
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Simone Marini,
National Research Council (CNR), Italy

REVIEWED BY

Tanguy Soulié,
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Warm temperature anomalies are increasing in frequency in the global ocean

with potential consequences on the goods and services provided by marine

ecosystems. Recent studies have analyzed the distribution and dynamics of

marine heat waves (MHWs) and evaluated their impacts on marine habitats.

Different drivers can generate those anomalies and the emerging attributes can

vary significantly both in space and time, with potentially different effects on

marine biology. In this paper we classify MHWs based ontheir attributes and using

different baselines, to account for different adaptive responses in phytoplankton

dynamics. Specifically, we evaluate the impacts of the most extreme, long-

lasting and high-intensity MHWs on phytoplankton communities using remote

sensing data. We demonstrate marginal impacts on total chlorophyll

concentrations which can be different across different ocean regions. These

contrasting effects on phytoplankton dynamics are most likely the results of the

different mechanisms generating the MHWs in the first place, including changes

in front dynamics, shallower mixed layers, and eddy dynamics. We conclude that

those drivers producing extreme MHWs can also induce different phytoplankton

responses across the global ocean.

KEYWORDS

marine heat waves, remote sensing data, shifting baseline, K-means (KM) clustering,
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1 Introduction

The overall warming of the global ocean is affecting marine biodiversity everywhere

resulting in species range shifts (Cavole et al., 2016; Benthuysen et al., 2020), mass coral reef

bleaching (Hughes et al., 2017), impacts on reproduction and mortality of marine species

(Ruiz et al., 2018; Marıń-Guirao et al., 2019; Piatt et al., 2020) as well as several other direct

effects on marine organisms physiology and ecology (Smale et al., 2019; Deguette et al.,

2022). These ecological responses to temperature increases hinder the food chain in the

oceans, weakening the adaptive capacity of ecological, social, and resource management

systems (Cheung et al., 2021; Garrabou et al., 2022). Furthermore, in addition to the overall
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warming of the ocean, local temperature fluctuations can display

extreme events which are believed to have an additional impact on

marine life. Anomalies in temperature changes can be both positive

(warm events) and negative (cold events), but the latter is less

widespread in the present time and generally decreases in the count,

duration and intensity (Schlegel et al., 2021). Conversely, warm

extremes commonly referred to as marine heat waves (MHWs), are

prolonged periods of unusually high sea surface temperatures in a

specific region that have a minimum duration of 5 days and can

endure for periods ranging from days to months. (Hobday et al.,

2016). Therefore, gaining a deeper understanding of MHWs’

influence on ocean ecosystems is critical for accurately evaluating

the effects of various stressors on marine life.

Most MHWs differ in specific attributes like duration,

frequency and intensity (maximum and cumulative), and they are

driven by different local and remote processes across the global

ocean with unknown biological impacts (Elise Beaudin, 2022). Air-

sea heat flux, local wind stress change, and vertical processes

(turbulent mixing, thermocline deepening) are some of the

drivers playing a crucial role in governing MHWs detected using

sea surface temperature (SST) observations (Holbrook et al., 2019).

Additionally, global ocean oscillations, like El Nino-Southern

Oscillation (ENSO) are among the major drivers responsible for

MHWs, both regionally and around the world (Arteaga and

Rousseaux, 2023; Santoleri, 2023).

Based on the latest IPCC report (Collins et al., 2019), MHWs

have been assessed to have doubled in frequency over the past few

decades, comparatively lasting longer (very high confidence) and

becoming more severe (where the temperature exceeds the local 99th

percentile over the period 1982 to 2016). They have been recorded in

surface and deep waters, across all latitudes, and in all types of

marine ecosystems. Climatic projections also suggest that by 2100,

MHW frequency will increase by approximately 50 times relative to

1850–1900 under RCP 8.5 and 20 times under RCP 2.6 (medium

confidence) (Frölicher et al., 2018; Collins et al., 2019). However, due

to the complex processes and various drivers that regulate

temperature dynamics in the oceans, there are no clear results of

how temperature anomalies will progress spatially and temporally in

the future. This also leads to difficulties in assessing the upcoming

impacts on marine ecosystems at a local and global scale.

Our knowledge and understanding of the biological impacts of

extreme events are currently limited. However, they are

accumulating rapidly through post-hoc analyses of affected regions

(Cavole et al., 2016), targeted laboratories (Brodeur et al., 2019;

Santora et al., 2020) and field-based experiments (Vajedsamiei et al.,

2021; Stipcich et al., 2022). Most organisms have limited

physiological plasticity in terms of their tolerance toward

environmental stress, and they may take time to acclimatize to

physical changes in the ocean (Gruber et al., 2021). Hence extreme

and sudden changes in temperature conditions may provide strong

impacts on the physiology and ecology of marine organisms. In this

respect, previous research has shown that historical events such as

the Western Australian MHW (2011) Wernberg et al. (2016) and

the northeast Pacific MHW (2013–2015) (Cavole et al., 2016) have

left detrimental footprints on aquatic life. The Western Australian

MHW resulted in an entire regime shift of the temperate reef
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ecosystem, including a reduction in the abundance of habitat

forming seaweeds and a southward distribution shift in tropical

fish communities (Wernberg et al., 2016). The northeast Pacific

MHW, popularly known as the warm blob, increased the mortality

of sea lions, whales and sea birds and decreased the ocean’s primary

productivity (Cavole et al., 2016). During the 2015–2019 period, the

Mediterranean Sea has experienced exceptional thermal conditions

that resulted in high mass mortality per year (on average 23 taxa

and 7 phyla) (Garrabou et al., 2022) which is much higher than

reports for most previous years from 1978 to 2014 (Garrabou et al.,

2019). MHW events also played a significant role in the closing of

both commercial and recreational fisheries (Cavole et al., 2016) and

possibly triggered the occurrence of the three consecutive dry

winters in California (Seager et al., 2015).

The specific attributes of extreme marine ocean temperatures

can vary largely both across regions and between different periods.

Changes in those attributes can yield different responses in marine

organisms with cascading effects on communities and ecosystems

(Gruber et al., 2021). Since some MHWs can last for months while

others have a duration of a few days maximum cumulative intensity

can vary largely resulting in different impacts of MHWs on marine

ecosystems (Samuels et al., 2021). It has been suggested that

abruptness of temperature changes can also produce large

changes in marine ecosystems and correlates with the rapidity of

the adaptive response of physiological processes (Somero, 2020).

Similarly, the recurrence rate can also affect reproductive success, or

adaptive responsiveness (Hughes et al., 2017). All these attributes of

MHWs can significantly alter the productivity levels and

community structures of phytoplankton communities due to their

sensitivity to environmental shifts. This, in turn, can result in

disruptions to vital ecosystem processes, such as oxygen

production, carbon sequestration, and nutrient cycling (Rost

et al., 2003; Moore et al., 2013).

In this paper, we provide an assessment of the impacts of

MHWs globally on the phytoplankton community. We first detect

and classify MHWs based on their specific attributes, and then, in

regions where the most extreme MHWs have been present, we

analyze phytoplankton chlorophyll-a anomaly as recorded using

ocean color observations from remote sensing. Different baselines

are considered in the analyses of the impacts to account for the

adaptability and plasticity of marine organisms over an extended

global warming periods.
2 Materials and methods

2.1 Temperature and phytoplankton data

Daily SST values are extracted from the NOAA-OISST v2 high

resolution (0.25°) dataset in a 39-year time window (1982-2020)

(Huang et al., 2021). MHWs are detected using the method

presented in Hobday et al. (2016) here modified to include

different baselines and thresholds. Moreover, extreme events are

defined by their duration (number of MHW days), intensity

(temperature above threshold), cumulative intensity (time-

integrated temperature anomaly over the duration), abruptness
frontiersin.org
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(rate of temperature change during the onset or recovery phase of

the MHWs), and recurrence interval (time between successive

MHWs). Unlike Hobday et al. (2016) which used 90th percentile

threshold, our work is based on the 95th percentile of the

accumulated temperature distribution to flag the extreme events

hence enabling the detection of only the most intense MHWs. Also,

different baselines have been used to detect trends in MHWs and

potential impacts on phytoplankton (see section 2.2). Chl-a

concentrations are obtained by satellite-derived data from

CMEMS (dataset OCEANCOLOUR_GLO_CHL_L4_REP_OBS

ERVATIONS_009_093) which is monthly L4 processed

(optimally interpolated to fill in missing values) with a spatial

resolution of 4km × 4km. Given the interest in analyzing MHWs

impacts on phytoplankton community structure, we have

downsampled SST and chlorophyll data to 1° resolution to better

capture large-scale trends over the global ocean.

The chl-a anomaly is computed over downsampled chl-a data

using equation 1 which calculates the absolute deviation from the

mean of total chl-a concentration.

Anomaly =
X −Mean(X)

Mean( X −Mean(X)j j) (1)

where X is the total chl-a concentration. To calculate the

anomalies, we considered a single baseline (different from

temperature) including the entire period of 23 years from 1998 to

2020 (discussed in section 4).
2.2 Selection of the baselines for
temperature anomalies

To compute the anomalies in temperature, it is important to

have a proper selection of the reference time interval since different

baselines can alter the detection of MHWs and the quantification of

their impacts.

In this research, we used the climatological period of 15 years

(1982-1996) as a baseline to detect MHWs, a methodology distinct

from that of other studies (Pearce and Feng, 2013; Chen et al., 2014;

Bond et al., 2015; Holbrook et al., 2019; Sen Gupta et al., 2020)

where different baselines have been used to report MHW events.

Regardless of the differences in baseline selections, we could still

extract the severely impacted regions which have been reported by

previous studies. This period enables us to include all the data since

the start of satellite observations and it is long enough to account for

the effects of ENSO on global ocean temperature. Additionally, this

baseline minimizes the impact of the overall global trend in

temperature increases because the selected period shows relatively

stable maximum values of temperature across different ocean

regions. Indeed, we have tested this by computing monthly

averages for each pixel at the maximum temperature experienced

and computed a rolling slope on those values using a ten-year

window. For most of the regions, the maximum onset of the slope

was found around 1996 and 1998 (Figure 1), thus, based on that we

selected 1996 as the baseline limit.

Marine organisms can adapt to temperature changes, hence the

detection and evaluation of MHWs impacts based on the absolute
Frontiers in Marine Science 03
baseline described above may overestimate the impacts of

temperature extremes on phytoplankton communities. Hence, we

have used a shifting baseline considering an 8-year rolling period.

Note that the rolling period is selected to have an identical split over

the period of 39 years. These shifting baselines have been used to

detect and classify different MHWs given their attributes (duration,

maximum and cumulative intensity, rate of onset, and rate of

decline). Specifically, using a 95th percentile threshold over the

baselines for detection, the temporal range of 1982-1989 is used as a

baseline to calculate MHWs for the years 1989-1996, while 1982-

1996 for the years 1997-2005, 1982-2005 for 2006-2013, and finally

1982-2013 for 2014-2020. This provides more conservative

assessments of extreme MHWs and biologically sound reference

values accounting for the possible adaptation of marine

communities to long-term temperature increases. Additionally,

the 8-year shifting window enables us to account for the decadal

changes of westerly winds, temperatures and ocean gyres

circulations (Oviatt et al., 2015).
2.3 Classification of MHWs

To address the spatio-temporal complexities of MHWs, we

tested a range of methodologies to identify the significant

characteristics and assemble them into different groups. As a

preliminary measure, we employed principal component analysis

(PCA) as a feature extraction method to understand ocean

dynamics based on MHWs. Additionally, we also implemented

distance and density-based clustering methods such as KMeans

(Zhang et al., 1996) and BIRCH (Syakur et al., 2018), owing to their

capability to manage a large volume of samples. However, the

KMeans clustering algorithm proved to be an effective approach for

identifying the relevant features of MHWs and classifying them into

separate groups based on feature similarities. This algorithm takes

MHW features, namely duration, maximum intensity, rate onset

and rate decline, as input vectors and applies clustering in the 4-

dimensional feature space where each data point represents an

MHW event. Please note that all the MHWs features are

standardized because unequal variances can put more weight on

variables with smaller variances. The clustering analysis uses a

heuristic approach, the elbow method, to determine the optimal

cluster count based on a distortion score (Zach, 2023). This score is

calculated as an average of the square of distances from the cluster

center to data points associated with each respective cluster. The

algorithm is set to minimize variance in each cluster based on

squared Euclidean distances where data are normalized (between 0

and 1) using min-max normalization. The optimal cluster count is

the point after which decreasing trend in the distortion score

becomes constant.
2.4 Parameter computation and
statistical testing

Various parameters were employed to examine the spatio-

temporal trends of MHWs across different figures. Regional
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yearly values (a) of duration and cumulative intensity are calculated

considering the total area exposed to MHWs, thus:

a = o
R
i X

d
i · Ai

AR
, (2)

where R is the total number of grid cells in each region (i.e.,

Atlantic, Pacific, Indian Ocean), Ai is the area (km
2) of each cell, AR

represents the area of the entire region (km2), and X is the variable

of interest calculated annually for each pixel which can either be

duration (days=km2) or cumulative intensity (°C days/km2) of the

MHWs. This makes the time series of the above-mentioned

variables comparable across different regions. For spatial

distributions, the average values for each grid cell are computed

by dividing their total (across the period considered) by the total

number of years, typically from 1982 to 2020 (see section 4.1).

However, when using the 8-year rolling baseline, the considered

periods differ and the total is divided by the specific number of years

included in the summation (generally over the period 1989-2020).

Additionally, the relative frequency (g ) of a variable for each grid

cell is calculated by dividing the total within a specific time period

by the total in the entire cluster over all time periods.

We employed two statistical tests—Welch’s test and the Mann-

Whitney test to investigate whether detected MHWs’ impacts on

phytoplankton are statistically significant. Welch’s test evaluates the

means of two data groups to ascertain if a statistically significant

distinction exists between them. This test presumes a normal data

distribution while not assuming equal variances between the two
Frontiers in Marine Science 04
groups. Conversely, the Mann-Whitney test assesses the medians of

two data sets to identify if a statistically significant difference is

present, without making assumptions about a specific data

distribution or equal variances. Both tests yield p-values that are

used to determine the statistical significance of the observed

differences. In this research, we have used a predetermined

significance level (i.e., p_value = 0.05) to reject or fail to reject the

null hypothesis where the null hypothesis suggests that there is no

significant difference between the two distributions. Additionally, to

comprehend the changes in these distributions, we used the

skewness index. The value of skewness indicates the extent to

which the distribution is stretched or skewed in either direction; a

positive value signifies a right-skewed distribution and vice versa.
3 Results

3.1 Marine heat waves frequency
and distribution

On average, the duration of MHWs and MHW cumulative

intensity have increased substantially on a global scale as well as in

different regions (Figure 1). During the considered baseline period

(1982-1996), the average duration and cumulative intensity of

MHWs were consistently less than 20 days and 10°C days,

respectively, with small yearly variations (Figures 1A, B). Note

that, the calculation of MHWs during the baseline period provides a
A B

DC

FIGURE 1

Properties of marine heat waves with fixed baseline (Dataset: NOAA OISST V2 (1982-2020), Threshold: 95th percentile, Spatial resolution: 1°,
Baseline: 1982-1996), (A) Regional average number of MHW days per km2 (ad), (B) Regional average cumulative intensity rel. threshold per km2 (ac),
(C) Average number of MHW days per year (i.e., the sum of all MHW days divided by the total number of years), (D) Average cumulative intensity per
year (i.e., the sum of cumulative intensity divided by the total number of years). The shaded region in A and B signify the climatological period used
to calculate MHWs, which is also employed in (C, D).
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conservative estimate of MHW duration and intensity, as this

period falls within the climatology period. After 1996, both

duration and cumulative intensity have shown increasing trends

across all regions. Using statistical tests (as in Section 2.4), we found

that the duration and cumulative intensity are significantly different

among all the regions (see Appendix 5, Table 3). The Pacific region

witnessed two sudden increases in MHWs during 1997-1998 and

2014-2015 which can be associated to El Niño events. The Atlantic

region has seen a constant increase in both duration and intensity

having 2010 as the year with the highest number of MHW days and

cumulative intensity on record. Lastly, the Indian Ocean has

followed similar trends as the Pacific with similar duration but

comparatively lower cumulative intensity values (Figures 1A, B).

Temperate and polar regions are characterized by up to more

than 70 days per year of MHWs (Figure 1C) with relatively high

intensity (Figure 1D). In the North and South Pacific, numerous areas

experience more extended periods and greater intensity of marine

heatwaves (MHWs) compared to other surrounding regions. In the

Atlantic Ocean, the northern boundary of the North Atlantic sub-

polar gyre and the Eastern Greenland shelf showMHWduration that

is substantially longer than the average values for the entire Atlantic

Ocean (Figure 1C), whereas high cumulative intensity MHWs are

predominantly super-positioned with highly dynamic regions such as

Gulf Stream, Labrador current, East-Greenland current, Brazilian

current and Agulhas Retroflection region (Figure 1D). Furthermore,

regions like the Caribbean sea and the north coast of South America

seem to have longer but less intense MHWs, which might indicate

different drivers occurring in those areas. Other regions like the Baltic

sea, east-Mediterranean sea, east-Black sea, Caspian sea and Tasman

sea also have relatively longer duration and high-intensity MHWs.
3.2 Classification of MHWs

Using the 8-year rolling window baseline, we have computed

MHWs for each period (Figure 2A) and classified them based on

their physical attributes. This classification involved testing different
Frontiers in Marine Science 05
clustering methods and combinations of attributes (more details

provided in the discussion in Section 4). The KMeans approach

provided a clearer distinction between clusters, when duration,

maximum intensity, rate of onset and rate of decline were

considered (Figure 2B). Three emerging clusters could be

associated with three types of MHWs which we have labelled as

Moderate, Abrupt and intense, and Extreme MHWs, respectively

(Table 1). Note that the labelling of these clusters was determined

here only by the characteristics of the cluster’s features. Moderate

MHWs are characterized by low range values for all features, while

abrupt and intense MHWs exhibit high maximum intensity, high

rate of onset, and high rate of decline. Extreme MHWs represent

those with both extended durations and high intensities. While the

clusters are not wholly isolated in terms of projected attributes, as

there are some MHWs from each cluster located in the overlapping

zone (Figure 2B), they are still clearly distinct based on all the

considered attributes. Moderate MHWs predominantly exist in this

zone followed by abrupt and intense MHWs. However, Extreme

MHWs have the biggest range of duration and max intensity

whereas moderate MHWs have the smallest range despite having

the highest percentage of MHWs (Table 1).

The moderate MHWs cluster accounts for 66% of all MHWs

(Table 1) and has a relatively short duration and small cumulative

intensities. This group of MHWs ranges between 5 to 60 days in total

with the cluster’s centroid (median) placed at 12 days duration, whereas

max intensity ranges from 0.02°C to 2.2°C (Figure 2B) above threshold

with a median of 1.25°C. These MHWs undergo slow rates of increase

and decline in intensities with values around 0.1°C/day (Table 1).

Moderate MHWs typically can occur everywhere and cover most of the

global ocean where regions like the East Greenland shelf and

Norwegian sea, Caribbean sea, Philippine sea, etc., have a high

frequency which accounts for more than 30 days per year (Figure 3A).

Abrupt and intense MHWs show up as 26.9% of all MHWs

which have a distinct behavior of high increase and decline rates as

well as relatively elevated maximum intensities with a median value

of 2.43°C (Table 1). These MHWs are characterized by a similar

range of duration as the moderate MHWs but with high variance in
A B

FIGURE 2

Spatial distribution of MHWs with an 8-year rolling baseline, (A) Total number of MHW events across the different periods averaged on the total
number of years (1989-2020). Note that, the range 1982-1988 was only used as an initial baseline without calculating MHWs, (B) Cluster projection
of MHWs’ duration and maximum intensity.
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intensity levels which ranges between 0.5°C and 8°C (Figure 2B).

These MHWs are most commonly found in the highly dynamic

ocean regions, i.e., along western boundary currents including the

gulf stream and neighbor areas, Kuroshio current, Agulhas

Retroflection and Brazil-Malvinas confluence (Figure 3B). The

abrupt and intense MHWs are also commonly present in the East

Australian Current Extension and Leeuwin Current regions, which

are affected by strong poleward advection and mesoscale dynamics

(Sen Gupta et al., 2020).

Extreme MHWs are less frequent (7.1% of all MHWs) but

persist for longer duration and high intensities with a median of 66

days and 2.52°C respectively (Table 1). In terms of duration and

intensity, the most extremeMHWs are typically found to occur over

a range of 40 to 200 days and exhibit temperatures between 1 °C

and 7°C. These MHWs are characterized by slow rates of onset and

decline with the values of 0.07° C/day. In general, temperate and

polar regions seem to have more extreme MHWs than other

regions. Especially the western and eastern Greenland show

relatively high frequency for extreme MHWs, but the relatively

high frequency is also shown in other areas of the Atlantic Ocean

including the North Atlantic Subpolar Gyre (NASPG), the N-W

Atlantic, as well as along the Brazilian current (Figure 3C). In the

Pacific, the so-called Blob region shows ≥ 30 days per year of

extreme MHWs and the Tasman sea and the western part of the

South Pacific gyre have also witnessed these extremes, with most of

the episodes occurring during the El Nino periods.
3.3 Temporal and spatial variations of
extreme MHWs

The temporal and spatial dynamics of the extreme MHWs can

be investigated by looking at the changes in their spatial distribution

within the different periods included in the 8-year shifting baseline

analysis (Figure 4). It can be inferred that these extreme MHWs are

becoming more and more frequent over time (Figure 4). During

1989-1996 (the first period in the analysis), Extreme MHWs occur

seldom and on the edges of the North Pacific and North Atlantic

gyres and along Kuroshio and subarctic currents (Figure 4A).

During 1997-2004, those events are still quite infrequent although

eastern Greenland and Iceland show a substantial increase in these

extreme events. It is worth noting that the strong El-Niño event

(1997-1998) is also slightly visible in this period (Figure 3B).

Between the years 2005 and 2012, there was a substantial increase

in the occurrence of extreme MHWs worldwide, with a particularly

sharp increase observed in the Atlantic Ocean. The relative

frequency (g) of these events ranged from 0.8 to 1 in both the

northern and southern regions and across both coastal and open
Frontiers in Marine Science 06
ocean areas (Figure 4C). The area of the Labrador sea shows as a

largely affected area by extreme events with an average duration of

around 70 days year-1 and maximum intensity of 3.5°C within this

8-year period (2005-2012). The 2013-2020 period has recorded the

highest number of extreme MHWs when using a baseline calculated

over the 1982-2012 period. Some of these events are well known like

‘The Blob (2014-2016)’ in the Pacific, the North-West Atlantic

region warming and the intense Indian Ocean warming

(Figure 4D). Relatively intense and frequent extremes can also be

observed in the Mediterranean and the Tasman Sea.
3.4 Impact of extreme MHWs
on phytoplankton

To study the impact of extreme MHWs on marine plankton

communities, we focused on regions emerging as frequently affected

by those extreme events. Based on the results in Figure 4 we selected

6 regions namely, East Greenland(EG), West Atlantic(WA), South

Atlantic(SA), Central Indian(CI), North Pacific(NP) and South

Pacific(SP) which are analyzed in the Figure 5.

The co-existence of extreme MHWs and chl-a anomalies is

analyzed with respect to their general distribution in those specific

regions. The anomalies are calculated based on the method presented

in section 2.1. The distributions of chl-a in all the regions are slightly

right-skewed (with a skewness index ranging from 0.5 to 1.5). This

observation indicates the overall higher frequency of negative chl-a

anomalies and is also the case when only anomalies within extreme

MHW periods are considered (i.e., chl-a(MHW), Figure 5). The shift

in frequency of chl-a anomalies in the presence of MHWs is relatively

minor when extreme MHWs are present. The impact of those shifts

can be considered marginal in terms of the effects on the ecology of

plankton. Nevertheless, statistical tests (i.e., Welch’s test, and Mann-

Whitney test) show that the shift is significant in most regions and

yields remarkably low p-values. It is important to consider that the

high number of samples in each region does cause the tests to be

sensitive to differences between means, thus resulting in extremely

low p-values. Further details on the statistical tests can be found in the

Appendix (Appendix 5; Table 2).

Regions in Figures 5A, B lie in the North (WA) and South (SA)

Atlantic Ocean respectively. In the WA region, the density

distribution of the chl-a anomaly displays a slightly negative shift

in the presence of extreme MHWs (Figure 4A) whereas the SA

region shows a flatter curve with a small positive shift in the

presence of extreme MHWs (Figure 5B). In the Pacific Ocean

(NP and SP regions), chl-a anomaly distribution in both regions

shows a clear negative shift in the presence of extreme MHWs

(Figures 5C, D) indicating a comparatively strong correlation
TABLE 1 Characterizations of the clusters identified by the KMeans and represented using centroid values.

%age of MHWs Duration (Days) Max Intensity (°C) Rate Onset (°C/day) Rate Decline (°C/day)

Moderate MHWs 66.0% 12 1.25 0.10 0.12

Abrupt and intense MHWs 26.9% 12 2.43 0.34 0.22

Extreme MHWs 7.1% 66 2.52 0.07 0.07
Features that distinguish the clusters are highlighted in bold.
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between extreme MHWs and phytoplankton productivity. On the

other hand, other regions like CI (in the Indian Ocean close to the

equator) and EG (a polar region in the north Atlantic ocean) do not

show any significant shift in chl-a anomalies distribution with

MHWs presence (Figures 5E, F). Furthermore, the details of the

spatio-temporal variability of chl-a anomaly and extreme MHWs

can largely vary across regions (Appendix 1-3).
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4 Discussion and conclusion

Several studies have raised the issue of the effects of frequent

occurrences and severity of global MHWs over the last few decades.

However, results show high regional variability, with some areas being

more prone to extreme warming than others, and different effects of

extreme events across different ocean regions (Holbrook et al., 2019;
A

B

C

FIGURE 3

Spatial distribution of three MHW categories namely, (A) Moderate MHWs; (B) Abrupt and Intense MHWs; (C) Extreme MHWs, displaying the total
number of MHW days normalized by the numberof years considered (i.e., 1989-2020). Note that, the total number of MHWs across the three
categories isthe same of Figure 2A.
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Spillman et al., 2021). Therefore, we analyzed the temporal trends of

extreme events across the global ocean. Based on the Extended

Reconstructed Sea Surface Temperature (ERSST) dataset, Huang

et al. (2018) observed relatively stable SST from mid-20th century

until 1980, followed by a linear rise in and after the 1980s. However, the

last 3 decades have seen some severe transitions in ocean warming,

resulting in years 2014 to 2020 being the hottest years globally across

the oceans (Figure 1). Besides these years, several other prominent

shifts occurred where MHWs days and intensity shifts have been

recorded in the years 1997-1998, 2010-2011 and 2014-2015

(Figures 1A, B) across different ocean regions (i.e., Pacific, Atlantic,

Indian). These events are typically driven by some large-scale and

regional climatic modes like El Nino, regional processes like shallow

mixed layers in summers, anomalous high-pressure systems,

suppressed wind speeds and vertical mixing, and subsurface

processes like heat advection (Sen Gupta et al., 2020).

Events detected in our analyses have been reported in the past

(Pearce and Feng, 2013; Chen et al., 2014; Bond et al., 2015; Di Lorenzo

and Mantua, 2016; Oliver et al., 2017; Benthuysen et al., 2018) and are

considered to be linked to various drivers in different regions (Holbrook

et al., 2019; Sen Gupta et al., 2020). Some of the drivers suggested are the

evolution of sub-polar gyres, heat content anomalies and negative North

Atlantic oscillations (NAO) which have significantly affected the

Atlantic Ocean (Robson et al., 2012). Besides that, El Nino also

played a significant role as an MHW driver in 1997-1998. During

these years, as well as the period from 2014-2015, the Pacific Ocean

experienced extended periods of intense warming, leading to major

shifts in Sea Surface Temperature (SST). In the Indian Ocean, warming
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is typically linked with a negative North Atlantic Oscillation (NAO) and

a positive Indian Ocean Dipole (IOD) in the western and central

regions. Moreover, post-El Nino periods also had significant effects on

the south- east IndianOcean (Saranya et al., 2022). Other studies (Marin

et al., 2022) have suggested that the onset and decay of MHWs in

tropical regions are mainly governed by air-sea heat fluxes (ASHF),

whereas the heat advection plays a significant role as MHW driving

force in sub-tropical regions. As per the temperate zones, where seasonal

variability is much higher compared to the tropics, interactions between

multiple drivers become more complex and challenging. Some authors

(Sparnocchia et al., 2006; Olita et al., 2007; Chen et al., 2014; Holbrook

et al., 2019) have analyzed various drivers like mesoscale-eddy activities,

ocean gyre circulations, ASHF, reduction in wind speed, Ekman

pumping, atmospheric circulation and pressure anomalies etc. which

supported some of the most detrimental MHWs like Mediterranean

MHW 2003, North-West Atlantic MHW 2012 and North-East Pacific

MHW 2013-2016 with El-Nino.

To categorize marine heatwaves (MHWs) into distinct groups,

we evaluated various classification techniques, including PCA,

BIRCH, and KMeans. PCA was able to account for approximately

90% of the variance using three principal components (PCs) but

only succeeded in identifying regions with high PC scores that could

be linked to upwelling and highly dynamic regions (refer to Figure 9

in Appendix 4). To efficiently apply the BIRCH algorithm, we

adjusted the threshold parameter using k-fold validation based on

silhouette scores. Nevertheless, even with the optimal threshold

selected, the algorithm was unable to effectively classify MHWs (see

Figure 10 in Appendix 4). On the other hand, KMeans
A B

DC

FIGURE 4

Distribution of Extreme MHWs across the different periods (A) 1989-1996, (B) 1997-2004, (C) 2005-2012, (D) 2013-2020. The color bar represents
the relative frequency (g) which is a ratio of extreme MHWs in a specific period and all extreme MHWs in the same cluster for all periods.
Furthermore, regions with a less number of MHW events exhibit greater transparency than those with more MHW events. Areas of interest to assess
the impacts on phytoplankton dynamics are indicated with the black boxes.
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demonstrated its effectiveness in recognizing relevant MHW

features and classifying them into distinct categories. Notably, this

method was able to group MHWs into three different classifications

(labelled moderate, abrupt and intense, and extreme MHWs),

which aligns with the traditional means of distinguishing

biological extremes. The most extreme MHWs were found to be

clustered in areas where past significant heat events have occurred,

further corroborating the validity of this approach.
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Results fromMarin et al. (2022); Hayashida et al. (2020) show that

Moderate MHWs are likely driven by the mixed contributions of local

(advection, eddy heat flux, air-sea exchanges, etc.) and large-scale

(ocean gyre oscillations, oceans dipoles, ENSO Etc.) climate modes

which control heat variations over small and different spatio-temporal

scales. This indicates very high complexity and the interactions

between these different drivers can potentially be addressed using

deep neural networks in the future. Extreme MHWs have typically
A B

D

E F

C

FIGURE 5

Density distribution of chl-a anomalies calculated using the method mentioned in 3.1. Blue color represents the total chl-a anomaly in the whole
region; Orange color shows the chl-a anomaly in the presence of extreme MHWs; Purple color is the distribution overlap between total chl-a
anomaly and the presence of extreme MHWs. Regions are identified as (A) West Atlantic(WA) Region, (B) South Atlantic(SA) Region, (C) North Pacific
(NP) Region, where (D) South Pacific(SP) Region (E) Central Indian(CF) Region and (F) East Greenland (EG region). Note that, the chl-a anomaly
distribution for each region represents the time period of 23 years (1998-2020).
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been associated with regions where these events can be explained by the

contribution of ASHF, ocean heat advection and other local processes

like turbulent mixing, and thermocline deepening, as well as likely

driven by temporary shifts in permanent ocean currents bringing

warmer waters into higher latitude colder regions (Holbrook et al.,

2019; Sen Gupta et al., 2020; Marin et al., 2022).

The increasing frequency of MHWs is believed to have an

important role in influencing the marine ecosystem over time.

These MHWs are disrupting the ecosystem balance by a

redistribution of marine biogeography and changing the habitat

ranges of certain species. Recent analyses (Arteaga and Rousseaux,

2023) suggested that the extremely warm conditions during the

2016 El Nino event led to a significant reduction of approximately

40% in surface chlorophyll concentrations in the Pacific Ocean as

well as major changes in phytoplankton community structure.

Considering the adaptive nature of marine organisms, we

assumed that extreme MHWs calculated using a shifting baseline

could have a tangible impact on phytoplankton distribution. Since

these extreme MHWs are increasing over time (Figure 4) and across

the globe, it can alter population growth and community structure

in phytoplankton (Gao et al., 2021; Harvey et al., 2022; Arteaga and

Rousseaux, 2023; Doni et al., 2023). Moreover, the use of a shifting

baseline, instead of a fixed reference, could enhance the analysis of

phytoplankton adaptation to ocean warming, such as an increase in

their maximum critical thermal limit (Jin and Agustı,́ 2018). Indeed,

expanding the baseline for MHWs closer to the period analyzed for

impacts provided a more conservative estimate of the effects of

warming. On the other hand, phytoplankton anomalies have been

calculated using a fixed reference frame as no clear seasonal trend

was observed within the considered regions. Therefore, we

considered a single baseline for phytoplankton including the

entire period of 23 years (monthly values for the range 1998-

2020) and deviations from this long-term climatology are used as

chl-a anomalies. The results presented in Figure 5 are nonetheless

robust to changes in baselines for chl-a anomalies.

To understand the impact of Extremes MHWs on

phytoplankton, we have analyzed six regions located in the

Atlantic, Pacific and Indian Oceans, and calculated the changes in

chl-a anomalies over time in the presence of extreme MHWs. The

selection of regions was driven by the relatively high frequency of

Extreme MHWs in those areas (Figure 4). Although the selection

process was subjective, it effectively incorporated regions with a

significant occurrence of extreme MHWs to assess their impacts. It

should be noted that expanding the size of the regions (thus

including more non-impacted areas) would not significantly

change the frequency distributions of chl-a anomalies.

Additionally, keeping those regions small is important to avoid

the confounding effects of multiple drivers. Results from Figure 5

showed that regions in the Pacific Ocean have a stronger negative

correlation between chl-a anomalies and extreme MHWs. However,

temperate regions in the Atlantic Ocean show contrasting results

where chl-a anomalies in WA and SA regions have negative and

positive shifts respectively, in the presence of extreme MHWs.

Furthermore, two other regions (CI and EG) do not give any

clear results on the interactions between chl-a anomalies

and MHWs.
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Our results from specific regions such as WA, NP and SP are

consistent with other findings (e.g., Ajani et al. (2020) and Doney

(2007)). The SA region is situated at the intersection between the

South Atlantic Gyre’s boundary current and the Antarctic

Circumpolar Current and changes in this front can significantly

impact the distribution of temperature, nutrients, and consequently

phytoplankton productivity. It has been shown that MHWs are

closely associated with changes in the global currents (Todd et al.,

2019). Concurrently, these currents can induce upwelling,

transporting nutrient-rich waters to the surface and supplying

vital nutrients that promote phytoplankton growth (McClain

et al., 2004). The CI region lies close to the equator hence in a

region that is strongly stratified throughout the year, hence surface

phytoplankton concentration as detected by remote sensing may

not accurately represent the total concentration within the water

column. Consequently, our detection of the impacts of MHWs in

this region using satellite data could potentially introduce biases in

the analyses as previously suggested (McClain et al., 2002). The

polar region, such as the EG we have chosen for our study, generally

has very complex dynamics driven by various atmospheric, ocean

and ice processes which may have significant impacts on ocean

stratification (Nummelin et al., 2016; von Appen et al., 2021).

Besides, the EG region also includes part of the North Atlantic

subpolar gyre which influences a range of processes, such as shallow

mixing and front dynamics. The interlink between these processes

plays a dominant role in defining MHWs and phytoplankton

productivity making it difficult to disentangle the interactions

(Richardson and Schoeman, 2004).

MHWs can be triggered by various physical factors, including

moving fronts, shallower mixed layers, increased stratification, and

persistent eddy structures (Sen Gupta et al., 2020). These factors can

also directly influence the local food web, leading to alterations in

phytoplankton and chlorophyll anomalies. Our findings suggest that

MHWs can serve as both a driver and an indicator of changes in

phytoplankton dynamics, alongside other drivers that can generate similar

anomalies. Nonetheless, it could be speculated that as the frequency and

intensity of MHWs continue to rise, they may become a dominant factor

driving thermal regimes outside the adaptive capability of different

phytoplankton groups, thus significantly affecting phytoplankton

dynamics and community structure. This could lead to cascading

effects in marine food webs including changes in the availability and

quality of food resources as well as the transfer to higher trophic levels,

such as zooplankton, fish, and marine mammals. Therefore, further

understanding of the direct effects of MHWs on marine ecosystems is

crucial for predicting and mitigating their potential impacts.
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Marıń-Guirao, L., Entrambasaguas, L., Ruiz, J. M., and Procaccini, G. (2019). Heat-
stress induced flowering can be a potential adaptive response to ocean warming for the
iconic seagrass posidonia oceanica. Mol. Ecol. 28, 2486–2501. doi: 10.1111/mec.15089

McClain, C. R., Christian, J. R., Signorini, S. R., Lewis, M. R., Asanuma, I., Turk, D., et al.
(2002). Satellite ocean-color observations of the tropical pacific ocean.Deep. Sea. Res. Part II.:
Topical. Stud. Oceanogr. 49, 2533–2560. doi: 10.1016/S0967-0645(02)00047-4

McClain, C. R., Signorini, S. R., and Christian, J. R. (2004). Subtropical gyre
variability observed by ocean-color satellites. Deep. Sea. Res. Part II.: Topical. Stud.
Oceanogr. 51, 281–301. doi: 10.1016/j.dsr2.2003.08.002

Moore, C., Mills, M., Arrigo, K., Berman-Frank, I., Bopp, L., Boyd, P., et al. (2013).
Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710. doi:
10.1038/ngeo1765

Nummelin, A., Ilicak, M., Li, C., and Smedsrud, L. H. (2016). Consequences of future
increased arctic runoff on arctic ocean stratification, circulation, and sea ice cover. J.
Geophys. Res.: Oceans. 121, 617–637. doi: 10.1002/2015JC011156
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1 APPENDIX: WEST AND SOUTH
ATLANTIC REGION
A

B

FIGURE 6

Spatio-temporal analysis of MHWs and Chl-a anomaly. Regions are flattened over the y-axis showing boundaries of latitudes, with each coordinate
having time series on the x-axis. Furthermore, the chl-a anomaly is also super-positioned with extreme MHWs (red-coloured points). Note that, the
empty spaces in A and B show the data gaps in chl-a anomaly.
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2 APPENDIX: NORTH AND SOUTH
PACIFIC REGION
A

B

FIGURE 7

Spatio-temporal analysis of MHWs and Chl-a anomaly. Regions are flattened over the y-axis showing boundaries of latitudes, with each coordinate
having time series on the x-axis. Furthermore, the chl-a anomaly is also super-positioned with extreme MHWs (red-coloured points). Note that, the
empty spaces in A and B show the data gaps in chl-a anomaly.
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3 APPENDIX: CENTRAL INDIAN AND
EAST GREENLAND REGION
A

B

FIGURE 8

Spatio-temporal analysis of MHWs and Chl-a anomaly. Regions are flattened over the y-axis showing boundaries of latitudes, with each coordinate
having time series on the x-axis. Furthermore, the chl-a anomaly is also super-positioned with extreme MHWs (red-coloured points). Note that, the
empty spaces in A and B show the data gaps in chl-a anomaly.
Frontiers in Marine Science frontiersin.org15

https://doi.org/10.3389/fmars.2023.1177571
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chauhan et al. 10.3389/fmars.2023.1177571
4 APPENDIX: CLUSTERING
ALGORITHMS
Frontiers in Marine Science 16
5 APPENDIX: STATISTICAL TESTS

Table 2. Statistical tests (p-values) distinguishing between total

chlorophyll-a anomalies and chlorophyll-a anomalies observed

during extreme MHWs.

WA SA NP SP CI EG

Welch’s test p<<
0.05

p<<
0.05

p<<
0.05

p<<
0.05

5.262×10-
07

0.300

Mann-
Whitney test

p<<
0.05

p<<
0.05

p<<
0.05

p<<
0.05

p<< 0.05 0.849
frontier
Table 3. Mann-Whitney test for analyzing the significant

difference in duration and cumulative intensity across different

regions, A, I and P represents Atlantic, Indian and Pacific

Ocean respectively.

A & I I & P A & P

Duration (p-value) p<< 0.05 p<< 0.05 p<< 0.05

Cum. Intensity(p-value) p<< 0.05 p<< 0.05 p<< 0.05
FIGURE 9

PCA clustering of MHWs
FIGURE 10

BIRCH clustering of MHWs
sin.org
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