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A B S T R A C T   

Environmental managers of coastal regions must consider the combined effects of climate change and multiple 
other stressors simultaneously. While routine monitoring programmes exist, this information is usually sum-
marised as a metric or index for ecological status classification and does not integrate the biological and envi-
ronmental data in a format that is useful for managers. We present a framework using conditional inference tree 
analyses and Bayesian Network methodology that synthesises monitoring data, identifies links between envi-
ronmental and biological variables, and predicts the effects of climate change for Dublin Bay, Ireland. The 
ecological quality status of phytoplankton biomass was usually high but degraded when silica became limiting. 
Sediment organic content was positively related to benthic invertebrate richness and the abundance of wading 
birds, although invertebrate communities were most indicative of pristine conditions when sediment organic 
content was low. Importantly, climate change simulations showed that the ecological status of Dublin Bay will 
decline in future, which highlights the importance of removing other stressors from the ecosystem.   

1. Introduction 

Coastal ecosystems experience increasing anthropogenic pressures, 
which affect their biodiversity and associated rates of ecosystem func-
tioning (He and Silliman, 2019; O’Hara et al., 2021). Resource exploi-
tation, marine pollution including eutrophication and harmful 
chemicals, or physical modifications are among the human-driven pro-
cesses that impact marine ecosystems, particularly in urban areas (Todd 
et al., 2019). Consequences include resource reduction, habitat modi-
fications or loss, altered hydrodynamics, or altered species interactions, 
which may lead to loss of foundation species, changes in biodiversity, 
and productivity (Todd et al., 2019). Simultaneously, climate change 
undermines marine biodiversity and ecosystem functioning through 
warming, acidifying and deoxygenating seawater, causing sea level rise 
and more frequent weather extremes (Hewitt et al., 2016). Represen-
tative Concentration Pathways (RCPs) of increasing greenhouse gas 
concentrations have been developed to model future climate scenarios 
and estimate potential ecosystem trajectories, including RCP 4.5 and 8.5 
illustrating moderate and extreme climate change, respectively (van 
Vuuren et al., 2011; IPCC, 2013). Despite the importance of biodiversity 
conservation, climate change mitigation and adaptation has been 

recognised with increasing urgency, effective action and societal trans-
formation emerge slowly (Matthews and Wynes, 2022). This may partly 
be due to the complexity of the problems to solve, the uncertainty about 
how to tackle the combined effects of multiple stressors, and the un-
certainty of whether management interventions will achieve desired 
outcomes (Côté et al., 2016; Moore and Schindler, 2022). 

Various monitoring programmes try to capture environmental and 
ecological trends and regularly report their descriptive findings as 
summary metrics or indices. For example, the EU Water Framework 
Directive (WFD) is a statutory law that defines common principles for 
monitoring and taking action to achieve or maintain ‘good ecological 
status’ in European water bodies (European Commission, 2000). 
Extensive monitoring activities are routinely reported, however, when 
information is condensed into proxies for levels of ecological status, it 
can no longer be used to identify relationships with typical environ-
mental conditions (Voulvoulis et al., 2017; Feld et al., 2020). There are 
few robust frameworks that integrate the biological and environmental 
data to characterise and help manage coastal ecosystems for a range of 
outcomes (Feld et al., 2016). Management of aquatic environments re-
quires an understanding of the links between environmental conditions 
and biological communities, including predictions of how changing 
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climatic conditions may affect these communities (Philippart et al., 
2011). 

Bayesian Networks (BNs) are a modelling approach that integrates 
complex systems to enhance our understanding, predict the effects of 
change, and support decision-making (Kelly et al., 2013). BNs are useful 
for linking potential drivers, pressures and impacts of multiple stressors 
in complex ecosystems, presenting probabilistic outcomes of desired 
biodiversity aspects or ecosystem services following specific manage-
ment choices or climate change scenarios (Uusitalo, 2007). These 
models are illustrated as an acyclic conceptual influence diagram that 
contains nodes (variables) and links (relationships) between them in a 
directed cause-effect structure, which is easy to interpret and modify by 
users and stakeholders. Nodes consist of multiple states, i.e. categorical 
conditions or data ranges, and the links between the nodes represent 
conditional, probabilistic (Bayesian) relationships (Kelly et al., 2013). 
BNs apply conditional inference and calculate the overall probabilities 
that certain variable conditions will be attained. BNs can be used 
prognostically (given the inputs, what are the outcomes?), or diagnos-
tically (given an output, what were the inputs?). No concept of time or 
circular connections, such as ecological feedback loops, can be included, 
which restricts BNs to static, conditional snapshots of a study system. 
The probabilistic BN outputs include explicit information about the 
uncertainty of data or predictions in a study system, which also iden-
tifies knowledge gaps (Chen and Pollino, 2012). 

Dublin Bay is a temperate estuary bordering on a metropolitan area, 
which is subjected to many common anthropogenic stressors (Fig. 1). 
Thus, it is a highly suitable case study to test new methods for better 
management of complex coastal ecosystems. In addition to industrial 
pressures, agricultural residue and nutrient discharges from rivers and 
wastewater treatment plants, port activities and their associate risk of 
pulses of pollution, Dublin Bay is also extensively used for many recre-
ational activities (Brooks et al., 2016; Cabana et al., 2020). All these 
pressures, in addition to climate change, could affect the system by 
changing abiotic conditions (e.g. water temperature, salinity, nutrient 

concentration, or pollutant levels), which in turn may affect biodiversity 
(e.g. migrating bird population) and ecosystem functioning (e.g. 
biochemical oxygen demands, nutrient cycling or productivity rates). 
Dublin Bay is currently protected under several environmental regula-
tions including EU Special Protection Areas (SPAs) and Special Areas of 
Conservation (SACs) and, unusually for a metropolitan area, is a 
UNESCO Biosphere (Dublin Bay Biosphere Partnership, 2017). These 
designations are because of the presence of several rare and interna-
tionally important wildlife species and the high ecological value of the 
habitat. For example, SPA and SAC conservation objectives include 
maintaining a stable, or increasing, area of ‘mudflats and sandflats not 
covered by seawater at low tide‘, and protection of populations of 
several migratory and resident birds including brent geese, redshank, 
curlew and bar-tailed godwit (NPWS, 2013a, 2013b, 2015a, 2015b). 
This highlights the importance of effective conservation management 
and pressure mitigation to maintain or restore favourable conservation 
conditions. 

Here, we present a framework to synthesise environmental moni-
toring data from Dublin Bay, using conditional inference tree analyses 
and the Bayesian Network (BN) methodology, to support local man-
agements’ decision making by deepening the understanding of the 
complex linkages between environmental conditions and the diversity 
and functioning of Dublin Bay. Additionally, key physico-chemical 
variables, and their possible effects on biological variables, were 
extrapolated based on climate change projections to provide ecosystem 
trajectories under different climate change scenarios (IPCC, 2013). 
Nutrient conditions, sediment organic content and climate change sce-
narios were linked with intermediate physico-chemical variables to 
model their effects on phytoplankton, benthic invertebrates and waders, 
which were selected as socio-economically relevant biodiversity in-
dicators following initial assessment of available data. 

Our data analysis was based on the following hypotheses: 

Fig. 1. A, B Dublin Bay in Ireland, C sampling stations from which monitoring data was provided for the BN. EPA: Environmental Protection Agency Ireland; MI: 
Marine Institute Ireland: DBBP: Dublin Bay Bird Project. 
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1. Weather and discharges into Dublin Bay affect physico-chemical 
variables (e.g. nutrient concentrations may increase with sewage 
discharge, water temperature increases with warmer weather, 
salinity decreases with precipitation and high river discharge loads, 
water agitation increases in windy conditions). 

2. Physico-chemical variables affect phytoplankton and benthic in-
vertebrates (e.g. phytoplankton biomass increases with temperature; 
Platt et al., 1987). 

3. Phytoplankton growth increases pH and the concentration of dis-
solved oxygen through photosynthesis (Provoost et al., 2010; 
Jakobsen et al., 2015).  

4. High dissolved oxygen concentrations, pH, and sediment organic 
content are beneficial to benthic invertebrates. 

5. The availability of benthic invertebrates and of habitat area posi-
tively affect the abundance of waders.  

6. Climate change will affect biodiversity through changes in physico- 
chemical variables (e.g. warming will increase phytoplankton 
abundance, but loss of intertidal areas will reduce wader 
abundance). 

2. Materials and methods 

To characterise Dublin Bay, a BN was built from available moni-
toring data following an established iterative process (Chen and Pollino, 
2012; Marcot et al., 2006), which included: (i) conceptualising Dublin 
Bay as a study system; (ii) defining the model structure by selecting 
variables and specifying links between them; (iii) discretising contin-
uous variables into categorical states; and (iv) populating conditional 
probability tables. The geographical area covered by the BN includes 
transitional waters of the River Tolka, North Bull Island and Liffey Es-
tuary and the coastal waters of Dublin Bay (EPA, 2022; Fig. 1). 

Dublin Bay was conceptualised holistically by applying the DPSIR 
framework (Drivers – Pressures – State Change – Impact – Response 
[Atkins et al., 2011]). We identified natural (e.g. tidal water exchange 
with the Irish Sea) and anthropogenic drivers (e.g. climate change, ur-
banisation, agriculture in the hinterland) that exerted pressures on the 
bay (e.g. input of organic particulate matter, or warming), which 
changed the state of abiotic environmental variables (e.g. sediment 
organic content, or water temperature) and thereby had the potential to 
affect various ecological processes and related biodiversity indicators (e. 
g. phytoplankton biomass, wader abundance). 

The model structure, i.e. the variables represented as nodes in the 
network and the conditional links among them, was drawn from pre-
vious studies (e.g. Brooks et al., 2016; Cabana et al., 2020; Wilson, 
2005), available monitoring data, climate change projections (IPCC, 
2013), and conditional inference tree (ctree) data analysis (further de-
tails in section 2.3, 2.3 and Appendix B; Hothorn et al., 2006). Data were 
obtained from nine monitoring programmes (Fig. 1; Table A.1). Vari-
ables were excluded if ctree data analysis did not reveal significant re-
lationships to other variables (Appendix B). For some potentially 
relevant biodiversity groups (e.g. fish, marine mammals) or processes (e. 
g. subtidal blooms of filamentous brown algae and associated beach 
fouling), no data were available (Appendix B). Climate change pro-
jections were incorporated to compare the current state of Dublin Bay 
with predicted conditions following RCP 4.5 and 8.5. for the period 
2081–2100 (IPCC, 2013). 

Data analyses were conducted with R Studio version 1.4.1106 
(RStudio Team, 2021) and R version 4.1.0 (R Core Team, 2021), using 
the function ctree of the package partykit (Hothorn and Zeileis, 2015), 
and the libcoin (Hothorn, 2021) and tidyverse (Wickham et al., 2019) 
packages. The BayesFusion GeNIe Modeler version 3.0.6518.0 was used 
to implement the Bayesian Network. 

2.1. BN structure 

The BN comprises 20 variables (Fig. 2, Table C.1), including four 
‘input nodes’ (defined as variables that are not affected by any other 
variable): (i) ‘climate change’ to compare the current state of Dublin Bay 
to predicted conditions following RCP 4.5 and 8.5. for the period 
2081–2100 (IPCC, 2013); (ii) nutrient ratio of dissolved inorganic ni-
trogen to phosphate (DIN: PO4–P); (iii) nutrient ratio of phosphate to 
silicate dioxide (PO4–P:SiO2); and (iv) sediment organic content. Only 
climate change can be classified as a driver, whereas the other three 
input variables reflect abiotic environmental states. For those, quanti-
tative information on the underlying pressures and drivers that pro-
duced them was unavailable (e.g. agricultural runoffs or tidal water 
input from the Irish Sea). The node climate change is linked to more 
explicit pressures, such as warming, ocean acidification, changes to 
precipitation patterns and sea level rise. These, in turn, are linked to the 
intermediate abiotic nodes water temperature, pH, salinity, water 
agitation, the ecological quality status (EQS) of oxygenation as defined 
in the WFD, and the areal extent of intertidal sand and mud flats. The 

Fig. 2. Bayesian Network of environmental variables and biodiversity of Dublin Bay, including drivers (purple), pressures (dark blue), abiotic variables (light blue) 
and biodiversity outputs (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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abiotic nodes are linked to the condition of five biodiversity indicators, 
which are the ‘output nodes’, and include: (i) EQS of phytoplankton 
biomass; (ii) EQS of phytoplankton abundance; (iii) benthic invertebrate 
taxa richness; (iv) benthic invertebrate disturbance sensitivity; and (v) 
the abundance of bar-tailed godwits (Limosa lapponica lapponica), which 
are representative of key wading bird populations. 

Bar-tailed godwits were chosen as a biodiversity indicator in the BN 
because they are exclusively tied to the intertidal zone (Granadeiro 
et al., 2006). The species is considered ‘Near Threatened’ in the IUCN 
Red List (Wetlands International, 2022) and amber-listed as bird of 
conservation concern in Ireland (Colhoun and Cummins, 2013), with the 
decline of available intertidal habitat posing a major threat to these 
waders (Tierney et al., 2017). Peak counts of bar-tailed godwits in 
Dublin Bay can meet the threshold of international importance, which 
reflects 1% (> 1500 birds) of the biogeographic population of Northern 
and Western Europe (Wetlands International, 2022). 

2.2. Data analysis 

Temporal and spatial resolution, sampling dates and sampling lo-
cations differed between the available monitoring data sets (Table A.1) 
but were matched as closely as possible when merging them for data 
analysis (Appendix D). Data obtained from different sampling locations 
and at different dates were treated as independent observations 
following two considerations: Firstly, the water residence time in Dublin 
Bay is <3.4 days (O’Boyle et al., 2015), which is less than the minimum 
temporal resolution of the analysed data. Secondly, the water column is 
constantly mixed due to inputs from various directions and sources, 
including tidal hydrodynamics. 

We used open-ocean projections of ocean acidification (IPCC, 2014; 
Table C.1) as best available estimates, being aware that coastal dy-
namics and developments under climate change are largely unclear and 
underlie a complex multitude of drivers (Duarte et al., 2013). 

Only data of the photosynthetically productive period from March to 
September 2007–2020 were considered when modelling physico- 
chemical variables (the input nodes PO4–P:SiO2 and DIN: PO4–P, and 
the intermediate variables water temperature, salinity, EQS oxygena-
tion, pH) to accommodate existing thresholds on the ecological status of 
certain water conditions (EPA Ireland, 2006) and to remove confound-
ing effects of seasonal sampling bias (Ní Longphuirt et al., 2016a; 
O’Boyle et al., 2015). 

The variable ‘water agitation’ was included as a proxy for weather 
conditions (cloud cover, light intensity), expecting a calm seawater 
surface during good weather periods and an agitated to turbulent 
seawater surface during poor weather conditions. Our statistical analysis 
confirmed that turbulent conditions increased dissolved oxygen, prob-
ably because of increased mixing at the water-atmosphere boundary, 
and additionally decreased primary productivity, presumably because of 
higher disturbance levels or reduced light availability in more cloudy 
conditions. Water agitation was calculated as the ratio of wave height to 
wave length, which reflects wave steepness and indicates the likelihood 
that waves will break or shoal (Masselink et al., 2011). Wave length was 
estimated from wave period using an equation for wave celerity at in-
termediate water depth (Masselink et al., 2011). 

‘Invertebrate Disturbance Sensitivity’ was included as a variable in 
the BN as an indicator for subtidal benthic soft-bottom invertebrate 
community composition. It is based on the strong correlation (p < 0.001; 
Pearson’s r = − 0.64) of taxa richness with the percentage of taxa that 
was assigned to ‘Ecological Group I’ based on the established indicator 
classification system: AMBI (AZTI’s Marine Biotic Index [Borja et al., 
2000]). Ecological Group I taxa are those known to be sensitive to 
organic enrichment. We found that where fewer species classified as 
Group I were present in the invertebrate samples, more taxa of Group II 
were present, which are described as indifferent, and subsequently more 
of taxa from Group III, which are considered as tolerant to organic 
enrichment. The remaining groups IV and V contain (second-order) 

opportunistic species, which were present in the samples at <10%, or 
3%, respectively. Low invertebrate taxa richness correlated strongly 
with a high percentage of species indicative of pristine conditions, i.e. 
sensitive to enrichment. Somewhat counterintuitively, a decrease in 
richness of these particular taxa is recorded as status improvement in the 
BN because it is correlates with the presence of the sensitive species that 
are indicative of pristine conditions. 

Currently, Dublin Bay has 15 km2 of intertidal sand and mud flat 
habitats, which extend over almost 3 km at their widest and are domi-
nated by well-aerated sands apart from muddy habitats in the estuaries 
and Bull Island lagoon (NPWS, 2015b).When estimating climate change 
effects of sea level rise on the area of intertidal sand and mud flats, we 
assumed the persistence of the current urban, artificial embanking of 
Dublin’s coastline. This will prevent coastal retreat and cause ‘coastal 
squeeze’ instead of gaining compensating intertidal areas with rising sea 
levels, and will ultimately cause the loss of intertidal sand and mud flat 
habitats (Pontee, 2013). 

When modelling the effects of intertidal area loss on bar-tailed 
godwit abundance according to sea level rise predicted for RCP 4.5 or 
8.5, we maintained the abundance thresholds for national and interna-
tional importance that refer to the current bird population. We assume 
that if the waders cannot establish themselves elsewhere in the bay 
owing to coastal squeeze, the overall bird population size will decline 
(Iwamura et al., 2013), which would lead to adjusted thresholds of 
counts that reflect national and international importance. 

To estimate future bar-tailed godwit abundance in Dublin Bay, we 
applied an equation that describes the general relationship between 
estuary area and wader abundance in New Zealand (Whelan et al., 
2003): 

ln(maximum abundance) = 0.6647*ln(area)–4.457 

According to the estimated area loss under the climate change pro-
jections RCP 4.5 and 8.5, future bar-tailed godwit populations may be 
reduced to 89%, or 82%, respectively, compared to current maximum 
abundance. Applying a similar equation that characterises average peak 
counts of bar-tailed godwits in England as a function of estuary size 
(average peak count = 0.0789 * estuary size in ha + 13.158 [Prater, 
1981]) resulted in an even more drastic population decline to 85%, or 
77%, respectively. 

2.3. Defining the node states and discretising continuous variables 

A total of 63 variable states were defined, with 2–5 states per vari-
able (Table C.1; Fig. E.1). Existing thresholds were adopted where 
applicable: RCP 4.5 and 8.5 and the magnitude of the corresponding 
projected changes for the period 2081–2100 (IPCC, 2013; Jacob et al., 
2014) informed the states of warming, ocean acidification, precipitation 
pattern, sea level rise and the associated area loss of intertidal sand and 
mud flats (decrease – no change – little to strong increase). Thresholds 
defined by the EU WFD to classify the status of water quality in transi-
tional and coastal waters were used to characterise the EQS of phyto-
plankton biomass and abundance and water oxygenation (high – good – 
moderate – poor – bad). Thresholds at which bar-tailed godwits are 
considered to occur at numbers of national or international importance 
at a site defined by the Ramsar Convention and applied by Birdwatch 
Ireland were applied to discretise wader abundance apart from absence 
or presence. For pH and invertebrate disturbance sensitivity, i.e. the 
percentage of invertebrate taxa that are assigned to the Ecological Group 
I according to AMBI, no previous thresholds existed. Therefore, data 
ranges were determined following visual analysis of histograms (Feld 
et al., 2020). All remaining continuous variables were discretised into 
states using ctree analysis (Appendix F), which applies tree-structured 
regression models (Hothorn et al., 2006). This type of analysis parti-
tions child node data (the case-specific response variable) according to 
regression-based break points in the parent node data (the case-specific 
influencing variable(s)). For example, modelling ctree for chlorophyll a 

K.S.H. Schertenleib et al.                                                                                                                                                                                                                      



Journal of Sea Research 196 (2023) 102442

5

concentration as a response of salinity, water temperature and the 
nutrient ratios DIN: PO4–P and PO4–P:SiO2 (already applying the pre-
viously identified states of those influencing variables) identified child 
node data chunks, from which the distribution of the respective data 
across the child node states was extracted (Fig. 3). 

In three cases, states of “unknown” data were included to account for 
limited overlaps of different data sets or for parent node state combi-
nations that could not be matched with child node data (Appendix D). 

2.4. Linking nodes and filling the conditional probability tables 

Nodes were linked in the BN when ctree analysis indicated signifi-
cant (p < 0.05) partitioning of child node data according to parent node 
states, i.e. based on significant underlying regression models. Separate 
analyses were run for all child nodes, i.e. all except for the input nodes, 
resulting in 32 links (Appendix G). Ctree analysis automatically accounts 
for non-linear relationships and interactions between variables when it 
partitions continuous variables into discrete ranges. After defining the 
node states and identifying statistically significant links, the conditional 
probability table (i.e. the full crossing of the child node states with all 
possible parent node states, or state combinations of multiple parent 
nodes) of each node was filled according to the frequency of the child 
node state occurring under specific parent node conditions. 946 condi-
tional probabilities were quantified. No predicted probability distribu-
tions exist for the states of the climate change pressures sea level rise and 
acidification, therefore, we linked the predicted magnitude of change 
with 100% probability of occurrence to the respective climate change 
scenario. While pH data from recent years were available in the child 
node of ocean acidification, no probability distribution could be 
extrapolated for the states of the loss of intertidal sand and mud flat 
habitats associated with sea level rise, thus, we linked the estimated loss 
with 100% probability of occurrence to the respective sea level rise 
scenario. pH and dissolved oxygen conditions that can be expected in an 
extreme climate change scenario (following RCP 8.5) have not yet been 

captured with current monitoring, thus, their effects on invertebrate 
taxa richness and disturbance sensitivity could not be estimated. 
Consequently, the corresponding change in wader abundance was esti-
mated exclusively according to the effects of sea level rise and the 
subsequent loss of intertidal habitat. 

2.5. Operating the BN 

We ran the model with all possible combinations of input node states 
(Appendix H), including their general probabilities of occurrence, and 
present the changes in probability distributions of biodiversity output 
nodes relative to general current climate conditions in this paper. 
Probability distributions of invertebrate taxa richness and invertebrate 
disturbance sensitivity states were scaled proportionally to the amount 
of available data. Changes in probability distributions of <3% were 
considered negligible because of the high model uncertainty, following 
Kelly-Quinn et al. (2022). 

2.6. Heuristic validation 

To test whether qualitative model performance (network structure 
and direction of conditional relationships) aligned with expert opinion, 
a survey with independent experts was conducted. First, a digital survey 
was completed by nine environmental scientists with direct knowledge 
of Dublin Bay, where participants were asked to predict relationships 
among nodes in the BN (Appendix I). Responses were weighted ac-
cording to the experts’ own expertise ratings and transformed into a 
score (0–1) for consent and disagreement among experts, which was 
then compared to the model performance (Table I.1). Then, the results 
were presented to the experts in a 2-h online workshop, during which 
points of disagreement among the experts and divergence of expert 
expectation and model performance were discussed. Heuristic consent 
was reached and no amendments to the BN were required. 

Fig. 3. Conditional inference tree example of modelling chlorophyll a concentration as a response of salinity, water temperature and the nutrient ratios DIN:PO4–P 
and PO4–P:SiO2, applying the previously identified states of those influencing variables. Significant break points in the predictor variables were determined by the 
model and the response variable data were partitioned accordingly. The boxplots at the bottom of the graph depict the final data partitions including the sample size 
and the corresponding data distribution of the response variable. 
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3. Results 

We built a BN that included climate change scenarios, ratios of DIN: 
PO4–P and PO4–P:SiO2, and sediment organic content as input nodes, 
and WFD EQS of phytoplankton biomass and abundance, taxa richness 
of subtidal invertebrates and their disturbance sensitivity, and abun-
dance of bar-tailed godwits as output nodes. Output node status declined 
with increasing climate change relative to general current climate con-
ditions, except for invertebrate taxa richness and disturbance sensitivity 
that improved when sediment organic content was lower (Fig. 4, 
Table 1). 

3.1. EQS phytoplankton biomass 

Under current climate and nutrient conditions, the EQS of phyto-
plankton biomass in Dublin Bay from 2007 to 2020 was classified as 
‘High’ in 85% of observations (Fig. 4). The ratio of DIN: PO4–P affected 
the EQS of phytoplankton biomass significantly in certain conditions 
(Fig. 3), however, these conditions did not appear when the full BN was 
run with climate change as overall input node. When the ratio of PO4–P: 
SiO2 was set to SiO2 limitation, a ‘High’ quality output state of the 
system was 35% less likely, while the probability of attaining a ‘Good’ or 
‘Moderate to Bad’ EQS increased by 13% and 22% respectively. These 
less favourable states became 2–7 times more likely compared to how 
often they prevailed in 2007–2020 (Table 1). With increasing severity of 
climate change projections, the model indicated worsening shifts of up 

to 14% probability from a ‘High’ EQS to a ‘Good’ and, at a lesser extent, 
‘Moderate to Bad’ status (Table 1). Effectively, these less favourable 
conditions were predicted to be twice as likely than during recent years. 
PO4–P limitation in the PO4–P:SiO2 ratio mitigated this effect slightly 
(Table 1). When SiO2 limitation was specified in addition to climate 
change scenarios, attaining a ‘Good’ or ‘Moderate to Bad’ status became 
equally likely at 27% or 28% probability. This suggests that a ‘Moderate 
to Bad’ status is eight times more likely (Table 1). 

3.2. EQS phytoplankton abundance 

A moderate EQS of phytoplankton abundance was most common in 
Dublin Bay during 2007–2020, while ‘Good’ or ‘High’ status occurred 
more often than ‘Poor’ or ‘Bad’ (Fig. 4). Our model indicated that the 
EQS of phytoplankton abundance may degrade under SiO2-limited 
conditions, however, it was not affected by climate change (Table 1). 

3.3. Invertebrate taxa richness and disturbance sensitivity 

Invertebrate taxa richness was ‘High’ in 62% of the available ob-
servations (Fig. 4) but became 5% less likely when SiO2 was limiting 
(Table 1). When sediment organic content was ‘Low’, the probability of 
state occurrence shifted from ‘High’ taxa richness to ‘Low to Medium’ 
(+28%) and ‘Low’ (+17%), with the latter effectively becoming three 
times as likely as during recent years (Table 1). When sediment organic 
content was ‘High’, this led to an opposite shift of 5% under additional 

Fig. 4. Bayesian Network of environmental variables and biodiversity of Dublin Bay, node states, and conditional links among them showing the general frequency 
distributions of the node states as % representing available monitoring data from the years 2007–2020. Drivers (purple), pressures (dark blue), abiotic variables (light 
blue) and biodiversity outputs (green) are listed from top to bottom. The four input nodes are highlighted by cog wheels. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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SiO2-limitation from the states of lower to high(er) taxa richness, and 
8% under general or PO4–P -limited nutrient conditions (Table 1). 
Despite the lack of data for RCP 8.5, the model shows that the proba-
bility to attain ‘High’ taxa richness increased by 9% under climate 
change scenario RCP 4.5 and general sediment organic content, by 7% 
when SiO2 and 12% when PO4–P was limiting (Table 1). Under ‘High’ 
sediment organic content, the shifts in the probability distribution under 
scenario RCP 4.5 almost doubled compared to those observed under 
current conditions (Table 1). When sediment organic content was 
specified as ‘Low’, ‘Low’ taxa richness was estimated to become six times 
more likely under RCP 4.5 conditions compared to what was observed in 
current data (Table 1). Whenever low taxa richness became more likely, 
the species sensitive to organic enrichment were 3–4 times more likely 
to occur than observed during recent years, while high taxa richness was 
associated with higher proportions of species indifferent or tolerant to 
organic enrichment (Table 1). 

3.4. Abundance of bar-tailed godwits 

Bar-tailed godwits occurred at numbers of national importance in 
47% of the observations, were present below this threshold in 29% of the 
occasions and absent 20% of the time (Fig. 4). In 4% of the observations, 
the threshold for international importance was met (Fig. 4), which 
translates into ten events during the seven years of available data. This is 
very close to the 12 occasions derived from the raw data (independent of 
the data handling required for the BN) and indicates that the model 
estimates may be conservative as to when the threshold of international 
importance will be met. In both climate change scenarios, nationally 
important numbers were estimated to occur 2–3% less often in the 
probability distribution, while presence at numbers below the current 

threshold for national importance increased by 3–6% (Table 1). 
Following RCP 8.5 predictions, our model indicated that the abundance 
of bar-tailed godwits may exceed the threshold of international impor-
tance in only 1% of the observed probability distribution, which means a 
reduction of 75% to only one occasion every 2–3 years (Table 1). 

The probability of attaining bar-tailed godwit abundances above the 
nationally or internationally important thresholds decreased when 
sediment organic content was ‘Low’. While the probability of the waders 
being present below any threshold increased by 3% in current and by 5% 
in predicted RCP 4.5 climate conditions (Table 1). ‘High’ sediment 
organic content did not affect the probability distribution of wader 
abundance (Table 1). The effects of nutrient conditions on phyto-
plankton biomass did not pass through the trophic levels and had no 
effect on the abundance of bar-tailed godwits (Table 1). Seasonal 
absence of these waders was similar in all modelling scenarios (Table 1). 

3.5. Quantified uncertainty in the BN 

All modelled changes in the EQS of phytoplankton biomass can be 
interpreted with high confidence, because they involve at least 10% of 
change in the probability distribution (Kelly-Quinn et al., 2022; 
Table 1). The same applies to most of the climate change predictions for 
invertebrate taxa richness and to all changes that can be expected in 
conditions of low sediment organic content, including the corresponding 
shifts in the invertebrate disturbance sensitivity. In contrast, the very 
even probability distribution of the five states of the EQS phytoplankton 
abundance in current conditions and changes according to SiO2 limita-
tion should be interpreted with caution. This also applies to the small 
changes (< 5%) in the probability distribution of bar-tailed godwit 
abundances under low sediment organic content, or in a moderate 

Table 1 
Conditional probabilities of output node state occurrence with fully crossed input node state combinations from the Bayesian Network of environmental variables and 
biodiversity of Dublin Bay. General reference conditions from 2007 to 2020 are highlighted in bold on violet background, with light violet (no change, i.e. < 3%), 
shades of green (improvements) or blue (degradation) illustrate the magnitude of change in probability distributions relative to reference conditions. Colour intensity 
increases with magnitude of change. States of ‘Unknown’ data depict incomplete data overlap between available response and predictor variable data. Remaining 
node states were scaled proportionally to sum up to 100%. Phytoplankton was not linked to sediment organic content and no invertebrate data were available to be 
extrapolated to RCP 8.5 conditions. 
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climate change scenario (Table 1). All remaining modelled changes in 
probability distributions are 5–10% and should be interpreted at an 
intermediate level of uncertainty (Table 1). 

4. Discussion 

The BN predicts an overall degradation in ecological status of Dublin 
Bay under the intermediate and extreme (business as usual) scenarios of 
predicted climate change, which is illustrated by a reduction in four of 
five proxies for ecological health and biodiversity. Specifically, the WFD 
EQS of phytoplankton biomass (high status will be 14–17% less likely), 
invertebrate taxa richness (low taxa richness will be 62% less likely), 
invertebrate disturbance sensitivity (will be 50% less likely to show 
pristine conditions), and the abundance of bar-tailed godwits (75% 
decline of presence at international importance) will all be lower. The 
EQS phytoplankton abundance was not affected by climate change, but 
by SiO2 limitation. 

The ratio of DIN: PO4–P did not affect the biodiversity indicators 
included in the BN, contrary to intuitive initial expert expectation 
(Appendix I). DIN limitation occurred in 55% of the observations and 
PO4–P-limitation in the remaining 45%, illustrating the alternating 
states of low and high tides with a periodic pulse supply of PO4–P from 
the Irish Sea and continuous supply of riverine DIN inputs (O’Boyle 
et al., 2015; O’Higgins and Wilson, 2005). Owing to the short residence 
time of water in the well-flushed Dublin Bay, phytoplankton biomass 
tends to be low compared to the amount of available DIN and PO4–P, 
which indicates export of both nutrients and phytoplankton into the 
Irish Sea rather than retention within the Bay (O’Boyle et al., 2015). 
Recent management efforts in Irish river catchments (e.g. reducing 
fertiliser applications, improving farming practices) have reduced 
phosphorus levels substantially in freshwater systems (O’Boyle et al., 
2016). Nitrogen loadings have decreased to a lesser extent, causing 
elevated DIN: PO4–P ratios that may cause shifts in phytoplankton 
community compositions or opportunistic green macroalgal blooms in 
estuaries with strong marine influences, which are usually DIN-limited 
(Ní Longphuirt et al., 2016b; O’Boyle et al., 2016). Macroalgal blooms 
regularly occur in Dublin’s Tolka Estuary, which is at risk of eutrophi-
cation from the adjacent urban waste water treatment plant (Jeffrey 
et al., 1995; Ní Longphuirt et al., 2016a). Additionally, the reminerali-
sation of settled particulate matter inputs from the Irish Sea facilitates 
macroalgal blooms in Dublin Bay and is considered to be the main cause 
of the (not monitored) subtidal Ectocarpus mats that get washed up on 
Dublin’s beaches in autumn and indicate eutrophic conditions (Jeffrey 
et al., 1995, 1993; Jennings and Jeffrey, 2005). Reducing nitrogen loads 
considerably might reduce opportunistic macroalgal blooms, which may 
be of particular interest if macroalgae in Dublin Bay show similar 
increased growth as phytoplankton biomass under expected climate 
change. 

Phytoplankton production in Dublin Bay is currently phosphorous 
limited (97% of the observations from 2007 to 2020) and increases in 
phytoplankton biomass and corresponding degradation of the EQS 
phytoplankton biomass can be expected with high certainty under SiO2- 
limitation. SiO2-limitation impairs the growth of diatoms, which are a 
major food source for primary consumers, such as zooplankton, filter 
feeders and fish (Officer and Ryther, 1980; Zhang et al., 2020). When 
diatom growth is limited, flagellates can dominate phytoplankton 
communities (Howarth and Marino, 2006). Flagellate communities 
persist longer because they are grazed less heavily and are associated 
with nuisance events, such as shellfish poisoning, discoloured and 
malodorous water and hypoxia (Officer and Ryther, 1980). Reduced 
grazing decreases the flux of organic matter from the water column to 
the sediment (Howarth and Marino, 2006), which may explain why low 
invertebrate taxa richness and higher percentages of invertebrate spe-
cies that are characteristic of pristine conditions became more likely 
under SiO2-limitation. While the tidal exchange with the Irish Sea 
cannot be managed locally, river and sewage treatment discharge, 

which are main sources of SiO2 in coastal systems, hold opportunities for 
management action to maintain a high EQS of phytoplankton biomass 
(Zhang et al., 2020). These include maintaining a phosphorous-limited 
PO4–P:SiO2 ratio in effluents or considering the implications that regu-
lating the flow of Dublin’s largest river Liffey through up-stream reser-
voirs may have on the nutrient balance in Dublin Bay. 

Invertebrate taxa richness was high in 62% of observations from 
2007 to 2020 and became even more likely when sediment organic 
content was high and PO4–P limiting. Conversely, low invertebrate taxa 
richness was most likely to occur when SiO2 was limiting, and especially 
when sediment organic content was low. Deposition, decomposition and 
bioturbation of particulate matter drive sediment organic content, 
which was almost as often low (49%) as high (51%) from 2007 to 2020, 
and potentially even productivity and food web complexity in Dublin 
Bay (Wilson et al., 2002). Even though the tidally-driven input of par-
ticulate matter from the Irish Sea has been quantified as ten times more 
than the combined discharges from rivers and the sewage treatment 
plant, the latter are considered to fuel localised eutrophication through 
wind- or wave-driven dynamics (Wilson et al., 2002). 

Our data analysis identified a strong negative correlation between 
invertebrate taxa richness and the percentage of taxa that are indicative 
of pristine conditions (invertebrate disturbance sensitivity). Increasing 
taxa richness in combination with an increasing amount of tolerant or 
even opportunistic species has been shown previously after ongoing 
disturbance through organic enrichment (Culhane et al., 2019). It is 
thought that this was because the more sensitive species persisted 
temporarily before they were replaced by more indifferent and tolerant 
species. Following the intermediate disturbance theory, high taxa rich-
ness may reflect a continuously changing species composition caused by 
higher rates of disturbance than rates of recovery, which temporarily 
prevents that competitive exclusion leads to prolonged coexistence 
(Connell, 1978; Huston, 2014). Increased diversity has also been 
attributed to higher productivity, which can be caused by increased 
resource availability through moderate organic enrichment (Huston, 
2014; Mittelbach et al., 2001). Consequently, although higher biodi-
versity is commonly considered as desirable, the community composi-
tion should be assessed when evaluating ecosystem functioning or 
health. Quick changes in taxa richness following disturbance are usually 
not reflected by summarising indices, such as the Infaunal Quality Index 
(IQI), that are applied in WFD monitoring to indicate the ecological 
status of invertebrate communities (Borja et al., 2009; Culhane et al., 
2019). This is consistent with the absence of significant links between 
predictor variables and invertebrate metrics in our analyses, except 
when we used taxa richness. 

Our BN estimated increasing invertebrate taxa richness in the mod-
erate climate change scenario, primarily caused by decreasing pH and 
oxygenation, i.e. more disturbed conditions. Particularly sea level rise, 
with its influence on intertidal habitats, has the potential to cause sub-
stantial additional changes in benthic macro invertebrate communities 
(Fujii, 2012), although we lacked data to include such effects in the BN. 
These communities are pivotal to intertidal, estuarine and coastal food 
webs because they support higher trophic levels, such as larger crusta-
ceans, fishes and birds (Fujii, 2012). Sea level rise may cause coastal 
squeeze, which not only causes intertidal habitat loss but may also alter 
sediment deposition and particle size distribution, the vertical shore 
profile, the salinity gradient between freshwater and marine conditions, 
and mixing conditions (Fujii, 2012). All of these consequences may 
affect intertidal benthic communities and prey availability for higher 
trophic levels, which aligns with the effect of invertebrate taxa richness 
on wader abundance as higher trophic level in our BN. 

We found that benthic invertebrate taxa richness and disturbance 
sensitivity were positively linked to bar-tailed godwit abundance, even 
though the only available invertebrate data originated from subtidal 
instead of intertidal communities. In the Wadden Sea, bar-tailed godwits 
regularly prey on polychaetes, such as Arenicola marina, Hediste diver-
sicolor, Nephtys hombergii, Scoloplos armiger, and Lanice conchilega, in 
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addition to bivalves, such as Macoma balthica, and crustaceans, such as 
Carcinus maenas (Scheiffarth, 2001). Five of these species belong to the 
AMBI Ecological Group III, which is tolerant to disturbance such as 
organic enrichment, and the remaining two species belong to group II 
(Phillips et al., 2014). These ecological groups were more common in 
Dublin Bay when taxa richness was high, which explains the positive 
effect of high taxa richness on bar-tailed godwit abundance. High 
invertebrate taxa richness mitigated negative effects of moderate 
climate change on bar-tailed godwit abundance, while low invertebrate 
taxa richness had an enhancing effect, probably reflecting the absence or 
presence of preferred invertebrate prey species. 

Regardless of benthic invertebrate taxa richness, a major threat to 
migrating wader populations, especially those tied to exclusively sandy 
and muddy intertidal areas, such as bar-tailed godwits, is habitat loss 
(Fujii, 2012). Bar-tailed godwits perform extreme annual migrations and 
as site-faithful waders heavily rely on few staging sites (Battley et al., 
2012). In Dublin Bay, bar-tailed godwits are only one of >50 migratory 
waterbird and seabird species, of which 23 occur at nationally important 
numbers including three at internationally important numbers, and 
annual peak counts of up to 35,000 birds can be observed during low 
tide (Tierney et al., 2017). Most birds spend the winter in Dublin Bay but 
high numbers in spring and autumn show the importance of the site for 
migratory passage stops (Tierney et al., 2017). 

Dublin Bay is an urban marine ecosystem and its shorelines are 
almost exclusively artificially embanked (Brooks et al., 2016). Current 
high tides wash up against these embankments, or even wash over them 
during storm floods. We predict that sea level rise will lead to coastal 
squeeze and decrease the current intertidal area by up to 25% (Table 1). 
Establishing new resting and foraging areas to compensate for those lost 
to sea level rise, e.g. by enabling coastal retreat locally, is one option of 
complying with the current SPA conservation objectives to maintain 
wader abundances in Dublin Bay. As this would put urban infrastructure 
at risk and is therefore not practical, a crucial measure to conserve 
Dublin Bay as an important area for waders and to comply as closely as 
possible with the UNESCO Biosphere conservation objectives is pro-
tecting the remaining habitat. Dublin’s shorelines, however, are among 
the most heavily used in Ireland, both for land-based activities and for 
water sports (Brooks et al., 2016). Already at the current intertidal areal 
extent, waterbirds are frequently disturbed by human recreational and 
leisure activities, which causes the birds to move and interrupts their 
foraging or resting at the cost of energy expenditure (Tierney et al., 
2017). Our BN indicates that climate change, including sea level rise, 
will reduce wader abundance, putting the status of Dublin Bay as an 
internationally important staging site for far-migrating waders such as 
the bar-tailed godwits at risk. Consequently, management needs to 
consider potential conflicts of interest in the both ecologically and 
culturally important shorelines and intertidal areas and find solutions on 
how to balance the recreational demands of society with existential 
requirements of local wildlife (Granadeiro et al., 2006). 

5. Conclusion 

In summary, our BN showed that during 2007–2020: (i) the 
ecological quality status of phytoplankton biomass in Dublin Bay was 
generally high but degraded when silica became limiting; (ii) sediment 
organic content was positively related to benthic invertebrate richness 
and the abundance of wading birds; (iii) invertebrate communities were 
most indicative of pristine conditions when sediment organic content 
was low; and (iv) climate change simulations showed that the ecological 
status of Dublin Bay will decline in the future. 

The model we present should inform decisions regarding the future 
management of Dublin Bay. For example, if the aim was to maintain or 
increase wader populations under current climate conditions, then 
facilitating increased invertebrate taxa richness and higher organic 
content in the sediment should be targeted. This, however, would 
oppose efforts of improving the EQS of phytoplankton and the 

occurrence of macroalgal blooms. Methods of achieving the best, or at 
least the most acceptable, balance between these can be explored further 
using the BN. Conditions prevailing under climate change RCP 4.5 and 
8.5 will affect both fauna and phytoplankton EQS negatively with 
increasing intensity, which emphasises the urgent need for effective 
climate change mitigation. As long as habitat loss owing to sea level rise 
cannot be compensated for, we urge that local management should 
consider how to best protect the remaining habitat of the at-risk biodi-
versity in Dublin Bay and habitats at other sites along the coast. 

This study shows how Bayesian Networks are a useful tool to move 
beyond direct predictor-response analyses. BNs both assess how a 
multitude of interacting variables in a complex system influence each 
other and how the system may respond to various combinations of 
driving input variables. This study highlights the value of linking 
existing information from a variety of sources in a way that deepens the 
understanding of a system, provides context-dependent trajectories, 
informs reasoning, and facilitates discussion and management decisions 
on a local level. Parametrising the model also revealed data gaps and the 
need for concerted and coordinated monitoring programmes. While 
large quantities of monitoring data exist and are continuously compiled, 
they are rarely directly compatible across space and time (Dafforn et al., 
2016). The WFD launched extensive national monitoring programmes, 
however, much more concerted monitoring efforts are necessary to 
capture the full range of ecological processes in Dublin Bay across sea-
sonal and ecologically successive patterns. There remains a lack of 
quantitative data, e.g., suspended material and deposition, chemical 
pollution and effects of ship traffic, littering, subtidal macroalgal 
blooms, intertidal invertebrates, or disturbance of waders through rec-
reational activities including dog-walking. Most importantly, linking the 
data of monitoring programmes that are conducted in parallel is crucial 
to deepen a comprehensive understanding of marine systems, such as 
Dublin Bay, and tracing pressures back to their origin so that explicit 
management actions can be identified. 
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