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Abstract: Policy makers increasingly acknowledge the importance of considering ecosystem services
(ESs) and biodiversity in impact assessment (IA) to reduce ecosystem degradation and halt ongoing
losses of biodiversity. Recent research demonstrates how ESs can add value to IA, i.e., by shifting
the focus from avoiding negative impacts to creating opportunities, by linking effects on ecological
functioning to benefits for society, and by providing a multi-disciplinary framework that allows to
consider cross-sectoral effects. However, challenges exist to its implementation in practice. The most
commonly used ES models do not consider interactions among ESs. This restricts their capacity to
account for cross-sectoral effects. Integrating ESs into IA also increases time investments as they
cover a wide variety of disciplines and need detailed information. This paper presents a pragmatic
approach that tackles these challenges and may facilitate the inclusion of ESs into IA. The approach
focuses on ecosystem processes as the driver of ESs and biodiversity and the basis to evaluate effects
of a project. Using the Belgian coastal ecosystem, we illustrate how the approach restricts data needs
by identifying the priority ESs, how it improves the coverage of cross-sectoral effects in IA, and how
it contributes to a more objective selection of impacts.

Keywords: impact assessment; ecosystem services; marine ecosystem; coastal ecosystem; biodiversity;
cumulative effects; scoping; ecosystem processes; cross-sectoral effects

1. Introduction

Policy makers increasingly acknowledge the importance of integrating biodiversity
with ecosystem services (ESs) into impact assessments (IAs). Research has demonstrated
how including ESs has the potential to improve traditional IAs and deal with some of its
shortcomings [1–5]. One of the main critiques is that the added value for human wellbeing
of avoiding environmental impacts is often not clear [6–9], reducing their weight in the
decision-making process. ESs are directly expressed in terms of gains for human wellbeing,
making the benefits for stakeholders more tangible. Also, IAs typically evaluate on a
sectoral basis (e.g., soils, climate, biodiversity, health, . . .) and do not always account for
indirect effects (e.g., loss of fisheries production due to poor water quality), cross-sectoral
effects, and cumulative effects [8,10,11]. The ES paradigm is based on an integration of
all aspects of ecosystem functioning with socioeconomic factors and is thus cross sectoral
by definition. Its holistic character supports the inclusion of indirect effects and effects
resulting from tradeoffs and synergies among different sectors. It is crucial, herein, to
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consider not only changes in structural properties but also to evaluate how these affect
ecosystem processes [12] and human beneficiaries [4,9,11]. Thus, ESs reflect the functioning
of ecosystems as well as the prosperity of human societies [11].

Focusing on the underlying ecosystem processes that produce ESs has increasingly
been acknowledged as the key to predicting changes in ESs [13–15] and for more effective
biodiversity conservation [16,17]. IAs should evaluate how a project affects processes,
and how this ultimately results in changes in ESs and biodiversity values, rather than on
assessing merely the current state of the ecosystem. The integration of ESs into IAs can
help to integrate perspectives of affected communities, provide more detailed and efficient
considerations of impacts, and develop mitigation procedures directed to improve human
wellbeing [4,11,18].

However, ESs are often not explicitly implemented in IAs [9]. Certain difficulties may
impede the successful integration of ESs in IAs and their usefulness in practice [10]. Two
challenges inherent to the concept of ESs are particularly pronounced when including
ESs in IAs, which are (1) the large data and expertise requirements to accurately assess
ESs [7,19,20] and (2) limited objectivity in the selection of impacts (in this case impacts
on ESs) to be included in an IA [21–23]. ES assessments are comprehensive, covering a
variety of disciplines, and are therefore resource-, time- and knowledge-intensive. This
may cause reluctance to include ESs in IAs as it can be seen as yet another requirement
and additional burden on the IA process [10]. In spite of the efforts spent on knowledge
integration in recent years, through the development of hands-on instruments, such as
InVEST [24], ARIES [25], ECOPLAN-SE [26], application of the ES concept in practice
remains challenging [27–29], especially in marine systems where the data is often of poor
quality and with low spatial coverage [30,31].

This so-called ‘implementation gap’ [32] could partly be closed by reducing the num-
ber of ESs to be assessed in detail (referred to by [33] as ‘priority ecosystem services’) in
the scoping stage. This can be achieved by selecting a few priority ESs. Yet, complex
tradeoffs between several ESs may exist [34], and prioritizations of ESs can diverge substan-
tially based on the cultural and political stakeholder identity [35]. Today, a standardized
methodology to identify priority ESs is lacking [21,22]. It is well acknowledged in the ES
literature that the selection of ESs is prone to bias [35–38], for example, when ESs with poor
information or non-marketable ESs are neglected. This is crucial, especially in IAs, as the
outcome of an IA is decisive in project development. A standardized technique for the
selection of priority ESs is therefore crucial for an easier integration of ESs in IAs and may
consequently enable better informed environmental management decisions. This paper
presents an approach to identify potential impacts on ESs in a systematic way. This newly
developed procedure serves a more thorough inclusion of cross-sectoral and cumulative
impacts in IAs. It aims to be a scoping tool to be used for identifying the most important
impacts on ESs to be studied in more detail in an IA. This method is more holistic than
classical IA methodologies since it is based on the ecosystem approach which acknowl-
edges processes and interactions among organisms and their environment [39]. The Belgian
coastal zone is used as the case study to explain the methodological principles and illustrate
its functionalities.

2. Methodology

The approach consists of a stepwise procedure. For each step, the methodological
principles are first explained. For the sake of clarity, each step is illustrated with the
example of the Belgian coast. Section 3 elaborates on the application of the approach in two
hypothetical project proposals.

2.1. The Belgian Coastal Zone

The terrestrial border of the Belgian coastal ecosystem (Figure 1) is delineated by the
transition from polder to dunes (up to ~2 km landward from the shore), and the marine
limit coincides with the boundary of the Belgian Continental Shelf (~70 km seaward from
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the shore). The land part (80 km2 along a stretch of ~70 km coastline) is covered with
dunes, both under a protected status as well as dunes used as pasture or private gardens.
The area also comprises two zones with tidal flats and marshes, of which one is part of
an estuary. The marine zone (3600 km2) is part of the Southern North Sea and is made up
of soft sediments with a series of parallel sandbanks hosting a high benthic diversity as a
result of the highly variable topography and sediment composition [40–42].
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Figure 1. Location of the study area.

2.2. Stepwise Approach

The approach focuses on the key role of ecosystem processes as underlying mech-
anisms for generating ESs and maintaining biodiversity [12,13,17]—cfr. the ecosystem
approach as defined by the Convention on Biological Diversity (CBD) [39]. Ecosystem
processes are defined here as changes in the stocks or in the fluxes of products and energy
resulting from the interactions among organisms (including humans), between organisms
and their abiotic environment, as well as interactions between abiotic structures. Ecosystem
processes are directly related to the supply and consumption of ESs and biodiversity assets
(Figure 2). These include ecological processes (e.g., primary production, population dy-
namics) that contribute to the formation of habitats and biodiversity and that are needed to
support ecosystem functions (e.g., viable fish population) to provide ESs (e.g., food)—sensu
the definition used by The Economics of Ecosystems and Biodiversity study of UNEP [43]
TEEB 2012)—and anthropogenic processes that affect ESs and biodiversity (e.g., artificial
infiltration of pre-treated sewage water in dunes). Alterations in the rate of a process are
caused by changes in pressure parameters. Pressure parameters are measurable variables
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that describe the changes in the system directly caused by human interventions related to
the project which is the subject of the IA (e.g., habitat destruction, changes in flow velocity)
or by external stresses. External stresses refer to the changes taking place on larger spatial
scales than the ecosystem under study (e.g., effects related to climate change) or the drivers
from outside of the ecosystem that affect processes within the ecosystem (e.g., nutrient
supply through ocean currents). The design of a project may be driven by the demand for
industrial development (including cultural and social activities), demand for ESs, external
stresses (e.g., increased need for cooling due to global warming), and/or biodiversity
targets. A two-sided arrow between biodiversity and ESs represents the diversity of the re-
lationships between biodiversity and ESs which can be negative and positive [44], although
evidence supports a positive effect of biodiversity on ESs in general [45,46], and a negative
effect of overconsumption of ESs in biodiversity [47].
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The approach is described in a stepwise procedure (Figure 3). Steps 1–5 are the
preparatory steps to elaborate it at the ecosystem scale (project area and surroundings).
These steps require vast knowledge of the ecosystem functioning and the socioeconomic
context. In practice, the steps are ideally elaborated in a multidisciplinary setting, involving
stakeholders and scientific experts from different fields, which are possibly complemented
by the literature. Step 6 concerns its application by IA practitioners.
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2.2.1. Step 1: Identification of Habitats and Ecosystem Services

As the first step, the habitats and the relevant ESs in the affected ecosystem need to be
identified (Figure 4 matrix 1). Habitats include all natural or non-natural environments that
host fauna and flora species of conservation importance. Relevant ESs should be selected
based on the capacity of the particular ecosystem and its habitats to provide these ESs, and
based on the identification of the beneficiaries of the ESs. The identification of relevant
ESs depends on the time scale at which the IA is performed. To be able to account for
effects in the long term, it is necessary to bear in mind the future socioeconomic needs and
potential changes in use of the ecosystem and its beneficiaries [2,33]. These may alter under
climate change, demographic growth, etc. (e.g., expected increase in food production from
aquaculture FAO 2020 [48]).

For this case study, the procedure described in Step 2 of [12] was followed to identify
the habitats and ESs. The habitats were largely based on the NATURA2000 habitat types
and the European habitat classification EUNIS, which distinguishes marine habitats in
more detail (Table 1). Artificial reefs (jetties, wind mill foundations, etc.) were included
because of their ubiquity, potential ecological values [49], distinct ecological functions, and
Ess which they may facilitate [50].

The Common International Classification of Ecosystem Services CICES v4.3 [51] and
the marine typology of ESs of [52] were used as the reference frameworks to select relevant
ESs. Both lists were first scrutinized by the scientists involved in this project to assess their
relevance in the case study area based on their expert judgement. This resulted in a list
of 8 ESs, of which 4 were provisioning ESs (agricultural production, fisheries production,
aquaculture production, drinking water provision), 3 were regulating ESs (flood protection,
climate regulation, water quality regulation), and 1 was cultural ES (recreation). This initial
selection was then presented to a mixed group of scientists and stakeholders, represent-
ing both natural and social disciplines (Supplementary Information Table S1) who were
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assumed to have a good understanding of the concept and variety of ESs. They added two
additional ESs, i.e., energy production from renewable sources and sediment available for
extraction. The time frame for long-term effects was chosen throughout a discussion with
the stakeholder and expert panel, i.e., year 2100.
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Table 1. Habitats identified in the case study area with indication of their cartographic source (Van
der Biest et al. 2020) [12].

Habitat Type Code
EUNIS/NATURA2000 Description

Pelagic EUNIS A7 The water column of the Belgian part of the North Sea

Gravel beds EUNIS A5.13, A5.14, A5.15 Accumulation of loose grind and pebbles at the edge of a sandbank

Submerged sandbanks
and foreshore NATURA2000 1110 Permanently submerged sandbanks at variable depths

Tidal flats and marshes NATURA2000 1140, 1310,
1320, 1330

Habitats of fine sediment in the tidal zone above low tide and below spring
tide, ranging from bare flats to densely vegetated on the least frequently
flooded parts

(Artificial) reefs NATURA2000 1170
Biogenic reefs formed by dense concentrations of the sand mason worm
Lanice concilega, or fouling communities on permanently submerged
artificial hard substrata

Estuary NATURA2000 1130
Downstream part of a river that discharges in the sea and is subject to tidal
forces and characterized by a salt gradient, including tidal flats and
marshes and sandbanks with varying salt gradient

Lower beach and
emerged sandbanks NATURA2000 1140 Sandbanks above low tide and below high tide, including beaches

Upper beach and dune
foot NATURA2000 2110 Part of the beach above high tide where vegetation starts to develop +

embryonic dunes

White dunes NATURA2000 2120 Young, dynamic dunes dominated by dune building species such as
marram grass

Grey
dunes—herbaceous NATURA2000 2130, 2150 Dunes fixed by moss or grass, with reduced sand dynamics and increasing

soil development

Grey dunes—shrub NATURA2000 2160, 2170,
2180

Older dunes fixed by shrub and woodland, with important soil
development

Dune slacks NATURA2000 2190 Depressions in the dune landscape which are temporarily or permanently
flooded by fresh water
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2.2.2. Step 2: Description of Ecosystem Processes

For each habitat and ES, the processes that support their development, maintenance,
or delivery are identified, as well as the processes that negatively affect them (Figure 4
Matrix 1). These should include both natural processes as well as anthropogenic processes
that may be needed to make use of the ecosystem function and hence produce the ES (e.g.,
harvesting of fish). The effect that a process has on the habitats and ESs is expressed using
a value or a function reflecting the magnitude and direction of the effect (‘process effect’).
For example, benthic production (process) provides a source of food for part of the pelagic
food web (habitat) (+1), and assuming that the largest part of the fisheries’ production (ESs)
consists of demersal fish, the contribution of benthic production to fisheries is strong (+2).

For this case study, this step is based on and described in detail in Step 4
in [12]. Here, we summarize the main aspects of the procedure. Processes (see
Supplementary Information Table S2 for definitions) were identified based on an in-depth
literature study and involved experts from natural (biodiversity, water quality, hydrody-
namics, etc.) and socioeconomic disciplines (Supplementary Information Table S1), which
were determined through several review rounds. In total, 34 processes were distinguished
and related to habitats and ESs, resulting in 748 relationships (process–habitat + process–ES)
in total (Table 2). The commonly used approach of expert-based scoring to relate habitats
to ESs (e.g., [53]) was applied in this case to link processes to habitats and to ESs. A score
ranging from −2 to +2 was assigned for the magnitude and the direction of the impact of a
process on the occurrence and quality of each habitat and each ES. Processes with multiple
and contrasting effects were scored ‘+/−‘, corresponding with a value of 0 (when positive
and negative effects are expected to be equally large), or the effects were weighed against
each other, resulting in one score which takes the differences into account. Scores were
assigned based on consensus in smaller groups. When the scores from different groups
differed too much, an adjusted score was given. Relationships with low confidence or
with low consensus amongst the reviewers were attributed to a lower score ‘−/0’ or ‘0/+’
(±0.5), respectively, and had potentially negative and potentially positive impacts. This
was the case in 3.4% of all relationships.

2.2.3. Step 3: Identification of Pressure Parameters and Relationships to Processes

All pressure parameters that may cause variation in the rate of a process and eventu-
ally lead to the modification of biodiversity and ESs (positively or negatively) should be
identified. These include environmental parameters (e.g., turbidity, sea level) as well as
direct human interventions (e.g., fish harvest). For each pressure parameter, the potential
range of change should be defined. Changes in parameters may be expressed in numeric
values (e.g., change in ◦C for sea temperature), relatively (% change), or using an expert-
based qualitative description (e.g., moderate increase). Next, a score that describes the
magnitude and direction of the effect of a change in the pressure parameter on a process
should be attributed to each parameter–process relationship (‘parameter effect’) (Figure 4
Matrix 2). The unit change of a pressure parameter should be proportionate to its effect on
a process and may be different from the unit change in another pressure parameter (e.g.,
a moderate increase in a process may be caused by a moderate increase in one pressure
parameter or by a strong decrease in another parameter). However, the definition of a
change in a process should be equal across all pressure parameters, i.e., a strong increase
in the rate of a process resulting from a change in one parameter should be as large as a
strong increase resulting from a change in another pressure parameter.

For this case study, changes in pressure parameters vary between a strong to moderate
increase (+2 or +1), or a moderate or strong decrease (−1 or −2). The scores are not linked
with absolute or relative values but are based on expert knowledge (e.g., for air temperature,
an increase of 10% should be considered a large increase, while for atmospheric nitrogen
deposition, an increase of 10% is considered to be relatively small). Uncertain effects were
treated in a deterministic way. Knowledge gaps were highlighted using the symbol “x”.
The resulting changes in processes vary between −2 and +2 (from a strong negative to
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strong positive effect of change in the pressure parameter in the process). The relationships
between pressure parameters and processes are described using simplified functions (linear
and non-linear).

Having a comprehensive list of pressure parameters, the principle of the evaluation
framework of the Scheldt estuary [54] was used, which the government uses to monitor and
evaluate the ecological state of the Scheldt estuary. This method unravels the functioning
of an ecosystem based on a tiered approach, and is developed to evaluate the current state
of an estuarine ecosystem in an integrated way. The highest level consists of the major
components that describe ecosystem functioning (Figure 5). Each component is split up into
several indicators, for which evaluation parameters are identified that allow to evaluate the
state of each indicator. Finally, for each evaluation parameter, explanatory variables are
identified that explain why the state of an indicator does not meet certain criteria.
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These explanatory variables can also be used to understand how the ecosystem and
the ecosystem processes are expected to change in the future, for example, due to the devel-
opment of a project, and can thus be used as pressure parameters. A change in the inflow of
nutrients (pressure parameter) may, for example, explain why pelagic production (process)
rates vary. Moreover, the access of pedestrians to the dune foot (pressure parameter) may
explain why embryonic dune vegetation cannot be established and why primary dunes
are not building up (process). This step was based on an in-depth literature study and
involved experts from different disciplines, as described in Step 2.
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Table 2. Matrix 1 with process effect scores representing the impacts of processes on habitats and
ESs in the Belgian coastal zone. Deep blue: marine processes, brown: terrestrial processes, light blue:
processes taking place at sea and on land. Symbology: ++ = +2 (deep green); + = +1 (light green);
-- = −2 (red); - = −1 (orange); −/0 and +/0= low confidence or consensus (gold).
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2.2.4. Step 4: Cumulated Impact on Ecosystem Processes

A project causes multiple changes in the environment, and changes in processes are
usually the result of changes in multiple pressure parameters. The different effects are
considered by summing the expected changes resulting from different pressure parameters
per process. From this step onward, the effects related to the modification of an existing
habitat and those resulting from creation of a new habitat are treated separately. A separate
sum per process is made for both; thus, the effects on habitats and ESs (Step 5) can
be analyzed individually. When using a score system, it is not possible to make exact
predictions of the absolute or relative change in the processes. The result should rather be
interpreted as a general trend.

In this case study, the total sum per process was reduced to a fixed range of −2 to
+2, which represents the general trend of the process (strong decrease–moderate decrease–
stable–moderate increase–strong increase). Knowledge gaps were not included in this sum;
however, the total number of knowledge gaps per process is provided along with the sum.

2.2.5. Step 5: Impact on Habitats and Ecosystem Services

The sum of the changes per process (Step 4) is multiplied with the ‘process effect’ value
(Step 2) (coupling of Matrix 1 and 2 in Figure 4). Changes in the habitats and ESs may result
from the changes in multiple processes. Hence, the effects of the different processes on each
habitat and ES are accumulated, resulting in a final score that represents the expected trend
of impact of a project on habitats and ESs.

The coupling of the matrices is a generic step. No specific elaboration to apply it to
this case study is required. Also, an indication of the number of knowledge gaps included
in the final result is given here.

2.2.6. Step 6: Application in an Impact Assessment

The approach allows to assess one habitat transformation at a time, consisting of
a modification or degradation of the existing habitat and, if this is the case, creation of
a new habitat. The user can choose the spatial resolution of the assessment, and this
should depend on the size of the habitat patch that is affected, the scale of the dominant
processes shaping the habitat, and/or on the scale of the project. Besides the selection of
the appropriate scale, the user needs to provide information on the following factors:

• The type of the existing, affected habitat;
• The expected changes in the pressure parameters, as identified in Step 4 (black column

in Figure 4), resulting from a modification in the existing habitat;
• The type of a potentially new habitat;
• The expected changes in the pressure parameters, as identified in Step 4 (black column

in Figure 4), resulting from the potential creation of new habitat.

The data on the changes in habitat and pressure parameters could largely be extracted
from the existing checklists (e.g., scoping checklist of IAs [55]), questionnaires, consultations,
or expert judgements (which could be carefully applied).

3. Results

The approach was applied to an explorative study and design of a barrier island and
marina in the lee of the jetty of the port of Zeebrugge in the Belgian coastal zone (Figure 6).
The main aims of the project are reduce the wave impact on the coastline to protect against
the land against floods and to create calm water to enable navigation between the port of
Zeebrugge and the port of Antwerp further to the east [56]. Additionally, the island would
serve as a habitat for the bird populations in the harbor. In the absence of an ongoing
IA for the island, the magnitude of the changes in the pressure parameters was partly
derived from the preliminary advisory studies (e.g., [57]) and in part from the judgement
of the experts.
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Figure 6. Satellite image of the area today (left, Google Maps; map data ©2021 Google) and scenario
of artificial barrier island with creation of a marina and tidal flats (right, kusteilanden.be 2017 [56]).
1, 2 = existing tidal flats and marshes; 3 = artificial island; 4 = new tidal flats and marshes; 5 = marina.

The construction of the island will have on-site effects at the site of the island and
off-site effects along the shoreline, about 1 to 2 km from the island. Also, the marina will
have on-site and off-site effects. Due to its illustrative purpose, we present the results of
the assessment of the off-site effects of the island and of the on-site effects of the marina.

(a) Construction of an island—off-site effects

The off-site effects are related to changing hydrological conditions in the lee of the
island and increased shipping traffic. The expected changes in pressure parameters are

- Inflow of pollutants +1 (bilge water, wastewater, oil spills);
- Noise disturbance +1;
- Soil disturbance +1 (anchoring);
- Turbidity +1 (resuspension of fine bottom sediments);
- Disturbance from access +1 (new tidal flats and marshes will be open for public);
- Habitat fragmentation of tidal flats and marshes −2 (improved connectivity due to

development of tidal flats nearby existing tidal flat area, see Figure 6);
- Tidal amplitude −1 (buffering of tidal and wave energy by the island);
- Hydrodynamics −2 (buffering of tidal and wave energy by the island);
- Sea level +1 (external stressor related to climate change).

The changes in the pressure parameters are expected to affect the ecological processes
of hydrodynamics, morphodynamics, natural reef formation, benthic production, pelagic
production, energy transfer, and population dynamics, and the anthropogenic processes of
bottom-disturbing fisheries, nature management, biological invasions, access disturbance,
and noise disturbance (Table 3).

Trends in the habitats and ESs are represented in Figure 7. The most notable impacts
of the project are the development of tidal flats and marshes and the loss of submerged
sandbanks and foreshores, which conform with the expectations of the project’s developers.
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Table 3. Matrix 2 with pressure parameter effect scores for the changes in parameters (black column) related to the construction of the island. Effects on processes
are accumulated and the sum per process is standardized to a range of −2 to +2, representing the general trend in the process (light grey). Deep blue: marine
processes, brown: terrestrial processes, light blue: processes taking place at sea and on land. Symbology: ++ = +2 (deep green); + = +1 (light green); −− = −2 (red);
− = −1 (orange).
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Table 3. Cont.

Ecological Processes Anthropogenic Processes
Habitat area—Tidal
flats and marshes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—
(Artificial) reefs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—S.
sandb. & foresh. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—
Estuary 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—L.
beach & e. sandb. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—U.
beach & dune foot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat
fragmentation—
exist. hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat
fragmentation—
new hab. −2 0 0 +1 +1 0 +1 0 0 0 0 0 0 0 0 0 0 +2 0 0 +1 0 0 0 0 0 0 0 +1 0 0 −1 0 0 0
Nature
management—
exist. hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nature
management—
new hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Noise and visual
disturbance +1 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0
Soil disturbance (no
hab. loss) +1 0 +1 −1 −1 o 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
Atmospheric
nitrogen deposition 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Groundwater
extraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drainage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Artifical infiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Climate—
Evapotranspiration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 3. Cont.

Ecological Processes Anthropogenic Processes
Soil acidification 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Manuring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Disturbance by
access (no hab. loss) +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 +1 0
Accesibility urban
areas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Surface hardening 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—White
dunes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—Grey
dunes—herb. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—Grey
dunes—shrub 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—Dune
valleys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EXISTING
HABI-

TATSum
processes −3 −2 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Trend
(standardized

sum) −2 −1 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
NEW

HABITAT
Sum processes 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 −1 0 0 0

Trend
(standardized

sum) 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 −1 0 0 0
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Figure 7. Expected trends in habitats (top) and ESs (bottom) resulting from off-site effects of the 
construction of an island. Impacts on existing habitat/ES (grey), on newly created habitat/ES (dashed 
purple), and the combined effect of both (white). Yellow–green: moderate to strong positive impacts; 
orange–red: moderate to strong negative impacts; black line: no impacts. 
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Figure 7. Expected trends in habitats (top) and ESs (bottom) resulting from off-site effects of the
construction of an island. Impacts on existing habitat/ES (grey), on newly created habitat/ES (dashed
purple), and the combined effect of both (white). Yellow–green: moderate to strong positive impacts;
orange–red: moderate to strong negative impacts; black line: no impacts.

Reduced waves and tidal energy in the lee of the island are expected to improve flood
protection because of reduced coastal erosion. On the other hand, submerged sandbanks
and foreshores constitute an important source of sand towards the beach and dunes of this
zone; hence, their disappearance may negatively affect flood protection. The effect on the
production of fisheries is related to the nursery role of structured habitats, such as tidal
marshes [58], as well as the impact of connectivity with other marine habitats on population
dynamics [59]. Aquaculture production could potentially benefit because of the multiple
small positive effects, such as increased pelagic production (more food availability due to a
higher benthic production in tidal flats compared to foreshores), enhanced energy transfer,
and reduced risk of biological invasions in less fragmented habitats [60]. However, no
aquaculture exploitation is currently present in this area. Negative impacts on the available
sediment for extraction are caused by a loss of foreshore and submerged sandbanks. In
Belgium, sand extraction is only allowed beyond a 12 km distance from the shore [61];
therefore, no impacts are actually expected. Positive impacts on the local water quality
result from the nutrient buffering capacity of tidal marshes [62–64]. Climate regulation
is also expected to be enhanced due to the storage of organic matter in the soil [65–67].
Benefits for recreation and tourism are a result of several indirect positive impacts of tidal
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marshes related to biodiversity. These include enhanced opportunities for nature recreation,
such as bird watching and increased supply of fish to local markets and restaurants. No
knowledge gaps were present in the final outcomes.

(b) Construction of a marina—on-site effects

In contrast to the off-site effects, where the habitat modifications result from the
changes in the processes, the on-site effects are related to an active destruction of the
habitat (foreshore and submerged sandbanks) and the construction of hard structures.
Other on-site effects result from the increased shipping traffic and changing hydrodynamic
conditions:

- Increase in the surface area of artificial reefs (jetties, floating platforms, . . .) (+2);
- Decrease in the surface area of foreshore and submerged sandbanks (−2);
- High inflow of pollutants +2 in a confined area (bilge water, wastewater, oil spills);
- Soil disturbance +1 (anchoring);
- Turbidity +1 (resuspension of fine bottom sediments);
- Moderate reduction in hydrodynamic energy (−1) because of the already calmer

conditions in the lee of the harbor jetty and the island;
- Sea level +1 (external stressor related to climate change).

The changes in pressure parameters are expected to affect the ecological processes
of hydrodynamics, morphodynamics, natural reef formation, benthic production, pelagic
production, energy transfer, denitrification, greenhouse gas emissions, and population
dynamics, and the anthropogenic processes of artificial reef formation, biological invasions
and disturbance by access (Table 4).

Trends in habitats and ESs are represented in Figure 8. Most important impacts on the
habitats are expected for the pelagic, artificial reefs, and foreshore and submerged sand-
banks, and (to a lesser extent) for gravel beds. Impacts on the pelagic food web are related
to inflow of pollutants. A reduction in the pelagic production may in turn affect the benthic
habitats that strongly depend on the pelagic production of gravel beds. However, no actual
impact is expected as gravel beds in the BPNS are found only on offshore sandbanks [68].
The higher production (species colonizing the structures and species benefiting from detri-
tus of these organisms) may have several indirect effects on ESs, such as carbon storage
in the predators of the benthic organisms [69] and opportunities for recreational angling.
Additionally, the complex structure of sessile communities on the artificial substrata can
be highly efficient in water quality processes, such as denitrification [70]. With regard to
the production of fisheries, an overall negative trend is expected to occur because of the
importance of the shallow foreshore for some of the most important commercial fish species
in Belgium, such as sole [71]. No knowledge gaps were identified in the final outcomes.
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Table 4. Matrix 2 with pressure parameter effect scores for the changes in parameters (black column) related to the construction of the marina. Effects on processes
are accumulated and the sum per process is standardized to a range of −2 to +2, representing the general trend in the process (light grey). Deep blue: marine
processes, brown: terrestrial processes, light blue: processes taking place at sea and on land. Symbology: ++ = +2 (deep green); + = +1 (light green); −− = −2 (red);
− = −1 (orange).
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Table 4. Cont.

Ecological Processes Anthropogenic Processes
Habitat area—Tidal
flats and marshes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—
(Artificial) reefs +2 −1 +1 0 +2 +1 +2 0 0 0 0 0 0 −1 +2 0 0 +2 0 0 0 0 +2 0 0 0 0 0 0 0 0 +1 0 0 0
Habitat area—S.
sandb. & foresh. −2 0 0 0 −2 −1 −2 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—
Estuary 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—L.
beach & e. sandb. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—U.
beach & dune foot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat
fragmentation—
exist. hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat
fragmentation—
new hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nature
management—
exist. hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nature
management—
new hab. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Noise and visual
disturbance 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Soil disturbance (no
hab. loss) +1 0 +1 −1 −1 o 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
Atmospheric
nitrogen deposition 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Groundwater
extraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drainage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Artifical infiltration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Climate—
Evapotranspiration 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 4. Cont.

Ecological Processes Anthropogenic Processes
Soil acidification 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Manuring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Disturbance by
access (no hab. loss) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Accesibility urban
areas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Surface hardening 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—White
dunes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—Grey
dunes—herb. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—Grey
dunes—shrub 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Habitat area—Dune
valleys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EXISTING
HABITATSum

processes −1 0 −2 −6 −2 −2 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
Trend

(standardized
sum) 0 0 −1 −2 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEW
HABITAT

Sum processes −1 1 0 2 1 2 0 0 0 0 0 0 −1 2 0 0 2 0 0 0 0 2 0 0 0 0 0 1 0 0 −1 0 0 0
Trend

(standardized
sum) 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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orange–red: moderate to strong negative impacts; black line: no impacts. 

Figure 8. Expected trends in habitats (top) and ESs (bottom) resulting from on-site effects of the
construction of a marina. Impacts on existing habitat/ES (grey), on newly created habitat/ES (dashed
purple), and the combined effect of both (white). Yellow–green: moderate to strong positive impacts;
orange–red: moderate to strong negative impacts; black line: no impacts.

4. Discussion
4.1. Improved Coverage of Cross-Sectoral Effects in Impact Assessment

Despite progress, there is still a need for new tools to incorporate knowledge of
biodiversity and ESs into legislation and spatial planning practices [72], for example, in
instruments such as the IA. The presented approach allows for a more comprehensive
representation of cross-sectoral and cumulative effects in IAs and provides a way for a
meaningful integration of ESz into IAs. By using a generalizable approach, yet by also
integrating expert knowledge on the local conditions of the study system to prioritize
ecosystem services, our approach makes ES integration into IAs more accessible and
efficient. The crux of the approach is to evaluate changes in the processes instead of
individual disciplines within an ecosystem (e.g., soil, water, vegetation).

To be able to fully account for cross-sectoral effects, it is necessary to go beyond the as-
sessment of individual disciplines (e.g., soil, water, vegetation) and consider the ecosystem
processes that constitute the linkages between ecosystem structures covered by the different
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disciplines. Today, the focus of IAs is on evaluating impacts per discipline. For example,
IAs of offshore wind farms evaluate effects on turbidity within the discipline of ‘water’;
however, the process of how this leads to the changes in benthic production and habitats
in the discipline of ‘ecology’ (see, e.g., [73]) is mostly not considered. For disciplines such
as biodiversity, the underlying processes are of crucial importance, although impacts are
often assessed in terms of structural properties such as species’ populations [74]. Especially,
processes on larger spatial scales [75] or across system boundaries—e.g., the marine and ter-
restrial system [76]—are often not considered. The inclusion of processes and cross-sectoral
effects is said to be rather on an ad hoc basis due to a lack of a systematic approach to iden-
tify which effects should be considered. This is why the inclusion of ESs into IAs has been
identified as an opportunity to better address cross-sectoral effects [10,77]. This is because
ESs provide a more integrated framework, linking the underlying ecosystem processes
and structures to the socioeconomic benefits (cfr. ES cascade [78]). A multidisciplinary
approach is essential for knowledge integration and for benefitting from the opportunity
provided by the ES concept [3,4]. Here, we exemplify how this can be put into practice by
using a mixed group of experts and stakeholders from both natural and social disciplines
who provided the knowledge on the mechanisms that provide ESs.

Assessing impacts on processes also provides a means to identify cumulative effects
(defined here in analogy with the EC definition [55]: “changes to the environment that are
caused by an activity/project in combination with other activities/projects”), as changes in
processes are usually the result of changes in multiple pressure parameters. For example,
the effect of pollutants on benthic production may be limited due to dilution; however,
in combination with increased soil disturbance and turbidity, this may affect ESs such as
water quality regulation and climate regulation (Figure 8). In some cases, such cumulative
effects are included in an IA, by using different methodologies, but this is not always the
case. In part, this can be explained by the difficulty to predict cumulative impacts and
the lack of consensus on how to perform the evaluation [79], underpinning the need for a
more structured approach for identifying relevant cumulative impacts [80]. The presented
approach requires the assessor to evaluate the changes in individual pressure parameters
and then identifies potential cumulative effects by summing the different changes in a
process (Step 4). Hence, potential cumulative impacts are assessed along with other impacts.

To be able to fully account for the cumulative effects, it is necessary to take ecosystem
processes into consideration as a first step when delineating the affected area. While the
impacts on pressure parameters may be local, the resulting changes in processes may extend
beyond the project location and, hence, so do cumulative effects. An appropriate delineation
of the study area is therefore crucial to be able to identify cumulative effects [19,75,81].

4.2. Outcomes of this Case Study

The explorative study and design of a barrier island and marina in the lee of the jetty
of the port of Zeebrugge in the Belgian coastal zone would result in a number of changes
in habitats. Whilst submerged sandbanks and foreshores are lost, a new tidal flat and
marsh habitat is created. Further, the marina creation provides a new pelagic artificial reef
habitat. The creation of an artificial barrier islands is a practice implemented for coastal
protection and beach nourishment. Little scientific literature is found on artificial barrier
islands, yet natural barrier islands are important in influencing coastal geomorphology,
hydrodynamics, and ecosystem development [82–84]. Human interventions have changed
several features, such as their sediment dynamics as well as vegetation development [82,83].
Artificial island creation might thus be expected to impact the same processes and enable
marsh development as the results of our case study suggest.

Generally, construction works in coastal areas are associated with the loss of habi-
tats [85,86] and consequent changes in benthic communities [87,88]. Other changes as-
sociated with the construction of a marina are the loss of connectivity at the land–water
interface, the resuspension of sediments in the water column, and the wave reflection, or
refraction and consequential scouring of the sediment bottom [88,89]. Further, introduction
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of hard structures in predominantly soft sediment environments can serve as the stepping-
stones for invasive species [90]. These changes may affect wildlife, fisheries, and water
quality [89].

The results of our case study align with these expectations. Processes that are impacted
through the changes in the habitat in this case study are hydrodynamics, morphodynamics,
reef formation, benthic production, pelagic production, population dynamics, energy dy-
namics, denitrification, greenhouse gas emissions, fisheries, nature management, biological
invasions, noise disturbance, and access disturbance. Some of these processes are linked
and may influence each other as well as the delivery of the services of the ecosystem. In
this case study, potential positive impacts on fisheries (flatfish) result from a combination of
changes in two distinct processes. Benthic biomass production (prey of flatfish) is expected
to be higher in fine and organic-rich sediments of tidal flats and marshes compared to
coarse and more disturbed unconsolidated sediments [91], such as the ones in foreshores.
On the other hand, the development of a new marsh area near an existing one is expected to
facilitate interactions between individuals and species from both areas and hence improve
the population’s dynamics of specialist fish species of marshes (see SI) [92]. The scale of
the assessment of fisheries is thus defined by the extent of the underlying processes that
affect fisheries, allowing for a more underpinned decision on the scale. However, IAs, as of
today, often lack to consider aspects of connectivity at larger spatial scales [93,94]. When
connectivity is considered, it is mostly considered from a point of protected species and
habitats, while common or commercial species are often ignored [74].

4.3. Facilitating the Inclusion of Ecosystem Services in Impact Assessment

The presented approach offers a way to reduce data and time investments by allowing
to select only the key ESs that will be affected by a project and that require a more in-depth
(data-driven) evaluation. Existing ES assessment tools that aim to integration their systems
into IAs and spatial planning are often created to be as broadly applicable as possible.
However, case studies reveal that there is a requirement for a thorough grasp of the local
context in order to give appropriate planning support [95]. Whilst the method we describe
here is generalizable, the use of expert knowledge ensures proper understanding of the
local characteristics of the ecosystem and society. Further, the presented tool herein serves
not for the assessment per se, but specifically for the prioritization and selection of a number
of ESs to be included into IAs. This would require the tool to be prepared at an ecosystem
level (Steps 1–5), prior to its application in IAs (Step 6). The tool should be developed
by a multidisciplinary team as it requires profound knowledge of the functioning of an
ecosystem and its relationships to ESs. The approach would be most efficient in achieving its
goal of facilitating the inclusion of ESs into IAs if the preparatory steps (1–5) are developed
in a standardized way, or are institutionally organized on the regional or national scale.
Investments of IA practitioners would then be restricted to the expected changes in habitats
and in the pressure parameters that affect processes (Step 6), based on information which is
gathered in the scoping stage, and a more detailed assessment of the priority ESs that will
be affected in the assessment stage. In this case study, the number of ESs that require further
analysis could be reduced to 5 (construction of the marina) and 6 (reduced hydrological
conditions in the lee of the island) out of 10.

4.4. Unbiased Selection of Impacts

Standardizing an approach, as proposed in this paper, allows us to identify potential
effects unbiasedly, without making an a priori selection of impacts that are believed to be
(ir)relevant or for which the data is scarce. Following the approach, the pressure parameters
that need to be evaluated and that will help to identify potential impacts were identified
prior to the IA and in a context independent of the project. The links between the affected
pressure parameters and the ecosystem processes, habitats, and ESs are automated prior
to the evaluation of the project, allowing for a more comprehensive and underpinned
selection of what should be included in the IA. The usage of a matrix approach, in this
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respect, supports the identification of the gaps within the knowledge. All changing pressure
parameters are positioned in relation to each process, and, likewise, all processes to every
habitat and ES, thus avoiding potential effects being overlooked and a false sense of
certainty in the decision-making process. A sensitivity analysis may help the decision
maker to embrace this uncertainty by informing how strong effects with uncertainty would
influence the final results.

Recently created ES tools seek to facilitate the use of ES tools in spatial planning and
to provide information for a variety of policy sectors. Throughout the scientific literature,
there seems to be a preference for certain ESs, whilst others receive considerably less
attention. The majority of tools can be used to handle provisioning services as well as
regulating services, whilst cultural services are rarely considered, with the exception for
recreation [37,96–98]. It is impossible to evaluate every ES when aiming at their integration
in IAs, strategic environmental assessments, or life cycle assessments. However, the
selection of ESs has conflicting views, since the selection may easily be subject to biases,
and methods of ES prioritization are not always clearly defined [35,98].

Tools such as the Ecosystem Service Assessment Support Tool (ESAST) OpenNESS
Conceptual Nexus, serve to help with the prioritization of ESs and ES assessment meth-
ods [99]. These tools help to frame the case problem that will be addressed, while involving
diverse stakeholders and perspectives, before identifying ESs and analyzing ways in which
they may be affected by the problem or project at hand. Arguably, these tools have more
comprehensive goals than ecosystem services. However, they do not explicitly serve for
the integration of ESs into IAs, and are aimed at more broadly viewed ES assessments
in diverse socioeconomic contexts. A streamlined ES selection process, as outlined in
this paper, will help to overcome these hurdles and biases, and thus enable a smoother
integration of ESs into IAs.

4.5. Constraints and Improvements

The presented approach is meant to be an indicative instrument to identify expected
impacts that should be assessed in more detail in an IA. It can also be applied in other
contexts than in IAs, such as design optimization (e.g., [100]), to inform stakeholders (e.g.,
in the ENDURE project on dune resilience (https://endure-tool.eu/#slide-0, accessed on
17 October 2023)), or to select priority ESs (e.g., [101]). However, there are also some
limitations to this approach. The score-based outcome does not provide information on
the precise extent of the impact or on its socioeconomic significance. For example, one
of the main purposes of the island is to protect the coast against floods by reducing tidal
and wave energy. However, the results (Figure 7) give the impression that the benefits for
fisheries production are larger than for flood protection. Due to lack of a common ground
for quantifying impacts (e.g., monetary value), the approach does not allow to compare
impacts in relative terms and should merely be used to identify which ESs are expected to
be impacted and require further detailed analysis.

A methodological improvement that should be explored is the possibility to set thresh-
olds on the impacts of changing pressure parameters on processes, in order for the rate of a
process will only be affected at a certain magnitude of the changing parameter. This could
make the results more site-specific and refine the assessment of cumulative effects because,
in this case, past changes in the environment can be considered. However, this would
render the approach more complex and may overshoot its scope of being an indicative
instrument.

5. Conclusions

This paper presents an approach for more effective scoping of the impacts on ESs,
which enables the selection of impacts to be assessed in an IA to be supported. The approach
takes an innovative step by evaluating how a project causes changes in an ecosystem’s
processes, from which impacts on habitats and ESs are assessed. Based on the case study of
the Belgian coastal zone, we showed how the approach (1) allows for a more integrated

https://endure-tool.eu/#slide-0
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evaluation of the impacts and identifies the potential cross-sectoral and cumulative impacts
on the coastal zone, and (2) provides a structured and objective basis to select what is
included in an IA. The approach is applicable to marine and terrestrial environments and,
through the assessment of the changes in dynamic processes, is capable of identifying
impacts on an ecosystem’s services across the marine–terrestrial boundary. The approach
is limited in its capacity to compare the resultant impacts in relative terms and is only
designed to identify which ESs are expected to be impacted and require further detailed
analysis. The paper aims to provide inspiration to further support the integration of ESs
into IAs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su152115506/s1, Table S1: Experts and stakeholders involved in
Step 1 and 2 of the elaboration of the method on the Belgian coastal ecosystem; Table S2: Definition
and interpretation of ecological and anthropogenic processes. Processes are restricted to the marine
part (S), the terrestrial part (L) or they take place both in the marine and in the terrestrial part (S/L).
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