The processing chains shown in Fig-
ure 2.4 include calibration, georeferencing, deburst, InSAR coherence
estimation (with an averaging window size of azimuth × range: 3 × 10),
and terrain correction. Both chains were run on all acquisitions from
Sentinel-1 descending pass covering Wallonia during the study period
in 2019. Only descending pass acquisitions were treated in this study
because coherence should not be computed between different passes
(ascending or descending), since the look direction varies. Moreover,
field visits were carried out with a minimum interval of 6 days, match-
ing just descending pass acquisition dates, for practical and timing rea-
sons. Coherence was computed between consecutive Sentinel-1 A and
B images, to reach a 6-day revisit cycle instead of 12, as suggested by
Tamm et al. (2016).
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Figure 2.4: Schematic overview of the Sentinel-1 processing chain from
single look complex (SLC) interferometric wide (IW) swath mode with
dual polarization (VV, VH) to Ground Range Detected (GRD) backscat-
tering coefficient (γ0) and interferometric coherence with a 15 m reso-
lution. The processing was performed using the Sentinel-1 Toolbox of
ESA’s SNAP (version 6.0).

SAR imagery is characterized by an inherent variance (speckle)
caused by constructive and destructive interference between randomly
distributed scatterers within a pixel (Lee et al., 1994). This speckle ef-
fect can be observed on apparent homogeneous surfaces, such as herba-
ceous covers. To spatially smooth the SAR data, the regional LPIS layer
(Milionis, 2016) — established on an annual basis by the Walloon Ad-
ministration for the EU Common Agriculture Policy and referencing
the location, the extent, and the main crop of agricultural parcels in
Wallonia — was used to average the backscattering and coherence sig-
nal per parcel. A 10 m inner buffer was applied to the parcel polygons
before averaging, to reduce border effects.

2.4 Methods

Several mowing detection methods were tested based on previous stud-
ies and time series observation and compared to each other. The meth-
ods are based on change detection in time series of a backscattering
coefficient on the one hand and of interferometric coherence on the
other. All methods were tested using VV and VH signal, as well as
a combination of both polarizations, namely the ratio (VV/VH) in the
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case of backscattering and the average (mean(VV,VH)) in the case of
coherence.

2.4.1 Backscattering Detection Method

This first method, based on γ0 backscattering time series, consists of
detecting the occurrence of a signal increase followed by a signal de-
crease, with respective threshold magnitudes, which have been ob-
served after mowing events in several studies (Bargiel et al., 2010;
Schuster et al., 2011; Curnel, 2015). The change in backscattering af-
ter a mowing event could be related to a stronger contribution of soil
surface scattering, compared to volume scattering of vegetation in tall
grass. The method selected here is largely based on the two axioms
used by Schuster et al. (2011), namely (1) the occurrence of a signal in-
crease followed by a decrease and (2) the magnitude of those changes
above a fixed threshold. For each parcel extracted time series, each
value γi is compared to the previous γi−1 and the next γi+1. Two con-
ditions must be met to detect a mowing event.

(1) The value γi needs to be larger than the previous value γi−1 and
the next value γi+1:

γi−1 < γi > γi+1 (2.1)

(2) The amplitude of the changes, expressed as percent increase Dup

and decrease Ddown:

Dup = 100 ∗ (
γi −γi−1

γi
) (2.2)

Ddown = 100 ∗ (
|γi+1 −γi |

γi
) (2.3)

must be higher than the average percent increase and decrease by a
fixed threshold (Kup% and Kdown%, respectively). The average percent
change describes the signal variation along the entire time series and is
computed for each parcel, to be used in the following equations:

Dup −
∑N

i=0
|γi−γi−1|

γi
∗ 100

N
≥ Kup% (2.4)
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and

Ddown −
∑N

i=0
|γi+1−γi |

γi
∗ 100

N
≥ Kdown% (2.5)

A detection is made when Equations (2.1), (2.4) and (2.5) are true.
This method was tested with different threshold values Kup% and
Kdown% (Table 2.1).

Table 2.1: Overview of the considered mowing detection methods.
The backscattering methods were tested with different input polar-
izations, percent increase thresholds (Kup%), and different ratios be-
tween percent decrease and increase thresholds (Kdown/Kup). The co-
herence jump detection methods were tested with different polariza-
tions, smoothing approaches, window sizes (d), and absolute thresh-
olds (a.t.,k) or relative threshold (r.t.) parameters (α).

Input Kup% Kdown/Kup

γ0 (VV, 2; 5;
1/4 ; 1/2 ; 3/4 ; 1

VH, ratio)
10; 15;
20; 25

Input Smoothing d Detection Threshold

Mean shift
7 ; 9 ; Absolute (a.t) k= {0.5, 0.25, 0.1,

Coherence 11 0.075, 0.05, 0.025, 0.01, 0.005, 0.0025} ;

(cohVV; Linear 3 ; 4 ; Relative (r.t.) α= {0.0005, 0.001,
cohVH; regression 5 ; 6 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.4}

cohVVVH)
Two means 8 ; 10

p-value = {0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75}

2.4.2 Coherence Jump Detection Methods

The second set of methods is based on the observation of a high jump
in coherence time series right after a mowing event. A mowing event
implies a drastic reduction of above-ground biomass. According to ob-
servations made in previous studies (Zalite et al., 2016; Tamm et al.,
2016), such a reduction in biomass causes a sudden increase from rela-
tively low coherence values to higher ones for a given period after the
mowing event, before the grass grows tall again. Since coherence tends
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to fluctuate between consecutive dates despite spatial filtering, tem-
poral smoothing was applied to reveal significant increases. Based on
preliminary observations of coherence time series on various parcels,
three jump detection methods were considered that involve different
smoothing approaches (Figure 2.5).

Mean shift: The first method, called mean shift, consists of a sliding
averaging window of a maximum size d with an adjusting symmetry. It
allows to smooth the signal while highlighting significant shifts in the
temporal mean such as jumps. When applying the mean shift sliding
window, each raw value Ti is replaced by the average of [Ti−r1

,Ti+r2
],

resulting in a smoothed value ms(Ti). The number of points before (r1)
and after (r2) included in the window are adapted to the local variance
of the signal in each window. They are defined by the following limits
(Equation (6)) that result in a maximum window size d = 2 ∗ rmax + 1.r1 = rmax

r2 = [0, rmax]
OR

r1 = [0, rmax]

r2 = rmax
(2.6)

Between those limits, the window symmetry parameters r1 and r2
adjust for each window to minimize the standard error of the average
(σx):

σx =
σ[Ti−r1 ,Ti+r2 ]
√
r1 + r2 + 1

(2.7)

where σ is the standard deviation of [Ti−r1
,Ti+r2

]. Jumps are detected
between smoothed values when the difference ms(Ti)−ms(Ti−1) exceeds
a fixed threshold. The method was tested with absolute thresholds (a.t.)
(k) or relative thresholds (r.t.) to the standard error. In the second case,
a Student’s test (t-test) with a given significance level α is performed.
All the values tested for the maximum window size d and the thresh-
olds k and α are summarized in Table 2.1.

Linear regression: In the second method, the time series are
smoothed by linear regression using an asymmetric sliding window.
Due to the growth of vegetation before the mowing event, the coher-
ence is expected to gradually decrease and then suddenly increase af-
ter the mowing event. In this method, each raw value Ti is compared to
the previous smoothed value lr(Ti−1) obtained by linear regression of
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[Ti−d , ...,Ti−1,Ti]. This allows to consider a potential slope in the coher-
ence profile and detect sudden increases, compared to the previous sig-
nal trend. A detection is made when the difference Ti − lr(Ti−1) exceeds
a given threshold. This method was also tested with different window
sizes d, and absolute (k) and relative (α) thresholds (Table 2.1).

Two means: The third jump detection method is based on an even-
size sliding window d in which a statistical hypothesis test verifies if
there is a significant change in temporal mean coherence in the mid-
dle of the window. This is another way to detect a sudden increase in
a coherence time series. The null hypothesis H0 is the approximation
by the average value of the entire window mean([T1 : Td]). The alter-
native hypothesis H1 is the approximation by a "step model" consisting
of two different averages for the first half [T1 : Td/2] and second half
[Td/2+1 : Td] of the window. The Fstat used for the test is computed us-
ing Equation (2.8):

Fstat =

(
SSR0−SSR1

k1−k0

)(
SSR1
d−k1

) (2.8)

where SSR[0,1] and k[0,1] are, respectively, the Sum of Squared Resid-
uals and the number of parameters of H[0,1]. The probability density
function of Fstat is derived from n, k0 and k1 and a p-value is computed
for each date. A p-value under a given threshold implies a rejection of
H0. In that case, and if the second mean value is higher than the first,
a coherence jump is detected. Table 2.1 gives an overview of all the
coherence jump detection methods applied using the different inputs,
window sizes, and detection thresholds.

2.4.3 Method Calibration, Evaluation and Validation

Each mowing detection method was calibrated to determine the best
parameter values, i.e. window sizes and detection thresholds. The ro-
bustness of these methods was then tested with respect to potential
confounding factors related to the use of Sentinel-1 data. The cali-
brated methods were then validated on an independent set of grassland
parcels to estimate the potential of Sentinel-1 based mowing detection
for identifying different grassland mowing dynamics.
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Figure 2.5: Schematic representation of the 3 coherence jump detec-
tion methods. A jump occurs at Ti . (a) The mean shift method with
maximum window size d = 2 ∗ rmax + 1 = 9 (r1 = 0 and r2 = rmax = 4),
where the difference (red arrow) between the smoothed values is eval-
uated, (b) the linear regression method with window size d = 4, where
raw value Ti is compared to the previous smoothed value and (c) the
two means method of window size d = 8, comparing the hypothesis H0
(1 mean) and H1 (2 means).

Calibration and robustness analysis

The calibration was performed on a subset of the training dataset with
parcels presenting ideal size, shape, and slope orientation. Those ideal
parcels have an area larger than 1 ha, a width larger than 30 m and the
hill shade has to be above the median of the data set. Hill shade was
used as an indicator for slope orientation, as it is based on the orienta-
tion of the slope relative to an illumination source angle and shadows.
These three requirements correspond to parcel characteristics poten-
tially affecting the Sentinel-1 signal. Small parcels are expected to be
more challenging to monitor because of the limited amount of pixels
included in the spatial smoothing. The shape of a parcel could be an is-
sue because narrow parcels might be impaired by border effects (mixed
pixels). Finally, the orientation of the slope relative to the direction of
the radar beam will have an impact on the interaction of the signal with
the surface.

The calibrated methods were then applied to parcels presenting less
ideal characteristics to observe the impact of size, shape, and slope
orientation on the mowing detection accuracy. In addition to parcel
characteristics, the robustness of the methods to grazing activities was
assessed.

During the calibration and robustness analysis, the accuracy of
mowing detection was evaluated by crossing the reference mowing in-
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tervals with detection intervals. When a detection interval intersects
a reference mowing interval, it is considered as a true positive (TP).
If no reference mowing interval overlaps a detection, it is a false pos-
itive (FP) and if no detection overlaps a reference mowing interval, it
is counted as a false negative (FN). The remaining intervals are true
negatives (TN).

Since mowing events are relatively rare, there is a strong imbal-
ance between positives and negatives. Therefore, in addition to the
broadly used overall accuracy (OA), the Matthews Correlation Coeffi-
cient (MCC) was used for calibration and evaluation, along with the
detection rate and precision of mowing detection. The MCC (Equation
2.9) was first introduced by Matthews (Matthews, 1975) and the metric
is particularly suited to measure the quality of an unbalanced binary
classification (Boughorbel et al., 2017). MCC values range from −1 to
1, 0 being the equivalent of a random classification. The detection rate
and precision are computed with Equations (2.10) and (2.11).

MCC =
T P ∗ TN −FP ∗FN√

(T P +FP )(T P +FN )(TN +FP )(TN +FN )
(2.9)

detection rate =
T P

(T P +FN )
(2.10)

precision =
T P

(T P +FP )
(2.11)

Validation

The best-performing and most robust method was then applied to the
independent validation data set. In this case, the performances were
evaluated per parcel, instead of per time interval. The aim is to assess
the potential of Sentinel-1 based mowing detection methods for iden-
tifying different mowing dynamics of grasslands. The assessment was
performed for the four grassland management classes observed dur-
ing the field campaign: (i) unmown pastures, (ii) parcels with 1 spring
mowing (before the 20th of June), (iii) with 1 summer mowing (after the
20th of June) and (iv) with 2 mowing events during the study period.
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2.5 Results

2.5.1 Method Calibration

All methods were run on the ideal calibration parcels with a range of
different detection parameters (Table 2.1). In total, 12 configurations
were considered for methods based on backscattering. For coherence
jump detection, 48 different configurations of polarization, smoothing
approach, window size, and threshold type were considered. The first
observation is that the detection method based on backscattering per-
formed very poorly compared to the coherence jump detection meth-
ods. The maximum MCC obtained with backscattering is 0.25, using
γ0 VV time series, while the highest MCC values obtained with the
different coherence jump detection methods range from 0.26 to 0.49.
Therefore, the focus was set on coherence jump detection methods for
further analysis.

The different smoothing methods, window sizes and threshold
types are compared based on OA, detection rate, precision and MCC
along detection threshold values (Figure 2.6). The OA (unbroken blue
line) reaches high values ranging from 92% to 96% for all methods. It
drops significantly with low absolute detection thresholds (a.t.), for ex-
ample, to 45% for k = 0.0025 with the cohVV linear regression method
(d = 6), because of the numerous false detections made with such a low
detection threshold (Figure 2.6d).

As expected, when the detection threshold increases (1−α, 1−p-
value and k), the precision increases as fewer false detections occur, but
the detection rate declines as more mowing events are omitted. No sig-
nificant differences were observed in the shapes of the detection rate and
precision curves, between the different input polarizations (cohVV, co-
hVH, and cohVVVH) or window sizes. On the other hand, the shape
of the curves varies from one smoothing method to another, as shown
in Figure 2.6. Both with absolute and relative thresholds, the thresh-
old value at which precision and detection rate reach a balance and the
curves cross, is higher for the linear regression method than for the
mean shift. For the mean shift method (Figure 2.6 (a,b)), when α tends
toward 0 or k increases, the detection rate drops relatively low as the
detections become more precise. Meanwhile for the linear regression
method (Figure 2.6 (c,d)), the detection rate remains high with more
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precise detection thresholds. For the two means smoothing method,
the detection rate also drops relatively fast while the precision does not
increase significantly.

The MCC metric (dashed blue line), peaks above 0.4 for all meth-
ods except for the two means method (Figure 2.6 (e)). The two-means
method was therefore also discarded for further analysis. The MCC
peak was used here to select the best-performing methods and detec-
tion thresholds. However, even at these optimal thresholds, either the
precision or the detection rate are lower than 50% for all methods.

Figure 2.6: Overall Accuracy (OA), Matthews Correlation Coefficient
(MCC), precision and detection rate of several mowing detection meth-
ods based on VV coherence, with varying detection threshold param-
eters. The graphs show the performances of the mean shift and linear
regression methods with relative threshold (r.t.) and absolute thresh-
old (a.t.) and of the two means method, with the best window size (d)
for each.

For each input feature set (cohVV, cohVH,cohVVVH), the two
methods delivering the highest MCC value were selected for further
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analysis. The six selected methods are (i) cohVH mean shift (d = 9) with
relative threshold (α = 0.001), (ii) cohVH linear regression (d = 5) with
r.t. (α = 0.0005), (iii) cohVV mean shift (d = 11) with a.t. (k = 0.025),
(iv) cohVV linear regression (d = 6) with r.t. (α = 0.005), (v) cohVVVH
linear regression (d = 5) with a.t. (k = 0.1) and (vi) cohVVVH linear
regression (d = 6) with r.t. (α = 0.005). The MCC values obtained for
these methods range from 0.44 for (ii) to 0.49 for (iv). These calibrated
methods are listed in Table 2.2.

2.5.2 Robustness to Confounding Factors

To analyze their robustness to potential confounding factors, the mow-
ing detection methods were tested on less ideal parcels. The preci-
sion (pre.) and detection rates (d.r.) obtained for ideal, small and nar-
row parcels, for parcels with lower hill shade values, for all non-ideal
parcels, and for all parcels are compared in Table 2.2.

On ideal parcels, the calibration based on MCC metrics resulted in
a balance between omissions and false detections, depending on the
methods. The cohVH mean shift method shows the least balance, with
the highest precision (78%) and the lowest detection rate (27%). The
most balanced calibrated method is cohVVVH linear regression with
absolute threshold, with a precision and detection rate of 42% and 54%,
respectively. Both methods with VH coherence were calibrated with a
higher precision, while the methods with cohVV and cohVVVH resulted
in higher sensitivities at the optimal threshold. The highest detection
rate (69%) on ideal parcels was obtained with both cohVV methods and
the cohVH linear regression method with a relative threshold.

Among the parcel characteristics, the most significant impact is ob-
served for narrow parcels, as both precision and detection rate are sig-
nificantly lower for all methods. The largest impact of parcel shape is
observed with the cohVH mean shift method, which was also the least
balanced. The precision and detection rate of this method respectively
dropped to 13% and 8% on the narrow parcels. The individual effects
of size and slope orientation on the accuracy of mowing detection are
less significant or consistent through the different methods. Some pos-
itive impacts are even observed on the precision.

To better observe the combined impact of the three parcel character-
istics on the detection rate and precision of mowing detection, ideal and
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non ideal parcels are compared (Figure 2.7 (a)). For all methods, the
detection rate is lower on non-ideal parcels. The effect on the precision
is, however, more variable. The most robust methods are cohVH linear
regression and both cohVVVH linear regression methods, for which the
detection rate and precision vary by less than 10% between ideal and non
ideal parcels. For cohVV linear regression, the precision is not impacted
by the parcel characteristics, but the detection rate drops by 20%. As be-
fore, the largest impacts are observed on cohVH mean shift, where the
precision drops by 31%.

In addition to parcel characteristics, the impact of grazing activities
on the detection accuracy was evaluated (Figure 2.7 (b)). As expected
the detection rate does not vary when unmown pastures are removed
from the data set. The precision is however significantly higher for all
methods, namely 64% for cohVVVH linear regression with a.t., 72% for
cohVV linear regression, and 86% for cohVH linear regression, while
these methods have precisions of 43%, 42% and 57%, respectively, when
considering all types of grasslands. This means that a large part of
the false detections was due to unmown pastures. When the mixed
practices are removed and only the hay meadows are considered, the
precision and detection rate barely change and no consistent impact is
observed through the different methods.

The most important increase of precision (+30%) after discard-
ing unmown pastures was observed for the cohVV linear regression
method (d = 6) with r.t. (α = 0.005), which has a reasonable detection
rate of 54% on all parcels and reached a 69% detection rate on parcels
with ideal characteristics. It was therefore selected as the overall best-
performing method and used for further parcel-based validation.

2.5.3 Parcel-Based Validation

The calibrated cohVV linear regression (d = 6) method with r.t. (α =
0.005) was applied on the independent validation data set, for grass-
land management practice classification (Figure 2.8). The aim is to as-
sess the performances for identifying different mowing dynamics of
grasslands, based on Sentinel-1 mowing detection.

Of the 102 pastures, 54% were correctly identified as unmown (first
bar of Figure 2.8), which means that false detections were made in
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Figure 2.7: Robustness of Sentinel-1 coherence mowing detection
methods to parcel characteristics (size, slope orientation, and shape)
and grazing activities. Graph (a) shows the changes in precision and
detection rate between detections on large, broad and well oriented
parcels (ideal) and on parcels with less ideal characteristics (non ideal).
Graph (b) shows the changes in precision and detection rate when remov-
ing unmown pastures (p) and then mixed practices (x), considering hay
meadows (m) alone.

almost half of the pastures. This confirms the results of the robust-
ness analysis, which identified grazing as a major confounding factor
to mowing detection with Sentinel-1.

The second bar of Figure 2.8 shows the performances on the parcels
with one spring mowing. Here too, 54% were correctly identified. In
the remaining spring mowing parcels, the mowing event was omitted
and in 14% a false detection was made in addition to the omission.
Much better results were obtained with summer mowings (third bar
of Figure 2.8), as 71% of the parcels with one summer mowing were
correctly identified. A second false detection was made in 15%, and
the summer mowing event was omitted in 14%, in two of which a false
detection was made in the spring.
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Finally, from the parcels with two mowing events (fourth bar of
Figure 2.8), only 32% were entirely correct. Here as well, most of the
summer events were detected (64%), while many spring mowings were
omitted (48%). Both mowing events were omitted in only four parcels,
one of which also counted as a false detection.

Considering the whole validation data set, 56% of all parcels and
59% of the mown parcels were correctly identified in terms of mow-
ing dynamics, based on Sentinel-1 coherence mowing detection. Most
errors consist of false detections in grazed parcels and omitted spring
mowing events.

Figure 2.8: Per parcel evaluation of a Sentinel-1 VV coherence mowing
detection method to assess its potential to identify different mowing
dynamics. For each type of dynamic, the fraction of correctly estimated
parcels is given, along with the types of errors that occur (false detec-
tions, omissions, or both).
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Table 2.2: Impact of the size, topography, and shape of the parcels on
the accuracy of calibrated mowing detection methods, based on VH co-
herence (cohVH), VV coherence (cohVV), and the average of VV and
VH coherence (cohVVVH) with absolute (a.t.) and relative (r.t.) thresh-
old and window sizes d. The threshold parameters α and k were opti-
mized based on the Matthews Correlation Coefficient (MCC), to obtain
a balance between precision (pre., %) and detection rate (d.r., %).

Ideal Small Slope
Dir

Narrow Non
Ideal

All

n 590 430 770 330 1470 2200
cohVH mean shift (d = 9) r.t. (α = 0.001)

pre. 78 50 53 13 47 57
d.r. 27 8 20 8 18 22

cohVH linear reg. (d = 5) r.t. (α = 0.0005)
pre. 60 63 59 33 51 54
d.r. 35 21 31 15 23 25

cohVV mean shift (d = 11) a.t. (k = 0.025)
pre. 48 35 44 25 40 42
d.r. 69 63 59 31 47 53

cohVV linear reg. (d = 6) r.t. (α = 0.005)
pre. 38 32 44 32 39 39
d.r. 69 42 57 46 49 54

cohVVVH linear reg. (d = 5) a.t. (k = 0.1)
pre. 42 32 44 26 38 38
d.r. 54 63 45 46 43 45

cohVVVH linear reg. (d = 6) r.t. (α = 0.005)
pre. 34 46 49 30 44 41
d.r. 69 50 67 46 59 61
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2.6 Discussion

The results of this study show the potential of grassland mowing de-
tection using InSAR coherence, as already suggested by a study on a
limited number of grassland parcels (Tamm et al., 2016). Overall, it
was shown that mowing events can be detected by identifying jumps in
coherence time series. Based on a large and diverse reference data set,
several methods could be developed, calibrated, and thoroughly ana-
lyzed on different types of grassland. Once calibrated, most methods
showed similar performances and robustness. Nevertheless, the mow-
ing detections based on VV coherence smoothed by linear regression
with a window d = 6 and a relative threshold (α = 0.005) were slightly
more precise and accurate, especially on hay meadows.

2.6.1 Mowing Detection Methods

The methods based on the hypothesis of the occurrence of an increase
and subsequent decrease in backscattering after a mowing event per-
formed poorly during the calibration phase. Schuster et al. (2011) ac-
curately detected all mowing events in two semi-natural meadows, us-
ing TerraSAR-X σ0 images, while this study used Sentinel-1 C-band
γ0. Their mowing detection method should therefore be further tested
with X-band SAR data on a larger and richer data set.

In this study, it was however shown that mowing events can be de-
tected by identifying jumps in smoothed coherence time series. The
’two means’ smoothing method could be discarded based on lower
MCC values, but performances varied little between the different in-
put polarizations, window sizes, and detection threshold types for the
mean shift and linear regression methods (Table 2.1). In ideal cases,
the mowing event causes such an ample coherence increase that it is
easily detected, whichever method. On the contrary, regardless of the
method and parameters, some mowing events cannot be detected at
all, and coherence jumps can be caused by signal noise or other surface
changes. As an illustration, eight coherence time series extracted on
different types of parcels, along with the mowing events observed on
the field are shown in Figure 2.9. Therefore, most errors are indepen-
dent of the detection method but inherent to the signal and its interac-
tions with other factors. To understand the causes of these limitations,
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a robustness analysis was carried out to identify the confounding fac-
tors to mowing detection with Sentinel-1 coherence.

Figure 2.9: Sentinel-1 VV coherence time series extracted from a selec-
tion of 8 grassland parcels (2 mixed practices, 3 hay meadows, and 3
unmown pastures). The green areas represent time intervals in which a
mowing event occurred according to field observations. The green line
represents a mowing event observed on the day of a field visit.

2.6.2 Limitations

The detection rate and precision metrics in Table 2.2 and Figure 2.7 show
that the size, shape and slope orientation of the parcels can hinder the
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detection of mowing events for most methods. Fewer mowing events
are detected in small or narrow parcels or parcels with a less ideal slope
orientation and with some methods, more false detections are made in
these less ideal parcels. The differences in accuracy are, however, minor
and not always consistent throughout the methods.

Of the confounding factors tested in this study, grazing is the most
important one. Many false detections were made in parcels that were
not mown but grazed during the study period. During validation, false
detections were made in almost half of the unmown pastures, confirm-
ing that grazing is a major confounding factor for mowing detection.
As coherence increases with decreasing grass height and biomass (Za-
lite et al., 2016), a grazing event with a large stock density could result
in a coherence jump, similar to a mowing event.

In hay meadows and mixed practice parcels, the coherence jump
detection method developed in this study allowed to detect most sum-
mer mowings, while about half of the spring mowings were omitted
(Figure 2.8). This could be explained by a slower regrowth of the grass
after summer cuts, causing the coherence to remain high for a longer
period and making the detection easier.

The confounding factors assessed in this study explain some of the
false detections and missed mowing events. However, in some cases,
the cause of errors remains unclear. Other factors could hinder the
detection of mowing events by impacting the radar signal, such as the
presence of trees and shrubs or the water content of the soil and plant.
The impact of water content on radar signal has already been shown
previously (Tampuu et al., 2020). It was also shown to be a potential
confounding factor to mowing detection (Curnel, 2015; Tamm et al.,
2016). In terms of agricultural practices, swaths of grass left on the
parcel to dry could also be a confounding factor that alters the signal
response after a mowing event.

The mowing detection method developed in this study is object-
based and relies on the availability of grassland parcel boundaries for
spatial smoothing. The regional LPIS provided this information for this
study area. The LPIS parcels are based on farmer declarations and in
reality, they are often divided into smaller management units. Mowing
events on smaller management units would be omitted when averaging
the signal over the larger declared parcels. Alternatively, parcel bound-
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aries could be retrieved by automatic delineation based on a convolu-
tional neural network (CNN) (Waldner and Diakogiannis, 2020).

2.6.3 Reference Data and Quality Metrics

The major limiting factor in the development and evaluation of mow-
ing detection methods is the availability of precise and complete field
data (Reinermann et al., 2020). The large field campaign carried out
in the framework of this study provided information on the land use
status of more than 400 agricultural grassland parcels across differ-
ent agroecological regions of Wallonia, on Sentinel-1 acquisition dates.
Thanks to this rich data set, it was possible to statistically evaluate the
mowing detection potential of Sentinel-1 in agricultural grasslands.

The choice of adequate quality metrics that properly show the per-
formances of a detection method with respect to the context and over-
arching goal, is another critical point. In the case of the detection of a
rare event, the classes of occurrence and absence of the event are un-
balanced. Due to this disproportion, the widely used overall accuracy
(OA) is mainly influenced by the numerous absences and is not rep-
resentative of the detection accuracy. Indeed, the OA reached values
above 90% for all methods during calibration, while the detection rate
and precision were relatively low (Figure 2.6). The detection rate and
the precision focus on the true positives, false positives, and false nega-
tives and represent the capacity of a method to detect rare occurrences.
Increasing the detection threshold enhances the precision, but reduces
the detection rate, as more events are omitted. When calibrating the
mowing detection methods, a compromise needs to be made between
maximizing the detection rate and minimizing the false detections. In
this study, the MCC metric was used to calibrate the methods and se-
lect the optimal detection thresholds, as it is well adapted for unbal-
anced binary classifications (Boughorbel et al., 2017). Depending on
the methods, this resulted in a higher precision or a higher detection
rate and more or less balance between both metrics. In practice, the
detection threshold needs to be set according to the context and the
motivation for mowing events detection.



54 Mowing detection with Sentinel-1

2.6.4 Potential and Prospects

The Sentinel-1 coherence mowing detection method developed in this
study allows to detect most summer mowings in hay meadows. The
combined use of Sentinel-1 A and B, ensuring a 6-day revisit cycle and
therefore a 6-day baseline for the coherence, was a great asset. With a
single satellite, providing images on a 12-day basis, more events would
be omitted since the coherence would not increase as much after a
mowing event, due to the regrowth of vegetation between subsequent
acquisitions. This would significantly lower the detection rate, espe-
cially in the spring. On the other hand, it is likely that 3 satellites,
combined for a 4-day revisit time, would lead to better results.

However, even with both satellites, considering the diversity of
grassland types and management dynamics, the mowing detection
lacks precision and some mowing events cannot be detected based only
on Sentinel-1 coherence. To improve precision, it would be a great asset
to differentiate grazed parcels from hay meadows beforehand, as most
false detections were made in pastures. Previous studies have discrim-
inated pastures from hay meadows, based, for example, on backscat-
tering coefficients (Curnel, 2015) or vegetation indices derived from
optical data (Gómez Giménez et al., 2017).

In the prospects of grassland use intensity assessment and habitat
monitoring, it is critical to be able to detect early spring mowing events
with more certainty, to differentiate more intensively managed grass-
lands from extensive grasslands with a higher ecological value. Per-
formances could probably be improved by combining the Sentinel-1
coherence mowing detection, calibrated to obtain high precision, with
an optical method based on the detection of decreases in NDVI (Estel
et al., 2018; Kolecka et al., 2018).

2.7 Conclusions

In this chapter, the full potential of Sentinel-1 for detecting mowing
events was assessed, by estimating the accuracy of mowing detection,
identifying the main limitations and confounding factors, and finally
evaluating the potential for differentiating grassland mowing dynam-
ics. Using timely field data on the state and the use of 426 grassland
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parcels, four Sentinel-1-based mowing detection methods were evalu-
ated with various parameter configurations on diverse grasslands. The
methods were based on two main observations of SAR signal response
to a mowing event, namely the occurrence of a backscattering signal
rise and decrease and an interferometric coherence jump. While the
methods based on backscattering showed very low performances, the
coherence jump detection methods allowed to accurately detect a ma-
jority of mowing events in hay meadows. However, due to the omission
of a significant amount of spring mowings and many false detections
in pastures, only 56% of grasslands in a fully independent data set was
correctly identified in terms of mowing dynamics. The size, shape to-
pography, and agricultural practices explain some of the errors, but a
part remains uncertain and must be due to other signal interactions.
The results of this study confirm that it is feasible to detect mowing
events based on coherence jumps. Performances could probably be fur-
ther enhanced by discriminating pastures beforehand and combining
Sentinel-1 and Sentinel-2 data. However, a compromise will always
have to be made between detection rate and precision and the detection
threshold needs to be set accordingly, depending on the context and
the purpose of mowing detection.
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Abstract
Precise information on mowing dynamics is essential to under-
stand the impact of Management practices on grassland ecosys-
tem services but is rarely available at large scale and with suffi-
cient temporal and spatial resolution. In the previous chapter,
the potential and limitations of mowing detection with C-band
microwave data were assessed. In this chapter, we build on pre-
vious findings and present a new method combining the regular
observations of S1 and the better accuracy of S2 grassland mow-
ing detection algorithms. This multi-source approach for grass-
land monitoring was assessed over large areas and in various con-
texts. The method was first validated in six European countries,
based on Planet image interpretation. Its performances and sen-
sitivity were then thoroughly assessed in an independent study
area using a more precise and complete reference dataset based
on the intensive field campaign carried out in Wallonia. Results
showed the robustness of the method across all study areas and
different types of grasslands. The method reached an F1-score
of 79% for detecting mowing events on hay meadows. Further-
more, the detection of mowing events along the growing season
allows to classify mowing dynamics with an overall accuracy of
69%. This is promising for differentiating grasslands in terms of
management practices. The method could therefore be used for
large-scale grassland monitoring to support agri-environmental
schemes in Europe.
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3.1 Introduction

Precise information on mowing dynamics is essential to understand
the impact of management practices on grassland ecosystem services.
However, such data are rarely available on a broad scale and with suf-
ficient temporal and spatial resolution. Therefore, automated mowing
detection based on remote sensing can be a great asset.

In the previous chapter, the potential and limitations of automated
grassland mowing detection based on Sentinel-1 data were evaluated.
The results showed that mowing events could be detected, based on
jumps in interferometric coherence time series. Many events were how-
ever omitted, especially in the spring. Moreover, the precision was very
low, mainly due to false detections in pastures. Grazing was also shown
to be a confounding factor for mowing detection in other studies (Grif-
fiths et al., 2020).

Previous studies have shown that mowing events can be detected
through drops in vegetation index time series derived from optical
images (Estel et al., 2018; Kolecka et al., 2018; Griffiths et al., 2020;
Schwieder et al., 2022; Gómez Giménez et al., 2017). The main draw-
back of mowing detection with optical remote sensing is the irregular-
ity of the time series in cloudy regions, causing omissions of mowing
events.

In this chapter, we present a new method combining the complete-
ness of S1 and the higher accuracy of S2 in a multi-source grassland
mowing detection method. The method was developed as a module of
an open-source toolbox, in the framework of the ESA-funded project
Sentinels for Common Agricultural Policy (Sen4CAP), to facilitate the
compliance assessment of several CAP subsidy schemes or support
measures. The development and calibration of the method are not dis-
cussed extensively in this thesis.

The objective is to introduce the operational Sen4CAP grassland
mowing detection method, evaluate its performance, and assess the
potential of this multi-source approach for grassland monitoring over
large areas. The method was first validated in the context of the
Sen4CAP project in the six countries where it was developed. This val-
idation was based on high-resolution image interpretation to rapidly
build a large reference dataset. The method performances were then
thoroughly assessed in the study area in Wallonia, using more precise
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and complete reference data collected during the intensive field cam-
paign. In addition, the grassland mowing detection by S1 was deeper
investigated, more specifically regarding the impact of soil moisture on
InSAR coherence and on the subsequent mowing detections, based on
hourly precipitation data.

3.2 Method

The Sen4CAP mowing detection method consists of two independent
object-based change detection algorithms based on S1 and S2 time se-
ries. Recent studies were considered as guidelines for feature and
algorithm selection. The method was developed, calibrated, and re-
fined in six pilot countries with varying climates and agricultural prac-
tices, namely Spain (ES), the Czech Republic (CZ), Italy (IT), Lithuania
(LT), the Netherlands (NL), and Romania (RO). S2 mowing detection
was tested with normalized difference vegetation index (NDVI), leaf
area index (LAI), and fraction of absorbed photosynthetically active
radiation time series (fAPAR). S1 mowing detection was tested with
backscattering and coherence in both VV and VH polarization. The
available mowing date information in the respective LPIS data sets of
the pilot countries was used as a reference for the development, com-
parison, and calibration of the detection algorithms. The resulting op-
timal combination of S1 and S2 features was S2 NDVI and S1 VH co-
herence time series.

In this chapter, we describe and validate the operational grass-
land mowing detection method, available in the Sen4CAP toolbox v3.0
(Bontemps et al., 2020).

3.2.1 Satellite image processing

From S1, all IW L1C (Single Look Complex) images of the season, from
S1 A and B satellites, in VH polarization, from ascending and descend-
ing passes intersecting the regions of interest, are downloaded. The
SNAP S1-toolbox (ESA, v6.0) is used to process the images. The pro-
cessing chain to obtain 6-day interferometric coherence is similar to the
one described in section 2.3.2, except the averaging window size is 5 ×
20 (in azimuth × range) and the final resampled and ground projected
images have a spatial resolution of 20 m×20 m.
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From S2, all available top-of-atmosphere L1C images of the season,
intersecting the regions of interest, are downloaded. Atmospheric cor-
rection and cloud detection are performed using the MACCS ATCOR
Joint Algorithm (MAJA). The multi-temporal cloud detection method
implemented in MAJA allows to produce a more consistent and ac-
curate cloud and shadow mask compared to the one obtained by the
Sen2COR algorithm used by ESA (Hagolle et al., 2010; Baetens et al.,
2019). The resulting L2A images and validity masks are then used
to produce cloud-masked surface reflectance time series. Only images
with less than 90% cloud cover are used. The NDVI is then calculated
using the red (B4) and narrow NIR (B8A) bands (Equation 3.1).

NDV I =
B8A−B4
B8A+B4

(3.1)

The obtained features are then averaged per parcel to build S1 co-
herence time series and S2 NDVI time series. A "no-touch" pixel sam-
pling approach was applied, taking into account only pixels that are
completely inside the parcel boundaries. This allows to limit border
effects while guaranteeing a sufficient number of pixels per parcel to
mitigate the speckle of the SAR imagery.

3.2.2 Mowing detection algorithms

The grassland mowing detection method is object-based and applied
independently on each parcel. Two separate change detection algo-
rithms are applied for S1 and S2 time series. Results are merged into
a single output for each parcel, combining detections based on a relia-
bility indicator.

Sentinel-1 algorithm

The interferometric coherence is expected to increase after a mowing
event because of the shorter vegetation (cf. section ??). Therefore,
the S1 algorithm aims at detecting significant increases in coherence
time series. Due to the growth of the vegetation, the coherence is ex-
pected to gradually decrease before a mowing event (Monti-Guarnieri
et al., 2020; Morishita and Hanssen, 2014; Zalite et al., 2016). There-
fore, each value coh(t), extracted at time t, is compared to the value
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coh_f it(t − 1), predicted at time t − 1 by linear fit of the six previous
values [coh(t−6), ..., coh(t−1)]. This allows to consider a potential slope
in the coherence profile and detect sudden increases, compared to the
previous signal trend. The detection is based on a Constant False Alarm
Rate (CFAR) criterion (Equation 3.2).

coh(t) > coh_f it(t − 1) + kσ (3.2)

The CFAR adaptive threshold (kσ ) takes into account the standard
deviation (σ ) of the residual fitting errors, which are assumed to follow
a Gaussian distribution in absence of a mowing event. The parameter
k is fixed for a given probability of false alarm (PFA).

Sentinel-2 algorithm

The S2-based algorithm aims to detect significant decreases in NDVI
time series while taking into account the irregular observation fre-
quency due to cloud cover. Each observation NDV IS2(t), at time t, is
compared with the last available cloud-free observation NDV IS2(tcf ).
The difference between NDV IS2(t) and NDV IS2(tcf ) needs to be larger
than a given threshold (Equation 3.3).

NDV IS2(t) < NDV IS2(tcf )− thNDV I (3.3)

where thNDV I is the fixed detection threshold.
To guarantee a minimum temporal precision despite the large gaps

that can occur due to cloud cover, a maximum detection interval ∆tmax

is fixed. If an event is detected in the interval [tcf , t], the actual mowing
is expected to have occurred no more than ∆tmax days before the low
NDVI value at time t. If the time t − tcf exceeds ∆tmax, the detection
interval in the output is then defined as [t −∆tmax, t] instead. Table 3.1
shows the values of the detection thresholds and temporal parameters
that were defined for the six pilot countries of the Sen4CAP project.

Figure 3.1 illustrates the detection of mowing events based on S2
NDVI and S1 VH coherence separately, on a grassland parcel in the
Netherlands.

The confidence levels of S1 and S2 detections are estimated through
a normalization function (Equation 3.4).
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Table 3.1: Parameters for the S1 and S2 mowing detection algorithm
and their calibrated values for the Northern (NL, LT, CZ) and Southern
(IT, ES, RO) pilot countries of the Sen4CAP demonstration.

Parameter Symbol North South
Probability of False Alarm (S1) PFA 3.0× 10−7

NDVI absolute decreasing threshold (S2) thNDV I 0.12 0.15
Minimum time between two detections ∆tmin 28 days
Maximum detection interval (S2) ∆tmax 60 days

f (x;min,max) = max − (max −min)× e−x (3.4)

Where x is the difference coh(t)− coh_f it(t − 1) and NDV IS2(tcf ) −
NDV IS2(t) − thNDV I for S1 and S2 respectively. The limits [min,max]
are set to fit the confidence levels between separate range intervals
([0,0.5] for S1 and [0.5,1] for S2).

The confidence levels of overlapping S1 and S2 detections are then
trivially merged. The four most confident detections, with a minimum
interval ∆tmin between tstart(1) and tend(2) of consecutive detections,
are retained. For each retained detection of each parcel, the time inter-
val ([tstart , tend]), the detection source (S1, S2, or S1+S2), and the confi-
dence level are provided as output.

3.2.3 Study areas and reference data

This chapter presents the validation of the grassland mowing products
obtained in the six pilot countries (ES, CZ, IT, LT, NL, RO) where the
method was calibrated and a second independent validation based on
the ground truth data collected in Wallonia (cf. section 2.3.1).

Planet image interpretation

The validation of the mowing detection method in the six pilot coun-
tries was based on Planet image interpretation to obtain dates of
biomass removal on a large set of grassland parcels.

For each country, a sample of about 100 to 200 parcels was ran-
domly selected from the national LPIS datasets to be visually inter-
preted. The random selection was stratified in order to be statisti-
cally representative of national grassland parcels distribution in terms
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Figure 3.1: Detection of mowing events on a grassland parcel in the
Netherlands, based on S1 VH coherence and S2 NDVI and illustration
of the validation from Planet image interpretation.

of management (e.g. pastures and meadows, permanent and tempo-
rary) and vegetation type (e.g. Alfalfa, clover, presence of orchids) with
a minimum of five parcels per class. An exception to this rule was
made in Castilla y Leon (ES) because the most abundant class (82%)
was ’grassland pastures’, which are mainly managed by grazing and
not mowing. The fraction of mown grassland parcels in the Spanish
sample was increased to 40% to include enough mowing events for
validation. The selected samples, forming a total set of 803 grassland
parcels across the six countries, are described in Figure 3.2 and shown
in Figure 3.3.

The reference mowing dates were then obtained through visual in-
terpretation of daily true-color Planet images (average resolution: 3.5
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Figure 3.2: Distribution of parcels per grassland type selected for vali-
dation in each pilot country.

m). For each parcel, biomass removal intervals were identified, cor-
responding to the time interval between the last available cloud-free
Planet image on which the grass seems to be tall (start date) and the
first available cloud-free Planet image on which the grass seems to be
short (end-date) (Figures 3.1 and 3.4 (a)). It is important to note that no
clear distinction could be made between biomass removal by mechani-
cal mowing or by intensive grazing.

Due to cloud cover, the length of the removal intervals varies, with
a minimum of one day. A temporal buffer of three days was applied
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Figure 3.3: Overview of the geographical distribution of parcels se-
lected in the six Sen4CAP pilot countries to validate the grassland
mowing detection method with Planet image interpretation.

to the removal intervals to build the truth intervals for validation to
compensate for the uncertainties inherent to the image interpretation.
A longer buffer (10 days) was applied after the removal intervals to take
into account potential delayed detections due to grass left on the field
to dry (Figure 3.4 (a)).

Independent field campaign

The more precise and complete reference dataset collected during in
situ the field campaign across Wallonia in 2019 (cf. section 2.3.1) was
used for a fully independent performance assessment and to perform
a sensitivity analysis of the Sen4CAP mowing detection method. This
dataset includes a total of 4260 observation intervals (10 intervals for
each of the 426 parcels) including grazing, mowing, and no activity
intervals (Figure 3.4 (b-d)).
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Figure 3.4: Schematic representation of the different truth intervals
defined by Planet image interpretation (a) and from the observations
made during the field campaign on 426 grassland parcels in Wallonia
(b-d).

3.2.4 Validation

The performances of the mowing detection method were evaluated as
in chapter 2, by crossing the reference datasets with detections at the
temporal interval level to count true positives (TP), true negatives (TN)
false positives (FP) and false negatives (FN) and compute the OA, the
detection rate and the precision (Equations 2.10 and 2.11). As noted in
the previous chapter, given the relative rarity of mowing events, the
overall accuracy is dominated by the numerous TN and therefore yields
an overoptimistic summary of the performance of mowing detection.
In addition, the F1-score was computed as a combination of detection
rate and the precision (Equation 3.5).

F1score = 2×
precision× detection rate
precision+ detection rate

(3.5)

3.2.5 Topsoil moisture as a potential confounding factor

In addition to the Sen4CAP mowing detection method validation, the
impact of topsoil moisture on InSAR coherence was assessed as a po-
tential confounding factor for the S1 mowing detection algorithm. This
was done by estimating topsoil moisture at each S1 acquisition date and
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performing statistical hypothesis and separability tests on coherence
values obtained in different topsoil moisture classes.

The antecedent precipitation index (API) (Linsley et al., 1949) was
used as a proxy for topsoil moisture. The API is a weighted summation
of daily precipitation amounts. Hourly precipitation measurements
were obtained from 11 weather stations of the Pameseb network of the
Walloon Agronomic Research Center (CRA-W). Based on these mea-
surements, the API at a time t was calculated as follows (Equation 3.6).

AP It = r ×AP It−∆t + P∆t (3.6)

where r is a recession coefficient representing the rates of drainage
and evapotranspiration processes. The commonly used value r = 0.84
was applied (Zhao et al., 2019). P∆t is the cumulative precipitation over
the time ∆t, fixed here at one day.

Coherence time series were extracted for all permanent grassland
parcels of the LPIS in a 5 km radius around each station, resulting
in a total of 6966 parcels. The soil in the parcels around a station at
time t was considered "wet" if AP It was in the upper quartile (0.75)
of the station values and "dry" if it was in the lower quartile (0.25).
Each six-day interferometric pair of dates at each station could thereby
be characterized as "wet-wet", "dry-dry", "dry-wet" or "other" if it did
not correspond to any of these three classes. The coherence values of
each class were then compared through statistical hypothesis tests and
separability measures. The tests were performed on S1 data from the
descending and ascending pass separately, as the different acquisition
times - respectively around 6 a.m. and 6 p.m. - could alter the impact
of topsoil moisture on the signal (e.g. dew in the morning).

3.3 Results

3.3.1 Large extent validation based on Planet imagery

The main results of the validation in the six pilot countries of the
Sen4CAP project are shown in Figure 3.5. These results show statis-
tically significant differences in precision and detection rates among
the countries. The differences could be related to the type of grassland
parcels used for validation (cf. Figure 3.2) as well as to the climate and
landscape characteristics of each country.
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Figure 3.5: Precision, detection rate, and F1-score of the Sen4CAP
mowing detection method estimated based on a visually interpreted
reference dataset in six countries: Spain (ES), Czech Republic (CZ),
Italy (IT), Lithuania (LT), the Netherlands (NL) and Romania (RO). The
confidence interval of each metric is indicated in orange.

The best F1-score (76%) is achieved in the Netherlands, where the
precision and the detection rates are equal. Italy and Lithuania have
the largest detection rate (89% and 79%), but are penalized by a lower
precision.

The highest detection rates occur in regions with a large number of
temporary grasslands in the validation datasets. This can be explained
by the larger biomass removal in the usually more productive tempo-
rary grasslands, but we did not have enough data to rigorously test this
hypothesis in the scope of this study.

The highest precision is obtained in Czech Republic and the Nether-
lands. These two Northern countries also show the most balanced and
confident performances. On the other hand, the prevalence of graz-
ing practices could explain the lower precision obtained in Spain and
Lithuania (54% and 49% respectively).

In Spain and Romania, the drying of grass in the summer also needs
to be considered as a confounding factor for Planet image interpre-
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tation, as well as for the mowing detection algorithms, especially if
grasslands are managed through mixed grazing and mowing practices.
In Italy, although present, drought appears to have less impact on the
mowing detection performances. This can be explained by the preva-
lence of temporary grasslands, which are generally mown (not grazed)
earlier in the season and therefore less affected by drought. The South-
ern countries (RO, ES, IT) are all characterized by a larger confidence
interval, compared to the Northern countries (CZ, NL, LT). Additional
analysis on the parcel size revealed no significant effect on the mow-
ing detection performances across the pilot countries (Bontemps et al.,
2021).

3.3.2 Field-based validation and performance assessment

In the 426 permanent grasslands observed during the field campaign
in Wallonia, the Sen4CAP mowing detection method reached an overall
accuracy of 97% and an F1-score of 58%. This independent validation
showed a high detection rate of 83%, but the precision was relatively low,
with only 44% of the detection intervals being true positives (i.e. actual
mowing events).

A more detailed analysis of the false positives reveals potential
sources of error (Table 3.2). First of all, almost half of the false pos-
itives overlapped a grazing interval in the reference dataset. In the
remaining cases, no activity was observed at the time of the detection.
When discarding all parcels where grazing was observed, and taking
into account exclusively the mown parcels, precision increases to 73%,
as a large part of false positives are removed. The detection rate is also
slightly higher (85%). This results in an F1-score of 79% and an OA of
99%.

In terms of detection sources, 54% of the false positives were based
on S1 only, the remaining being almost equally distributed between S2
and S1+S2 (24% and 22% respectively).

Finally, a majority (64%) of false positives occurred after the 20th of
June.

Further analysis of mowing detection sources shows the comple-
mentarity of S1 and S2. Figure 3.6 (a) shows the precision and detection
rate obtained using S2 and S1 algorithms alone, compared to the re-
sults achieved by the combined algorithms. The precision is highest
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Table 3.2: Detailed analysis of false positives, highlighting potential
sources of error for the Sen4CAP mowing detection using S1 and S2.
Number (n) and fraction (%) of false positives per (i) observed activity
at the time of detection, (ii) detection source of the detection, and (iii)
detection before or after June 20.

FALSE POSITIVES (n=268, commission error = 56%)
Field observation n %
no activity 139 52%
grazing 129 48%
Detection source
S1 145 54%
S2 64 24%
S1+S2 59 22%
Timing of the detection
early event (≤ June 20) 91 34%
late event (> June 20) 177 66%

when using S2 alone (59%), compared to 45% with S1 alone and 44%
with both. The detection rate, however, is largely improved, up to 83%
with combined detections, compared to 69% for each algorithm. Figure
3.6 (b) shows the distribution of true and false positives per detection
source when applying the combined algorithms. 80% of detections by
S1 alone are false positives. The number of detections by S2 alone is
relatively low, with a small majority of false positives. The most cer-
tain detections are those confirmed by both satellites (72% TP for S1
+ S2). Most true positives were detected by S1 and S2 (64%), while
17% were detected by S1 alone, and 19% by S2 alone. These balanced
results highlight the complementarity of the two satellites.

The confidence level computed for each detection provides valu-
able information about their certainty. Figure 3.7 shows the precision
and the number of detections for different confidence level intervals.
Most detections have a confidence level between 0.4 and 0.6 and be-
tween 0.8 and 0.9. Under a confidence level of 0.4, less than 10% of
the detections are true positives. Above a confidence level of 0.2, the
precision is strongly correlated with the confidence level (R2 = 0.94).

Finally, the mowing detection performances were also analyzed per
parcel to assess the ability of the method to identify different types of
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Figure 3.6: (a) Mowing detection performances (precision and detection
rate) of algorithms based on S1 and S2 time series alone compared to
the combined approach. (b) Distribution of true and false positives
per detection source (S1, S2, or S1+S2) when applying the merged ap-
proach.

mowing practice observed during the field campaign in terms of fre-
quency and precocity of mowing events (ME) ("no ME", "1 early ME",
"1 late ME" and "2 ME"). Figure 3.8 (a) shows the results considering
all detections. As expected based on previous analyses, most false pos-
itives occur in parcels that were not mown during the study period, re-
sulting in a low fraction (32%) of correctly identified "no ME" parcels.
From the parcels with 1 early ME and 1 late ME, respectively 58% and
76% are identified correctly. Most errors in these classes are due to an
additional false positive. In the "2 ME" class, 76% of the parcels are
identified correctly and almost all errors are due to the omission of the
first (early) ME.

The same evaluation was performed after filtering out detections
with confidence levels below 0.5 to reduce the number of false pos-
itives (Figure 3.8 (b)). This significantly improves the results on "no
ME" parcels, as more than twice as many are then identified correctly
(69%). Although more ME are omitted, performances are also slightly
improved for parcels with 1 ME (from 58% to 60% for early ME and
from 78% to 83% for late ME). Performances on parcels with 2 ME,
however, are much lower (24%) as the first ME is often omitted. Given
that most omissions appear to occur for early ME, which are crucial
for grassland use intensity assessment, the minimum confidence level
could be adapted to the time of the season.
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Figure 3.7: Precision and number of detections per given confidence
level.

A third test was performed considering early detections with a min-
imum confidence level of 0.4 and late detections with a minimum of 0.5
(Figure 3.8 (c)). This improves the results in parcels without ME (67%)
while maintaining a reasonable detection rate of early events (74%) in
parcels with "2 ME". With this adaptive minimum confidence level,
69% of all parcels are identified correctly in terms of mowing practice,
compared to 51% when taking all detections into account.

3.3.3 Algorithm sensitivity

In order to assess the sensitivity of the algorithm, it was tested with dif-
ferent parameter configurations in the Walloon study area. The param-
eter values defined in Table 3.1 for the Northern countries were used
as a baseline. We compared the detection rates and precisions obtained
when increasing or decreasing these parameter values.

The impact of different values of PFA and thNDV I on detection rate
and precision is shown in Figures 3.9 (a) and (b). When increasing the
PFA for S1 mowing detection from 3× 10−7 to 3× 10−6 or 3× 10−5, the
loss in precision is greater than the gain in detection rate, reducing the
overall performance. When decreasing the PFA to 3 × 10−8, the preci-
sion is slightly enhanced, while the detection rate is a bit lower. When
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Figure 3.8: Mowing detection evaluation per type of observed mowing
practice, considering (a) all detections, (b) detections associated with a
confidence level above 0.5, and (c) using an adaptive minimum confi-
dence level for early and late detections. For each option, the fraction
of correctly estimated parcels is given, along with the types of errors
that occur (false positives, omissions, or both).

changing the thNDV I for S2 detection to 0.10, 0.14 or 0.20, the loss is
systematically more important than the gain in precision or detection
rate. Overall, the changes in performances are relatively small in the
range of tested threshold values, showing a small sensitivity to the al-
gorithm parameter values.

The analysis of the temporal parameters ∆tmax and ∆tmin is shown
in Figure 3.10. With a maximum detection interval of 60 days, most
detection intervals don’t exceed 24 days (Figure 3.10 (a)), although the
region is relatively cloudy, meaning a ∆tmax of 60 days may be exces-
sively cautious. When ∆tmax is decreased to 18 days and thus reaches a
higher temporal precision, there is no loss in detection rate (Figure 3.10
(b)). However, at a ∆tmax of 12 days, some detections become false pos-
itives, since the true mowing event was observed earlier. This results
in a lower detection rate and lower precision. On the other hand, the
minimum time ∆tmin of 28 days between two consecutive detections
appears to be an adequate choice (Figure 3.10 (c)). Reducing ∆tmin (to
21 or 14 days) or increasing it (to 35 days) has an overall negative effect
on the detection accuracy.

These different results confirm that the standard set of parameter
values (Table 3.1) for the Northern European countries seems the most
appropriate.
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Figure 3.9: Sensitivity of the mowing detection algorithm calibration.
Impact of two threshold parameters: (a) probability of false alarm
(PFA) for S1 detection and (b) NDVI decreasing absolute threshold
(thNDV I ) on detection rate and precision, compared to the calibrated pa-
rameter values.

3.3.4 Impact of soil moisture on interferometric coherence

The distributions of S1 coherence values of grassland parcels in differ-
ent topsoil moisture classes ("wet-wet", "dry-dry", "dry-wet" and "oth-
ers") were compared to assess the impact of soil moisture on coherence
(Figure 3.11). Although the distributions of the four classes have signif-
icant overlaps, coherence values are slightly higher on average for the
"dry-dry" class than for the "wet-wet" or "dry-wet" classes. Coherence is
also slightly higher for the "wet-wet" class than for the "dry-wet" one.

The coherence distributions of each class were compared through
a statistical hypothesis test. The resulting p-values are given in Table
3.3, along with the histogram intersections and the absolute differences
between the averages (bias). The p-values are extremely low because of
the large sample sizes (nmin ≈ 11000) used to compute the averages,
which are indeed different from one class to another. The histogram
intersections are however high, showing very limited separability be-
tween the coherence values of the different topsoil moisture classes.
The smallest intersection (71%) is between "dry-dry" and "dry-wet".
These two classes also show the largest bias between their respective
average coherence values, with coherences higher by 0.06 for the "dry-
dry" class. As it is more diverse, the "others" class shows the least dif-
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Figure 3.10: (a) Distribution of true and false positives per detection
interval category ∆t. Impact of (b) maximum detection interval (∆tmax)
and of (c) minimum interval (∆tmin) between consecutive detections
on detection rate and precision, compared to the calibrated parameter
values.

ference and separability from the three extreme classes. Overall, these
results show that slightly higher coherence values can be expected on
grasslands during consecutive dry periods. Important precipitations,
resulting in "dry-wet" and "wet-wet" classes, cause slightly lower coher-
ence on average, due to signal decorrelation.
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Figure 3.11: Distribution of S1 coherence (VH ascending) values for
different topsoil moisture classes in grassland parcels.

Table 3.3: Comparison of S1 coherence (VH ascending) values distri-
butions in different soil moisture classes. In each cell, the table shows
the statistical T-test p-values (top), the histogram intersection (center),
and the bias (bottom) between classes.

COHE dry-dry dry-wet others
< 10−5 < 10−5 < 10−5

82% 81% 91%wet-wet
-0.03 0.02 -0.01

< 10−5 < 10−5

71% 86%dry-dry
-0.06 0.02

< 10−5

84%dry-wet
-0.03

3.4 Discussion

3.4.1 Complementarity of S1 and S2

Optical vegetation index time series have been used previously for de-
tecting mowing events, providing overall satisfying results (Griffiths
et al., 2020; Kolecka et al., 2018; Schwieder et al., 2022). These meth-
ods, however, rely on the availability of cloud-free images before and,
more importantly, after an event. Depending on the region of inter-
est, this condition cannot always be met. In the study area in Bel-
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gium, the average monthly cloud frequency (based on MODIS 1 km
resolution images from 2000 to 2014) in May, June and July, is as high
as 73%, 75%, and 70% of cloudy days, respectively (Wilson and Jetz,
2016). Such a persistent cover, which is common in northern Euro-
pean countries, strongly reduces the actual observation frequency of
S2. Griffiths et al. (2020) used the Harmonized Landsat Sentinel-2
(HLS) dataset (from 2016, before Sentinel-2B was launched) and com-
positing to build a regular NDVI time series and obtained promising
results. Their biggest drawback was, however, the significant number
of omitted mowing events. Schwieder et al. (2022) developed a simi-
lar method, based on HLS (with the complete Sentinel-2 constellation)
and detecting anomalies, compared to an idealized grassland phenol-
ogy curve. Their results on hay meadows (F1-score 58-67%) are com-
parable to those obtained in this study, on hay meadows and pastures,
when using S2 alone. Their detection method however included more
conservative detection rules and thresholds to avoid false detections
(e.g. due to unmasked clouds), gaining in precision, but omitting more
events. Shorter revisit cycles (e.g. daily acquisitions) would improve
detection performances to some extent. However, with 21 to 23 cloudy
days per month, the probability of having extended periods without a
clear image — and thereby omitting mowing events — remains high.

Therefore, SAR imagery represents a great asset for mowing detec-
tion in cloudy areas, as microwaves are transmitted through clouds.
Our results are consistent with previous studies, showing that mowing
events can be detected through jumps in InSAR coherence time series
(De Vroey et al., 2021; Voormansik et al., 2020; Tamm et al., 2016).
Detections by S1 are, however, less precise than those by S2. This was
confirmed by our analysis of the detection sources in the Walloon study
area. The SAR signal can be impacted by many factors outside the
reduction of biomass, such as soil and vegetation moisture. On the
descending pass, images are acquired in the early morning (around 6
a.m.). Since both passes are used to build S1 time series for detection,
the effect of morning dew on the SAR signal could be a possible ex-
planation for the lower performance. The signal decorrelation due to
increased soil moisture, thus preventing coherence to rise after a mow-
ing event, is a potential cause for omissions (section 3.3.4). Applying
a systematic bias correction would, however, require a cautious inves-
tigation because of the variability of the soil moisture impact. Overall,



3.4 Discussion 79

the complex interaction of SAR signal with objects and surfaces, and
the inherent speckle of SAR imagery, make it more challenging to in-
terpret.

Despite the challenges inherent to SAR-based methods, the combi-
nation of S1 and S2 detection algorithms in this multi-source method
significantly increased the detection rate. Some of the events that were
omitted by S2 due to cloud cover could be detected by S1. On the con-
trary, events that were omitted by S1 due to a change in soil moisture or
other confounding factors could be detected by S2 when a clear image
was available shortly after the event.

Moreover, the estimated confidence levels, based on the normaliza-
tion of the amplitude of the signal change and used to merge the S1 and
S2 detections, were shown to be well correlated to the precision of the
detection. They are consequently a good indicator of the probability of
occurrence of a mowing event and can be used to screen out detections
according to the final use, to be more or less conservative.

The complementarity of optical and radar imagery for mowing de-
tection was also recently confirmed by Lobert et al. (2021) with a deep-
learning approach. In their study, they compared different combina-
tions of S1, S2, and Landsat-8 features in a CNN. All combinations of
optical and SAR features outperformed exclusive uses of optical or SAR
features. NDVI and coherence were their fifth best performing combi-
nation, with a detection rate (recall) of 85% and precision of 79%. From
a fully independent validation, we obtained comparable results on hay
meadows in Wallonia, using similar input features in a versatile and
transparent rule-based change detection method.

Overall, recent studies on automated grassland mowing detection
seem to show coherent results and conclusions. Multi-source mowing
detection methods combining optical and SAR data should be further
investigated and developed.

3.4.2 Reference data and validation

Although previous studies showed the feasibility of mowing detection
through satellite remote sensing, they often lacked sufficient precise
and complete reference data to calibrate and validate their methods
(Reinermann et al., 2020). Information on mowing dates and practices
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is rarely readily available and collecting it in situ is extremely time-
consuming.

Image time series interpretation offers a cost-effective and less time-
consuming alternative for grassland mowing detection validation, as a
unique reference dataset or as a complement to smaller samples of re-
ported or observed mowing events (Griffiths et al., 2020; Schwieder
et al., 2022). In this study, the Planet image interpretation approach al-
lowed to rapidly gather a large reference dataset (n=803) to validate the
mowing detections in six countries throughout the whole season (April
to October 2019). However, the reliability of this reference dataset was
limited for several reasons. First, persistent cloud coverage prevented
the observation of some events in northern countries. Secondly, the
absence of the NIR band in the Planet Web Mapping Service available
for the Sen4CAP partners limited the certainty of observations due to
confusion with ploughing events and grassland droughts in the South-
ern countries. Finally, the varying radiometric and geometric precision
of Planet images, depending on the satellites that acquire the data, in-
creased the uncertainty of the interpretation.

Overall, there is a risk of non-independence between the reference
data and the classification results due to the similarity of criteria used
by the machine and by the image interpreters. This non-independence
could introduce a bias in the estimation of accuracy indices (Radoux
and Bogaert, 2020).

The second validation dataset acquired through an intensive field
campaign is much more complete, more accurate, and fully indepen-
dent of the classification rationale. This dataset allowed to estimate
the detection rate and the precision of the mowing detection method
with more certainty, to test its transferability and evaluate its poten-
tial for grassland use intensity assessment. While the results of the
Planet-based validation reflect the ability of the method to detect grass-
land biomass removal, regardless if by mowing or intensive grazing,
the field dataset of Wallonia allowed to validate the detection of ac-
tual mowing events (differentiating them from grazing). During the
field-based validation, mowing detections overlapping grazing inter-
vals were considered as false positives, which strongly reduced the
computed precision. Half of the false positives were confirmed as in-
tensive grazing events. Such detections would be considered as true
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positives in the Planet-based validation since there was no distinction
between mowing and grazing in the reference dataset.

In addition to — and depending on — the source and quality of
reference data, the performances of a mowing detection method can
be evaluated at different levels. In this study, we used a conservative
validation approach, which reflects the ability to exactly detect the oc-
currence and the timing of each mowing event and allows to compute
explicit metrics such as the precision, detection rate and F1-score (Lobert
et al., 2021; De Vroey et al., 2021; Schwieder et al., 2022). With such
an approach, a delayed or untimely detection is counted as a false neg-
ative and a false positive. Therefore, we performed an additional anal-
ysis per parcel to assess the ability of the method to identify different
types of mowing practice in terms of frequency and precocity of ME.
Another possible approach is to validate the frequency and exact tim-
ing of mowing events separately (Griffiths et al., 2020; Schwieder et al.,
2022). With this approach, a delayed (or untimely) detection is only
considered an error in terms of timing, since the mowing frequency
is accurate. In general, a combination of different levels of perfor-
mance evaluation provides the best and most complete estimation of a
method’s potential and limitations and allows a comparison of results
between studies.

3.4.3 Diversity of practices

Given the diversity of climates, landscapes, and grassland management
practices across Europe, it is challenging to develop a grassland mow-
ing detection method that is adapted to all regions. Part of the dissimi-
larities in mowing detection performances between the pilot countries
can indeed be explained by climate. While more mowing events are
omitted in Northern regions due to cloud cover, drought can cause false
detections and reduce the precision of the method in Southern regions.

The method accurately detects the removal of grass biomass and
works best on permanent grasslands managed as hay meadows. Most
studies on grassland mowing detection focus on permanent hay mead-
ows. However, from an operational point of view, we wanted to eval-
uate its performance in different types of grasslands because precise
information on land cover and land use is not always available. The
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various types of grasslands in the pilot countries, i.e. more or less inten-
sive, temporary or permanent, pastures or meadows, vegetation types,
etc. can also explain part of the discrepancies in the results.

The performances of the mowing detection method in different
grassland types could however not be assessed quantitatively, because
of the limited available information and the lack of uniformity between
the countries’ respective LPIS grassland categories. In many cases, the
categories remain subject to interpretation in terms of management
practice and intensity. For example, in Romania, a distinction is made
between meadows and pastures, while some grasslands are classified
more generally as permanent grasslands. In Italy and Spain, grasslands
include leguminous crops. In the Czech Republic, the Netherlands, and
Lithuania, a majority of parcels are classified as permanent grasslands,
which could be either mown or grazed, more or less intensively.

The field dataset collected in Wallonia was restricted in terms of
land cover to permanent grasslands dominated by gramineous plants
but included all types of agricultural land use, namely pastures, mead-
ows, and mixed practices. The regular field observations provided
more precise information about the management practices of each par-
cel. This allowed to analyze the mowing detection performances with
regard to management practices. In any case, the SEN4CAP algorithm
performed as expected. On one hand, under the same conditions, late
ME are better detected than early ME. Detection may be hindered be-
cause of the faster regrowth of grass in the spring, making it more chal-
lenging to spot the smaller decrease in biomass. Detecting early mow-
ing events is, however, crucial for grassland use intensity assessment.
Increasing the detection rate to capture the early ME however implies
to sacrifice some precision. On the other hand, grazing practices that
engender a large biomass removal in a short period (e.g. intensive ro-
tational grazing) are a major confounding factor. Without information
about the location of hay meadows, increasing the precision in areas
with intensive pasture, therefore, requires sacrificing the detection rate.

Other practices can potentially prevent the accurate detection of
mowing events by S1 and S2. For example, when cut grass is left on the
parcel to dry for a few days after a mowing event, it can influence the
signal and prevent an accurate change detection.

Finally, it must also be considered that the management practices
might not be homogeneous at the parcel level. Indeed, the full par-
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cel, as declared in the LPIS, is not always mown at the same time (e.g.
in the case of rotating intra-parcel management). In an object-based
approach, partial mowing of parcels risk being omitted as both mown
and unmown pixels contribute to the average parcel value, reducing
the apparent change in the time series. Pixel-based mowing detection
approaches using optical imagery have shown promising results (Grif-
fiths et al., 2020; Kolecka et al., 2018; Schwieder et al., 2022). Mon-
itoring grasslands at the pixel level allows to account for intra-parcel
variability in terms of practices, but on the other hand, it causes a salt-
and-pepper effect that is avoided in an object-based approach. Fur-
thermore, while optical pixel-based mowing detection is feasible, the
speckle effect inherent to SAR imagery would probably be a significant
issue for SAR pixel-based mowing detection. Furthermore, the combi-
nation of S1 and S2 mowing detection at the pixel level would be more
complex and would imply a resampling step. Another option would be
to use S1 and S2 data fusion methods simulating optical images (Gari-
oud et al., 2021; He and Yokoya, 2018) to work at the pixel level while
compensating for cloud cover.

Overall, the multi-source mowing detection method presented here
detects mowing events with relatively high accuracy and allows to con-
sistently differentiate various mowing practices and grassland use in-
tensity trends across different agroecological regions. It can be adapted
by changing the detection threshold parameters to optimize the bal-
ance between detection rate and precision, depending on the context and
objective of its use. Furthermore, the final result can be filtered, based
on the provided confidence level, as it is a good indicator of the reli-
ability of the detections. The mowing detection method of Sen4CAP
could thereby be used for large-scale grassland monitoring and even
mapping ecological habitat quality.

3.5 Conclusion

This study showed the full potential and limitations of Sen4CAP’s
multi-source mowing detection method based on S1 and S2 time se-
ries. The exhaustive reference datasets allowed to show the consistency
of the algorithm across seven European countries and various types of
grasslands, while highlighting the importance of reference data quality.
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Thanks to the complementary use of S1 and S2, the method reached a
detection rate of 85% and a precision of 73% (F1-score 79%) for detecting
mowing events on hay meadows. Furthermore, the detection of mow-
ing events along the growing season allows to classify mowing practices
with an overall accuracy of 69% and should allow to differentiate grass-
lands in terms of management intensity. Further efforts are still needed
to improve the accuracy of mowing detection and produce a more pre-
cise and thematically complete grassland classification. Nevertheless,
this adaptive and transparent mowing detection method could be im-
plemented in large-scale grassland monitoring. Combined with eco-
logical modeling tools, it could be used to support agro-environmental
schemes in Europe.



4

C
ha

p
te

r

Classification of grassland management
units using optical and microwave remote

sensing

This chapter is adapted from the following article:

De Vroey, M., Radoux, J. & Defourny, P. (2023). Classification of grass-
land management units using optical and microwave remote sens-
ing Remote Sensing, 15, 181. 10.3390/rs15010181

85

https://doi.org/10.3390/rs15010181


86 Management units classification

Abstract
Most European temperate grasslands are managed through mow-
ing, grazing, or a combination of both in relatively small man-
agement units. Grazing and mowing can however not be con-
sidered equivalent, since the first is gradual and selective and
the second is not. In this chapter, the aim is to differentiate
grasslands in terms of management practices and to retrieve ho-
mogeneous management units. Grasslands are classified hier-
archically, first through a pixel-based supervised classification
to differentiate grazed pastures from mown meadows and then
through an object-based mowing detection method to estimate
the management intensity. A large ground truth dataset was
used to calibrate and validate the method. A strict mask was cre-
ated to only consider pure grassland pixels without shadow. The
best classification was obtained with a random forest classifier
based on interpolated LAI times series, differentiating pastures
(grazed) from hay meadows (mown) with an overall accuracy of
88%. The classification is then combined with existing parcel
delineation to retrieve homogeneous management units, which
are used for object-based mowing detection based on Sentinel-1
coherence and Sentinel-2 NDVI. The mowing detection perfor-
mances were increased thanks to the grassland mask, the man-
agement unit delineation, and the exclusion of pastures, reach-
ing a precision of 93% and a detection rate of 82%. This hierar-
chical grassland classification approach allowed to differentiate
3 types of grasslands, namely pastures, and meadows (including
mixed practices) with an early first mowing event and with a late
first mowing event, with an overall accuracy of 79%. Grasslands
could be further differentiated by mowing frequency resulting in
5 final classes.
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4.1 Introduction

Most grasslands in temperate areas are managed through grazing, me-
chanical mowing, or a combination of both for forage production. The
stocking rate of grazing animals and the timing and frequency of mow-
ing events are major factors of grassland use intensity. The type and
intensity of management practices are commonly used as indicators to
classify grasslands, both from an agricultural and an ecological per-
spective (Dufrêne and Delescaille, 2005; Blüthgen et al., 2012; Tonn
et al., 2020).

In previous chapters, the focus was set on automated mowing de-
tection methods. These methods and most other mowing detection
methods described in the literature are object-based, relying on exist-
ing delineations of parcel boundaries or a preliminary segmentation
step (Tamm et al., 2016; Gómez Giménez et al., 2017; Voormansik et al.,
2020; De Vroey et al., 2021; Lobert et al., 2021; De Vroey et al., 2022).
This allows a spatial smoothing of the satellite signal and avoids the salt
and pepper effect that is inherent to pixel-based approaches (Kolecka
et al., 2018; Griffiths et al., 2020; Schwieder et al., 2022). One of the
major drawbacks of object-based approaches is however the potential
heterogeneity of practices inside declared or delineated parcels. When
only one part of a parcel is mown at a given time and the other is grazed
or mown at a different time, the signal change can be smoothed out,
causing omissions.

While many studies focused on mowing detection, few have inves-
tigated the possibility of monitoring grazing activities (Franke et al.,
2012; Gómez Giménez et al., 2017; Zheng et al., 2018) and even fewer
discriminate grazed and mown grasslands (Stumpf et al., 2020). Graz-
ing has been identified as a major confounding factor to mowing de-
tection in several studies, as many false mowing detections occur in
pastures (De Vroey et al., 2021; Griffiths et al., 2020) because they both
result in biomass removal. However, both from an agricultural and
an ecological point of view, grazing and mowing cannot be considered
equivalent management practices, since the first is selective (depend-
ing on the type of livestock) and usually gradual (except for intensive
rotational pasture systems), while the second is not. Moreover, on pas-
tures, the effects of e.g. trampling and manure input need to be consid-
ered.
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The objective of this study is to differentiate grasslands in terms
of management practices and to retrieve homogeneous management
units. Grasslands are differentiated in two hierarchical steps, combin-
ing a pixel-based and an object-based method to account for the vari-
ability of practices inside declared parcels.

The first step consists in differentiating two types of managed grass-
lands at the pixel level, namely (a) pastures, managed exclusively
through grazing, and (b) hay meadows, which are mown mechani-
cally and sometimes also grazed after a first mowing event (i.e. mixed
practices). This preliminary pixel-based classification approach tackles
two main issues in grassland monitoring; (i) the heterogeneity of prac-
tices inside declared parcels and (ii) grazing as a confounding factor for
mowing detection.

Then the object-based mowing detection method based on Sentinel-
1 and Sentinel-2 time series (Chapter 3) is applied to the management
units classified as hay meadows to further differentiate them and to
produce an exhaustive grassland management practice classification.

4.2 Materials

4.2.1 Satellite data

The grassland classification method developed in this chapter is based
on Sentinel-1 SAR and Sentinel-2 multi-spectral optical time series.

During the study period (April 9 to July 19, 2019), 17 scenes were
acquired by Sentinel-1 A and B in ascending pass and 18 in descend-
ing pass over the study area (Table 4.1). All scenes were processed from
Single Look Complex to Ground Range Detected γ0 backscattering am-
plitudes, using SNAP Sentinel-1 toolbox (ESA, v6.0). The processing
chain is shown in Figure 2.4.

Sentinel-2 A and B acquired 17 multi-spectral images with less than
80% cloud cover over the study area (tile 31UFR) during the study pe-
riod (April 9 to July 19, 2019). The top of atmosphere images (Level 1)
were converted to surface reflectances (Level 2) using Sen2Cor v2.10
for atmospheric correction. The Function of mask (Fmask) method
(Zhu and Woodcock, 2012) was used for cloud masking since it was
shown to be more accurate than the Sen2Cor cloud masking method
(Baetens et al., 2019).
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4.2.2 Field data

The reference data for training and validation was obtained from the
field campaign carried out across Wallonia in 2019 (Section 2.3.1).
Based on the observations, four classes of grasslands could be differ-
entiated: parcels where only grazing was observed (pastures, n=201),
grazed parcels with at least one mowing event (mixed practices, n=61)
and parcels with no grazing, but at least one mowing event before (hay
meadows (< 15/06), n=78) or after June 15th (extensive hay meadows
(≥ 15/06), n=76).

4.3 Method

Previous chapters have shown the great potential of combining
Sentinel-1 and Sentinel-2 for grassland mowing detection. Because of
the speckle inherent to SAR imagery, pixel-based approaches are chal-
lenging. Therefore methods using SAR data for mowing detection rely
on object-based approaches, averaging the signal per parcel.

However, grassland parcels, as declared by farmers in the LPIS
often include several management units that are not all exploited at
the same time or in the same way. To illustrate, figure 4.1 shows the
Sentinel-2 derived Leaf Area Index (LAI) time series of a grassland
parcel in our study area. The parcel’s average time series (in gray) is
relatively constant, while about half of the pixel time series (in green)
significantly decreases in the middle of June. This decrease in LAI is
due to a mowing event that occurred on one part of the declared par-
cel, while the other part (in yellow) was not mown, but grazed. The
two management units are also visible on the orthophoto (dashed red
line on figure 4.1).

This is an issue for object-based grassland monitoring methods such
as the one developed in Sen4CAP (Chapter 3). Therefore, we de-
velop a hierarchical grassland characterization approach combining a
pixel-based classification method and an object-based mowing detec-
tion method.

4.3.1 Pixel-based supervised classification

In this phase, the aim is to differentiate grasslands in terms of main
management practice (grazing or mowing) and retrieve homogeneously
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Figure 4.1: Leaf Area Index (LAI) time series (retrieved from Sentinel-
2) extracted per pixel and per parcel (average value) for a grassland
parcel (LPIS delineation in red on the orthophoto (SPW)). About half
of the parcel was mown (in green), while the other part was grazed (in
yellow).

managed parcels for further characterization. A pixel-based super-
vised classification method is used to discriminate exclusively grazed
pastures from mown hay meadows. The hay meadows class includes
mixed practices, which are alternatively mown and grazed. The field
observations are used to build a reference dataset to train and validate
a random forest classifier based on S2 and S1 time series.

Input features

Vegetation indices derived from specific spectral bands are commonly
used to emphasize certain properties of a vegetation cover, such as
biomass. We made the hypothesis that grasslands that are grazed
throughout the season should have relatively constant and stable vege-
tation index time series compared to grasslands with at least one mow-
ing event causing a sudden change in biomass (Griffiths et al., 2020;
Schwieder et al., 2022). To test the sensitivity of the classification to
the choice of vegetation index, three spectral vegetation indices and
one biophysical index derived from Sentinel-2 were considered for the
classification, namely NDVI, the red edge chlorophyll index (CIre), and
the leaf area index (LAI). The NDVI is computed as the normalized
difference between the near-infrared (band 8) and the red (band 4) re-
flectance (Equation 4.1) and is largely used for vegetation monitoring
and more specifically for grassland mapping and mowing detection
(Estel et al., 2018; Griffiths et al., 2020; Kolecka et al., 2018). The CIre is
related to the increase in reflectance between the red and near infra-red
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(i.e. the red edge) which is linked to biomass and chlorophyll content
of vegetation. It is calculated as the ratio between lower (band 5) and
upper (band 7) red edge reflectance (Equation 4.2). The CIre has been
used by Hardy et al. (2021) to retrieve grassland biomass.

NDV I =
Band 8−Band 4
Band 8 +Band 4

(4.1)

CIre =
Band 7
Band 5

− 1 (4.2)

The LAI was retrieved from Sentinel-2 reflectances through the
calibrated artificial neural network from the BV-NET tool (Weiss and
Baret, 1999), which is implemented in several ESA agricultural moni-
toring toolboxes (e.g. Sen2Agri, Sen4CAP).

To fill gaps due to cloud cover, the S2 vegetation index time series
were temporally interpolated using the Image Time Series Gap Filling
tool (Inglada, 2016) available in Orfeo Toolbox (Grizonnet et al., 2017).
As we intend to apply this classification to a larger area, the time se-
ries were temporally resampled to a 5-day grid, starting at the first
acquisition date, to overcome the multiple-day offset between adjacent
satellite tracks (Inglada et al., 2015). Both linear and cubic spline in-
terpolations were tested for the three indices. A total of 6 different S2
feature sets were thereby tested as input features for the random forest
classifier (Table 4.1).

Microwave data guarantee regular temporal coverage and can pro-
vide complementary information to optical data. The complementarity
of Sentinel-1 and Sentinel-2 has been shown in the context of grassland
mowing detection (Chapter 3). Therefore, we tested the classification
with microwave time series alone and in combination with Sentinel-2
data. Sentinel-1 γ0 backscattering amplitudes in VV and VH polariza-
tion and the ratio VV/VH were used as input features. Ascending and
descending pass acquisitions are made at different times of the day and
with different look angles. Since radar signal is strongly impacted by
water content, morning acquisitions are significantly affected by dew
and vegetation water content. Each polarization was therefore tested
in ascending (e.g. VVasc) and descending (e.g. VVdesc) pass separately.
A total of 6 different S1 feature sets were thereby tested as input for the
classification (Table 4.1).
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In addition, to assess the complementarity of S1 and S2 for differ-
entiating pastures and haymeadows, the best-performing S2 feature set
was tested in combination with the best-performing S1 feature as well
as the respective time series minimum (min), maximum (max), mean
(mean) and median (median) value and all statistics together (stats). A
total of 6 different S1 and S2 feature combinations were thereby tested.

Table 4.1: Sentinel-1 and 2 images acquired during the study period
(April 9 to July 19, 2019) and used to compute the classification fea-
tures.

Max(cloud) Pass/Tile n Features

S1 -
ascending 17 VVasc, VVdesc, VHasc,
descending 18 VHdesc, ratioasc, ratiodesc

S2 80% 31UFR 17
NDV Ilinear , NDV Ispline, CIrelinear ,
CIrespline, LAIlinear , LAIspline

Classification mask

The classification mask was built by combining and resampling a grass-
land mask and a shadow mask (Figure 4.2).

The grassland mask was obtained by reclassifying the 2 m resolu-
tion land cover product of LifeWatch (Radoux et al., 2023). Two grass-
land classes, namely "Monospecific grassland with graminoids" and
"Diversified grassland and shrubland" were taken into account. The
first are herbaceous covers that are not plowed in the ongoing year, in-
cluding permanent and temporary agricultural grasslands. The second
class includes herbaceous covers with higher ecological value, which
were defined by visual interpretation.

The shadow mask was based on a digital surface model (DSM) (Fig-
ure 4.3). The DSM of Wallonia is a product of the orthophoto acqui-
sition campaign of 2019 (Service Public de Wallonie, SPW). Shadow
projections were computed with 2m resolution based on the object
heights from the DSM and a sun azimuth and elevation of 146°and
38°respectively.

The combined grassland and shadow mask was resampled to 10m
to match Sentinel-2 pixels. A minimum rule was applied for the resam-
pling to take only pure pixels into account for the classification, with
100% grassland and no shadow.
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Figure 4.2: Classification mask flowchart. The mask was built using
the two grassland classes of the LifeWatch land cover (Radoux et al.,
2023) product and shadow projections based on a digital surface model
(DSM). The mask was resampled to 10m to match the pixel size of
Sentinel-2.

Figure 4.3: a. orthophoto (SPW) with tree shadows in a grassland, b.
Digital Surface Model (DSM, credits SPW) showing the elevation of the
top of objects above the ellipsoid and c. projected shadows based on
the DSM with given sun angles.

This mask allows to classify only pure grassland pixels and discard
pixels that are influenced by shadows or trees (Figure 4.4). The LAI
time series of masked pixels (in grey on Figure 4.4) consistently differ
from the valid pixels (in green on Figure 4.4). The majority of masked
pixels in this example are mostly influenced by shadow, which mani-
fests in lower LAI values throughout the season. A few masked pixels
are influenced mostly by trees and shrubs and have higher LAI values
compared to valid grassland pixels.
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Figure 4.4: Leaf Area Index (LAI) time series per valid (green) and
masked (grey) pixel for a grassland parcel (drawn in red on the or-
thophoto (SPW)).

Reference data

Based on the field observations, the observed parcels could be classified
into two categories: pastures, that were exclusively grazed during the
study period, and hay meadows on which at least one mowing event
was observed. The reference parcels were redrawn manually, based
on the LPIS, the grassland mask, and the Walloon orthophoto of 2019
(SPW) to obtain homogeneous reference parcels. When two or more
management units could be differentiated inside one declared parcel,
only the management units closest to the road was considered to be
matching the field observation.

During the redrawing, 5 parcels were discarded because they con-
tained no valid pixels due to shadow. In total, the reference dataset
contained 412 parcels (194 pastures and 218 hay meadows). They
were equally partitioned into a training and a validation dataset
through stratified random sampling. The training dataset was used to
train, calibrate and compare the classification methods through cross-
validation. The validation dataset was used to validate the final prod-
uct.

Cross-validation

Different classifiers were evaluated and compared through a 4-fold
cross-validation scheme. The training dataset was split into 4 subsets
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to keep a reasonable number of samples for the validation at each it-
eration. The classifiers were compared based on the mean overall ac-
curacy (OA) and its standard deviation. The best-performing classifier
was then trained using the whole training dataset. The resulting clas-
sification was then validated with the validation dataset. The user and
producer accuracy (UA and PA) of both classes were also computed in
addition to the overall accuracy.

Both during the cross-validation and the final validation, we ap-
plied a per-pixel wall-to-wall validation, assessing each pixel inside
each redrawn homogeneous reference parcel.

4.3.2 Object based mowing detection

The pixel-based classification obtained in the first step was used in
combination with the LPIS to obtain homogeneous parcels for an
object-based mowing detection using the Sen4CAP toolbox v3.0 (Bon-
temps et al., 2020).

Classification post processing

The following steps were applied to obtain homogeneous grassland
parcel polygons based on the classification and the LPIS.

1. The classification is filtered to remove isolated pixels: a pixel
value is changed to the other class if there are less than 4 pixels
of the same class in a 3× 3 window around the pixel.

2. All parcels declared as grasslands (temporary or permanent) are
extracted from the LPIS.

3. The LPIS grassland polygons are rasterized at 10 m resolution
using the parcel unique feature ID’s as raster values.

4. The binary grassland classification (pastures vs haymeadows) and
the rasterized LPIS are merged by adding them up.

5. The merged raster is polygonized

6. No-data polygons (i.e. covering masked areas) and Polygons with
an area smaller than 1000 m2 (10 pixels) are discarded
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Mowing detection method

The mowing detection method of Sen4CAP is based on two separate
algorithms detecting changes in Sentinel-2 and Sentinel-1 time series
extracted per parcel (Figure 4.5). The detailed method is described in
Chapter 3.

The S1 algorithm detects significant increases in VH interferometric
coherence compared to the linear fit of the six previous values. It is
based on a Constant False Alarm Rate (CFAR) adaptive threshold (3.0×
10−7 × σ ) that takes into account the standard deviation of the residual
fitting errors (σ ). The S2 algorithm detects a mowing event when the
decrease in NDVI between two consecutive cloud-free acquisitions is
larger than 0.12.

A confidence level is computed for each detection with lower values
for S1 than for S2, to compensate for the lower precision of S1 mowing
detection. For each parcel, the four most confident detections are re-
tained. For each detection, the detection interval is given along with
the confidence level and the data source (S1, S2, or both). The confi-
dence levels of the detections range from 0 to 1 and are well correlated
to the precision of the detections (De Vroey et al., 2022).

Figure 4.5: Illustration of the mowing detection algorithms of the
Sen4CAP toolbox, based on Sentinel-1 VH coherence and Sentinel-2
NDVI time series extracted on a permanent grassland parcel.
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Validation

The mowing detections were validated by crossing the detection in-
tervals with reference intervals to compute the precision and the
detection rate, like in previous chapters (cf. Section 2.4.3).

In addition, the accuracy of the differentiation between grasslands
with an early first mowing event and a late first mowing event was
validated through a confusion matrix and related quality metrics (UA,
PA, and OA).

The calibration reference dataset was used to define the optimal
confidence level thresholds and maximize the accuracy of the manage-
ment practice classification. The validation dataset was then used to
assess the result.

Here as well, to stay consistent with the previous classification val-
idation, a per-pixel wall-to-wall validation was applied.

4.4 Results

4.4.1 Classification algorithm calibration

The results of the random forest classifier calibration with the different
feature sets are shown in Tables 4.2-4.4. For each tested feature set, the
mean overall accuracy (mean OA) and its standard deviation (std OA)
over the 4 iterations of the cross-validation scheme are given.

Table 4.2 shows the calibration results for the Sentinel-2 feature
sets. The highest mean OA is 88.4% obtained with LAIspline and the
lowest is 85.7% obtained with NDV Ilinear . For all three indices, the cu-
bic spline interpolation seems to result in slightly better performances
than the linear interpolation. Given the standard deviation of the OA,
ranging from 2.6% to 5.3%, the differences in OA between feature sets
are however relatively low.

Table 4.3 shows the calibration results for the Sentinel-1 feature
sets. The highest mean OA are obtained with the VV polarization, both
in ascending (71.3%) and descending pass (68.5%). The lowest perfor-
mances are obtained with the VV/VH ratio in both passes (60.3% and
57.7% OA). The performances are overall significantly lower than with
the S2 features. Moreover, the standard deviations of the OA over the
iterations are higher (4.6% to 8.7%) showing a higher sensitivity of the
algorithm to the training dataset.
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Table 4.2: Classification algorithm calibration results with the
Sentinel-2 features. For each feature time series, the mean overall accu-
racy (mean OA) and its standard deviation (std OA) over the 4 iterations
of the cross-validation scheme are given.

S2 features mean OA std OA
LAIspline 88.4% 3.5%
CIrespline 87.3% 3.0%
LAIlinear 87.0% 3.7%
CIrelinear 86.9% 4.8%
NDV Ispline 86.3% 2.6%
NDV Ilinear 85.7% 5.3%

Table 4.3: Classification algorithm calibration results with the
Sentinel-1 features. For each feature time series, the mean overall accu-
racy (mean OA) and its standard deviation (std OA) over the 4 iterations
of the cross-validation scheme are given.

S1 features mean OA std OA
VVasc 71.3% 6.5%
VVdesc 68.5% 8.7%
VHdesc 67.3% 7.1%
VHasc 67.0% 4.7%
ratioasc 60.3% 4.6%
ratiodesc 57.7% 5.2%

Finally, table 4.4 shows the results of the combined S2 and S1 fea-
ture sets. The best-performing S2 feature time series (LAIspline) was
combined with the best-performing S1 feature (VVasc) to test if they
improve the classification performances. The last column (delta OA)
shows the change in mean OA compared to the use of S2 LAIspline time
series alone. The addition of the VVasc time series to LAIspline improves
the mean OA by 0.2%. The VVasc temporal statistics all result in a
small decrease in performance, from -0.1% with max(VVasc) to -1.1%
with min(VVasc). Overall, the differences in mean OA and std OA are
extremely small compared to those of S2 LAIspline alone.

The calibration results suggest that the three tested S2 vegetation
index time series allow differentiating pastures from other grasslands
with high accuracy. S1 γ0 backscattering amplitude time series how-
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Table 4.4: Classification algorithm calibration results with the com-
bined S1 and S2 features. For each feature time series, the mean overall
accuracy (mean OA) and its standard deviation (std OA) over the 4 it-
erations of the cross-validation scheme are given. The change in OA
compared to the use of S2 LAIspline (delta OA) is provided in the last
column.

S2 feature S1 features mean OA std OA delta OA
VVasc 88.6% 3.0% +0.2%
max(VVasc) 88.3% 3.6% -0.1%

LAIspline mean(VVasc) 88.2% 3.8% -0.3%
(OA=88.4%) stats(VVasc) 87.9% 3.0% -0.5%

median(VVasc) 87.6% 3.7% -0.9%
min(VVasc) 87.3% 4.1% -1.1%

ever performed lower. Moreover, the combination of S1 VVasc time
series or temporal statistics to S2 features did not significantly improve
the classification accuracy. For further analysis, we used the S2 LAI
time series with cubic spline interpolation since it provided the high-
est mean OA of the S2 features.

4.4.2 Classification validation and post-processing

Based on the results of the calibration, a new classifier (Random For-
est with MaxDepth 20) was trained using the whole training dataset
(n=208) and applied to the Sentinel-2 LAI time series with spline inter-
polation. The resulting classification is shown in Figure 4.6. Visually,
the classification seems relatively accurate in separating pastures from
haymeadows. In some parcels, there is however a salt-and-pepper effect
due to the pixel-based approach. The classification was quantitatively
validated using the remaining half of the reference dataset (Table 4.5).
The overall accuracy is 88%, which is very close to the OA obtained
during calibration (88.4%). The user and producer accuracies are also
high and well-balanced. The UA is 88% for both classes. The PA is 91%
for the pastures and 85% for the hay meadows.

To assess the added value of masking out pixels containing non-
grassland elements (e.g. trees or buildings) or shadows, the same clas-
sifier was applied using only the grassland parcels from the LPIS as a
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Figure 4.6: Pixel-based classification based on Sentinel-2 LAI time se-
ries differentiating pastures (exclusively grazed) from haymeadows (in-
cluding mixed practices).

classification mask. The OA of this classification is 87%, which is 1%
lower than when using high-resolution products (land cover and DSM)
to build a strict classification mask. In the examples in figure 4.7, the
classification without LC and shadow mask shows some commission
errors due to trees and shadows inside parcels, while these pixels are
masked out when using high-resolution products. The impact on the
OA is small since only a limited number of pixels (9%) are involved.

The obtained classification was post-processed to obtain homoge-
neous grassland management units with a single management prac-
tice. The removal of isolated pixels (cf. section 4.3.2) allowed to signif-
icantly reduce the salt and pepper effect (Figure 4.8 (b)). The filtered
raster was then crossed with the LPIS raster and polygonized. Poly-
gons smaller than 1000 m2 (10 pixels) were discarded to obtain clean
homogeneous grassland parcels for the object based mowing detection
(Figure 4.8 (c)). From the 20 796 grassland parcels declared in the LPIS
in the study area, 21% contained both pasture and haymeadow manage-
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Table 4.5: Validation of the pixel-based grassland classification differ-
entiating pastures (exclusively grazed) from hay meadows (including
mixed practices). Confusion matrix, user, producer, and overall accu-
racy (UA, PA, OA) between reference (ref) and predicted (pred) types.

ref\pred pastures hay meadows PA UA
pastures 24267 2516 91% 88%
hay meadows 3277 18843 85% 88%

0A 88%

Figure 4.7: Comparison of the classification obtained with (c) and with-
out (b) the land cover (LC) and shadow mask derived from very high-
resolution data.

ment units. Furthermore, 10% of the remaining parcels contain multi-
ple management units with the same practice (mowing or grazing). In
total, 31 230 homogeneous grassland parcels were delineated through
the classification in the study area.

4.4.3 Mowing detection calibration and validation

The object-based grassland mowing detection method of the
Sen4CAP toolbox was applied to the polygons that were classified
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Figure 4.8: Post-processing of the raw classification result (a). Filtered
to remove isolated pixels (b), polygonized and cleaned to remove small
parcels (c).

as hay meadows. The mowing detections between April 9th and July
19th were validated with the reference mowing intervals from the
calibration reference dataset. The obtained precision is 83% and the
detection rate is 73%.

Based on the date of the first mowing event (before or after June
15th) two classes of mown grasslands could be differentiated: early and
late. The confusion matrix and accuracy metrics computed with the
calibration reference dataset are given in Table 4.6. When all detections
are taken into account (minimum confidence level (min(conf )) = 0.0),
the OA is 61%. More than half of the late grasslands are incorrectly
classified as early (PA = 45%) and the UA of early grasslands is only
51%. This is due to false detections occurring before 15/06.

The confidence level was used to filter out early false positives.
With a min(conf ) of 0.5 for detections before 15/06 and 0.4 for de-
tections on or after 15/06, the PA of late grasslands and the UA of
early grasslands are significantly higher (74% and 62% resp.). There
are more omissions of early mowing events, reducing the PA of the
early grasslands (57%) and the UA of the late grasslands (75%). How-
ever, the performances are more balanced and the overall accuracy is
higher (67%). This adaptive min(conf ) was therefore retained for fur-
ther grassland characterization.

The Sen4CAP mowing detection on haymeadows (with the adaptive
min(conf )) was finally validated with the independent validation ref-
erence dataset. The estimated precision of the detections is 93% and
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Table 4.6: Calibration of the minimum mowing detection confidence
level (min(conf )). Confusion matrices crossing the first mowing event
classes (before (early) or after June 15th (late)) based on field observa-
tions (ref) and mowing detection (pred) for different min(conf ) of de-
tections. The User and producer accuracies (UA and PA) are provided
as well as the overall accuracy (OA).

min(conf ) = 0.0
ref\pred early late no activity PA
early 6994 1262 124 83%
late 6389 5545 326 45%
UA 51% 81% OA 61%

min(conf ) = 0.5 (< 15/06), 0.4 (≥ 15/06)
ref\pred early late no activity PA
early 4744 3033 603 57%
late 2871 9063 326 74%
UA 62% 75% OA 67%

the detection rate is 82%. According to the validation dataset, grass-
lands with late and early first mowing events were differentiated with
an overall accuracy of 75%.

4.4.4 Hierarchical classification of management practices

Based on the previous results we can expect that the classification
and mowing detection allow to hierarchically differentiate three grass-
land management practices with high accuracy. First, pastures are
differentiated from hay meadows through the classification. Then the
haymeadows can be further differentiated by the first mowing date (be-
fore or after June 15th). This hierarchical classification was validated
using the validation reference dataset (Table 4.7). The overall accuracy
is 79%. The UA and PA of the pasture class (resp. 89% and 91%) are
slightly improved compared to the raw pixel-based classification (Table
4.5), thanks to the post-processing. The UA and PA of the hay meadows
with early (resp. 65% and 54%) and late (resp. 70% and 72%) first
mowing are lower due to the confusion between both sub-classes.

In addition to the first mowing date, hay meadows can be dif-
ferentiated by the number of mowing events in the growing season.
hay meadows with an early first mowing (< 15/06) were further split
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Table 4.7: Validation of the hierarchical grassland typology. Confusion
matrices crossing the main management practice classes (pastures and
haymeadows) and the first mowing event classes (before (early) or after
June 15th (late)) based on field observations (ref) and on the classifica-
tion and mowing detection (pred). The User and producer accuracies
(UA and PA) are provided as well as the overall accuracy (OA).

pastures hay meadowsref\pred
early late no activity

PA

pastures 24224 492 1397 398 91%
hay meadows early 1523 4846 2588 64 54%

late 1587 2082 9255 0 72%
UA 89% 65% 70% OA 79%

into grasslands with less than 3 mowing events (n < 3) and 3 events
or more (n ≥ 3), while those with a late first mowing (≥ 15/06) were
further split into grasslands with only one mowing event (n = 1) and
2 events or more (n ≥ 2). These final grassland classes are mapped in
Figure 4.9.

4.5 Discussion

4.5.1 Classification and mowing detection performances

One of the main motivations behind the binary classification developed
in this chapter was to be able to exclude pastures for subsequent mow-
ing detection. In previous studies, grazed parcels were either not taken
into account (Lobert et al., 2021) or shown to be a confounding fac-
tor for mowing detection (Griffiths et al., 2020; De Vroey et al., 2022;
Schwieder et al., 2022). Precise information on the management prac-
tice of grasslands (i.e. mowing or grazing) is however rarely available.
Using a large field data set, we showed that this information could be
retrieved with high accuracy from Sentinel-2 vegetation index time se-
ries. This corroborates the hypothesis that grazed grasslands can be
distinguished from mown grasslands based on their relatively constant
temporal vegetation index profiles. The LAI had already been identi-
fied as a relevant variable to discriminate grazed and mown grasslands
in a study using three SPOT images (Dusseux et al., 2014).
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Figure 4.9: Grassland management practice classification. This hi-
erarchical classification is based on the classification differentiating
pastures from hay meadows and the mowing detection which further
differentiates the second class by the date of the first mowing and by
the number of mowing events (n).

In this study, the three tested vegetation indices derived from
Sentinel-2 (NDVI, CIre, and LAI) performed similarly and the random
forest classifiers all reached high overall accuracy. The performances
obtained with Sentinel-1 backscattering time series were much lower.
This can mainly be explained by the speckle effect inherent to SAR im-
agery that makes pixel-based analysis challenging without any spatial
or temporal smoothing. The addition of Sentinel-1 backscattering tem-
poral statistics to Sentinel-2 input features did not significantly im-
prove the classification results. Sentinel-1 was therefore discarded for
the classification step. The LAI time series with cubic spline interpola-
tion was retained for further analysis since it performed slightly better,
but the NDVI and the CIre could be used as well since the differences
in performances were not statistically significant.
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Another, related, aim of this pixel-based classification was to tackle
the issue of grassland parcel delineation, raised in previous chapters
and illustrated in Figure 4.1. In datasets such as the LPIS, parcel de-
lineations often include several management units that are managed
differently or at different times. The binary classification and the post-
processing including a filtering step to remove isolated pixels, allowed
to retrieve more homogeneously managed grassland patches at the
management units level.

Next to the heterogeneity of practices, delineated grassland parcels
can also include hedges, trees, and buildings with different spectral
signatures that can hinder the classification. Thanks to the 2 m reso-
lution land cover product that was used to build the grassland mask,
the 10 m pixels with less than 100% grassland cover could be masked
out. In optical remote sensing, shadows can also be a significant is-
sue. A shadow mask, estimated through a DSM was therefore added to
the grassland mask to further optimize the classification performances.
Due to the shadow mask, part of the grassland area (9%) was discarded
from the classification. The shadows are mostly located at the border
of the parcels. Under the assumption that it is managed identically
than the core area of the field, the lost grassland area could therefore
be recovered by dilating the final classification and masking it again
with the grassland mask alone. Overall, the availability of very high-
resolution products such as the land cover map, the orthophoto, and
the DSM was a great asset. Very high-resolution data and products
are increasingly available and could be used to build similar grassland
masks and reproduce the classification over larger areas.

The operational object-based mowing detection method of the
Sen4CAP toolbox was applied to the homogeneous patches of
hay meadows retrieved from the classification. According to the vali-
dation reference dataset, the method reached a precision of 93% and a
detection rate of 82%. These detection performances are much higher
than those obtained on the same grasslands without the preliminary
classification, especially in terms of precision. The precision was only
44% when the pastures were taken into account, due to false mowing
detections on grazed grasslands (Chapter 3). The exclusion of pastures
thanks to the classification was of course a major factor in this increased
performance. However, even compared to the precision we obtained in
Chapter 3 on hay meadows alone (73%), the present results show a sig-
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nificant improvement. This implies that the homogeneity of practices
and the absence of trees and shadows inside the reshaped grassland
parcels also contributed to the high mowing detection accuracy. In ad-
dition, the wall-to-wall pixel-based validation applied in this chapter
could also explain the higher performance metrics, since the size of the
parcels was not taken into account in the validation in the previous
chapter. The mowing detection performances obtained here are also
slightly higher than those obtained with a deep learning approach com-
bining Sentinel-1, Sentinel-2, and Landsat-8 in a convolutional neural
network with a maximum precision of 86% and a detectionrate of 82%
(Lobert et al., 2021).

While this method showed high performances on managed grass-
lands in our study area in the 2019 growing season, it should be fur-
ther tested in more extended areas and other seasons. For example,
the effects of drought on vegetation could significantly alter the vege-
tation index time series and thereby represent a challenge for classifi-
cation and mowing detection. Furthermore, there are some grasslands
that are neither mown, nor grazed. This study focused on managed
grasslands. Unmanaged grasslands were not included in the reference
dataset, as they are relatively rare in the study area. With a more com-
plete and diverse reference dataset, this approach could be tested with
more grassland management classes.

4.5.2 Grassland typology and perspectives

Previously, a few studies have considered the classification of grass-
land management practices and intensities through remote sensing,
showing promising results, but often lacking sufficient representative
ground truth data for validation. Using a supervised classification al-
gorithm on RapidEye imagery and a rule-based method to estimate the
first mowing date, Franke et al. (2012) classified four types of grass-
land (semi-natural, extensive, intensive and tilled) with high accuracy
on a small study area in Germany. The red edge vegetation index
derived from 5 RapidEye images was used by Gómez Giménez et al.
(2017) to retrieve a grassland use intensity index based on the indi-
vidual estimation of three factors (mowing, grazing, and fertilization
intensity). They obtained promising results for the estimation of graz-
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ing and mowing intensities but lacked actual ground truth data for
validation.

In this study, the hierarchical categorization based on the classifi-
cation and the mowing detection allowed to differentiate five types of
grassland based on the main management practice (grazing or mow-
ing), the date of the first mowing event, and the mowing frequency.
Thanks to the large and regionally representative field dataset, we
showed that three classes (pastures, meadows with an early first mow-
ing event, and a late first mowing event) could be differentiated with
79% overall accuracy. The mowing frequency estimation could not be
validated since the field campaign was only carried out between April
9th and July 19th, while mowing events occur until the end of October.
However, given the high detection accuracy obtained during the study
period, we make the hypothesis that the detections remain relatively
accurate throughout the season.

While hay meadows could be further differentiated through the
mowing detection, pastures were not further categorized. In a recent
study with a similar hierarchical categorization approach, pastures and
mown grasslands were differentiated based on biomass productivity
and both classes were then subdivided into 3 intensity levels based on
the exploitation (i.e. harvest) frequency (Stumpf et al., 2020). Both
the biomass productivity and the exploitation frequency were retrieved
through the detection of significant drops in Landsat NDVI time series,
considering the cumulative change and the count of drops respectively.
While this approach showed consistent results with regional statistics
and georeferenced land use data, the land use intensity levels of both
classes could not be validated due to a lack of ground truth data. More-
over, the timing of the first exploitation activity should be considered
in addition to the exploitation frequency as it is a major factor of grass-
land use intensity and has an influence on their ecological value (Hum-
bert et al., 2012; Johansen et al., 2019).

We showed that the retrieval of homogeneously managed grassland
patches and the identification of pastures greatly improved the preci-
sion of mowing detection and allowed to classify five grassland types
with high accuracy. These management units could further serve as a
baseline to retrieve other grassland characteristics and study their re-
lationships with biodiversity and ecology.
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This hierarchical approach, combining different spatial units and
image analysis methods, could be applied in broader contexts. More
grassland classes could be included in the initial pixel-based classifi-
cation (e.g. unmanaged grasslands, different types of vegetation cov-
ers ...) and then further differentiated through object-based time series
analyses. It should be further developed in different conditions to be
able to extend it over larger areas and transfer it to other seasons to
classify grasslands at the landscape level (Johansen et al., 2019; Sha-
han et al., 2017) and study inter-annual variations (Allan et al., 2014)
to contribute to ecological habitat monitoring.

4.6 Conclusions

Several studies have shown the great potential of remote sensing for
grassland monitoring. In particular, the most recent developments
in automated mowing detection methods allow estimating mowing
dates and frequencies with high accuracy. In this chapter, we built on
previous achievements to produce a thematically improved grassland
classification, differentiating five management classes. First, a pixel-
based classification using LAI time series differentiated pastures from
hay meadows with an overall accuracy of 88%. An object-based mow-
ing detection method using Sentinel-1 coherence and Sentinel-2 NDVI
was then applied to further differentiate hay meadows by timing and
frequency of mowing events. The pixel-based approach and the strict
grassland mask built for the classification allowed to retrieve homoge-
neous grassland management units. Moreover, the preliminary iden-
tification of grazed grasslands reduced the number of false positives
due to confusion between grazing and mowing activities during the
mowing detection. The hierarchical classification method differenti-
ated pastures, and meadows with an early first mowing event and a
late first mowing event with an overall accuracy of 79%. The retrieved
management practices could be combined with other factors and envi-
ronmental context for further grassland characterization to contribute
to ecological habitat monitoring.
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Abstract
Comprehensive information on grassland yield is crucial to eval-
uate the combined impacts of pedo-climatic conditions and man-
agement practices on productivity. In this chapter, the ob-
jective is to estimate and assess the retrieval performance of
grasslands dry matter yield (DM, [t/ha]), nitrogen concentration
(N%, [g/kg]), and canopy nitrogen content (CNC, [kg/ha]) from
Sentinel-2. These S2-based biophysical variables are then com-
bined for a large scale analysis of (i) grasslands spring vegetation
status, and (ii) harvested forage yield to evaluate the impacts of
management practices on grassland outputs for different agroe-
cological regions. A stepwise linear regression approach is ap-
plied to retrieve grasslands DM, N%, and CNC from Sentinel-2
reflectances and indices. The models are calibrated using field
measurements made during three growing seasons. The models
were validated on an independent field dataset, achieving a nor-
malized RMSE of 9.5%, 15.6%, and 6.7% for DM, N%, and CNC
respectively. In addition, the nitrogen nutrition index (NNI) was
computed from the estimated DM and N% to evaluate grasslands
nitrogen nutrition status. The retrieval models were then used
in combination with classified management units and mowing
detections for a regional evaluation of spring vegetation status
and harvested forage yield. These large-scale applications con-
sistently showed the impacts of management practices and pedo-
climatic conditions on grassland DM and N content.
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5.1 Introduction

Grasslands are a key element of many agricultural systems as they pro-
vide nearly half of the feed requirements for global livestock produc-
tion (O’Mara, 2012; Herrero et al., 2013). Adapting grassland man-
agement practices to sustain essential ES in a changing climate, while
meeting the increasing demands of dairy and meat production consti-
tutes a great challenge. Comprehensive information on grassland yield
is crucial to evaluate the combined impacts of pedo-climatic conditions
and management practices on their productivity. It can furthermore
facilitate the transition towards more sustainable grassland manage-
ment to create synergies and balance trade-offs with biodiversity, car-
bon budget, and other regulating ES.

Nitrogen (N) is a key nutrient for grassland production. N strongly
influences vegetation growth, production and quality as it plays a role
in carbon fixating and light harvesting complexes (Berger et al., 2020b).
Intensively managed pastures and hay meadows are often fertilized
with N to increase their biomass productivity. Furthermore, nitrogen
content is a good indicator for the nutritional quality of forage, as it
can be directly related to its protein content. For instance, comprehen-
sive data on grassland nitrogen content could support developments
toward protein self-sufficiency in livestock farming.

Based on yield and N content measurements, the nitrogen nutri-
tion index (NNI) of grasslands can be assessed. The NNI is commonly
used for fertilization management as it indicates the nitrogen satu-
ration level of the plant. It is based on the nitrogen dilution curve,
which describes the decrease in critical N concentration with increas-
ing biomass during the vegetative growth stage. This curve has been
defined empirically for several crops and for grasslands (Gastal and
Lemaire, 2002).

Dry biomass yield (DM) and N content can be estimated through
ground-based methods, such as visual assessment, rising plate me-
ters, field spectroscopy, cutting, drying and laboratory analysis. These
methods are, however, either very costly and time-consuming or highly
subjective and cannot be applied on extended areas (Ali et al., 2016a).
Therefore, biophysical variable retrieval by remote sensing offers a
great potential for exhaustive large-scale forage production assessment
(Ali et al., 2016a; Reinermann et al., 2020).
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Several biophysical variables can be retrieved or estimated from
remotely sensed spectral reflectances, either through empirical ap-
proaches (e.g. regression), deterministic approaches (e.g. radiative
transfer models (RTM)), or a combination of both. In the context of
agricultural monitoring by remote sensing, Weiss et al. (2020) define
both DM yield and N content as secondary variables, that are not di-
rectly related to radiative transfer mechanisms. They are however re-
lated to several processes within the soil-plant-atmosphere continuum,
and thus, indirectly drive the radiative transfer. Empirical approaches
allow to directly derive these secondary variables from reflectances
without prior assumptions, but strongly rely on training data and are
therefore often limited in terms of transferability. Deterministic ap-
proaches on the other hand require a good understanding of the pro-
cesses involved to make strong assumptions and build robust models.
Deterministic models, such as RTM can be used to retrieve primary
variables (i.e. directly related to radiative transfer mechanisms), which
can in turn be related to secondary variables (Weiss et al., 2020).

The chlorophyll content is often used as a proxy for N retrieval
(Baret et al., 2007; Delloye et al., 2018; Berger et al., 2020b), since a
large part of N taken up by the plant is invested in chlorophyll. Canopy
chlorophyll content can be linked to reflectances in the visible and red
edge domain (Hank et al., 2019) and its retrieval has been broadly stud-
ied for various crops (Verrelst et al., 2013; Delloye et al., 2018). The N-
chlorophyll relation however needs to be considered with caution as a
larger part of N is invested in proteins, and decreases in chlorophyll are
not necessarily caused by N deficiency (Berger et al., 2020b). For DM
yield estimation, the LAI can be used as a primary variable (Punalekar
et al., 2018; Kayad et al., 2022). In optical multi- and hyperspectral
remote sensing, the LAI is mostly linked to reflectances in the red edge
and near-infrared domain (Delloye et al., 2018; Hank et al., 2019).

Studies on crop nitrogen monitoring retrieve either N concentration
(often as a percentage of dry biomass), or N content per leaf- or land
area. Reflectance should be more sensitive to the amount of absorbers
per unit land area, than to their concentration (Berger et al., 2020b).
Nevertheless, both N concentration and N content per area can be used
to compute the NNI (Baret et al., 2007).

While crop yield and nitrogen monitoring are broadly studied
(Berger et al., 2020b), most studies on grassland biophysical variable
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retrieval by remote sensing focused on green biomass (Sibanda et al.,
2015; Zhang et al., 2015; Ali et al., 2016b; Quan et al., 2017; Punalekar
et al., 2018; Hardy et al., 2021). Grassland above-ground biomass has
been retrieved through empirical approaches such as linear regres-
sions, random forest, or partial least square regression, mostly from
NIR and red edge reflectances (Ullah et al., 2012; Sibanda et al., 2015;
Dusseux et al., 2015; Hardy et al., 2021). Recently, more studies have
used deterministic approaches, such as RTM to retrieve LAI, which is,
in turn, used to estimate grassland biomass (Punalekar et al., 2018; Cis-
neros et al., 2020; Schwieder et al., 2022).

Only a few studies developed grassland nitrogen and chlorophyll
content retrieval methods, mostly through field spectroscopy (Boegh
et al., 2013; Adjorlolo et al., 2014; Cisneros et al., 2020; Pullanagari
et al., 2021). Overall, studies on grassland biophysical variable re-
trieval show promising results, but methods need to be tested either
over larger areas or longer periods.

In this chapter, the objective is to estimate — and evaluate the re-
trieval performance of — grasslands dry matter yield (DM, t/ha), N
concentration (N%, g/kg), canopy N content (CNC, kg/ha), and NNI
from Sentinel-2. More specifically, DM, N%, and CNC are directly re-
trieved from S2 spectral bands and derived indices, through stepwise
multiple linear regression. Through this empirical approach, we aim
at identifying the most explanatory S2 derived variables for grassland
biomass yield and nitrogen content. Furthermore, we compare the di-
rect and indirect retrieval of grassland N, respectively using N% on one
hand, and CNC on the other.

Finally, these EO-based biophysical variables are combined with
the grassland management classification of chapter 4 for a large-scale
and comprehensive analysis of (i) spring vegetation status, and (ii) har-
vested forage yield to document the impacts of grassland management
practices in different agroecological regions and link inputs and out-
puts of grassland use intensity.

5.2 Data and method

Three object-based stepwise multiple linear regression models are built
to retrieve grasslands DM, N%, and CNC from S2 reflectances. These
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empirical models are calibrated on field measurements from three con-
secutive growing seasons (2016-2018) and validated on independent
measurements from a fourth growing season (2020) to test their tem-
poral transferability.

The models are then used to retrieve the spring vegetation sta-
tus and harvested forage yield of the spatially homogeneous grassland
management units delineated in the previous chapter over the whole
study area (672.9 km2) for the 2019 growing season.

5.2.1 Satellite data

The biophysical variable retrieval methods developed in this study are
based on S2 data. All S2 A and B top-of-atmosphere reflectance im-
ages covering the study area and period, covering five seasons (2016-
2020), were downloaded and converted to surface reflectances using
Sen2Cor v2.10 for atmospheric correction and the Fmask method (Zhu
and Woodcock, 2012) for cloud and cloud shadow masking.

5.2.2 Field measurements

A large field survey was carried out across Wallonia, in the frame-
work of operational in situ grassland monitoring by "Fourrages Mieux"
(Farinelle, A., 2020). The survey aimed to evaluate the forage quality
of permanent grasslands with AECM subsidized by the CAP. The moni-
tored grassland parcels (n=59) include permanent grasslands with two
types of AECM — high nature value grasslands (MC4, n=27) and natu-
ral grasslands (MB2, n=14) — as well as permanent grasslands without
AECM (n=18) for the sake of comparison (Figure 5.1).

The AECM aim at preserving biodiversity and protecting soil and
water through more extensive management. Fertilization is prohibited
in MC4 and limited to one application of organic manure between June
16th and August 15th in MB2. The management requirements further
include (i) the obligation to mow (or graze) between June 16th and Oc-
tober 31st, (ii) the preservation of 5 to 10% of untouched refuge zone,
and (iii) restricted (MC4) or prohibited (MB2) use of phytosanitary
products.

During three growing seasons (2016-2018), vegetetion samples
were cut and measured before each mowing event on all monitored
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Figure 5.1: Parcels location for the 2016-2018 and the 2020 field cam-
paign, distributed across three agroecological regions of Wallonia (Bel-
gium).

grasslands. The same set of 59 parcels were monitored during the
whole study period. The parcels were mown 1 to 5 times per season,
resulting in a total of 353 measurements. For each measurement in
each parcel, four samples were collected. In grasslands with AECM,
the location of the samples was chosen by expert on the field to be as
representative as possible of each parcel. In grasslands with no AECM,
the sample points were chosen randomly on a homogeneous area of
each parcel.

For each sample, an area between 6 and 12 m2 was cut with a
mower. The area was precisely measured for each sample. The cut grass
was immediately weighted and a sub-sample (150-300 g) was collected,
kept cool, and brought to the lab for further measurements. Each sub-
sample was dried at a temperature of 55°C and weighed separately to
measure the dry matter content. The parcel DM was estimated by av-
eraging the measurements of the four sub-samples.

The N% was then measured through NIR spectrometry on a com-
posite of the four sub-samples taken for DM measurement. The CNC
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was then computed as N% × DM.
Thirteen additional DM and N% measurements were made in 2020,

specifically for this study, to test the transferability of the models to
another growing season. On May 11th, 7 permanent grassland parcels
without management restrictions were sampled and on June 25th, 6
semi-natural grasslands were sampled (Figure 5.1). In each parcel, a
homogeneous area of at least 20×20 m was identified and the GPS co-
ordinates of the center of the area were recorded. Four samples were
collected inside the homogeneous area, with a minimum of 4 m be-
tween each sample. The samples were collected manually, by cutting
50×50 cm squares. Similarly to the previous campaign, the collected
samples were dried and weighed. The DM yield of each parcel was es-
timated by averaging the DM measured for each sample, the N% was
measured through NIR spectrometry on a composite of the four sam-
ples, and the CNC was computed from the N% and DM.

5.2.3 Dataset preparation

Based on the field measurements an object-based reference dataset was
built to calibrate and validate the regression models for the retrieval of
DM, N%, and CNC.

The field measurements needed to be matched spatially and tem-
porally to S2 spectral measurements. Each field measurement was as-
signed to a grassland management unit including the sample points. S2
reflectances and derived indices were averaged per management unit.
The management units were delineated by combining the grassland
classification and the LPIS (Chapter 4), and used as spatial units for the
biophysical variable retrieval. We made the hypothesis that the delin-
eation of these management units remains mostly unchanged through
the study period (2016-2020).

The samples were not specifically collected on cloud-free S2 acqui-
sition dates. Only 26 of the 353 measurements made in 2016-2018
could be associated with a cloud-free S2 acquisition on the same day.
Therefore, the closest cloud-free S2 acquisition with a maximum inter-
val of 9 days before the field measurement was considered useable. S2
images acquired after the field measurements could not be considered,
since all samples were collected right before a mowing event. With a
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maximum interval of 9 days, 154 reference points could be considered.
This dataset was used to calibrate the regression models.

For the field campaign of 2020, S2 acquisitions following the field
measurement could be considered as well. Cloud-free S2 acquisitions
were available within 4 days around each measurement. This dataset
was used to validate the regression models.

5.2.4 Stepwise linear regressions

A stepwise linear regression approach, using multiple S2 reflectances
and indices, was applied to retrieve grasslands DM, N%, and CNC.
Linear regression models can be calibrated with a limited number of
training data, with a lower risk of overfitting, compared to more com-
plex regression models.

Initially, all 10 m and 20 m resolution S2 bands (visible (BGR): B2-
B4, red edge: B5-B7, near-infrared (NIR): B8, narrow NIR: B8A and
short wave infrared (SWIR): B11-B12, Figure 1.4) and four spectral in-
dices were considered. First, the NDVI has often been linked to green
above-ground biomass (Zhang et al., 2015; Dusseux et al., 2015). The
three other indices are related to the red edge, which is both linked
to biomass (Sibanda et al., 2015; Schwieder et al., 2020; Hardy et al.,
2021) and vegetation chlorophyll content. The CIre, the normalized
difference red edge index (NDRE) and the S2 red edge position index
(REP) are computed with equations 4.2, 5.1 and 5.2, respectively.

NDRE =
B8−B5
B8 +B5

(5.1)

REP = 705 + 35×
(B4 +B7

2−B7

)
/ (B6−B5) (5.2)

A stepwise regression with a backward elimination approach was
applied to select the most explanatory S2 variables for each biophys-
ical variable. Initially, all S2-derived variables are included. At each
step, a least squares linear model is fitted to the dataset and a p-value
is computed for each input variable, indicating if the respective slope
coefficient is significantly different from 0. The variable with the high-
est p-value (i.e. the least explanatory) is discarded, and a new model
is fitted with the remaining variables. This process is repeated until all
p-values are below a given threshold.
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Three levels of variable selection were tested for each biophysical
variable. The first model was calibrated without any variable selection,
using all the above-mentioned input variables, the second using only
variables with a p-value below 0.05, and the third using variables with
a p-value below 0.01. The performances of the different variable sets
were evaluated and compared through a leave-one-out cross-validation
approach, using the reference dataset of the 2016-2018 growing sea-
sons. The RMSE was computed between measured and predicted bio-
physical variable values. In order to be able to compare the results for
DM, N%, and CNC retrieval, the RMSE was normalized by the respec-
tive biophysical variable range.

5.2.5 Independent validation

The variable selection resulting in the lowest RMSE was used to fit new
models to the whole calibration dataset. These models were then used
to retrieve the DM, N%, and CNC of the parcels of the 2020 field cam-
paign to perform an independent validation. To compare the direct and
indirect retrieval of N% and CNC, each N variable was also computed,
based on the retrieved DM and the other N variable. The indirect N%
was computed by dividing the retrieved DM by the retrieved CNC, and
inversely, the indirect CNC by multiplying the retrieved N% by the re-
trieved DM.

In addition, the NNI was computed, from the retrieved DM and
N% on one hand, and CNC on the other, to evaluate the potential of
the EO-based biophysical variables to measure the nitrogen nutrition
status of grasslands. The dilution curve defined for grasslands (Gastal
and Lemaire, 2002) is given in equation 5.3.

cN% = 4.8×DM−0.32 (5.3)

where cN% is the critical nitrogen concentration, i.e. the nitro-
gen absorption capacity of the vegetation to reach maximum potential
yield. The NNI is computed as the ratio between the actual N% and
cN%.
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5.2.6 Large-scale applications

The EO-based biophysical variables are then used to perform a com-
prehensive regional analysis of grasslands spring vegetation status,
and the harvested forage yield. To assess the impacts of management
practices, we use the classified management units and mowing detec-
tions obtained in Chapter 4 for the 2019 growing season, over an area
covering three agroecological regions of Wallonia — Condroz, Fagne-
Famenne, and Ardenne (Figure 2.1). Three types of management prac-
tice are considered, namely pastures, hay meadows without AECM
(first mown before June 16th, further referred to as "no AECM"), and
hay meadows with AECM (first mown after June 16th, further referred
to as "AECM").

Spring vegetation status

First, the DM and N% are estimated on a single date for all manage-
ment units to study the variability of the spring vegetation status cross
grassland management practices. Therefore, the average DM and N%
of pastures, "no AECM" hay meadows, and AECM hay meadows per
region are compared.

Second, the estimated DM and N% are used to compute the NNI
and map the nitrogen nutrition status of grasslands across the whole
study area.

Harvested forage yield

The harvested forage yield of hay meadows is then analyzed in the three
agroecological regions. Based on the mowing detections, the DM and
N% are estimated before the first and second mowing events of each
hay meadow management unit in the study area.

The mowing detection method (described in Chapter 3), based
on S1 and S2 time series, identifies mowing events in time intervals
([tstart − tend]) of maximum 18 days, in which tstart should correspond
to the last satellite acquisition on tall grass. For each mowing event,
DM and N% were estimated at tstart, when tstart corresponded to a S2
acquisition, or at the latest S2 acquisition date before tstart, if it was at
most 18 days before tend .
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The average harvested forage yield (DM and N%) of hay meadows
is then computed per region. The focus is set on AECM since the reg-
ulation requirements guarantee a relatively uniform timing of mowing
events.

Finally, to assess the consistency of the S2-based forage yield anal-
ysis, we compare the overall trends in DM and N% assessed by field
measurements on one hand, and by remote sensing on the other.

5.3 Results

5.3.1 Field measurements

The selected field measurements — including two types of grasslands
and three growing seasons — are shown in Figure 5.2. On the first
mowing event, grasslands with no AECM are characterized with higher
N% than grasslands with AECM (Figure 5.2 (a)). At 2nd, 3d and 4th
mowing events, there is no noticeable difference between AECM and
no AECM.

While the measurements show no correlation between DM and N%,
the CNC is strongly related to the DM, with an R2 of 0.81 for grasslands
with AECM and 0.92 for grasslands with no AECM (Figure 5.2 (b)).
This is expected since the CNC is computed based on the N% and the
DM.

5.3.2 Variable selection and calibration

The performances of the stepwise linear regressions, estimated through
a leave-one-out cross-validation, are shown in Figures 5.3, 5.4, and 5.5.

For the DM retrieval, the best result is obtained when a p-value
< 0.05 is applied for the variable selection, with an RMSE as low as
1.00 t/ha, corresponding to 15.8% of the range of measured DM values
(Figure 5.3 (b)). The explanatory variables are B5, B6, B8A, B11, and
the NDRE. No additional variables are discarded with a threshold p-
value of 0.01. The RMSE is slightly higher when all variables are used
for the regression (1.03 t/ha, 16.2%, Figure 5.3 (a)).

For the N% retrieval, a threshold p-value of 0.05 also provided the
best results, with an RMSE as low as 3.32 g/kg, and a normalized RMSE
of 12.1% (Figure 5.4 (b)). The explanatory variables are B4, B5, B7,
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Figure 5.2: Comparison of field measurements of dry matter versus (a)
N concentration (N%, g/kg), and (b) canopy N content (CNC, kg/ha)
from the 2016-2018 field campaigns. The legend provides information
about the AECM and before which mowing event the measurements
were made.

Figure 5.3: Calibration results (n=154) for DM retrieval through step-
wise multiple linear regression. Including (a) all variables and (b) vari-
ables with p-values < 0.05 (B5, B6, B8A, B11 and NDRE)

B8A, B12, the NDVI, and the REP. The threshold p-value of 0.01 dis-
carded two variables (B4 and REP), but did not improve the RMSE (3.34
g/kg, 12.2%, Figure 5.4 (c)). With all input variables, the RMSE is the
highest (3.45 g/kg, 12.6%).

Finally, the CNC was also retrieved most accurately with a p-value
< 0.05, resulting in an RMSE of 17.2 kg/ha, and a normalized RMSE of
12.2% (Figure 5.5 (b)), but with twice more explanatory variables (B2,
B3, B4, B6, B7, B8, B11, B12, NDVI, and REP). The RMSE is slightly
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Figure 5.4: Calibration results (n=154) for N% retrieval through step-
wise multiple linear regression. Including (a) all variables, (b) variables
with p-values < 0.05 (B4, B5, B7, B8A, B12, NDVI, and REP) and (c)
variables with p-values < 0.01 (B5, B7, B8A, B12, and NDVI)

higher with p-values < 0.01 (17.4 kg/ha, 12.4%, Figure 5.5 (c)) as well
as with all variables (17.5 kg/ha, 12.4%, Figure 5.5 (a)).

For the three biophysical variables a threshold p-value of 0.05 pro-
vided the best results and was retained for the final linear regression
models, which were calibrated using the whole field dataset of 2016-
2018.

5.3.3 Independent validation

The calibrated regression models were successfully validated using the
field dataset of 2020 (Figure 5.6 (a), (b), and (c)). The DM was retrieved
with high accuracy on the 13 sampled grasslands, resulting in a smaller
RMSE than in the calibration (0.61 t/ha, 9.5%). The N% was retrieved
with a larger RMSE of 4.27 g/kg (15.6%). The CNC was retrieved with
the highest accuracy, with an RMSE of 9.5 kg/ha, corresponding to a
normalized RMSE of 6.7%. Overall, the models show good inter-annual
transferability.

To test the indirect retrieval of N% and CNC, both were also com-
puted based on the retrieved DM and the other expression of N (Figure
5.6 (d) and (e)). Based on the retrieved DM and CNC, the N% was es-
timated with an RMSE of 4.92 kg/ha (28.7%). Inversely, based on the
retrieved DM and N%, the CNC was estimated with an RMSE of 12.3
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Figure 5.5: Calibration results (n=154) for CNC retrieval through step-
wise multiple linear regression. Including (a) all variables, (b) variables
with p-values < 0.05 (B2, B3, B4, B6, B7, B8, B11, B12, NDVI, and REP)
and (c) variables with p-values < 0.01 (B4, B6, B7, B8, B11, B12, NDVI,
and REP)

kg/ha (18.0%). Both for N% and CNC, the indirect and direct esti-
mations are very similar, but the indirect estimations result in larger
errors.

Based on the retrieved DM and N%, the NNI was computed and
validated as well (Figure 5.6 (f)). The RMSE is 0.10 and the normalized
RMSE is 14.3%.

5.3.4 Large-scale applications

The DM and N% retrieval models were used to perform a spatially
comprehensive analysis of (i) grassland vegetation status in the spring
and (ii) harvested forage yield. Based on the spatially homogeneous
management units and mowing detections of chapter 4, the impacts
of management practices could be assessed in three agroecological re-
gions. For these regional analyzes, the N status was estimated in terms
of N concentration only — and not in terms of CNC, which is closely
related to the DM (Figure 5.2) — since the results of the model calibra-
tion and validation showed good performances for the direct retrieval
of N%.
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Figure 5.6: Validation of the retrieved (a) DM, (b) N% and (c) CNC, and
of (d) N%, computed from the retrieved DM and CNC, (e) of CNC, com-
puted from the retrieved DM and N%, and (f) NNI, computed from the
retrieved DM and N%. The validation is based on the measurements of
the 2020 field campaign.

Spring vegetation status

The DM and N% were estimated on the 1st of May 2019 for all pastures
and for all hay meadows that had not yet been mown at that time. The
regional averages per management practice are given in Tables 5.1 and
5.2.

First, the DM in the spring is clearly driven by the pedo-climatic
conditions of each region, Conroz being the most favorable, and Ar-
denne the least. The DM also consistently increases, as expected, ac-
cording to the three grassland management categories, for Ardenne
(3.01 to 3.40 t/ha), Fagne-Famenne (3.36 to 3.66 t/ha), and Condroz
(3.83 to 4.17 t/ha). In each region, the DM is the highest in "no AECM"
hay meadows, followed by "AECM" hay meadows and then pastures.
The "no AECM" hay meadows also show the highest N% in all regions
(22.0 to 22.2 g/kg). In Condroz, the N% of "AECM" hay meadows (22.1
g/kg) is however as high as that of "no AECM" hay meadows. Pastures
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Table 5.1: Average (± 95% confidence interval) retrieved DM on May
1st 2019 for different management practices (pastures and hay mead-
ows with an early (no AECM) and a late first mowing event ("AECM")),
per region.

Dry matter yield (t/ha) on 01/05/2019
Grasslands: Pastures Hay Meadows Hay Meadows

Region: (AECM) (no AECM)
Condroz 3.83 ±0.027 3.99 ±0.032 4.17 ±0.044

F.-Famenne 3.36 ±0.014 3.44 ±0.014 3.66 ±0.019
Ardenne 3.01 ±0.015 3.17 ±0.016 3.40 ±0.026

Table 5.2: Average (± 95% confidence interval) retrieved N% on May
1st 2019 for different management practices (pastures and hay mead-
ows with an early (no AECM) and a late first mowing event ("AECM")),
per region.

N% (g/kg) on 01/05/2019
Grasslands: Pastures Hay meadows Hay meadows

Region: (AECM) (no AECM)
Condroz 21.2 ±0.20 22.1 ±0.24 22.1 ±0.36

F.-Famenne 20.9 ±0.07 21.5 ±0.07 22.0 ±0.11
Ardenne 20.9 ±0.12 21.4 ±0.14 22.2 ±0.21

show the overall lowest N% (20.9 to 21.2 g/kg). The variation in N%
between regions is smaller. The most significant difference is observed
between "AECM" hay meadows from the Condroz (22.1 t/ha) and the
two other regions (21.5 and 21.4 g/kg).

The NNI was then computed from the DM and N% retrieved on
May 1st, to map the nitrogen nutrition status of grasslands (Figure 5.7).
Some grasslands (14%) could not be considered, mostly because of a
lack of S2 data due to cloud cover (13%), or because they were already
mown on the 1st of May (1%). It is striking to observe that the bound-
aries of the agroecological regions could be derived visually from the
grassland NNI distributions. Condroz is characterized by more high
NNI values, with 52% of the considered parcels above 0.7, compared
to 29% in Fagne-Famenne and 25% in Ardenne. In each region, there
are parcels with low NNI under 0.5, namely 7% in Condroz and Ar-
denne and 2% in Fagne-Famenne. Very few parcels have NNI above
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1, which would indicate potential overfertilization (15 in Conroz, 7 in
Fagne-Famenne, and 5 in Ardenne).

Figure 5.7: Nitrogen nutrition index computed from the retrieved DM
and N% on the 1st of May 2019 across three agroecological regions of
Wallonia. Some grasslands could not be considered, mostly because of
a lack of S2 data due to cloud cover, or because they were already mown
on the 1st of May. Orthophoto background for the zooms (Source:
SPW).

Harvested forage yield

The average first mowing yields (DM and N%) per region for AECM
hay meadows are given in Table 5.3. The average first-mowing DM is
significantly higher in Ardenne (4.17 t/ha) than in Condroz and Fagne-
Famenne (3.73 and 3.71 t/ha respectively).
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Table 5.3: Regional means (± 95% confidence interval) of retrieved DM
and N% on the first mowing event in hay meadows with AECM.

FIRST MOWING YIELD (>16/06, AECM)
Region n DM (t/ha) N% (g/kg)
Condroz 1207 3.73 ±0.05 18.6 ±0.29
F.-Famenne 3428 3.71 ±0.03 16.9 ±0.15
Ardenne 3463 4.17 ±0.03 18.0 ±0.15

In terms of N%, there are significant differences between each re-
gion, with the lowest N% in Fagne-Famenne (16.9 g/kg), followed by
Ardenne (18.0 g/kg), and then Condroz (18.6 g/kg).

Finally, to assess the impacts of management practices, the first and
second mowing forage yields are averaged per type of hay meadow
(AECM and "no AECM"). The trend in DM and N% is assessed, from
the field measurements on one hand, and from the spatially exhaustive
S2-based retrieval on the other (Table 5.4).

Table 5.4: Comparison of average DM (t/ha) and N% (g/kg) (± 95%
confidence interval) on mowing 1 and 2 in grassland parcels with
AECM and without AECM ("no AECM"), assessed by field measure-
ments and by remote sensing.

MEASURED (2016-2018) RETRIEVED (2019)
DM (t/ha) N% (g/kg) DM (t/ha) N% (g/kg)

Mowing 1 n=50(no AECM)+111(AECM) n= 758 + 8098
"no AECM" 3.97 ±0.35 20.2 ±1.28 2.97 ±0.06 20.8 ±0.39
AECM 3.60 ±0.25 13.2 ±0.43 3.91 ±0.02 17.6 ±0.10
Difference +0.37 +7.01 -0.94 +3.11
Mowing 2 n= 45 + 81 n= 3249 + 2159
"no AECM" 2.65 ±0.29 21.2 ±1.15 2.92 ±0.03 21.2 ±0.15
AECM 1.96 ±0.15 21.5 ±0.79 1.86 ±0.03 22.8 ±0.16
Difference +0.69 -0.39 +1.06 -1.56

Based on the field measurements, the first mowing yield of "no
AECM" grasslands is characterized by a significantly higher N% (+7.01
g/kg) than with AECM. The decrease in N concentration with vege-
tation growth can explain the lower N% in grasslands that are mown
at later development stages (AECM). This trend also shows in the S2-
based N%, with a smaller, but statistically more certain difference
(+3.11 g/kg), given the size of the sample (n=8856). The average
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first mowing N% of grasslands with AECM is higher in the 2019 re-
trievals (17.6 g/kg), compared to the 2016-2018 field measurements
(13.2 g/kg).

The average DM measured on the first mowing in "no AECM" grass-
lands is slightly higher than in grasslands with AECM (+0.37 t/ha).
This 10% difference is however relatively small compared to the intra-
class variability and is statistically less certain (confidence intervals
±0.35 and ±0.25). Based on the 2019 retrievals, DM yield is signifi-
cantly lower on "no AECM" grasslands (-0.94 t/ha, confidence intervals
±0.06 and ±0.02). It is, however, worth mentioning a possible bias due
to consistent cloud cover in the spring of 2019, preventing the retrieval
of the first mowing yield for 90% of the "no AECM" grasslands. More-
over, on most (82%) of the 758 usable "no AECM" parcels, the yield was
estimated before May 1st, while the first mowing field measurements
on "no AECM" parcels were all done after May 4th. This can explain the
lower average S2-based DM on the "no AECM" grasslands (2.97 t/ha),
compared to the field measurements (3.97 t/ha).

For the second mowing event, the field measurements show signifi-
cantly higher DM on "no AECM" grasslands (+0.69 t/ha). The S2-based
variables show a larger difference (+1.06 t/ha), as the average DM of "no
AECM" grasslands is higher (2.92 t/ha) and the average DM of grass-
lands with AECM is lower (1.86 t/ha), compared to the field measure-
ments (2.65 and 1.96 t/ha respectively). The measured second mowing
N% show no statistically significant difference between "no AECM" and
"AECM" grasslands (-0.39 g/kg, confidence intervals ±1.15 and ±0.79).
Based on the retrieval, the second mowing N% of "no AECM" grass-
lands is however significantly lower than that of "AECM" grasslands
(-1.56 g/kg).

Apart from the "no AECM" grasslands’ first mowing yield, which
was biased due to a lack of cloud-free images in May, the S2-based DM
and N% generally confirm the trends observed on the field measure-
ments and show overall consistent results.
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5.4 Discussion

5.4.1 Biophysical variable retrieval

Previous studies on grassland biophysical variable retrieval have
shown encouraging results, but were often conducted on small study
areas (Ali et al., 2016b; Wang et al., 2019; Cisneros et al., 2020; Chiar-
ito et al., 2021) and/or short periods (Zhang et al., 2015; Quan et al.,
2017; Schwieder et al., 2020). In this study, 154 field measurements
made during three growing seasons in 59 parcels, spread across three
agroecological regions were used to calibrate the retrieval models.

The DM was retrieved with high accuracy during the calibration
phase and surprisingly showed even better results on the independent
validation dataset. The RMSE are in line with- or lower than those
obtained in previous studies (around 1.2 - 1.8 t/ha) on smaller areas
(Wang et al., 2019; Cisneros et al., 2020).

Much fewer studies were conducted on N monitoring in grasslands.
Recently, Cisneros et al. (2020) used field spectroscopy to simulate S2
bands and retrieved N% on experimental plots with an RMSE of 3.4
g/kg. Pullanagari et al. (2021) retrieved grassland N% with a normal-
ized RMSE of 14% through a convolutional neural network based on
field spectroscopy. Our results based on satellite observations corrob-
orate their findings and highlight the performances of S2-based large-
scale grassland N monitoring.

While these previous studies retrieved N concentration, grassland
N was retrieved both in terms of concentration (i.e. N%) and in terms
of content per land area (i.e. CNC) in this study. From a radiative
transfer point of view, the latter should be better related to vegetation
reflectances as the total quantity of N in the canopy influences the elec-
tromagnetic mechanisms. However, our results, and those of previous
studies, show that N% can be directly related to S2 reflectances as well.
Moreover, N% was estimated more accurately through the direct ap-
proach, than indirectly, based on retrieved DM and CNC (Figure 5.6).
While CNC was also better estimated directly than indirectly from DM
and N%, the selected bands for the CNC regression model included
most of the bands respectively selected for DM and N% models. Fur-
thermore, it is striking that the independent validation results matched
more with the theoretical expectations, with a significantly lower nor-
malized RMSE for CNC than for N% retrieval.
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The stepwise approach allowed to identify the most explanatory
S2 reflectance bands and vegetation indices for DM, N%, and CNC.
The red edge and NIR reflectances selected for DM respond to change
in biophysical quantities (e.g. biomass and LAI). SWIR reflectance is
more related to water content, lignin, cellulose, and senescent material
(Hank et al., 2019). Other studies on grassland monitoring have suc-
cessfully related above-ground biomass to these spectral domains and
derived indices (Quan et al., 2017; Wang et al., 2019; Schwieder et al.,
2020; Cisneros et al., 2020; Chiarito et al., 2021).

Reflectances and indices derived from this part of the spectrum (red
edge to SWIR) were also explanatory for N% and CNC. The red edge
is a good indicator for chlorophyll content, which is in turn well re-
lated to N (Baret et al., 2007; Delloye et al., 2018; Hank et al., 2019).
Spectral signatures in the SWIR have been related to crop protein con-
tent (Berger et al., 2020a). Proteins carry a large part of vegetation N
content, so this could potentially explain the link with SWIR. Other
studies have used SWIR reflectances to directly or indirectly retrieve
crop N content (Herrmann et al., 2010; Berger et al., 2020b).

While the variables selected for DM retrieval were limited to the red
edge, NIR, and SWIR, for N retrieval reflectances and indices in the vis-
ible domain were retained in addition (B4 and NDVI for N% and CNC,
B2 and B3 in addition for CNC). Reflectances in the visible domain re-
spond well to pigments (including chlorophyll), which can explain the
link with N (Hank et al., 2019). Overall, the S2 variables selected by
stepwise multiple linear regression for each biophysical variable seem
consistent with known radiative transfer mechanisms.

Recent studies have increasingly used RTM for biophysical vari-
able retrieval, as they are expected to offer better transferability for
large-scale and multi-year applications and depend less on field mea-
surements (Quan et al., 2017). Secondary variables such as DM and
N% cannot be retrieved directly through deterministic approaches. In
that case, RTMs are used to retrieve primary variables, such as LAI,
chlorophyll content, or protein content, which can then be linked to
DM, N%, or CNC (Weiss et al., 2020). Empirical approaches on the
other hand allowed us to directly retrieve DM, N%, and CNC from S2
reflectances. Locally, empirical models can outperform RTM for the re-
trieval of grassland DM (Schwieder et al., 2020). Their main limitation
however remains transferability. In this study, thanks to the extended
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training dataset, the empirical models for DM, N%, and CNC retrieval
showed high performances and good transferability across the years.
In addition to the quantitative validation, the large-scale application
of the models showed consistent trends in grassland vegetation sta-
tus and harvested forage yield in the different management practices
across the study area. The transferability of these models over larger
extents should however be further tested and would probably require
additional training data.

Our results highlighted the relationship between grassland bio-
physical variables and reflectances in the visible, red edge, NIR and
SWIR domain and showed the great potential of S2 for DM, N%, and
CNC mapping. Like in other optical remote sensing applications, a
main limiting factor is the cloud coverage. In this study, cloud cover
prevented the use of a large part of field measurements as no clear S2
acquisition could be associated with them. Moreover, in the large-scale
application, the forage yield of 90% of the early mowing events could
not be estimated and the nitrogen nutrition status of 13% of the parcels
in the study area could not be assessed on the 1st of May, due to persis-
tent cloud cover in the spring of 2019.

Finally, although a lot of information can be derived from S2’s
multi-spectral data, a higher spectral resolution could probably im-
prove the retrieval performance. Several studies using field spectrome-
try have linked grassland and crop biophysical variables to subtle spec-
tral profile characteristics that can only be derived from hyperspectral
data (Ramoelo et al., 2013; Hank et al., 2019; Pullanagari et al., 2021;
Rubo and Zinkernagel, 2022). Recent and upcoming spaceborne high-
resolution hyperspectral sensors (e.g. PRISMA, EnMAP, CHIME) rep-
resent a great potential for grassland monitoring (Hank et al., 2019;
Weiss et al., 2020).

5.4.2 Grassland monitoring perspectives

The large field campaign of 2016-2018 was carried out to evaluate har-
vested forage yield and quality of grasslands with different AECM in
comparison to other permanent grasslands. Such an intensive field
campaign provides valuable information, but it is costly and time-
consuming. We used the measurements made during this campaign
to build regression models to retrieve DM and N% based on satellite
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imagery. The combination of these biophysical variable retrieval mod-
els with the grassland management units delineation and the mowing
detections allowed to extrapolate the field-based analysis, spatially and
temporally.

First, the large-scale application consistently depicted regional ten-
dencies in grasslands’ spring vegetation status. The estimated spring
yield of all types of grasslands was significantly higher in Conroz, fol-
lowed by Fagne-Famenne and then by Ardenne. The N% was also
higher in Condroz, although the differences are less significant. More
strikingly, the regional boundaries appeared very clearly on the NNI
map in Figure 5.7. These differences in spring vegetation status be-
tween regions are probably mostly due to the variation in pedo-climatic
conditions, and more specifically to temperature, which has an impact
on the vegetation development and thereby on the regional manage-
ment practices. The differences in management practices can in turn
have an impact on the early season vegetation status and thereby fur-
ther amplify regional trends.

The interpretation of the NNI map in particular should be consid-
ered with caution. The N dilution curve has been defined primarily for
relatively intensive grasslands dominated by Gramineae species. It has
also been shown to be valid for more diversified swards (Louarn et al.,
2020). However, it is strongly recommended to limit the use of the
N dilution curve to the period before flowering (Lemaire and Gastal,
2016), and the timing of the vegetative growth varies between regions
and between vegetation species. Locally, the retrieved NNI could, nev-
ertheless, be used to identify outliers that have potentially received ex-
cessive fertilization.

Unlike the spring yield, the average first mowing yield of AECM
per region did not follow the expected pedo-climatic gradient. This
could be due to regional tendencies in management practices, which
are themselves influenced by climatic conditions. In Condroz and
Fagne-Famenne, the most productive grasslands are likely to be mown
early (before 16/06), while the grasslands with AECM may be char-
acterized by lower productivity. In addition, due to the omission of
early mowing events by the Sen4CAP mowing detection method, some
of these AECM first mowing yields could actually be second mowing
yields of grasslands with no AECM, which would also explain the lower
DM. In Ardenne, due to the climatic conditions, the vegetation cycle is
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slightly delayed compared to the other two regions, which means that
most grasslands (more or less productive) are mown relatively late, and
are thereby characterized as AECM, which could explain the higher av-
erage first mowing yield of AECM there.

The EO-based DM and N% estimations were also used to depict
the impacts of management practices on forage yield and quality in
the spring and before harvest, allowing to link inputs and outputs in
grassland use intensity. As expected, more intensively managed hay
meadows (no AECM) consistently showed higher average DM on the
1st of May, compared to the other management practices. These grass-
lands are more likely to have been fertilized at the start of the season to
enhance their forage production in the spring. This could also explain
the higher N% retrieved on these parcels. The differences in N% are
however less significant due to the decrease in N concentration during
vegetation growth. Across the study area, pastures had the lowest aver-
age DM, which can be explained by grazing activity at that time of the
season.

Overall, the estimated DM, N%, and NNI showed consistent re-
sults and allowed to depict the impacts of grassland management prac-
tices and of pedo-climatic conditions on forage yield and quality in the
spring and before harvest. These large-scale applications showed the
potential of S2-based grassland biophysical variable retrieval to con-
tribute to bridging the knowledge gap on the complex relationships
between inputs and outputs in grassland use intensity in different agro-
pedo-climatic contexts.

5.5 Conclusions

In this chapter, grasslands DM and N content (N% and CNC) were re-
trieved from S2 spectral bands and indices through stepwise multiple
linear regression. For each biophysical variable, the most explanatory
variables were selected, and a model was calibrated, using a large field
dataset, collected during 3 growing seasons. The models estimated
DM, N%, and CNC on an independent validation dataset with normal-
ized RMSE of 9.8%, 15.8%, and 6.7% respectively, showing good tem-
poral transferability. The models were combined with classified man-
agement units and mowing detections to assess the impacts of manage-
ment practices on spring vegetation status and harvested forage yield.
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These large-scale applications showed consistent results compared to
the field measurements and allowed to highlight differences between
agroecological regions. Grassland biophysical variable retrieval by op-
tical remote sensing is promising and should be further developed, as it
can provide exhaustive knowledge on the relationship between inputs
and outputs in grassland use intensity.
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Conclusions and perspectives

6.1 Remote sensing of grassland use intensity

The objective of this thesis was to measure grassland use intensity over
large areas, thanks to optical and microwave remote sensing. The fo-
cus was set on managed grasslands (for food production or habitat
conservation) with a full vegetation cover and less than 10% woody
plant cover. In the four previous chapters, we developed and evalu-
ated methods, based on Sentinel-1, Sentinel-2, and ancillary data, (i)
to classify grassland management practices (i.e. grazing and mowing),
(ii) to delineate management units, (iii) to detect the timing and fre-
quency of mowing events and (iv) to estimate forage yield and quality
(Figure 6.1). Throughout this work, a particular focus was set on refer-
ence data quality and statistical soundness of validation. Issues raised
in previous research were addressed to improve existing methods and
new methods were developed to further characterize grasslands. De-
spite the challenges inherent to grassland monitoring, the developed
methods characterize grasslands exhaustively and with high thematic
precision compared to existing datasets.

6.1.1 Specific achievements and contributions

Recently, in the field of grassland use intensity assessment, particular
attention has been given to mowing detection (Table 6.1), which was

137



138 Conclusions and perspectives

Figure 6.1: Overview of the grassland use intensity (GUI) measure-
ment methods, based on Sentinel-1, Sentinel-2, and ancillary data, de-
veloped in the framework of this thesis.

a starting point and a central element in this thesis. Most studies on
mowing detection focused on optical imagery. One of the main limi-
tations of optical-based mowing detection is however the omission of
mowing events due to cloud cover. Only a few had studied the feasi-
bility of mowing detection with radar data as an alternative, showing
encouraging results on small study areas (Schuster et al., 2011; Tamm
et al., 2016; Voormansik et al., 2016; Taravat et al., 2019). In chapter 2,
we performed the first thorough and comprehensive assessment of the
potential and limitations of rule-based mowing detection with S1 radar
data. Based on a large and precise field dataset, this study demon-
strated that a bit more than half of the mowing events in hay mead-
ows could be detected based on S1 interferometric coherence jumps.
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It highlighted the limited precision of S1-based mowing detection and
identified grazing as a major confounding factor.

Table 6.1: Overview of the most recent studies on grassland mowing
detection methods based on optical and microwave remote sensing.

SATELLITE DATA DETECTION METHOD REFERENCE
S1 Machine learning (ANN) Taravat et al. (2019)
S1 Rule-based De Vroey et al. (2021)
S2+Landsat-8 (HLS) Rule-based Schwieder et al. (2022)
S2 Machine learning (CNN) Lange et al. (2022)
S1 + HLS Machine learning (CNN) Lobert et al. (2021)
S1 + S2 Rule-based Reinermann et al. (2022)
S1 + S2 Rule-based De Vroey et al. (2022)

In chapter 3, a multi-source method, combining S1 and S2 mowing
detection algorithms, was presented and evaluated. This method, de-
veloped as part of the Sen4CAP toolbox (led by our UClouvain research
team), was thoroughly assessed in the framework of this thesis. Using
a large and comprehensive field dataset, the full potential and limita-
tions of this mowing detection method were quantitatively described
in this study. Our analyzes demonstrate the complementarity of S1
and S2 for mowing detection. Moreover, we show the advantages of a
rule-based change detection method for large-scale grassland monitor-
ing. Unlike deep learning methods (Lobert et al., 2021), the versatility
and transparency of a rule-based method allow to balance between de-
tection rate and precision, depending on the objectives. From a prac-
tical perspective, our results show that the confidence level computed
with each mowing detection is a good indicator of uncertainty and can
be used to filter detections. Finally, beyond the initial framework of
the CAP, we showed that this multi-source mowing detection method
allows to classify mowing practices and differentiate hay meadows in
terms of management intensity. It could therefore be used for large-
scale grassland use intensity monitoring.

The conclusions of the first two chapters are corroborated by con-
current studies. Other mowing detection methods, based on optical
and/or radar data, achieved similar accuracies in hay meadows. Pas-
tures, however, are either not considered, or identified as a confound-
ing factor to mowing detection. Moreover, most mowing detection
methods, especially those based on radar data, are object-based and
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highly depend on precise parcel delineation. In chapter 4, these two
main issues are tackled. In this study, we develop a new hierarchical
approach to differentiate five grassland management practices at the
sub-parcel level. First, pastures and hay meadows are differentiated
through a pixel-based classification using S2 optical vegetation index
time series. We made the hypothesis that mown parcels can be differ-
entiated, based on the occurrence of at least one abrupt change in the
time series, which should be absent in pastures. Grazing events with a
very high stocking density (e.g. in an intensive rotational grazing sys-
tem) could cause a similarly abrupt change, and be classified as hay
meadows. Nevertheless, since such systems are relatively rare in the
study area, our hypothesis is valid for a majority of cases, and we ob-
tained a high classification accuracy. The binary classification was then
combined with declared parcel boundaries (LPIS) to delineate spatially
homogenous management units for further characterization (i.e. mow-
ing detection). The preliminary detection of grazed parcels and the
delineation of homogeneous grassland management units significantly
increased the mowing detection performances. This new hierarchical
approach, combining a pixel-based classification and an object-based
mowing detection method, provided a thematically more accurate and
spatially more precise grassland characterization.

The last chapter sets the focus on another dimension of grass-
land use intensity through biophysical variable retrieval. Some stud-
ies had already been conducted on the estimation of grassland dry
biomass through optical remote sensing, testing various bands, vege-
tation indices, and retrieval methods. Very few had explored the re-
trieval of grassland nitrogen content. In chapter 5, we successfully
retrieved grassland dry matter yield, nitrogen content, and nitrogen
nutrition index through stepwise multiple linear regression based on
S2 reflectances and vegetation indices. Recent studies have increas-
ingly used radiative transfer models for biophysical variable retrieval,
as they rely less on training data and are more transferable. Neverthe-
less, thanks to a large dataset of field measurements from four growing
seasons, the empirical models built in this study showed high perfor-
mances and good temporal transferability. Results showed that nitro-
gen content could be retrieved accurately both in terms of N concen-
tration (in g/kg dry matter) and canopy nitrogen content (in kg/ha).
The explanatory bands and indices selected empirically for each bio-
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physical variable through the stepwise approach were consistent with
known radiative transfer processes.

In addition, we went beyond the model development and valida-
tion and presented two regional applications. Using the EO-based bio-
physical variables in combination with the grassland classification and
the mowing detection method, we evaluated the impacts of manage-
ment practices on the nitrogen nutrition status and the forage yield for
different agroecological regions. This spatially comprehensive analysis
showed the potential of biophysical variable retrieval by optical remote
sensing to provide exhaustive knowledge on the relationship between
inputs and outputs in grassland use intensity.

6.1.2 Generalization potential

Linking all the methods developed in this thesis in a single workflow is
possible. It is even recommended because the outputs of one method
can greatly improve the performances of the following (Figure 6.1).
First, a grassland mask is built, based on the LifeWatch land cover
product (Radoux et al., 2023) and a digital surface model. Masked
S2 image time series are then used for the pixel-based management
practice classification differentiating grazed grasslands (pastures) and
mown grasslands (hay meadows and mixed practices). The classifica-
tion is combined with the parcel boundaries from the regional LPIS
to delineate homogeneous grassland management units, which facil-
itate further characterization. The automated object-based mowing
detection method of Sen4CAP, based on S1 and S2, is applied to fur-
ther differentiate hay meadows by the timing and frequency of mow-
ing events. Finally, S2-based dry matter yield and N content retrieval
models are applied to the classified grassland management units to es-
timate the forage yield of hay meadows, as an output of grassland use
intensity. The biophysical variable retrieval models also allow monitor-
ing of early season nitrogen nutrition status, which can be used for N
fertilization management.

This workflow could be adapted and generalized to measure GUI
across regions and grassland types to facilitate agricultural and ecolog-
ical monitoring.

The main inputs, i.e. S1 and S2 images, as well as their process-
ing tools (SNAP, sen2cor, MAJA, Fmask, Sen4CAP) are freely avail-
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able globally. Beyond satellite imagery, ancillary data and products
are needed as well. The LifeWatch land cover layer and regional DSM
used to build the grassland mask were a great asset for the pixel-based
classification and for the further steps as they allowed to work on only
pure grassland pixels without shadows. These specific products cover
only Belgium. However, such very high-resolution data are increas-
ingly available at regional and national scales. The LifeWatch land
cover product was already extended to Southern Europe at 10 m reso-
lution. Several other countries have freely available high-resolution na-
tional LIDAR databases to build DSM. Similar grassland masks could
thereby be built for grassland use intensity assessment in other regions.
Finally, the parcel boundaries from the regional LPIS dataset were used
as a basis to delineate smaller management units. In the framework of
the CAP, all EU Member States use the LPIS to record agricultural par-
cel boundaries and crop types, including grasslands. In regions where
parcel boundaries are not recorded or not available, segmentation tools
could be applied to retrieve agricultural parcels from satellite imagery
(Tetteh et al., 2020).

With some adjustments, the three methods could be reproduced in
other regions and seasons. To start with, the most operational one is the
Sen4CAP mowing detection method. The algorithms were developed
over multiple growing seasons in the framework of the EU CAP reform.
The system was designed to support EU paying agencies’ compliance
assessments, as part of the CAP’s new monitoring systems. The exhaus-
tive performance analysis of chapter 3 showed the robustness and ver-
satility of this method. Its operational design allows to adapt detection
thresholds and other parameters to specific goals and local conditions,
based on expert knowledge or small reference datasets. Furthermore,
in chapters 3, 4, and 5, we showed this mowing detection method could
be used beyond its initial CAP framework. The multi-source grassland
mowing detection method could potentially be used for differentiating
mowing dynamics in most hay meadows worldwide and through sea-
sons without much additional reference data. Finally, although it was
designed for detecting mechanical mowing events, it could potentially
also be used to monitor grazing events in intensive rotational pasture
systems as well, since the reduction in biomass would be similar to
a mowing event. This would however need to be further tested and
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would require preliminary contextual data, to be able to identify such
systems and differentiate them from intensive hay meadows.

The pixel-based classification presented in chapter 4 differentiates
pastures and hay meadows, based on S2 vegetation index time series.
The time series were gap-filled and interpolated on a regular tempo-
ral grid, to overcome the multiple-day offset between adjacent satellite
tracks, so the classification could be applied over larger areas (Inglada
et al., 2015). The classifier trained with the field data collected across
Wallonia could potentially differentiate pastures from hay meadows in
other regions with similar grassland management and pedo-climatic
conditions. However, for more extended applications, new classifiers
would need to be trained and tested with adequate reference datasets,
as vegetation index profiles of grazed and mown grasslands vary across
seasons and regions.

Moreover, the classification was limited to two classes of grassland
management, i.e. grazed and mown grasslands. There are however
also e.g. grasslands with mixed practices and unmanaged grasslands
(i.e. with no anthropogenic activities in the season). Unmanaged grass-
lands were not considered here, and mixed practices were included in
the category of mown grasslands. Overall, to generalize this approach,
more classes should be considered.

While the binary classification in itself cannot be directly gener-
alized, the hierarchical grassland characterization approach could be
applied, even beyond the scope of grasslands defined in this thesis (cf.
section 1.2.3). We showed that such a classification could be used to
retrieve homogenous grassland units that can then be further charac-
terized. Initial classes should be defined, depending on the regional
context and on the goals of the characterization. Grasslands could, for
example, be differentiated in terms of LU (e.g. natural, semi-natural,
recreational...) and in terms of pedoclimatic context and vegetation
type (e.g. semi-arid steppes, tropical savannas ...).

Finally, the biophysical variable retrieval models were calibrated
on field measurements made during 3 growing seasons and the valida-
tion in chapter 5 showed a good transferability to yet another season.
Furthermore, the regional applications showed coherent results across
the study area. The models would, however, probably need to be re-
calibrated in other regions and other grassland types. The empirical
approach allowed to directly retrieve secondary biophysical variables
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such as the dry matter yield and the nitrogen concentration, from S2
reflectances, without prior assumptions or knowledge of the complex
radiative transfer mechanisms. The main drawback is, however, its lim-
ited transferability and dependence on reference data. Deterministic
approaches, such as RTM, are generally more suitable for generaliza-
tion.

Even inside the limited geographic and thematic scope of this the-
sis, it appeared that multiple qualitative and quantitative indicators are
necessary to accurately characterize grasslands and measure GUI. This
is expected to be even more crucial at a global scale, considering the
full diversity of grasslands. Overall, though all the methods developed
in this work are not directly transferrable to any type of grassland, the
proposed framework for GUI measurement (Figure 6.1) and the ap-
proaches adopted to characterize grasslands remain valid and could be
applied for larger scopes.

6.1.3 Further developments

Furthermore, new methods could be developed to measure other as-
pects of GUI, and other — current or future — satellite sensors with
higher spatial, temporal, or spectral resolution could be used to fur-
ther characterize grasslands.

Over the past years since this thesis was initiated, a number of
studies have developed automated grassland mowing detection meth-
ods based on optical and/or microwave remote sensing (Taravat et al.,
2019; Griffiths et al., 2020; De Vroey et al., 2021; Lobert et al., 2021;
Schwieder et al., 2022; Lange et al., 2022; De Vroey et al., 2022; Reiner-
mann et al., 2022). Working on different study areas, using various data
combinations and detection methods to achieve the same goal, these
studies converge towards similar results and conclusions (Table 6.1).
At this stage, it would be interesting to perform a thorough compar-
ative study, combining all the most recent methods and cross-testing
them with the reference datasets and validation approaches proposed
in this thesis and other studies. This would provide a great overview
and baseline for further research on grassland monitoring.

In addition to mowing, other management practices could be de-
tected and monitored by remote sensing. In chapter 4, pastures were
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differentiated from hay meadows based on VI time series classifica-
tion. Grazing activities were however not detected or further charac-
terized. Grazing intensity patterns are often derived from livestock
census data (Gómez Giménez et al., 2017; Estel et al., 2018; Piippo-
nen et al., 2022) or vegetation indices linked to above-ground biomass,
such as the NDVI (Reeves and Baggett, 2014; Ma et al., 2019; Xu et al.,
2019). Further research should be carried out on grazing intensity as-
sessment, especially in intensive mixed regimes of grazing and mowing
where both activities are challenging to differentiate.

Some more intensively managed grasslands are regularly tilled and
resown. This provides information on the continuity of a grassland
cover, which has an impact on the ecological value of grasslands (Kuhn
et al., 2021). Tillage could be detected, similarly to mowing events,
based on changes in S1 coherence and S2 NDVI time series (Voorman-
sik et al., 2020). In some regions, monitoring grassland irrigation is
crucial in the context of water management. Bazzi et al. (2020) suc-
cessfully detected irrigated grasslands based on S1 VV backscattering.

For the biophysical characterization of grasslands, the focus was set
on the retrieval of biomass and N content. Other macronutrients, such
as phosphorus, can however provide key information on grasslands’
ecological state and productivity. As a (co-)limiting element in plant
growth, phosphorus availability is determinant for grassland species
diversity (Ceulemans et al., 2017). Moreover, phosphorus constitutes
a crucial nutrient for herbivores and influences the grazing behavior
of wildlife and livestock (Gao et al., 2019). A few studies have been
performed on crop or grassland phosphorus content retrieval through
field spectroscopy (Mutanga and Kumar, 2007; Ramoelo et al., 2011;
Pimstein et al., 2011; Mahajan et al., 2017; Gao et al., 2019). Their
results show significant correlations in the NIR and SWIR region of
the spectrum and suggest plant phosphorus content could be retrieved
from multispectral sensors such as S2. Research should further inves-
tigate the potential retrieval of grassland phosphorus as well as other
nutrients (e.g. potassium) from multi- and hyperspectral satellite im-
agery.

Alternative satellite data constitute another potential for improve-
ments and developments. In chapter 3, the complementarity of S1
and S2 for grassland mowing detection was demonstrated. While mi-
crowave and optical remote sensing measure very different aspects of
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the soil and vegetation cover, they both allow to detect mowing events,
through changes in vegetation structure and humidity and in green
biomass respectively. Where and when enough cloud-free images are
available, S2-based mowing detection is more precise and accurate. S1-
based mowing detection partially compensates for omissions due to
cloud cover but is characterized by a higher uncertainty. In the near
future, daily 5 m resolution multispectral optical data, like the Earth-
Daily constellation planned for 2024, should increase detection rates
and allow to rely less on microwave data for mowing detection. SAR
data will however remain a great asset for the detection of mowing
events under persistent cloud cover.

Shorter revisit times, in general, would allow to monitor grasslands
growth and management more precisely. For example, based on daily
acquisitions, grazing practices could potentially be further character-
ized. Grazing periods and their intensity might thereby be estimated.

Although the S2’s multispectral sensor already allows to retrieve a
lot of information, higher spectral resolutions would be an asset, espe-
cially for biophysical variable retrieval. Recent and upcoming space-
borne high-resolution hyperspectral sensors (e.g. PRISMA, EnMAP,
CHIME) represent a great potential for agricultural monitoring (Hank
et al., 2019; Weiss et al., 2020).

Finally, the spatial resolution of S1 and S2 (10-20m) is sufficient
to characterize most grasslands in European landscapes. Parcels or
management units that are smaller than 1000 m2 or narrow grasslands
are however more challenging to characterize. This can be an issue
in particular for remnants of natural and semi-natural grasslands that
are often made up of relatively small patches in complex landscapes.
Therefore, the use of higher-resolution satellite data should be further
considered.

6.2 Perspectives and recommendations

6.2.1 Diversity and complexity of grassland ecosystems

Grasslands encompass a broad range of land covers, land uses, and land
use intensities. Both from an ecological and an agricultural perspec-
tive, grasslands are diverse. Such diversity necessitates quantitative
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indicators for grassland characterization and makes classification chal-
lenging. Furthermore, due to the global diversity of grasslands, models
can rarely be generalized beyond a given scope of grassland types. It is
therefore also crucial to clearly define this scope.

First, grasslands occur in various biotopes (i.e. the abiotic compo-
nent of an ecosystem). These initial conditions largely determine the
state, productivity, and composition of grasslands. Even within a rela-
tively small region, variations in temperature, soil type, and humidity
can, for example, have significant impacts on grasslands’ biophysical
variables, as illustrated in Figure 5.7.

Secondly, grassland management practices are diverse and can be
challenging to categorize. Multiple quantitative indicators seem to be
most suitable to characterize grasslands in terms of management, in-
put, and output intensity. In this thesis, we found that a combination
of qualitative and quantitative indicators is more suitable for character-
izing managed grassland. The mowing detection methods allowed to
quantitatively characterize grasslands in terms of timing and frequency
of mowing events. And productivity could be estimated with relatively
high precision and accuracy through biomass and N content retrieval.
In terms of grazing, however, the method developed in this thesis only
allowed to differentiate pastures, i.e. exclusively grazed grasslands,
from hay meadows and mixed practices. Further research should focus
on retrieving precise grazing periods and estimating stocking density
to further characterize pastures and mixed practices.

Finally, various grassland habitats with characteristic species com-
positions result from specific biotopes and management practices.
Grassland habitat classification systems exist (e.g. EUNIS) and are es-
sential to facilitate field inventories, monitoring, and decision-making.
However, due to their diversity, classifying grasslands into defined cat-
egories is not recommended because classes are likely to be ambiguous
or fuzzy.

Overall, the diversity and complexity of grasslands need to be taken
into account for the development and especially the validation of ro-
bust monitoring methods. Therefore, field observations and field mea-
surements also play an essential role.
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6.2.2 Importance of field campaigns

Comprehensive field data were key for the development and evaluation
of the grassland use intensity assessment methods in this thesis. Gener-
ally speaking, although remote sensing is a great tool for large-scale LC,
LU, and LUI monitoring — as it is far less costly and time-consuming
than in situ observations and measurements — high-quality reference
data remain essential and cannot be overlooked.

On one hand, the performances of empirical methods, such as re-
gressions and supervised machine learning models, greatly depend on
the size and quality of the training dataset. On the other, precise, ac-
curate, and representative reference data are essential to perform sta-
tistically sound validations and performance analyzes of any remote
sensing mapping or monitoring method.

The source of the reference data and the amount of time and en-
ergy put into building it should be adapted to meet the required the-
matic, spatial and temporal precision and range of a specific applica-
tion. Large reference datasets can be rapidly gathered through expert-
based image interpretation. Recently developed tools, such as Collect
Earth, facilitate the collection of large reference datasets, based on very
high-resolution imagery, for large-scale LC and LU applications (Bey
et al., 2016).

While very efficient and essential for, e.g., global LC mapping, im-
age interpretation is more limited thematically and temporally and im-
plies a large uncertainty. For example, in Chapter 3, Planet image in-
terpretation allowed to evaluate the mowing detection method in six
countries, but grazing and mowing events could not be differentiated
and some mowing events were omitted because of missing Planet im-
ages due to cloud cover. The field dataset, on the other hand, allowed
to validate the detection of actual mowing events more rigorously, with
high certainty and temporal precision. Moreover, validation by image
interpretation implies a risk of non-independence between the refer-
ence data and the classification result (Radoux and Bogaert, 2020).

Crowdsourcing, i.e. "using contributions from crowds to solve spe-
cific problems or to collect data needed for the solution", has been used
increasingly in the remote sensing community (Saralioglu and Gungor,
2020). For agricultural monitoring, in particular, farmer surveys and
declarations constitute a potential reference data source. The national
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LPIS datasets were of great use for the development and initial evalu-
ation of the Sen4CAP mowing detection method. This kind of dataset
is, however, not always freely available, often subject to interpretation
and lacks consistency over large areas. One of the main barriers to
crowdsourcing in the agricultural sector is related to privacy issues,
decreasing farmers’ willingness to participate in this kind of project.
Nevertheless, improving regulations for the use of private data, and
developing technological and collaborative farmsourcing approaches
represent great perspectives for agricultural reference data collection
(Minet et al., 2017). Although crowdsourcing is an effective solution
to gather large datasets, it needs to be considered with caution. The
quality of the protocol and the adequate use of the data are key.

Besides the source of a reference dataset, its representativeness is
also crucial. It is important to consider the size and the thematic, spa-
tial, and temporal range and precision of a reference dataset and bal-
ance it against the time and cost of collecting it.

For GUI measurement, and more specifically for management prac-
tices characterization, the temporal aspect was essential. The field cam-
paign carried out in the spring and summer of 2019 provided precise
information on the management practices of more than 400 permanent
grasslands across three agroecological regions of Wallonia. While the
field campaign was intensive and time-consuming, this unique refer-
ence dataset proved to be highly valuable and served as a strong basis
for the developments and analyses in chapters 2, 3 and 4. The same
grasslands were visited repeatedly, to record all mowing and grazing
practices during a given period. This allowed us to validate the mowing
detection methods with a relatively strict approach, reflecting the ca-
pacity of detecting the occurrence and the precise timing of each mow-
ing event. The spatial extent and the diversity of monitored parcels
allowed us to develop robust grassland mowing detection and classifi-
cation methods and evaluate their performances in a statistically sound
manner. Moreover, through this regular field monitoring, the large
variability of management practices within parcels was highlighted.

In Chapter 5, the majority of the reference dataset was based on
field measurements made outside the framework of this thesis. Only
half of the measurements could be used to calibrate and validate the
biophysical variable retrieval models. Nevertheless, since the measure-
ments were made on grasslands spread across Wallonia and at different
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stages during three growing seasons, the models showed high perfor-
mances and provided consistent results across regions and seasons.

In addition to — and depending on — the size and quality of the
reference dataset, method performances can be evaluated at different
levels, with more or less conservative approaches and using various
performance metrics. As discussed in chapter 3, the mowing detec-
tion methods were evaluated through a conservative approach, on one
hand, reflecting the ability to exactly detect the occurrence and tim-
ing of each mowing event. On the other, a parcel-based evaluation was
applied, assessing the ability of the method to classify grasslands in
terms of mowing practices. In chapter 4, a wall-to-wall pixel-based val-
idation was applied to assess the accuracy of the classification as well
as the mowing detection. This allowed to take the size of the parcels
into account, which can partially explain the higher mowing detection
performance metrics obtained in that chapter. Finally, the DM and N
content retrieval models developed in chapter 5 were validated quanti-
tatively and qualitatively. The regional applications, to retrieve forage
yield and nitrogen nutrition levels, showed the consistency of the esti-
mated biophysical variables across regions and seasons. In general, we
argue that a combination of different levels of performance evaluation
provides the best and most complete estimation of a method’s potential
and limitations and allows to compare results between studies.

Overall, despite the increasing potential of satellite remote sensing
for land monitoring, in situ data collection remains essential in many
EO applications. While they are more costly and time-consuming, field
campaigns allow building more precise, accurate, and comprehensive
reference datasets for land monitoring. In situ observations and mea-
surements offer a higher certainty and independence for the calibration
and validation of robust agricultural monitoring methods. Finally, be-
yond the practical aspect of collecting reference data, field campaigns
provide a better insight into the complex reality of LC, LU, and LUI.

6.2.3 Outcomes of grassland use intensity

It is broadly established that grassland management affects the deliv-
ery of provisioning and regulating ES (Sollenberger et al., 2019) as well
as biodiversity. The outcomes of GUI (i.e. impacts on regulating ES and
biodiversity) were not addressed directly in this thesis. The focus was
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set primarily on inputs, mostly through the characterization of man-
agement practices, and on outputs, through forage yield estimation.
Given the interconnections that exist between different aspects of GUI,
precise and accurate information on one aspect alone can however al-
ready be extremely valuable and allow to deduct other characteristics.

For instance, grasslands that are mown at least three times per
season, with an early first mowing event, are often fertilized to boost
the forage yield. Such intensively manage hay meadows will often be
species-poor as the fertilization and the frequent cutting benefits only
a few dominant species. Knowing the uncertainties inherent to the
detection, classification and retrieval methods, statistics of grassland
management practices and yield can be computed, and regional ten-
dencies can be analyzed. For example, spatially explicit information
on grassland management practices could be linked to species occur-
rence data to further study the link with biodiversity. Satellite-based
grassland characterization could also be used to target specific types of
grasslands or stratify samplings for field inventories. And the regional
forage yield retrieval could perhaps be used in the context of studies
on the protein self-sufficiency of livestock farming.

While current grassland management and productivity play a sig-
nificant role, they are not sufficient to explain the whole variability in
habitats and ecological states of grasslands. The impacts of given man-
agement practices on biodiversity and regulating ES vary in function
of (i) biotopes, (ii) grassland continuity, and management history. A
biotope is defined as an area with relatively uniform abiotic (i.e. ge-
ographical, (micro)climatic, pedological, geological, hydrological, and
topographical) conditions. Grasslands occur in the natural succession
of certain biotopes, but in most temperate regions of Europe, grass-
lands result from — and are maintained by — anthropogenic activi-
ties. The current state of grasslands greatly depends on initial condi-
tions and on long-term LU and LUI history, which will also influence
the impacts of present management practices on biodiversity and ES
(Ahlering et al., 2019; Janišová et al., 2021; Kuhn et al., 2021).

Satellite-based grassland input and output intensity measurements
could be combined with existing pedological, topographical, hydrolog-
ical, and climatic data to include biotopes in the characterization. For
grassland continuity and management history, satellite data allow go-
ing back in time only to a limited extent. Other data sources, such as
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historical maps and cadastral and agricultural records (e.g. LPIS), can
be used to reconstruct LU and LUI history (Janišová et al., 2021; Kuhn
et al., 2021). Crossing biotope, historical LU and current GUI datasets
could, for example, be useful to stratify samplings for field invento-
ries, to relate GUI to species occurrences and further study the link
with biodiversity, or to highlight underrepresented habitats in agri-
environmental schemes and better target them. Overall, such a com-
prehensive dataset would provide a solid basis to analyze grassland
ecosystems and guide management and conservation plans.

6.3 Final thoughts

As one of the main drivers of global change, the agriculture, forestry,
and other land use sector also constitutes a major part of the solution
to mitigate global change. It is, now more than ever, urgent to develop
and implement sustainable land use solutions, that take into account
local and global cross-sector synergies and trade-offs, and mitigate cli-
mate change, while contributing to biodiversity conservation, ecosys-
tem functioning, and many other sustainable development goals. Com-
prehensive data on land cover, land use, and land use intensity are nec-
essary to address the many knowledge gaps in the development of land
use solutions. In their 6th report, the IPCC recommends that research
priorities include, inter alia, "improved (real-time and cheap) measure-
ment, reporting and verification" (IPCC, 2022). Moreover, the COP27
has stressed the "vital importance" of Earth observation systems to fur-
ther understand climate change, to support adaptation and mitigation
plans, and more specifically to develop early warning systems.

Satellite remote sensing is a great tool to exhaustively measure,
map, and monitor land cover, land use, and land use intensity. Re-
cent satellites, combining global coverage with high spatial and tem-
poral resolution enabled tremendous progress in Earth observation.
In this thesis, we measured several aspects of grassland use inten-
sity at the sub-parcel level, over large areas, and long periods, using
Sentinel-1 and Sentinel-2. These measurements could be implemented
in large-scale agricultural and ecological monitoring and, hopefully,
contribute to supporting the development and implementation of sus-
tainable land use solutions.
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