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Abstract: Monitoring turbidity is essential for sustainable coastal management because an increase
in turbidity leading to diminishing water clarity has a detrimental ecological impact. Turbidity in
coastal waters is strongly dependent on the concentration and physical properties of particles in
the water column. In the Belgian part of the North Sea, turbidity and suspended particulate matter
(SPM) concentrations have been monitored for decades by satellite remote sensing, but this technique
only focuses on the surface layer of the water column. Within the water column, turbidity and SPM
concentrations are measured in stations or transects with a suite of optical and acoustic sensors.
However, the dynamic nature of SPM variability in coastal areas and the recent construction of
offshore windmill parks and dredging and dumping activities justifies the need to monitor natural
and human-induced SPM variability in 3D instead. A possible solution lies in modern multibeam
echosounders (MBES), which, in addition to seafloor bathymetry data, are also able to deliver acoustic
backscatter data from the water column. This study investigates the potential of MBES as a 3D
turbidity and SPM monitoring tool. For this purpose, a novel empirical approach is developed,
in which 3D MBES water column and in-situ optical sensor datasets were collected during ship
transects to yield an empirical relation using linear regression modeling. This relationship was
then used to predict SPM volume concentrations from the 3D acoustic measurements, which were
further converted to SPM mass concentrations using calculated densities. Our results show that these
converted mean mass concentrations at the Kwinte and Westdiep swale areas are within the limits of
the reported yearly averages. Moreover, they are in the same order of magnitude as the measured
mass concentrations from Niskin water samples during each campaign. While there is still need
for further improvement of acquisition and processing workflows, this study presents a promising
approach for converting MBES water column data to turbidity and SPM measurements. This opens
possibilities for improving future monitoring tools, both in scientific and industrial sectors.

Keywords: turbidity; suspended particulate matter; multibeam water column; LISST-200X

1. Introduction

Turbidity expresses the degree to which water loses its transparency due to the scat-
tering and absorption of light by suspended particles [1,2]. It is an important indicator of
water quality that is fundamental to the research, management, and protection of coastal
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ecosystems. Monitoring turbid areas is vital as excessive turbidity is known to have a detri-
mental ecological impact [3,4]. Changes in turbidity will directly affect primary production
and modulate predator-prey relationships, causing knock-on effects that can be measured
throughout the entire marine food web [3,5].

Another major component of coastal monitoring is suspended particulate matter
(SPM), which is highly linked to turbidity. It comprises a wide variety of sub-2-mm sized
particles that are either biogenic (living phyto- and zooplankton and dead organic matter)
or sedimentological (physico-chemical and biogenic minerals, mainly resuspended surface
sediments) [6–8]. Often, the organic biomass and sediments interact with each other by
forming larger aggregates (flocs), changing the fate and transport of SPM [9–11].

Optical turbidity and SPM concentrations are traditionally determined through the
analysis of water bottle samples. However, these techniques are time consuming, and the
resulting measurements are non-continuous. Therefore, more efficient techniques have
emerged using a wide range of optical (e.g., Optical Backscatter Sensor (OBS) and Laser In-
situ Scattering and Transmissometer (LISST)) and acoustic (e.g., Acoustic Doppler Current
Profiler (ADCP)) sensors [12–16] that collect continuous turbidity and SPM datasets in-situ.
Gravimetric and optical turbidity measurements of discrete water samples in the lab are
then used for ground-truthing [17–23].

In the Belgian part of the North Sea (BPNS), SPM concentrations vary seasonally with
higher concentrations in winter and lower concentrations in summer. This seasonal SPM
signal is predominantly controlled by the biological cycle (phytoplankton blooms in spring
and early summer) [10]. Furthermore, human activities such as the construction of offshore
windmill parks [24] and dredging and dumping activities [25,26] are known to have far-
field effects and may significantly increase SPM variability. Improving our understanding
of both natural and human-induced SPM variability is therefore essential for sustainable
coastal management. Large spatial datasets of optical turbidity and SPM patterns in the
North Sea have been derived for years by remote sensing of ocean color [11,27–29]. How-
ever, these datasets are restricted to the surface layer of the water column, whereby the
penetration depth depends on the wavelength of the signal and the amount of sediment in
suspension [29]. Within the water column, optical (LISST, OBS) and acoustic (ADCP) sen-
sors are used to measure SPM in the BPNS in both stations [9,24,30,31] and transects [32,33].
However, coastal and near-shore areas, such as the BPNS, are dynamic environments where
SPM patterns can exhibit fluctuations across all four dimensions of spacetime [9,10]. Hence,
there is a clear urgency to monitor these SPM changes in 3D. A possible solution lies in
multibeam echosounder (MBES) technology, which is based on the emission of sound
pulses in a swath.

In the past decades, acoustic backscatter systems (ABS) [34–36] and ADCP instru-
ments [37,38] have demonstrated the quantitative use of acoustics for suspended sediment
studies using acoustic inversion approaches that convert high-frequency acoustic data
to SPM concentrations in sandy [34,39,40] and cohesive regimes [35,41,42]. In situ water
samples are frequently used to calibrate and quantify ADCP measurements in stationary
profiles [20,43–45] or in transects [21,22,46–49] through model parameter calibration (re-
gression between sensor output signal and real SPMC). While the potential of these ABS
and ADCP instruments for SPM monitoring is well-studied, only a handful of studies
have used MBES sonars to quantify suspended sediments in the water column [50–54].
The scarcity of MBES-focused SPM studies is mainly due to the complex nature of par-
ticle scattering and the difficulty of dealing with large data volumes. MBES systems are
generally used to retrieve depth and characteristics of the seabed [55]. However, when
sound pulses travel through the water, they also interact with targets (suspended particles,
fish, gas bubbles, etc.) within the water column. Thanks to advances in storage capacity
and processing power, MBES can nowadays also deliver a 3D dataset of acoustic measure-
ments in the water column [56]. This new MBES-based approach to visualize the water
column has been embraced by a myriad of applications, including fisheries [57], gas seep-
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age [58], shipwreck research [59], sediment plumes induced by dredging activity [60], and
turbidity currents [48].

This study presents a novel methodology to convert MBES water column data into
a 3D visualization of turbidity and SPM measurements. In contrast to most studies that
deploy the MBES from stationary (moored) vessels, we quantify SPM using MBES from
a moving vessel. For this purpose, we chose to follow an empirical approach for the
characterization of suspended sediments by collecting simultaneous optical and acoustic
measurements while sailing in a natural environment, i.e., the BPNS [8–10,31], where SPM
concentration and composition vary spatially and temporally (tidal cycle/seasons). Finally,
this paper also shares valuable lessons that were learned during this study. This will
contribute to open up new prospects for using multibeam sonars as a future monitoring
tool for SPM.

2. Study Area

Five campaigns were conducted with the RV Simon Stevin (RVSS) in the Kwinte
and Westdiep swale areas during autumn/winter (October 2020, February 2021) and
spring/summer (March 2021, May 2021, July 2021) (Figure 1). During each campaign,
large datasets of 3D MBES water column and in situ optical sensor data were collected
simultaneously (Appendix A).

In each campaign, measurements were taken close to the Kwinte acoustic reference
area [61,62] (Figure 1, Appendix A), situated in the western part of the Belgian part of
the North Sea (BPNS). This area was selected as it is situated at the edge of the winter
turbidity maximum zone, resulting in pronounced seasonal changes in surface SPM (and
linked chlorophyll-a) concentrations [10]. Furthermore, the Kwinte acoustic reference
area is protected from bottom-disturbing activities. The Kwinte area is also located close
to shore (about 16 km, ensuring limited transit times) and exhibits a uniform (sandy to
gravelly) geology and bathymetry (25 m Lowest Astronomical Tide; LAT) [61,63]. These
water depths allow safe undulating movements of the in situ sensors in the water column.
During the July 2021 campaign, the Westdiep area (Figure 1, Appendix A), located 5 km
offshore in water depths of about 15 m LAT, was surveyed due to adverse conditions in the
Kwinte area.
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Figure 1. (A) The Belgian part of the North Sea: 20 m bathymetric grid from Maritime and coastal
services-Flemish hydrography [64], with indication of stations W05 (51◦25.000′N, 2◦48.500′E) and
W08 (51◦27.610′N, 2◦20.910′E) and the 20 g/m3 SPM concentration contours in winter (black) and
summer (grey) [10]. (B) Detail of the Kwinte and Westdiep study areas with indications of the July
2021 survey lines. (C–F) Detail of the Kwinte study area with the survey lines for the October 2020
(C), February 2021 (D), March 2021 (E) and May 2021 (F) campaigns. The location of the Kwinte
acoustic reference area (KARA) and water sampling stations LW215 and Timbers 15 are indicated.
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3. Materials and Methods
3.1. Data Acquisition
3.1.1. MBES–System and Settings

Large MBES water column datasets were collected using an EM2040 dual Rx (MKII)
system (Kongsberg, Norway), hull-mounted on the RVSS (Figure 2). This shallow-water
MBES consists of one transmitter Tx (0.4◦) and two receiver Rx (0.7◦) transducers in
Mills Cross Configuration [65]. The system can be operated with a frequency range of
200–400 kHz, and maximum 200◦ swath coverage, consisting of 800 beams with 0.4◦ × 0.7◦

beam width (400 kHz).
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Figure 2. (Top)—the sensor toolbox used within this study comprises optical (LISST-200X, Eco
FLNTU OBS) and acoustic (EM2040 MBES hull-mounted on RV Simon Stevin) sensors, as well as
(Niskin) water samples. (Bottom)—overview of turbidity and SPM measurement techniques based on
different principles: acoustic backscatter (MBES), optical backscatter (OBS), laser diffraction (LISST)
and filtration of discrete water samples (Niskin).

The same set of configuration parameters is consistently applied to the MBES through-
out all surveys in order to ensure comparability of the different acoustic datasets. The MBES
was used in single sector mode to avoid the use of different frequencies for the different
emission sectors. The highest possible frequency (400 kHz), the long pulse length (54 µs),
and no filters were chosen to maximize the signal-to-noise-ratio. The swath widths of both
receivers were limited to avoid overlap (RX Port: −65–0◦; RX Starboard: 0–65◦) and equian-
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gular beam spacing was chosen to spread the receive beams equally over the entire water
column. The maximum ping rate was limited to 10 Hz to keep the datasets manageable.
For more details on the setup, see Supplementary Document S1. For georeferencing of the
beam samples, we used pre-computed sound velocity profiles that were regularly matched
against the surface sound speed measured by the vessel. This is standard procedure for
bathymetric surveys in the area and works well because tidal mixing causes the water
column to be homogeneous without significant stratification.

3.1.2. In Situ Sensor Toolbox: Settings and Deployment

In situ optical (turbidity) measurements were produced with a LISST-200X (Sequoia
Scientific Inc., Bellevue, WA, USA) and an Eco FLNTU OBS (Sea-Bird Scientific, Bellevue,
WA, USA), mounted on a towed, stable frame (Seascan Inc., Falmouth, MA, USA) (Figure 2).
The LISST-200X measures particle size distributions in 36 grain-size classes (1–500 µm)
and the total volume concentration (TVC; in µL/L) using the principle of laser diffraction
(forward scattering) [66]. The LISST was deployed horizontally (Figure 2) and oriented
in such a way that the horizontal water current was minimally obstructed in order to
avoid the creation of bubbles and vortices in the measurement chamber [67]. The sampling
rate was set to 1 s, averaging over 30 measurements, to ensure adequate coverage of the
water column over this time period (Supplementary Document S2). The Eco FLNTU OBS
measures optical turbidity (in NTU) at 700 nm wavelength using the principle of optical
backscattered light at 140 degrees. The raw OBS output can be expressed in optical turbidity
(NTU) by applying an instrument-specific scale factor.. Measurements were made every
40 ms. The resulting raw in situ sensor datasets can be consulted on the Marine Data
Archive (MDA) [68].

3.1.3. Sensor Sensitivity

All of the acoustic and optical sensors measure turbidity and suspended particles in
the water column but use different measurement principles (Figure 2). MBES is based on
the principle of acoustic backscatter, while the optical sensors use the principle of laser
diffraction (LISST) and optical backscattering (OBS). Consequently, different sensors inher-
ently have different particle types and size sensitivities, which leads to sensor-dependent
particle-detection.

The responsiveness of optical and acoustic backscatter instruments is linked to the
different particle properties (size, shape, and composition) (Haalboom et al. [17]; and the
references therein). Optical backscatter systems are more sensitive to cohesive low-density,
irregularly-shaped mud particles and flocs, as their area-to-volume ratio results in a larger
projected area and thus a higher backscatter signal [17,69–72].

In contrast, the interaction between an acoustic pulse and particles is optimal for
coarse (>63 µm), high-density, spherical sand grains [73]. For acoustic backscatter systems,
the backscatter response to different particle sizes also relies on the operating frequency (f),
with lower frequencies being less sensitive to smaller particles than higher frequencies [74].
Acoustic sensors have peak sensitivity for particles with a diameter d = 2/k, which is based
on the wave number k = 2πf/c [17,73,75]. For particles smaller than this peak diameter, the
sensitivity (at a given particle concentration) is expected to decrease with a fourth power
law [76]. Hence, the MBES 400 kHz frequency used in this study should provide optimal
acoustic scattering for grain sizes around 1200 µm, while the sensitivity for grain sizes with
60 µm is expected to be reduced by ~52 dB.

The LISST-200X measures particles with grain sizes between 1–500 µm. When particles
fall outside this measurement range, a rising tail is produced at the lower and upper end of
the particle size spectrum [10,77,78]. In general, no issues with out-of-range particles are
expected because the large LISST-200X measurement range overlaps with the size ranges
of particles in the North Sea [10]. Furthermore, the particle’s refractive index and shape
can be responsible for inventing small particles that attribute to the rising tail at the fine
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end of the LISST size spectrum [77,79,80]. We minimized these rising tail artefacts by using
a kernel matrix derived from random-shaped particles [77].

3.1.4. Sampling Strategy

To collect data from all sensors simultaneously, we implemented an innovative sam-
pling strategy (Figure 3). MBES data was recorded during ship transects. Simultaneously to
this recording, we used the in situ sensor frame to perform undulating “yoyo” movements
between 5 and 20 m water depth. The vertical descent and ascent rate of the in situ sensor
frame was kept as low as possible, being around 20 cm/s. Artefacts in the MBES data were
minimized by sailing in a straight line at low constant speed (~3 knots) and by refraining
from using other echosounders or bow propellers.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 31 
 

 

sensor frame was kept as low as possible, being around 20 cm/s. Artefacts in the MBES 

data were minimized by sailing in a straight line at low constant speed (~3 knots) and by 

refraining from using other echosounders or bow propellers. 

 

Figure 3. Overview of the sampling strategy: continuous recording of MBES water column data, 

yoyo-movement of the in-situ sensor frame (with a�ached turbidity sensors), and Niskin bo�le de-

ployments. 

The continuous  acoustic and optical sensor measurements were validated by the 

collection and analysis of discrete Niskin water samples in each campaign except for the 

October 2020 campaign. The water samples were collected from various depths in stations 

located in the Kwinte or Westdiep areas, respectively LW215 (51°16.648’N; 2°36.797’E) and 

Timbers 15 (51°10.160′N; 2°37.375′E) (Figure 1, Appendix A). These stations were visited 

minutes to hours before the simultaneous acoustic and optical measurements (survey 

lines indicated in Figure 1). Filtration and gravimetric analyses of the Niskin water sam-

ples yielded suspended particle concentrations in mg/L (with a precision of 0.1 mg/L). 

These laboratory analyses were performed by the Flanders Environment Agency (VMM), 

following their standard protocol. The dataset can be consulted on MDA [68]. 

3.2. Data Processing 

3.2.1. MBES Data 

Processing of large quantities of MBES water column data was conducted in a spe-

cialized MATLAB-based software called SonarScope (Version R2021a) (Ifremer, Plouzané, 

France) [81]. Since the study of MBES water column data is an emerging discipline, we, in 

consultation with the developer, created a tailor-made data processing pipeline to visual-

ize and export MBES water column data as 3D point clouds (Figure 4). The detailed step-

by-step procedure (for .all file format) is provided in Supplementary Materials (Supple-

mentary Document S3). 

 

Figure 3. Overview of the sampling strategy: continuous recording of MBES water column
data, yoyo-movement of the in-situ sensor frame (with attached turbidity sensors), and Niskin
bottle deployments.

The continuous acoustic and optical sensor measurements were validated by the
collection and analysis of discrete Niskin water samples in each campaign except for the
October 2020 campaign. The water samples were collected from various depths in stations
located in the Kwinte or Westdiep areas, respectively LW215 (51◦16.648′N; 2◦36.797′E)
and Timbers 15 (51◦10.160′N; 2◦37.375′E) (Figure 1, Appendix A). These stations were
visited minutes to hours before the simultaneous acoustic and optical measurements
(survey lines indicated in Figure 1). Filtration and gravimetric analyses of the Niskin water
samples yielded suspended particle concentrations in mg/L (with a precision of 0.1 mg/L).
These laboratory analyses were performed by the Flanders Environment Agency (VMM),
following their standard protocol. The dataset can be consulted on MDA [68].

3.2. Data Processing
3.2.1. MBES Data

Processing of large quantities of MBES water column data was conducted in a spe-
cialized MATLAB-based software called SonarScope (Version R2021a) (Ifremer, Plouzané,
France) [81]. Since the study of MBES water column data is an emerging discipline, we,
in consultation with the developer, created a tailor-made data processing pipeline to
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visualize and export MBES water column data as 3D point clouds (Figure 4). The de-
tailed step-by-step procedure (for .all file format) is provided in Supplementary Materials
(Supplementary Document S3).

The data format of Kongsberg delivers the WC data in {Sample,Beam} geometry, i.e.,
for every beam, a series of echoes (in dB) are displayed over time. However, for fur-
ther interpretation {Depth, AcrossDistance}, geometry is recommended (Figure 4). Polar
echograms were created by masking all soundings below the bottom detection, georefer-
encing the beam samples (including raytracing), applying the tide correction, and finally
by converting the raw beam amplitudes into (uncalibrated) volume backscattering strength
values, Sv (in dB). For the last step, SonarScope applied the same conversion approach as
described in equation 9 in Urban et al. [58].
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paign, we do not expect significant differences of the absolute calibration factor for the
different campaigns. However, due to the missing relative calibration, it is possible that
differences in the calibration between beams occur. This can influence the comparability of
the measurements at different beam angles.

Every polar echogram is affected by prominent noise that is inherent to the beam
pattern of the sonar system [58,85,86]. Transmit and receive beam patterns are not perfectly
directional, so although the strongest sensitivity of each beam occurs in the main direction
(main lobe), the beams will also be sensitive in other directions (side lobes). Backscatter
signals caused by echoes coming from side lobe directions are called side-lobe artefacts
(Figure 4). The most prominent side-lobe artefact is the arc-shaped specular artefact
(Figure 4) that affects all beams at the shortest radial distance between the sonar and seabed
(i.e., minimum slant range). This artefact is caused by the seabed at the range of the closest
and thus earliest bottom return that interferes with measurements from the steered beams.

The stacked polar echograms were then exported as 3D point clouds (Latitude, Longi-
tude, Depth, Sv) using a slant range that excludes the system-inherent specular and sidelobe
artefacts (i.e., 0–95%) (Figure 4). As a result, only a relatively clean water column dataset
inside the minimum slant range was retained.

The exported acoustic Sv data was subsequently quality checked to remove wrongly
georeferenced points with missing or out-of-bound coordinates (outside the BPNS; Marine
Regions ID mrgrid 3293).

3D acoustic Sv datasets from the water column are typically quite large. We collected
gigabytes of data (163–1216 GB; Appendix A) despite the relatively short survey time
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(ranging between 0.5 and 4 h) during each campaign. To efficiently work with these
extensive point clouds, the data were ingested into “Entwine” (https://entwine.io) [87],
a data library that organizes the point data in octrees to allow for spatial indexing at any
particular location. Afterwards, the Sv point cloud data were visually inspected in “Potree
Viewer” (http://potree.org) [88].

3.2.2. In-Situ Sensor Data

The raw LISST scattering intensities were converted to particle size distributions
(in µL/L) using the “randomly shaped particle inversion model” (i.e., assuming natural
particles with random shape) in the proprietary LISST-200X software (Version v1.14), as
recommended by the manufacturer (Sequoia Scientific) when working in natural waters.
The quality of the LISST datasets was checked using the following quality control metrics:
positive depth values, stable transmitted laser power, laser reference values between 0.5
and 2, transmission values between 0.3 and 0.98. The latter indicates that there were no
saturation problems. The raw OBS output was converted to Turbidity (in NTU) after
applying an instrument-specific linear scaling constant that was predetermined by the
producer (Sea-Bird Scientific) using a Formazin standard. The data quality of the OBS
data was checked and outlier turbidity values (below 0 NTU) were removed. The OBS
data were averaged in one second bins. The processed datasets from each sensor can be
consulted on MDA [68]. For each campaign, an in situ sensor parameter table was created
by merging all in situ sensor data using the timestamp of each sensor measurement. Finally,
the measurements of the in situ sensors were georeferenced (XY coordinates) using the
timestamp of the RVSS GPS system. These ship coordinates were logged continuously
with the MBG-Tech RTK GPS system (UKKO GSS receiver with Septentrio technology).
The depth values (Z coordinates) of the in situ measurements were retrieved from the
depth sensor of the LISST. The 1-sec recordings of the combined in situ sensor data for each
campaign can be found on GitHub [89].

Specifically for this study, we performed three additional processing steps with
Python scripts [89]:

1. During the February and March 2021 campaigns, the raw LISST scattering intensity
data displayed an abnormal spiky pattern, especially the first six rings, which is
characteristic for optical misalignment (Appendix B). The TVC values, which normally
reflect sizes between 1–500 µm, were therefore recalculated to 2.42–180 µm (February
2021 campaign) and 1–180 µm (March 2021 campaign).

2. Besides the particle concentration, particle sizes might also affect the scattering and
absorption behavior, e.g., [17]. Hence, additional grain-size parameters were calculated
based on the LISST’s particle size distribution, including the mass division diameter D50
value. Finally, as flocculation in coastal areas is a transient process, subjected to varying
turbulent shear stresses, the (multimodal) particle size distribution actually consists of
different particle populations. Therefore, TVC (in µL/L) was recalculated for four size
ranges: TVC1–3 µm, TVC3–20 µm, TVC20–200 µm, TVC200–500 µm, which were assumed to
represent primary particles, flocculi, microflocs, and macroflocs, respectively [10,90].

3. As the depths of the acoustic Sv datasets were corrected for the tides and transformed
into depth LAT within SonarScope, the same tide correction and transformation needs to
be applied to the in situ sensor track. Therefore, we calculated the corrected LAT water
depths of the LISST using the continuous RTK signal of the ship, which was smoothed
(Butterworth filter; low-pass normalized cut-off frequency: 1/200; order: 2).

3.3. Data Analysis

We developed a workflow (Figure 5) in which we modeled an empirical relationship
between in situ optical turbidity sensor data (TVC in µL/L from the LISST-200X; Turbidity
in NTU from the OBS) and acoustic MBES (Sv in dB) data recorded at the same time and
location. This modeled relationship was then used to predict SPM in a 3D volume based
on acoustic Sv values from the water column.

https://entwine.io
http://potree.org
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Figure 5. Overview of the workflow of the empirical approach used in this study to acquire and
process acoustic and optical data in order to model Turbidity and TVC.

3.3.1. Regression and Prediction Analysis

An overview of the main steps of the regression and prediction analysis is pro-
vided in Figure 6. The analysis was performed using python scripts, which are available
on GitHub [89].
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and grid and predict pipelines. CV = cross validation.

The regression analysis was performed on the georeferenced acoustic and optical
data collected during multiple campaigns. This yields more variability in the dataset and
reduces the risk of overfitting the model to single campaign conditions. The total size range
of TVC was the same for three out of five campaigns (1–500 µm) and covers a large part of
the size range of the SPM in the North Sea [90,91]. However, for the February and March
2021 campaigns (i.e., those with optical misalignment), the recalculated TVC reflects a more
confined size range. Hence, TVC (TVC1–500 µm, TVC1–3 µm, TVC3–20 µm, TVC20–200 µm,
TVC200–500 µm) was only modeled based on data from three campaigns (October 2020, May
2021, and July 2021). The modeling of optical turbidity (in NTU) was based on data from
October 2020, February 2021, and March 2021, because during the May 2021 and July 2021
campaigns no OBS data were recorded (sensor malfunctioning).

As the volume of the water column representative for the in situ sensor measurements
is smaller than the sampled volume of the MBES, all MBES points within a predefined
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radius between 1, 2, 3, 4, and 5 m around each in situ sensor measurement were selected
(3D spheres shown in Figure 7). These points were then averaged to be compared with
the corresponding sensor values. The extraction and averaging of acoustic Sv data was
performed in PDAL (C++) (https://pdal.io) [92] and represents the most compute-intensive
step of the presented workflow. Hence, PDAL pipelines were parallelized using Dask
(https://dask.org/) [93], which is a Python library for parallel computation using dynamic
task scheduling, rendering the computations scalable from a local machine to a cluster of
machines. As we processed combined datasets from multiple campaigns (>2.5 TB), this
required powerful computational resources. Therefore, we used the high-performance
computer cluster facilities of the Flemish Supercomputer Center (VSC). We used a cluster
of forty computers with four CPU cores and four gigabytes of RAM on each machine.
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Figure 7. (left): 3D water column MBES point cloud visualization in Potree Viewer. (right): Extraction
MBES spheres with predefined radius (here 0.5 m) around each in-situ sensor measurement. Data
from October 2020 campaign.

The regression modeling was conducted in Python (Statsmodel library). The dataset
was divided into randomly selected training (75%) and test (25%) datasets. The training
dataset was used to select the best radius of the extraction sphere using a three-fold cross
validation. Then, an Ordinarily Least Squares (OLS) regression model that assumes no
uncertainties in the predictor variable (averages of Sv values) was fit using this best radius.
Finally, the linear regression model was validated with the test dataset using the best radius,
yielding a scoring value (adjusted R2) that indicates how well the model generalizes. The
OLS regression modeling was performed on log10-transformed y-variables (in situ sensor
measurements), because the unit of the predictor x-variable (decibels) is expressed on a
logarithmic scale (base 10 logarithm). This approach is in accordance with Meslard et al. [22],
Venditti et al. [47], and Fettweis et al. [94]. The y-variables consisted of the different size
ranges of TVC (TVC1–500 µm, TVC1–3 µm, TVC3–20 µm, TVC20–200 µm, TVC200–500 µm) and
optical turbidity.

The fitted regression model was then used to predict TVC based on the full 3D acoustic
dataset. For this, a 3D grid with resolution of 2 m was created from the 3D MBES point
cloud using a simple interpolation algorithm where each point that falls within a radius of
5 m of a raster cell center contributes to the raster value. The radius of 5 m was overall the
best radius determined from cross validation. After the evaluation of the goodness-of-fit,
the acoustic Sv values for each point of the raster layers was transformed into (Log)TVC
volumes using the generated linear regression model (with adj. R2 > 0.4).

3.3.2. Conversion to the Mass Concentrations

To compare between SPM measurements retrieved from different techniques, it is
necessary to transform the TVC values measured by the LISST and predicted by the MBES
into mass concentrations (SPMC; in mg/L) by multiplying with a density representative
for the SPM mixture. However, determining the exact density of natural suspensions is
difficult due to the heterogeneity of the SPM mixture [11,95]. As the density of all particles
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in suspension decreases when the floc size increases (i.e., less than 100 kg/m3 for organic
macroflocs and more than 2650 kg/m3 for mineral particles; [94]), mass concentrations were
calculated following the fractal floc method (see Equation (1)). This approach assumes that
big flocs consist of smaller primary particles, and it provides a mathematical framework to
characterize sediment flocculation [96,97].

ρa = ρp

[
dp

df

]3−F

(1)

Several studies [11,95,98] followed this approach using data from their LISST-100X
or LISST-100C to calculate floc size distributions (2.5–500 µm) by mass, assuming a pri-
mary particle size of dp = 2 µm and a fractal dimension of F = 2. Theoretically, this
fractal dimension should fall between 1 and 3 depending on the packing of the flocs with
F = 3 representing a solid spherical particle [96]. In practice, it is assumed that the fractal
dimension F = 2 for marine and estuarine flocs [11,98]. In this study, we calculated the
apparent floc density, ρa, for each size class between 2 and 500 µm (size class 4–36), with
the floc diameter df = median of each LISST size class and a primary particle density of
ρp = 2500 kg/m3. As primary particles do not only consist of clusters of clay minerals,
but also organic and calcareous particles, picophytoplankton, and heterotrophic bacte-
ria [78,90], their density is estimated as the weighted sum of these different fractions, i.e.,
~2500 kg/m3 [7]. In contrast to previous studies that were conducted with a LISST-100,
we used the LISST-200X, which measured particles smaller than 2 µm. For those smaller
size classes (size class 1–3), we assumed an apparent density of ρa = 2500 kg/m3 [7], as
they most likely constitute of primary particles. An error envelope for the apparent density
was (artificially) created by varying the primary particle size between dp = 1–3 µm and
the fractal dimension between F = 1.9–2.1, which are reasonable ranges for the Kwinte
study area [7] (Appendix C). After calculating the densities for the 36 LISST size bins,
we averaged the densities of size classes 1–36 (ρ1–500 µm), 1–6 (ρ1–3 µm), 7–17 (ρ3–20 µm),
18–31 (ρ20–200 µm), 32–36 (ρ200–500 µm) to match with the different TVC size ranges, i.e.,
TVC1–500 µm, TVC1–3 µm, TVC3–20 µm, TVC20–200 µm, TVC200–500 µm, respectively (Table 1).
We then multiplied those average densities with the corresponding TVC to obtain an esti-
mation of the mass concentration of the total suspended particulate matter (SPMC1–500 µm),
primary particles (SPMC1–3 µm), flocculi (SPMC3–20 µm), microflocs (SPMC20–200 µm), and
macroflocs (SPMC200–500 µm).

Table 1. Overview of the apparent density value ranges for North Sea SPM with different size ranges.
The densities were calculated using the fractal method.

Size Range
(in µm) North Sea SPM Density ρa

(kg/m3)
Lower Limit ρa

(kg/m3)
Upper Limit ρa

(kg/m3)

1–3 primary particles 2329 1000 3175
3–20 flocculi 758 319 1213

20–200 microflocs 93 32 183
200–500 macroflocs 16 1 38

1–500 SPM 614 259 922

4. Results
4.1. Linear Regression Models

We generated six linear regression models following the equation Log10(Y i
)
= α +

βX + εi for different parameters (TVC size ranges and optical turbidity) (Table 2, Figure 8).
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Table 2. Resulting parameters of the linear regression modeling for different TVC size ranges and
optical turbidity using data from multiple campaigns combined.

Yi
TVC

(1–500 µm)
TVC

(1–3 µm)
TVC

(3–20 µm)
TVC

(20–200 µm)
TVC

(200–500 µm)

Optical
Turbidity

(NTU)

Observations n 6529 784 6529 6529 6529 12024
α 3.635 −6.499 4.134 4.134 1.524 5.979
β 0.029 −0.073 0.053 0.040 0.006 0.074

Standard error α 0.029 0.561 0.020 0.025 0.054 0.090
Standard error β 0.000 0.008 0.000 0.000 0.001 0.001
Standard error of

regression εi
0.121 0.331 0.086 0.103 0.211 0.290

p value β 0.000 0.000 0.000 0.000 0.000 0.000
Adjusted R2

(test dataset)
0.439 0.195 0.843 0.651 0.007 0.211

Best radius (m) 5 5 5 4 1 5
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TVC20–200 µm, TVC200–500 µm) using data from multiple campaigns combined.
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In order to examine the relations between Sv, log(TVC), and log(optical turbidity), the
goodness-of-fit (adjusted R2) and the significance of the x-coefficient (β) are computed. The
adjusted R2 shows how well Sv explains the variance of the modeled in situ parameters
(TVC1–500 µm, TVC1–3 µm, TVC3–20 µm, TVC20–200 µm, TVC200–500 µm, optical turbidity). A
clear difference in adjusted R2 is observed between different input parameters, ranging from
0% (TVC200–500 µm) to 84% (TVC3–20 µm) of the variance that is explained by Sv (Table 2).
The t-tests shows that the coefficients of the x-variable (Sv) are statistically highly significant
for each model (p-value < 0.0001), even for those models with the lowest goodness-of-fit.

4.2. SPMC Volumes

The TVC1–500 µm linear regression model was used to convert the gridded 3D Sv
volumes of each campaign into a 3D grid, which displays the mean mass concentrations of
the total suspended particulate matter (SPMC1–500 µm). To obtain these SPMC estimations,
the densities of SPM (Table 1) were used.

The converted mean SPMC volumes of each campaign can be consulted in Zenodo [99].
Investigation of these plots reveals clear spatiotemporal variability in the BPNS. For exam-
ple, during the March 2021 campaign, we detected a remarkable layer with high Sv and
SPMC values in the water column at −14 m LAT around noon (Figure 9). Eventually, this
layer slowly descended and eventually disappeared around 2 pm. The spatiotemporal
aspect of this feature was captured by the 3D SPM grid. The reason why the layer is not
“visible” in the eastern part of grid is because we surveyed from West to East, so the layer
was already gone when we surveyed the eastern part of the survey area. This phenomenon
is discussed in more detail in Section 6.4.
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Figure 9. Horizontal slice at −14 m LAT depth (top) and a vertical cutaway (bottom) through
a 3D volume of the converted mean mass concentration of total suspended particulate matter
(SPMC1–500 µm) showing clear temporal variability of SPM within the water column. Data from the
March 2021 campaign. Coordinates are given in UTM (zone 31 N). The red dotted line indicates the
location of the vertical cutaway (top) and the depth of the horizontal slice (bottom).
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5. Discussion
5.1. In Situ Sensor Datasets

The developed linear regression models (Figure 8) are presumably not generalized
relationships, as they are inherently bound to the specific SPM properties of the days and
locations on which the sensor data was gathered. Therefore, it is useful to first describe
these specific SPM properties (optical turbidity, TVC, and particle size distribution) by
using the collected LISST and OBS datasets. The ranges of SPM properties are not normally
distributed; hence, we report the median and the interquartile ranges (IQR) (Figure 10) of
these distributions.

Due to optical misalignment of the LISST-200X in the February and March 2021
campaigns, the modeling of TVC was based on data from campaigns in October 2020, May
2021, and July 2021, coinciding with summer/autumn conditions. In contrast, because no
optical turbidity data were recorded during the May 2021 and July 2021 campaigns, the
modeling of optical turbidity was based on data from October 2020, February 2021, and
March 2021, coinciding with autumn/winter conditions. Although it is difficult to compare
these datasets with each other, they provide an insight into the seasonal SPM properties of
the study area.

The observed median Turbidity (4.3 NTU) in autumn/winter and the TVC (35.2 µL/L)
and D50 (156.9 µm) in summer/autumn (Figure 10) are in line with other studies in the
BPNS that present data from comparable low turbidity offshore locations, e.g., W05 and W08
(Figure 1) [9,11]. The particles are larger in summer because biological activity during summer
produces fresh adhesive organic material, which results in enhanced flocculation. As the
flocs’ sizes increase, the settling velocities increases. Subsequently, the SPM concentration and
turbidity decrease. In contrast, SPM and turbidity increase during winter [11].
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Figure 10. In situ sensor summary box plots of ranges of Turbidity (derived from OBS), Total
Volume concentration, and D50 (derived from LISST), averaged over all depths. OBS measurements
were only available for the “autumn/winter” months (October 2020, February 2021, March 2021),
while LISST measurements were only retained for the “summer/autumn” (October 2020, May
2021, July 2021) months. Box plots parameters: outliers, Q1−1.5 × IQR, Q1 25%, Q2 50%, Q3 75%,
Q3 + 1.5 × IQR, outliers.

The particle size distribution in summer/autumn is multimodal (with peaks around
10, 80, and 250 µm) (Figure 11). This observation is in accordance with reported multimodal
particle size distributions (with peaks around 10, 50–100, and 300 µm) in stations W05 and
W08 in early autumn [11]. In terms of volume concentrations, (small) macroflocs are most
abundant, followed by microflocs and flocculi (Figure 11).
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5.2. Evaluation of the Linear Regression Models

This evaluation discusses the differences between the developed linear regression
models (Figure 8, Table 2), which describe the relation between acoustic Sv and the in situ
parameters. It should be noted that the models of optical turbidity (Figure 8A) and TVC
(Figure 8B–F) are based on different datasets and that a comparison of those is therefore
not straightforward.

In the optical turbidity regression model (n = 12024), acoustic Sv explains only a small
part of the variability (adj. R2 = 0.211) (Figure 8A). For that reason, we have discarded this
model for further analysis. The low level of correlation may be explained by (a combination
of) different reasons. First, we hypothesize that the significant difference in sensitivity
between the OBS and the MBES sensors (as mentioned in Section 3.1.3) might provide a
reason for the weak correlation. In areas with relatively low SPM concentrations, such as the
investigated Kwinte and Westdiep areas [7], OBS sensors are more sensitive to fine-grained
mud particles [17], while the interaction between an acoustic pulse and particles is optimal
for coarse-grained high-density sandy particles [73]. Furthermore, the optical turbidity
model was based on data from winter months. In winter, a relatively higher abundances of
fines are present, which might be favorable for particle detection by OBS sensors, while
these grain sizes are less optimal for the 400 kHz MBES system (see Section 3.1.3). Second,
during our campaigns we only encountered a small range in optical turbidity values in the
Kwinte area. More campaigns in other areas and seasons will increase the measured optical
turbidity range, which might be beneficial for the goodness-of-fit of the linear regression
model. Third, there is a difference in sampling volume between the optical and acoustic
measurements. The OBS measurements represent a small measurement volume (in the
order of ~cm3). Hence these optical measurements are expected to exhibit more variabil-
ity when compared to the averaged measurements within the large multibeam spheres
(4–500 m3). This difference in sampling volume could affect the correlation. However,
the sampled volumes of the OBS and LISST sensors are very similar, so this difference
in measurement volume alone cannot explain the weak relationship between Sv and
optical turbidity.

Finally, the low level of correlation can be due to the lack of frequent sensor calibration,
which detects and corrects for instrument drift over time [94].
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The clear difference in adj. R2 values between Sv and the different size ranges of
TVC could be caused by the acoustic sensitivity towards each of these classes. Acoustic Sv
explains a high proportion of the variance in the LISST-derived volume concentration of
particles with a size range between 1 and 500 µm (adj. R2 TVC1–500 µm = 0.439) (Figure 8B).
The goodness-of-fit is even better when confining the default total size range of the LISST to
3 to 20 µm (adj. R2 TVC3–20 µm = 0.843) (Figure 8D) and 20 to 200 µm (adj. R2 TVC20–200 µm
= 0.651) (Figure 8E). These confined size ranges overlap with the sizes of flocculi and
microflocs in the North Sea. The size range between 20 and 200 µm could also match with
sand (>63 µm) particles in suspension; however, these are mostly found near-bed [9] where
none of the in situ measurements were conducted and no MBES water column data were
retained (cut-off 95% to exclude side lobes). Since flocs are the most abundant (in terms
of volume concentrations; Figure 11), it is surprising that the adj. R2 values are higher for
smaller size classes because the MBES 400 kHz operating frequency provides in theory
optimal acoustic scattering for larger grain sizes (~1200 µm, see Section 3.1.3). However,
the particles in each size class might have specific particle properties (such as density,
shape, refractive index, surface roughness), which also affect the scattering and absorption
behavior besides the size criterium (Haalboom et al. [17]; and the references therein). For
example, if we are correct to assume that the calculated density of the particles in the
TVC3–20 µm and TVC20–200 µm class is relatively higher than the density of the (flocculated)
particles in the TVC200–500 µm class then the higher density probably causes the acoustics to
be more responsive compared to larger particles with lower densities. Furthermore, the
modeling of TVC was based on data from campaigns in October 2020, May 2021, and July
2021, coinciding with summer/autumn conditions. Due to the presence of algal blooms in
spring and early summer, more flocculation occurs during those periods [11]. Although the
acoustic response of non-cohesive sandy sediments is relatively well understood through
decades of studies (see review of Thorne and Hurther [34]; and the references therein),
only recent attempts were made to focus on cohesive sediments and to quantify the im-
pact of flocculation on the acoustic scattering [35,41,42,100–103]. Several of these studies
demonstrated that a suspension of flocculated particles can lead to optimal conditions for
acoustic detection. This is not only because of the larger floc size, but also its composition
affects the scattering behavior and can result in a “scattering reinforcing” effect. First, this
is because flocculation apparently does not affect the attenuation of sound [103]. Second,
this is because scattering of a suspension of flocculated particles is higher compared to a
suspension of non-flocculated particles with the same concentration and primary parti-
cles [41,102]. According to Thorne et al. [42], Pedocchi and Mosquera [103], and Vincent
and MacDonald [104], flocs scatter sound as if they were single elastic or fluid spheres,
causing enhanced scattering compared to primary particles. These abovementioned hy-
potheses might explain the high goodness-of-fit for the TVC20–200 µm (microflocs) model,
but the reason for the very high fit of the TVC3–20 µm (flocculi) model remains unclear. The
plot for the LISST size range between 3–20 µm (Figure 8D) shows a clustered distribution
of the datapoints. We thus believe that the correlation in this size range requires further
investigation despite the computed high goodness-of-fit.

There is a weak correlation between acoustic Sv and the volume concentrations of the
smallest (adj. R2 TVC1–3 µm = 0.195) (Figure 8C) and largest (adj. R2 TVC200–500 µm = 0.0067)
(Figure 8F) size ranges, which correspond to the size range of primary particles and
macroflocs in the North Sea, respectively. The MBES system in the 400 kHz mode is very
insensitive to the smallest size ranges, because the Sv of grain sizes with a diameter of
~3 µm is already ~104 dB less compared to the optimal grain size of 1200 µm (see
Section 3.1.3). Furthermore, their concentration was probably too low to cause a significant
increase in the MBES signal. Indeed, these primary particles were also less commonly
detected by the LISST, resulting in substantially lower number of observations for the
TVC1–3 µm-model (n = 784) compared to the other models (n = 6529).

Macroflocs, which are abundant during spring and summer (dataset TVC models),
are most likely to be detected by the 400 kHz operating frequency of the MBES system,
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solely based on their large size (~250 µm) and their flocculated internal structure e.g., [103].
The low adj. R2 value might then be explained by the fact that for macroflocs, composition,
rather than size or abundance, controls the acoustic Sv. We hypothesize that the macroflocs
in our dataset consist mostly of jelly material, so the “scattering reinforcing” effect of the
floc components is likely negligible. Another reason could be that for macroflocs with low
densities of 15 kg/m3 (Table 1), the impedance contrast between the particles and the sea
water is so low that the sensitivity of the acoustic sensors is significantly reduced.

5.3. Evaluation of the SPMC Volumes

The acoustically measured 3D volumes of converted SPMC in this study (available in
Zenodo [99]) make it possible to discuss the SPMC ranges for an array of depth intervals
in the water column (depth variability) over a large area (lateral variability). In order to
ensure comparability with other studies and sensors, we only discuss the converted mass
concentrations of the total suspended particulate matter (i.e., SPMC1–500 µm).

In the Kwinte area, SPMC values fluctuate around 25 mg/L and SPMC variability
is more pronounced with depth compared to the lateral variability (Figure 12). This is
testified to by the SPMC increase towards the water surface (>25 mg/L), which is larger
than the lateral variability in the study area. Only a few depth intervals (e.g., −10 m in
February 2021 and −15 m in March 2021) on the density plots (Figure 12) display larger
lateral variability, which is still below the increase of SPMC towards the water surface. The
shallower Westdiep area shows almost no SPM variability with depth, but does display
relatively large lateral variability below the surface water (values between 25–50 mg/L).
In both the Kwinte and Westdiep areas, SPMC ranges are narrow in the first meters of the
water column, while there is more (lateral) variability below the surface water.

The presented SPMC ranges are within the limits of the reported yearly averages of
vertically averaged SPMC in the study area, i.e., between 10 and 50 mg/L [7]. However, the
comparison of the converted SPMC datasets with previous SPM studies in the same area
should be interpreted with care because the sampling strategy in this study is inherently
different in both time and space from the tidal cycle measurements from a vessel or long-
term measurements with tripods. Furthermore, previous studies show that SPMC values
are lower in spring/summer than in autumn/winter [7,31,105,106]. Opposed to the results
of these longer-term measurements that are averaged over several tidal cycles, we do not
observe a distinct seasonal variation in the converted SPMC in the Kwinte area. However,
our data lacks this longer term imprint, because this study focused on the development of
a new methodology rather than the assessment of seasonal SPM variations. In the future,
it would be interesting to apply the new methodology for longer term monitoring by
conducting multiple surveys in different seasons during the year.

SPMC was also measured from Niskin water samples during each campaign, with
the exception of the October 2020 campaign (Figure 12). Caution should be taken when
comparing the measured and converted SPMC since the sampling location might be just
outside the converted SPMC volumes and there is a time delay (minutes to hours) between
the water sampling and the acoustic and optical measurements. The measured SPMC
values show a lot more variability with depth than the converted SPMC ranges, but this is
reasonable as the converted SPMC data are gridded and thus represent averages over a
larger volume. Nevertheless, they are in the same order of magnitude (Figure 12), providing
additional proof that our converted SPMC values are trustworthy.

5.4. Evaluation of the Sources of Uncertainty and Error

In this study, an empirical approach was used for the first time to predict TVC from
acoustic Sv and to estimate SPM over a 3D volume in an uncontrolled environment. The
MBES-derived TVC and converted SPM volumes are the result of several acquisition, pro-
cessing, and modeling steps (Figure 5), which all contribute (randomly and systematic) to
the overall estimated SPM uncertainties. Providing an exact review of the error propaga-
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tion is beyond the scope of this study. Nevertheless, in Appendix C we try to provide an
overview of the errors introduced by the statistical operations (Figure 6).
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6. Lessons Learned and Outlook

In this study, we learned several valuable lessons that will help us move towards
operational use of MBES as a common tool for SPM monitoring in the future.
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6.1. Survey Strategy

To ensure comparability of acoustic datasets over different campaigns, between different
MBES systems, and between different beams, MBES calibration is necessary [54,83,84,107].
For example, stronger Sv values in the center beams were noticed compared to the outer
beams (Figure 9), probably due to the lack of inter-beam calibration. We assumed that the
calibration constant was uniform for different surveys and for each beam. However, small
errors between surveys and between beams will increase the uncertainty on the empirical
relationship. Hence, in future studies we recommend taking into account these (absolute
and relative) MBES-specific corrections.

The conversion of TVC to SPMC is ideally done by multiplying with a density value
derived from field calibrations after collection of concurrent stationary water samples
and sensor measurements [14,94,108]. However, during the campaigns, no concurrent
LISST and SPMC data were collected. Therefore, density values were calculated using a
mathematical approach based on the fractal floc method [96,97]. For future studies, we
recommend a field calibration of the LISST to make the conversion of the volume to mass
concentrations more reliable.

As a result of the sampling strategy, the in situ sensors make undulating movements
behind the boat, which may induce additional uncertainties. Depending on the current
direction and velocity, an offset of a few tens of meters in the X and Y directions between the
transducer and the towed sensors may be present. This offset is two orders of magnitude
higher than the positional accuracy of the GPS system (a few cm given the RTK corrections).
Although the offset was not considered for the correlation, this should not pose an issue in
the Kwinte area where the SPMC variability with depth is more important than the lateral
variability (Figure 12). This vertical variability was measured very precisely with the depth
sensor of the LISST. In the future, more accurate positioning data could be obtained using
underwater positioning systems.

6.2. MBES Water Column Processing

Several important lessons were learned regarding the processing of MBES water
column data. First, we realized that the available software lacks proficient processing capa-
bilities. Commercially available packages mainly focus on visualization of pings or a limited
amount of scatterers in the water column, while the few processing software packages
that allow quantitative processing of acoustic Sv from the water column involve inflexible
and non-transparent workflows. Therefore, we strongly recommend the development of a
powerful, well-documented, open-access processing software.

Second, water column MBES data is noisy. Noise can be minimized as much as possi-
ble by selective settings (single sector mode avoids multi-sector artefacts; Supplementary
Document S1), acquisition strategy (switching off all other echosounders to avoid inter-
ferences; sailing in a straight line at low constant speed), and processing (a slant range
between 0–95% excludes the noisy sidelobes; Supplementary Document S3). Despite these
efforts, it is probable that there are still some artefacts present in the MBES data. These
remaining artefacts could not be filtered because the processing software (SonarScope) does
not allow us to delete individual erroneous bins within the polar echogram. Instead, the
complete polar echogram needs to be deleted after visual inspection of every ping, which
is a time-consuming process. Therefore, we also recommend the development of machine
learning approaches for target detection on polar echograms. These automatization tools
can then be used to recognize and delete water column artefacts in a more targeted manner.
Using such an automated editing approach in combination with manual editing was also
recommended by Urban et al. [58]. Finally, raw MBES datasets from the water column
are very large (several gigabytes per hour, depending on the ping rate; Appendix A),
which hampers fast processing in SonarScope afterwards. The processing of small datasets
(<50 GB) was feasible from standard workstations, but the processing of larger datasets
(>50 GB) was very time-consuming. In addition to capable software, significant processing
power is thus required to handle these datasets.
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6.3. Statistical Modeling

The main limitation of our linear regression models is that they are inherently bound
to the properties of the coastal waters in the BPNS and the used MBES system. At best
they are extendable to comparable regions (Table 2) with the same system and settings.
Therefore, these models should not be used as generalized relationships in other water
types, for example the open ocean. The linear regression models from this paper can be
readily used in the BPNS by accepting that the MBES-derived SPMC measurements are
probably slightly less accurate for datasets with other properties than the datasets from this
study (in the Kwinte/Westdiep area in the summer season). We recommend testing the
empirical approach in a wide variety of environments to develop a set of relationships for
specific waterbodies and climate conditions. Alternatively, campaign-specific empirical
relationships can be developed, but this will be more time-consuming. Such a model
appropriate for the suspension at that time can be created by first performing stationary
measurements with the collection of concurrent acoustic, optical, and water samples (in
close proximity to the expected ensonified water volume).

In this study, a linear relationship between acoustic Sv and the in situ parameters was
assumed in order to easily predict optical turbidity or TVC based on acoustic Sv. However,
the acoustic scattering behavior of natural suspensions is complex e.g., [35,109] and the
prediction of SPMC is in fact a multivariate problem. Hence, we suggest exploring how
to optimize the relationship between acoustic Sv and SPM properties (particle size, shape,
etc.) with more sophisticated statistical and/or machine learning approaches.

Finally, MBES acoustic Sv datasets are very large (Appendix A), which hampers
straightforward correlation with the in situ sensor datasets. Hence, the statistical model-
ing of large datasets (>1 TB), especially when combining data from multiple campaigns
(>2.5 TB), requires high-performance computing facilities.

6.4. Target Ambiguity

At the moment, it is still difficult to distinguish between different types of targets
(sediment, plankton, flocs, bubbles, fish, etc.) that are captured by the MBES. The interpre-
tation of the acoustic signal is not straightforward because acoustic Sv is not only a function
of SPM concentration, but also the type (biological-dominated versus sedimentological-
dominated) and size of particles or aggregates. Furthermore, the backscatter response to
different particle sizes is dependent on the operating frequency [110].

As multiple optical and acoustic sensors have different particle types and size sen-
sitivities, a multi-sensor approach might be key in solving the issue of target ambiguity.
During the March 2021 campaign, we detected a remarkable layer with high Sv and SPMC
values in the water column at −14 m LAT around noon (Figure 9). The SPM concentrations
determined from the Niskin water samples (in station LW215; Figure 1) show a clear in-
crease from −13 (5.6 mg/L) to −15 (85 mg/L) m LAT depth (Figure 12), while the other
optical in-situ sensors (LISST, OBS) do not detect this layer [68]. The advantage of using
MBES data is that it allows visual inspection of the geometry of features in polar and
longitudinal echograms, which can then help to understand their nature. We reckon that
based on the layer’s morphology and its mobility and the size of the targets within the
layer (Supplementary Video S1), it most likely represented a school of small fish such as
sprat (8–16 cm) [56,111], which can perform vertical migrations on a diurnal basis [112,113].
Furthermore, these small planktivorous fish were possibly attracted by zooplankton that
concentrated around the subtle pycnocline where nutrient-rich aggregates are typically
accumulated [114]. The presence of zooplankton might then explain the higher SPM con-
centration measurements, but it remains unclear why this SPM type was not captured by
the optical sensors. Visual inspection of the echograms can thus help solve the issue of
target ambiguity, but this process is very time consuming. Automation using machine
learning approaches to cluster different acoustic signals and evaluate if they can be linked
to different targets could be a faster solution.
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Another solution would be the recording of the MBES data in multiple frequencies.
The relative differences in target response [115] might help to discriminate targets, particle
sizes, and maybe even SPM types in the future. Furthermore, multifrequency MBES
measurements may make it possible to estimate both size distribution and concentration
by using scattering models and robust inversion methods [35,110]. Unfortunately, the
multifrequency recording option is not widely available yet on ships. Moreover, using
MBES in multifrequency mode would ideally require absolute calibration for all frequencies,
which is costly and time-consuming [53,54,83,84]. If absolute calibration is not feasible, the
relative signal variation within each frequency may still improve the ability to distinguish
targets and/or particle sizes.

Finally, we suggest better monitoring of the varying SPM properties by collecting
more abundant water samples (and by applying microscopy and imaging tools on those
samples), or by collecting underwater cameras that capture particles in situ.

In conclusion, we need more studies tackling the problem of target ambiguity. During
acquisition, we recommend a multi-frequency, multi-sensor approach to discriminate
between different types of scatterers in the water column and their wide spectrum of sizes.

7. Conclusions

In this study, we developed an innovative empirical methodology to convert acoustic
Sv data from the water column to quantitative 3D SPM information. We created the first 3D
SPM maps of areas inside the BPNS, which is an important step towards improving our
understanding of dynamic natural and anthropogenic hydro-sedimentary processes in that
region. The large spatial coverage of the 3D SPM maps allows us to observe SPM-related
phenomena in the water column that otherwise would be missed by traditional monitoring
approaches. This estimation of SPM over a 3D volume in a natural environment shows the
potential of MBES for future monitoring purposes in scientific and industrial sectors. This
is particularly interesting because multibeam systems are included as standard equipment
on many ships for use in bathymetric surveys.

This study showed that SPM monitoring using MBES systems is a valuable method
next to the more conventional monitoring approaches. Depending on the scope of the
study, satellite remote sensing is still recommended for monitoring large areas of surface
waters. Moreover, traditional optical (LISST, OBS) and acoustic (ADCP, ABS) instruments
are preferred for stationary measurements in the water column. Single beam systems
and ADCPs are powerful tools for transects. However, MBES measurements have the
advantage of estimating SPM over a much larger volume in the water column.

This study helped to expand the possibilities for using multibeam sonars as an SPM
monitoring tool in the future. However, methodological improvements are still required
to unlock the full potential of MBES for SPM monitoring. Possible future directions
worth being investigated are the implementation of multifrequency approaches, low-cost
calibration during acquisition, and faster automated processing.
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Appendix A

Table A1. Overview of the recorded and processed MBES lines, the used in situ sensors, and the
survey area (and sampling station) for each campaign (campaign number in italic).

CAMPAIGNS DATE RAW MBES
DATA

PROCESSED
MBES DATA

IN-SITU SENSOR
TOOLBOX

SURVEY AREA
(STATIONS)

OCTOBER 2020
20-690 5 October 2020 13.2 GB 163 GB LISST, OBS Kwinte

FEBRUARY 2021
21-092 4 February 2021 90.4 GB 1216 GB LISST, (OBS), Niskin Kwinte (LW215)

MARCH 2021
21-160 1 March 2021 62.7 GB 594 GB LISST, OBS, Niskin Kwinte (LW215)

MAY 2021
21-430 28 May 2021 33.3 GB 382 GB LISST, Niskin Kwinte (LW215)

JULY 2021
21-550 9 July 2021 23.3 GB 188 GB LISST, Niskin Kwinte (LW215)

Westdiep (Timbers 15)

Appendix B

During the February and March 2021 campaigns, the raw LISST-200X scattering in-
tensity data displayed an abnormal spiky pattern, especially the first six rings, which is
characteristic for optical misalignment. As a result, the outer size classes are susceptible to
errors, leading to false appearance of small and large particles (Figure A1). We therefore
decided to discard the corresponding erroneous six upper size classes, which is a common
strategy to deal with the highly variable accuracy of the outer size classes [14,116]. Further
inspection of the particle size distribution of the February 2021 campaign also showed a
clear increase in the lower four size classes. This faulty “rising tail” might point to an over-
estimation of fine particles due to inaccuracy of the LISST instrument or unwanted shape
and composition effects [78,117]. Hence, these four lower size classes were discarded. Then

https://doi.org/10.14284/572
https://doi.org/10.5281/zenodo.8423005
https://doi.org/10.5281/zenodo.8013207
https://doi.org/10.5281/zenodo.8013207
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the TVC values, which normally reflects a size range between 1–500 µm, were recalculated
to 2.42–180 µm (February 2021 campaign) and 1–180 µm (March 2021 campaign).
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Figure A1. Optical misalignment of the LISST 200X laser beam in the February 2021 campaign
(bottom) enhanced out-of-range effects in the particle size distribution data, which is clear when
comparing to the previous campaign in October 2020 (top). Particle size distribution plots are shown
for two size ranges (0–500 µm and 0–100 µm) and different binned depths (every 2 m; see color bar).
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Appendix C

Appendix C.1. Uncertainties Related to the Regression Analyses

Appendix C.1.1. Extraction and Modeling

In natural environments, concentration fluctuations may occur over a wide range of
different timescales, from seconds to hours (tidal) and even longer (seasonal). Depending
on the desired information, averaging of the data should be performed. As a result of
our sampling strategy, we averaged an adequate amount (in the magnitude of 105–106) of
MBES Sv values within a predefined radius around each in-situ sensor measurement in
order to compare with the corresponding sensor values. Moreover, the volume of the water
column representative for each in-situ sensor measurement is not known. As a result, the
optimal radius of the sphere around the measurement to compare to the acoustic Sv values
was determined using a cross validation approach. For most TVC models (TVC1–500 µm,
TVC1–3 µm, TVC3–20 µm) the largest radius (5 m) was returned as the best radius for the
extraction and modeling. This is probably because more MBES Sv values were selected
using a radius of 5 m around each in-situ sensor measurement compared to lower radii.
This resulted in more averaging, decreasing the impact of outliers and increasing the
probability of matching the in-situ measurement.

Artefacts of the in-situ data may result in an erroneous linear regression model. How-
ever, given the large amounts of merged datapoints to create the linear regression model
(see the high number of observations in Table 2), this error can be considered negligible.

In this study, we used a linear regression model to fit the relationship, assuming
no uncertainty in the independent variable (Sv). Sources of error can be caused by not
taking the uncertainty in the dependent variable into account (only the mean acoustic
Sv was retained for each sphere, assuming no standard deviation), or by not meeting the
assumptions of linear regression. We would like to note that the modeling in this study was
based on big datasets (number of observations between n = 784–12,024). Bigger datasets
give us a higher probability of finding a significant statistical relationship between the
variables, expressed by the p-value of the coefficients. All p-values were zero or close to
zero, indicating that the relationships are valid.

Appendix C.1.2. Gridding and Prediction

We created an acoustic Sv grid with a 2-m bin size before conversion to 3D SPM cubes.
The semi-circular geometry of the MBES swaths and the small bin size explain why some
grid cells at the edges will be averaged over less data points than in the center. These edge
effects were not quantified in the uncertainty.

The predicted Y-value (LogTVC) in the linear regression model exhibits an error range,
which depends on the standard error of α and β in addition to a random error (ε). This
error range was determined using the Statsmodels Python module.

Appendix C.2. Uncertainties Related to the Conversion of TVC to SPMC

The conversion of TVC to SPMC is ideally done by multiplying with an apparent
density derived from field calibrations after collection of concurrent stationary water sam-
ples and sensor measurements [14,94,108]. However, during the campaigns no concurrent
LISST and SPMC data were collected. Hence it was not possible to use the SPMC obtained
from filtration and gravimetric measurements to ground-truth and convert the TVC to a
surrogate SPMC. Instead, we followed another more mathematical approach based on the
fractal floc model [96,97].

In order to estimate the uncertainty on the density calculations, an error envelope (Figure A2)
was (artificially) created by varying the primary particle size between dp = 1–3 µm and
the fractal dimension between F = 1.9–2.1. The lower (and upper) limit of the apparent
density ρa error envelope was calculated using the lowest (and highest) values derived
from combining the primary particle dp and fractal dimension F ranges in the floc apparent
density formula. Furthermore, for the three smaller size classes an apparent density of
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ρa = 2500 kg/m3 [7] was assumed. Then the error bounds for these size classes were fixed
to those calculated by the formula for the primary particle size dp = 2 µm. The error on the
apparent density increases exponentially with decreasing particle size.

Remote Sens. 2023, 15, x FOR PEER REVIEW 25 of 31 
 

 

density of ρa = 2500 kg/m3 [7] was assumed. Then the error bounds for these size classes 

were fixed to those calculated by the formula for the primary particle size dp = 2 µm. The 

error on the apparent density increases exponentially with decreasing particle size. 

 

Figure A2. Figure showing how the apparent density and error margins exponentially increase with 

decreasing particle size using the fractal floc model [96,97]. 

For the estimation of the final SPMC error, the lower (and upper) boundaries of the 

uncertainty interval of SPMC were determined by multiplying the lower (and upper) un-

certainty boundary of density with lower (and upper) uncertainty boundary of TVC, re-

spectively. Hence the magnitude of the error of SPMC is determined by the error on the 

TVC linear regression model (quantified by Statsmodels as the regression �� error) and 

the ρa error envelope (Figure A2; created by varying primary particle size dp and fractal 

dimension F). 

The errors of the estimated mass concentration of the total suspended particulate 

ma�er (SPMC1–500 µm) are large (Table A2). This is mainly because we calculated the mass 

concentration by multiplying TVC1–500 µm with the average of the densities of all size classes 

between 1 and 500 µm (ρ1–500 µm). However, this calculation assumes that each size class is 

equally present in the water column, which is very unlikely as the multimodal particle 

distribution varies (Figure 11). Consequently, the large magnitude of the errors on the 

apparent densities of primary particles and flocculi (Table 1) are likely the reason for the 

large errors on the mass concentration (SPMC1–500 µm), as the presence of only a few pri-

mary particles might substantially increase the density of the suspended mixture. 

  

Figure A2. Figure showing how the apparent density and error margins exponentially increase with
decreasing particle size using the fractal floc model [96,97].

For the estimation of the final SPMC error, the lower (and upper) boundaries of the
uncertainty interval of SPMC were determined by multiplying the lower (and upper)
uncertainty boundary of density with lower (and upper) uncertainty boundary of TVC,
respectively. Hence the magnitude of the error of SPMC is determined by the error on
the TVC linear regression model (quantified by Statsmodels as the regression εi error) and
the ρa error envelope (Figure A2; created by varying primary particle size dp and fractal
dimension F).

The errors of the estimated mass concentration of the total suspended particulate
matter (SPMC1–500 µm) are large (Table A2). This is mainly because we calculated the mass
concentration by multiplying TVC1–500 µm with the average of the densities of all size
classes between 1 and 500 µm (ρ1–500 µm). However, this calculation assumes that each
size class is equally present in the water column, which is very unlikely as the multimodal
particle distribution varies (Figure 11). Consequently, the large magnitude of the errors on
the apparent densities of primary particles and flocculi (Table 1) are likely the reason for
the large errors on the mass concentration (SPMC1–500 µm), as the presence of only a few
primary particles might substantially increase the density of the suspended mixture.
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Table A2. Table that shows the average values of the lower limit, upper limit and mean of the
confidence interval of the estimated SPMC (in mg/L; for different size ranges) for each campaign.

SPMC
(in mg/L)

October 2020
20-690

February
2021

21-092

March
2021

21-160

May
2021

21-430

July
2021

21-550_KW

July
2021

21-550_WD

SPMC (1–500 µm) lower limit 6.617 5.058 5.713 5.213 6.518 8.816
SPMC (1–500 µm) mean 27.179 20.775 23.466 21.411 26.769 36.213
SPMC (1–500 µm) upper limit 70.398 53.812 60.781 55.457 69.337 93.811

SPMC (1–3 µm) lower limit 0.006 0.012 0.010 0.011 0.006 0.003
SPMC (1–3 µm) mean 0.067 0.129 0.106 0.119 0.066 0.034
SPMC (1–3 µm) upper limit 0.410 0.790 0.649 0.728 0.403 0.212

SPMC (3–20 µm) lower limit 0.804 0.490 0.629 0.516 0.766 1.340
SPMC (3–20 µm) mean 2.823 1.718 2.205 1.810 2.689 4.702
SPMC (3–20 µm) upper limit 6.673 4.061 5.213 4.278 6.357 11.116

SPMC (20–200 µm) lower limit 0.500 0.344 0.411 0.359 0.487 0.742
SPMC (20–200 µm) mean 2.325 1.599 1.911 1.666 2.261 3.449
SPMC (20–200 µm) upper limit 7.281 5.008 5.986 5.217 7.083 10.803

SPMC (200–500 µm) lower limit 0.025 0.024 0.024 0.024 0.025 0.027
SPMC (200–500 µm) mean 0.231 0.219 0.224 0.221 0.230 0.244
SPMC (200–500 µm) upper limit 1.427 1.356 1.385 1.364 1.424 1.507
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