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Abstract 
 
The increasing importance of renewable energy supply in the transition to carbon neutral energy systems 
highlights the need of an adequate understanding of the associated risks to energy supply. Variable 
renewable energy sources are inherently dependent on meteorological conditions, and as such could 
provide insufficient energy for certain periods of time. In this study, a characterization is performed on 
such energy drought events in the Netherlands. ERA-5 reanalysis and MERRA-2 climate data is used to 
model the performance of solar PV and wind power generation. Statistical approaches are used to 
investigate these events on provincial, sub-national and national scale. It has been found that the province 
least susceptible to energy drought occurrence is Zeeland, whereas Gelderland, Limburg, Noord-Brabant, 
Overijssel and Utrecht are most likely to experience energy droughts. Additionally, copula theory is used 
to investigate probabilities of the co-occurrence of energy drought events between regions and 
technologies. When provinces are aggregated to sub-national regions, this research shows that 
constructed copula models capture tail events in the distribution of power generation in the form of 
energy droughts well. A co-occurrence between 9.61% and 14.9% has been found for ED events between 
the two defined sub-national regions, with return periods between 67.7 and 117 days. Finally, extreme 
value theory is applied to investigate extremely long-lasting energy droughts. Using the Peak-Over-
Threshold method, a VaR-95% value between 27.2 and 46 hours and a CVaR-95% value between 41.6 and 
58.1 hours has been found for extreme energy drought duration in the Netherlands. Furthermore, 50-
year and 100-year ED durations are found to be between 84 and 99 hours and 91 and 107 hours, 
respectively. The results of this study can be incorporated in the planning of future renewable energy 
installations, and for grid operators to determine and manage the risk of black outs more accurately. 
 
Keywords – Energy; Variable Renewable Energy; Climate change; Energy drought; Dunkelflaute; Wind; 
Solar; Capacity factor; Netherlands; Copula; Co-occurrence; Extreme value analysis; Peak-over-threshold 
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1: Introduction 
 

1.1 Renewable energy mix 
 
Anthropogenic greenhouse gas (GHG) emissions are a main driver of human-induced climate change. The 
risks associated with the impacts of this climate change span across many domains such as ecosystems, 
human health, and economic sectors (Pörtner et al., 2022). As is stipulated in the goals of the 2015 Paris 
agreement, in order to mitigate these impacts, GHG emissions must be reduced in the near future 
(Schleussner et al., 2016). GHG emissions are especially prevalent in the global energy sector, accounting 
for up to 34% of total emissions in 2018 (Lamb et al., 2021). This highlights the need for a transformation 
towards a more renewable energy mix.  
 
Reshaping the energy supply infrastructure from being primarily based on fossil fuels to more dependent 
on variable renewable energy (VRE) technologies such as solar and wind is a strategy currently employed 
in the various parts of the world, such as Europe. The development of renewable energy sources (RES) is 
stimulated in the European Union (EU) through directives from the European Commission and investment 
support by the European Central Bank (Simionescu et al., 2020). 
 

 
Figure 1: Total installed capacity (GW) in EU-27 countries and the UK in the period 2000-2019 (Eurostat, 2023). 

 
As can be seen from Figure 1, the total installed capacity in the EU-27 countries and the UK have 
historically increased significantly (Eurostat, 2023). As a result, the gross electricity generation in the EU 
stemming from wind and solar sources has historically increased and is projected to increase further up 
to 2050 (Shivakumar et al., 2019).   
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1.2 Energy droughts 
 
The performance of VRE technologies is inherently dependent on meteorological conditions. Variability in 
power production from these sources is therefore introduced through both space and time dimensions. 
This is unlike conventional power plants, which are mostly unaffected by temporal meteorological 
variability. Safeguarding the energy security of systems whose energy mix consists for a significant share 
of VRE sources therefore requires a different energy system design than was traditionally required (van 
der Wiel et al., 2019).  
 
Periods in time where a relatively low energy production occurs due to specific weather conditions are of 
concern to ensure fulfilling the simultaneous energy demand. These periods of low energy production 
from VRE sources are described in literature as “Dunkelflaute” (German expression for the absence of 
light and wind) as well as “dark doldrums” (Matsuo et al., 2020) or “energy droughts” (EDs) (Otero et al., 
2022). Meteorological studies occasionally refer to these type of events as “anticyclonic gloom” (Li et al., 
2021b).  
 
The impacts of EDs are associated with the periods of time where the power output of VRE technologies 
is minimal. Transmission system operators (TSOs) require precise power forecasts to be able to guarantee 
stability of the power system (Steiner et al., 2017). Unforeseen extreme events in the form of EDs could 
potentially lead to blackouts of the system and would result in temporary unfulfillment of energy demand. 
Historically however, TSOs have employed balancing measures to account for the sudden loss in power 
supply (Hirth & Ziegenhagen, 2015). These balancing measures result in increased operational costs of the 
power system (Ueckerdt et al., 2015). 
 
From a societal perspective, the measures taken to account for the impact of EDs partly come at the cost 
of the electricity consumer. One form this could present itself in is an increased price of electricity during 
EDs. This increased price is the result of the temporary dispatch of power plants to account for the loss in 
VRE output or other measures taken by the TSOs to ensure balance (Hirth, 2013). For example, in 2021 an 
ED event in the form of a wind drought in Europe caused a surge in the price of natural gas leading to high 
electricity costs (Ohba et al., 2023). Other costs inflicted on the consumer could be in the form of rolling 
blackouts or brownouts. These balancing measures are taken by grid operators, and result in the 
unavailability of all or some electricity consumption respectively for a specific time period (Agarwal & 
Khandeparkar, 2021).  
 
Collectively, these impacts present problems in the form of energy insecurity, as they have the potential 
to interrupt obtainability of energy sources as well as worsen energy affordability (Gökgöz & Güvercin, 
2018). This is exacerbated even further by considering the impact of fluctuating energy demand, especially 
when EDs are synchronous with periods of time in which there is a high demand of energy. With the 
potential impact of ED events in mind, plans for expanding VRE installations which require new energy 
system designs consequently require an understanding of such ED events. 
 
A country that is particularly susceptible to the impacts of EDs is the Netherlands. In comparison to the 
rest of the EU-27 countries, the penetration of solar and wind sources in the energy mix is relatively high 
(Eurostat, 2023). Additionally, the demand for energy per capita is relatively high (Statista, 2023b, 2023a). 
A compounding issue for the Netherlands with regard to ED is frequent congestion issues in the national 
power grid (TenneT, 2022b). These congestion issues result in more vulnerable power grids as TSOs are 
limited in their options for maintaining balance should an ED occur. Finally, in contrast with other EU-27 
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countries such as Germany or Spain, it has a small surface area. This reduces the effect spatial smoothing 
could have on decreasing the variability of energy production from VRE sources and mitigating EDs (Jurasz 
et al., 2020). An example of a historical ED event in the Netherlands is described by Li et al., where on 
April 30th, 2018, the TSO of the Netherlands (TenneT) was forced to issue an emergency warning in the 
Netherlands for energy consumption and purchased power from cross-border regions at high market 
prices to ensure stability (2021b).  
 

1.3 Literature review 
 
Research in the field of EDs is a relatively recent phenomenon, although it draws inspiration from classical 
forms of drought research in the fields of hydrology, statistics, and meteorology. The literature that exists 
comprises of different research aims, and consequently different scopes and methodologies. Research 
aims range from the identification of co-occurring extreme weather phenomena in the context of EDs 
(Tedesco et al., 2022),  to the characteristics of the EDs themselves (Raynaud et al., 2018), to the 
quantification of how to predict such ED events (Li et al., 2020). 
 
Some research only considers wind power (Ohlendorf & Schill, 2020), whereas others include hydropower 
as an energy producing technology (Raynaud et al., 2018). Further distinction can be made between 
studies that focus on regional (Amonkar et al., 2022), national (Ohba et al., 2022) and multi-national 
(Otero et al., 2022) scales.  
 
Differences in methodological approach are often a result of differences in research aim and scope. Most 
commonly, climate data has been utilized to simulate and study the conditions in which EDs take form, 
such as was done by Li et al. using mesoscale modeling (2021b). Since the consideration for what 
constitutes as an ED differs between studies, an attempt has been made by Allen & Otero Felipe to 
standardize the monitoring of EDs through the use of indices (2022). Some studies are mostly focused on 
the extreme event occurrence for ED events rather than the occurrence of general ED events (Plötz & 
Michaelis, 2014). 
 
To research EDs, a definition must first be proposed of what exactly it entails. As mentioned previously, 
studies on this topic have utilized differing definitions, an overview of which can be found in Table 1.  
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Table 1: Collection of studies and their respective definitions of the term ‘energy drought’, or equivalent term used in their 
research. 

Study Definition 

Raynaud et al. (2018) Two definitions: 
Energy Production Drought – “a contiguous sequence of days during 
every day of which the production is below a given low-production 
threshold.” (p.580) 
Energy Supply Drought – The imbalance between energy production 
and demand 

Otero et al. (2022) Two definitions: 
Energy drought of low production – Period of time where energy 
production is below threshold  
Energy drought of residual load – Period of time where demand minus 
solar/wind production exceeds threshold 

van der Wiel et al. (2019) Two types of extreme event with threshold of expected average return 
period of determined length: 
One associated with low energy production, and the other associated 
with high energy shortfall. This was done for events of relatively short, 
medium, and long duration.  

Amonkar et al. (2022) Periods of time in which the realized energy production falls below a 
certain target threshold 

Gangopadhyay et al. (2022) Shortfalls in energy production based on the mean energy production 
for that particular day across timeframe (multiple years) 

Li et al. (2021a) Periods of time where the capacity factor for both solar and wind 
simultaneously fall below threshold 

Ohba et al. (2022) Period of time where the continuous daily power generation falls below 
capacity factor threshold 

Allen & Otero Felipe (2022) Definition based on conversion of energy production and residual load 
to indices: 
Energy drought considered to be values of indices where energy 
production is below threshold or residual load exceeds threshold 

Ohlendorf & Schill (2020) Two definitions: 
Narrow definition – period of time where consecutive hours of 
aggregated capacity factors for wind and solar are constantly below a 
threshold value 
Broad definition – period of time where average capacity factor for 
solar and wind falls below a threshold value 

Mockert et al. (2022) Period of time where the mean combined capacity factor of solar and 
wind are below a threshold continuously for a minimum amount of 
time 

Plötz & Michaelis (2014) Power supply – Long phases with little or no wind power feed in, where 
the long phases are defined by different minimum durations and the 
power feed in by a threshold value 
 

  
While none of the studies in Table 1 maintain the exact same definition as any other, all studies seem to 
place emphasis on a chosen minimum period of time where the energy production is below an arbitrary 
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threshold. Most commonly, the proxy for measuring energy production is retrieved from determined 
capacity factor values for both solar and wind. Most studies do not consider energy production in 
isolation, as they additionally consider energy demand patterns for the determination EDs. The chosen 
thresholds for what constitute as an ED in terms of energy production or residual demand differed 
between studies, although it should be mentioned that this is mainly due to the type of data used in their 
computations and the scope and aim of their research.  
 
Regarding EDs, the Netherlands has been investigated seldomly. The studies that have done so found that 
compared to other countries in Europe, the Netherlands has a strong correlation of ED events happening 
simultaneously in neighboring countries such as Belgium (Li et al., 2021a). Additionally, it has been found 
that the Netherlands, along with Sweden, would benefit most from employing strategies aimed at 
mitigating the impact of ED events such as pooling energy production through interconnection between 
large areas (Li et al., 2021a). 
 
Other studies on EDs in the Netherlands have not necessarily considered the general characteristics of all 
ED events that occurred over a certain time period. Rather, these studies analyzed specific historical ED 
events, based on additional selection criteria, and their context to generate simulations through 
mesoscale modeling. Li et al. (2021b) found that for a simulation based on a 9-day ED event occurring 
around Belgium, the Netherlands and Germany in 2017 there was a presence of frequent mixing of the 
marine boundary in addition to weak wind speeds and cloudy conditions. Additionally, based on one 
specific historical ED event in the Netherlands, Li et al., (2020) found that during the passage of a cold 
front there was a low-level jet current present when the ED occurred. Finally, meteorological conditions 
of ED events in the Netherlands along with other European countries have been studied by van der Wiel 
et al. (2019). This study found that shorter ED events (1-day) are characterized by large high-pressure 
systems, whereas longer ED events are characterized by atmospheric blocking.  
 
Based on the available literature on this topic, it seems that there is a research gap on ED events in the 
Netherlands. More specifically, compounding EDs are not fully investigated. These types of EDs are 
characterized by complementary occurrences of events, which compound to an enhanced overall effect. 
For example, compounding characteristics of EDs could be based on the investigated technologies, namely 
wind and solar. For example, the compounding effect of solar photovoltaic (PV) and wind simultaneously 
producing little renewable energy compounds into a greater overall effect. For the existing literature, 
these components of energy production are commonly aggregated to arrive at a single energy production 
parameter. However, the technologies are yet to be investigated separately for the Netherlands. This form 
of ‘simple’ ED allows to investigate the contribution of solar and wind energy technologies individually to 
compounding EDs. 
 
Additionally, further analysis of compounding EDs can be broken down in the spatial domain. Through 
splitting the Netherlands at the sub-regional level, specific regions can be investigated for ED events and 
compared. No existing literature has considered co-occurrence of EDs at the sub-regional level and their 
contribution to the national EDs in the Netherlands. Finally, literature has not yet considered extreme ED 
events in the Netherlands. More specifically, the extremities that occur with regard to their duration. Such 
extreme events are characterized as occurring rarely, with an extremely long duration compared to most 
other events. Extreme events are important for risk management and have been studied in many different 
fields. Most notably, the concept of expected shortfall (ES) is often studied to describe tail behavior of 
distributions (Acerbi et al., 2001; Nadarajah et al., 2014). This concept has not yet been investigated for 
the duration of ED events in the Netherlands. 
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1.4 Research aim 
  
Resulting from the research gaps previously described, this study characterizes ED events in the 
Netherlands from 1960 until 2020. It places an emphasis on investigating the frequency, duration, and 
estimated return periods of these events. While the studied period is historical, Yang et al. (2022) found 
that future solar and wind energy production potential does not differ considerably between 2010 and 
2100 based on an ensemble of climate scenarios. The observed decrease in potential for solar PV 
amounted to 0.01-2.71% depending on location and representative concentration pathway (RCP) 
scenario, while an increase between 0.6-2.3% is observed for wind. The conclusion of this study relates to 
average production, while the research of this thesis focusses on the tail distribution of production. 
However, the assumption is made that the weather is stationary over time and therefore does not 
consider the impact of climate change. Therefore, it is reasonable to assume that the characterization of 
EDs from the selected historical time period holds merit for the near future. Even though this stationarity 
is assumed, this study makes use of two climate datasets with hourly timesteps spanning 60 and 40 years, 
respectively. This is likely to capture the statistics accurately due to the size of the data samples, even if 
the results are based on the previously mentioned stationarity assumption. The main research question 
is stated as follows: 
 
How are energy drought events in the Netherlands between 1960 and 2020 characterized? 
 
The characterization of these events describes their frequency, duration and return periods. However, in 
order to answer this research question in more detail and fill the established research gap, both ‘simple’ 
and compounding EDs are analyzed. Simple EDs are considered to be analyzed from the perspective of 
only one technology, such as solar or wind. Additionally, separate analysis is performed on extreme long 
duration events to estimate appropriate return periods for the most extreme events. Therefore, the 
relevant sub questions for this research are as follows: 
 

1) What is the characterization of simple energy droughts? 
2) What is the characterization of technologically compounding energy droughts? 
3) What is the characterization of spatially compounding energy droughts? 
4) What is the characterization of extreme long duration energy droughts? 

 
Compounding events are characterized by their amplification of impacts through co-occurrence or rapid 
succession of individual events (Zscheischler et al., 2020). Therefore, the periods of time with co-
occurrence are of interest for investigating the EDs. For example, for technological compounding when 
both solar and wind are concurrently below a threshold of production, or for spatial compounding with 
multiple regions experiencing ED events simultaneously. Regardless of the type of compounding event, 
inevitably the impacts of EDs are exacerbated. For extreme events, the interest is centered around 
describing how often the occurrence is estimated, determining the risk associated with such events and 
what the associated duration is of extreme events for defined return periods.  
 
From a scientific perspective, this research aims to fill the research gap and provide knowledge on the 
compounding characteristics of technology, space, and time of EDs. More specifically, this study employs 
copula-based models to quantify the extent of co-occurrence of events categorized by technology type 
and region. Furthermore, this study develops a methodology that combines principles of extreme value 
analysis (EVA) for more accurate tail analysis that have not been used in the field of EDs in the Netherlands 
before. Finally, this research employs a more sophisticated method of threshold selection for the EVA 



15 
 

than comparable studies such as the one by Plötz & Michaelis (2014) where extreme events in wind power 
analysis are studied. 
 
From a societal perspective, this research aims to improve the current understanding of ED events. The 
relevance for this is societally tied to its impacts. As previously mentioned, (rolling) blackouts or 
brownouts interrupt access to energy whereas grid balancing measures tend to increase electricity prices 
for consumers. Similar to investigating conventional extreme events such as droughts or floods, risk 
assessment is imperative in understanding the scale of the problems this could pose, both currently and 
in the future (Grounds et al., 2018). Therefore, this study describes the expected return periods for ED 
events based on their characteristics. To conclude, this study aims to provide knowledge on ED events 
specifically for the Netherlands. Consequently, the risk of implementing additional VRE sources in the 
national energy mix is better understood and can be accounted for in the design and planning of future 
energy systems.  
 
The results of this research can benefit multiple stakeholders. Firstly, the characterization of simple and 
technologically compounding ED events can provide valuable information for policy makers and parties 
involved in VRE installation planning. Since this information is inherently spatial, the effectiveness and risk 
of planned projects can be assessed with the possibility of ED event occurrence. Additionally, the 
characterization of spatially compounding ED events can provide valuable information for the Dutch TSO. 
The simple ED event occurrence in one region can theoretically be offset by power production in another, 
however this is not possible for co-occurring ED events in the spatial domain. Therefore, the 
characterization of spatially compounding ED events could provide insights on risk management and grid 
planning for the TSO. Finally, the characterization of extremely long duration ED events can provide 
valuable information to grid operators such as the aforementioned TSO and distribution system operators 
(DSOs). These operators are responsible for employing ancillary services in the case of a sudden reduced 
supply of power. Similar to research on other extreme events such as flooding or droughts, extreme 
events should be considered in the form of ED event duration as the ancillary services should be able to 
bridge these periods of time.  
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2: Methodology 
 
The general approach of the methodology for this research is displayed in Figure 2. 
 

 
Figure 2: Flowchart depicting the methodology for this research 
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2.1 Data 
 
The data that is used as an input for the wind and solar energy conversion is the ECMWF Re-Analysis 

(ERA)-5 reanalysis data. This dataset was created by the European Center for Medium-Range Weather 

Forecasts (ECMWF). It contains hourly estimates of numerous weather components on a global scale, with 

a resolution of 0.25° x 0.25° on the longitude-latitude grid. The specific range of coordinates that is used 

are latitudes between 50° and 55°, and longitudes between 2° and 8°. This range covers the land area of 

the Netherlands as well as the exclusive economic zone (EEZ) of the Netherlands. For further sensitivity 

analysis, GES-Modern-Era Retrospective analysis for Research and Applications-2 (MERRA) data is also 

taken as an input for the energy conversion and will be referred to as MERRA data. Since this data is 

available at a different resolution than the ERA5 data, it is transformed to similar resolution using re-

gridding tools. Specifically, bilinear interpolation is selected as the conversion method. This method 

considers the four nearest grid cells of the original data in two directions and is appropriate to use given 

the size of the available data (Rajulapati et al., 2021). The total area comprises of 525 grid cells. The specific 

components retrieved from the dataset for further calculation are:  

 

• 100m u- and v- components of wind (m s-1) 

• 10m u- and v- components of wind (m s-1) 

• 2m temperature (K) 

• Forecast albedo (Dimensionless) 

• Surface downwards solar radiation (W m-2) 
 
Additionally, data is used for spatially attributing installed capacity of solar and wind technologies to each 
grid cell. The data on currently installed capacity is available on a provincial level. The installed solar and 
onshore wind capacity per province in 2021 can be found in Table 2 (Rijksoverheid, 2022 & RvO, 2022). 
The installed capacity per offshore wind farm in the Dutch EEZ in 2018 and their respective turbine types 
can be found in Table 3 (RvO, 2018). The installed capacity is expressed in megawatts (MW). 
 
Table 2: Installed solar and onshore wind capacity (MW) per province in 2021 (Rijksoverheid, 2022 & RvO, 2022). 

Province Installed solar capacity (MW) Installed onshore wind capacity (MW) 

Drenthe 881 221 

Flevoland 581 1346 

Friesland 841 574 

Gelderland 1825 174 

Groningen 1114 728 

Limburg 1164 73 

Noord-Brabant 2577 299 

Noord-Holland 1411 713 

Overijssel 1219 75 

Utrecht 744 34 

Zeeland 559 558 

Zuid-Holland 1499 490 

Total 14415 5285 
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Table 3: Installed offshore wind capacity (MW) per installation in the Dutch EEZ in 2018 and respective turbine types (RvO, 
2018). 

Installation Total offshore wind capacity 
(MW) 

Turbine type  

Borssele I and II 752 Siemens Gamesa 8.0 MW – 
167 DD 

Borssele III and IV 731.5 Vestas V164 – 9.5 MW 

Borssele V 19 Vestas V164 – 9.5 MW 

Gemini Windpark 600 Siemens SWT-4.0-130 

Luchterduinen 129 Vestas 112 

Prinses Amaliawindpark 120 Vestas V80 

Egmond aan Zee (OWEZ) 108 Vestas V90 

Total 2459.5 - 

 
 

2.2 Data allocation 
 
The data for installed capacity does not follow a similar resolution as the weather data. Therefore, 
installed capacity is distributed across grid cells based on total province installed capacity. The allocation 
of capacity across grid cells is determined by performing a spatial analysis that identifies the most suitable 
locations for the installation of VRE technologies. It is assumed that no capacity is installed in areas that 
are deemed unsuitable by the spatial analysis.  
 
Limiting factors for land areas are numerous and include the presence of protected nature areas or slope 
and elevation limitations. Offshore area availability is affected by the presence of limiting factors such as 
a maximum distance to port or the presence of oil rigs. Furthermore, the type of landcover is used to 
determine the share of area that is suitable for installing VRE technologies. The method of spatial analysis 
follows the work of previous research conducted in this field (Hu et al., 2019, 2023; Jung & Schindler, 
2023) and the land cover data is retrieved from the CORINE Land Cover (CLC) inventory (Copernicus, 2023). 
The resulting available area is transformed into potential installed capacity through the use of specific 
array spacing. Further detailed methodology for the spatial analysis and suitable area allocation can be 
found in Appendix A.  
 
Offshore wind installations are allocated to the provinces with which they have connections to generate 
their generated power. Therefore, this allocation is targeted at the provinces of Groningen, Noord-
Holland, Zuid-Holland, and Zeeland. This method is preferred over simply dividing the energy output 
across provinces evenly due to the distance of transmission being a limiting factor for efficient power 
consumption. 
 

2.3 Wind energy conversion 
 
The input data is used in the conversion of wind energy to establish capacity factors for wind energy for 
each grid cell at each timestep. For onshore wind, it is uncertain what type of wind turbines are installed 
in the grid cells located in the provinces. Therefore, it is assumed that the most suitable wind turbine is 
installed relative to the average wind speed at that location. The wind turbine classification based on 
these wind speeds is derived from guidelines by the International Electrotechnical Commission (IEC), 
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based on this classification three industry-standard wind turbine models are chosen and their 
specifications are given along with the classifications in Table 4 (Quarton, 2005). Specifications for the 
wind turbine models are retrieved from Wind-turbine-models (2023a, 2023b, 2023c). 
 
Table 4: Wind turbine classification and model specifications based on average wind speed (Quarton, 2005 & Wind-turbine-
models.com 2023a, 2023b, 2023c). 

 

For offshore wind, no assumption is made for classification on the basis of average wind speed. Floating 

offshore wind turbines are not considered, as the spatial analysis resulted in no suitable installable area 

for this type of wind turbine. Since the turbine types per installation are known, each offshore wind farm 

is assigned its own turbine type and consequently that turbine type’s respective specifications. This allows 

for more accurate calculation in the energy conversion step. The calculation for the capacity factor (CF) of 

wind power is as seen in ( 1 ). 

𝐶𝐹 =
0.5𝐶𝑝𝜌𝐴𝑣3

𝑃𝑟𝑎𝑡𝑒𝑑
 

( 1 ) 

Where 𝐶𝑝 is the power coefficient of the turbine, 𝜌 the density of air, A the air flow area, v the wind speed 

and 𝑃𝑟𝑎𝑡𝑒𝑑 the rates capacity of the turbine. The power coefficient of the turbine is derived from their 
power curve, which is dependent on technical characteristics. These characteristics are specific to a 
particular turbine type. To illustrate the power curve of one of the turbine types considered in this study, 
Figure 3 presents the power curve of a Vestas 164 – 9.5 MW offshore turbine from the Borssele III – V 
wind farms (The Wind Power: Wind Energy Market Intelligence, 2023). From the figure it can be seen that 
the output of the turbine is maximum from windspeeds of 14 m/s to 25 m/s, after which the cut-off rate 
is reached, and power output drops to zero. The power curve of all onshore and offshore wind turbine 
types is presented in Appendix B. 
 

Wind turbine 
classification 
according to 
average wind 
speed  

Usage Representative 
commercial 
turbine module 

Rated 
capacity 
(MW) 

Rotor 
diameter 
(m) 

Specific 
power 
(W/m) 

Cut-in 
speed 
(m/s) 

Rated 
speed 
(m/s) 

Cut-
off 
speed 
(m/s) 

Class I:  
8.5-10 m/s 

Onshore  Vestas 105-3.3 
 

3.3   105 
 

381.8 3 13 25 

Class II:  
7.5-8.5 m/s 

Onshore Vestas 117-3.3 3.3   117 306.9 3 13 25 

Class III: 
0 - 7.5 m/s 

Onshore Vestas 126-3.3 3.3 126 264.7 3 12 22.5 
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Figure 3: Power curve of the Vestas V164 - 9.5 MW offshore turbine used in the Borssele III - V wind farms 

 
Several adjustments are made to correct for technical and environmental factors that influence power 
production. These adjustments follow the work of Hu et al., in which the authors consider similar steps to 
perform the energy conversion more accurately (2019). 
 
The first correction is made for the difference between wind speed values retrieved from the ERA5 (or 
GES-MERRA-2) data and the wind speed values at the respective turbine heights, these differ due to 
differences in air density, behavior of modern pitch-regulated turbines, and other adjustment 
components (Ryu et al., 2022 & Eurek et al., 2017). 
 
The second correction is made with regard to the difference between power production from a singular 
turbine compared to aggregated wind turbine power output. The power output for a cluster of turbines 
differs from singular turbines through a spatial smoothing effect.  The extent of this effect depends on the 
maximum and minimum distance between the wind turbines, as well as other spatial parameters. To 
correct for the smoothing effect of such aggregated wind turbine power output, a Gaussian filter is applied 
to the single-turbine power curve (Beurskens & Brand, 2012).  
 
Finally, other efficiency losses for the energy conversion are considered. The efficiency losses are 
categorized into two parts. The first part considers wake losses as a result of reduced wind power 
availability for downstream wind turbines. These wake losses are incorporated using a dataset compiled 
through a study that measured wake losses in a large observed set of wind turbines (Windpowerlib, 2023). 
The second part considers other losses (mechanical, electrical) and is attributed a fixed 5% efficiency loss 
value.  
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2.4 Solar energy conversion 
 
The general approach for solar energy conversion involves converting weather data (solar irradiation) to 
energy production. Similar to wind energy conversion, this follows steps made in the work by (Hu et al., 
2023). The panel tilt angle is determined to be the most optimal angle for utility PV, and a uniform pitch 
angle of 35 ° is assumed.  
 
The total irradiance received by the PV panel is calculated as seen in ( 2 ) - ( 6 ). 
 

𝐼𝑝 = 𝐼𝑑𝑖𝑟,𝑝 +  𝐼𝑑𝑖𝑓,𝑝 + 𝐼𝑟,𝑝 
( 2 ) 

𝐼𝑑𝑖𝑟,𝑝 =
𝐼𝑑𝑖𝑟,ℎcos (𝜃)

𝑐𝑜𝑠 (90 − 𝛼)
 

( 3 ) 

𝑐𝑜𝑠(𝜃) = 𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛽) + 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝑍𝑝 – 𝑍𝑠)     
( 4 ) 

𝐼𝑑𝑖𝑓,𝑝 =
1 + 𝑐𝑜𝑠𝛽

2
𝐼𝑑𝑖𝑓,ℎ 

( 5 ) 

𝐼𝑟,𝑝 =
1 − 𝑐𝑜𝑠𝛽

2
(𝐼𝑑𝑖𝑟,ℎ + 𝐼𝑑𝑖𝑓,ℎ)𝐴𝑙𝑏 

( 6 ) 

Where 𝛽 is the panel tilt angle, 𝑍𝑝 is the azimuth angle, θ is the incidence angle, 𝐴𝑙𝑏 is the surface albedo, 

𝐼𝑑𝑖𝑓,ℎ and 𝐼𝑑𝑖𝑟,ℎ are respectively the diffuse and direct components of hourly irradiation. To account for 

the decrease in performance of PV panels as a result of temperature fluctuation, corrections are made. 
The hourly CF of solar energy can be determined as seen in ( 7 ) - ( 9 ). 
 

𝐶𝐹 = (
𝐼𝑝

𝐼𝑆𝑇𝐶
) [1 − 𝛿(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑐𝑒𝑙𝑙)]𝑃𝑅 

( 7 ) 

𝑇𝑐𝑒𝑙𝑙,𝑡 = 𝑇𝑚𝑜𝑑𝑏𝑎𝑐𝑘 (
𝐼𝑝

𝐼𝑆𝑇𝐶

) Δ𝑇𝑐𝑜𝑛𝑑 

( 8 ) 

𝑇𝑚𝑜𝑑𝑏𝑎𝑐𝑘 = 𝐼𝑝𝑒𝑥𝑝(𝑎+𝑏∗𝑣2𝑚) + 𝑇 
( 9 ) 

 
Where 𝐼𝑆𝑇𝐶 is solar irradiance at standard test conditions (1000 W/ m2), PR is a performance ratio, 𝑇𝑐𝑒𝑙𝑙 
and 𝑇𝑁𝑂𝐶𝑇 (44°C) are respectively cell operating temperature and nominal operating cell temperature, δ 
is the power temperature coefficient, 𝑇𝑚𝑜𝑑𝑏𝑎𝑐𝑘 is the PV module back temperature, v2m is the wind speed 
at 2 m height, T is the ambient temperature, a, b and Δ𝑇𝑐𝑜𝑛𝑑 are respectively the empirical convection 
coefficient, the heat transfer coefficient, and the temperature drop due to conduction. 
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Following this procedure, the CF values for wind and solar are determined per grid cell in hourly timesteps 
for the entire time period. The input of ERA5 reanalysis data is bias adjusted, whereas the input of the 
MERRA data is not. In general, the ERA-5 data contains less bias, higher correlation, and better diurnal 
variability (Jourdier, 2020). Therefore, the outcome for the MERRA is adjusted to the mean ERA5 outcome 
for every grid cell. This adjusted MERRA data is used along with ERA-5 data to serve as input for the 
characterization of ED events.  
 

 2.5 Simple energy drought events 
 
Based on the literature review results in Table 1, ED events are classified in this study as periods of 
exceptionally low amounts of energy production from VRE sources. Specifically, such events are 
considered as periods of time where for a minimum of five hours the capacity factors for solar or wind are 
consistently below 10%. This threshold has been established due to the characteristic of grid-scale battery 
energy storage systems (BESS) being able to generally provide reliable capacity at peak demand for a 
maximum of four hours (Bowen et al., 2019; Yang et al., 2013). ED events lasting less than four hours are 
therefore less impactful if such storage systems are implemented in the energy system. Furthermore, 
these thresholds are chosen in line with similar research on this topic and provide frequent ED events for 
the selected time period. Therefore, the minimum duration of 5 hours is applied consistently throughout 
the rest of the study unless mentioned otherwise, for example when considering ED events based on daily 
average CF values. The CF threshold value of 10% is applied unless stated otherwise, for example when 
considering ED events based on 5% or 2% CF thresholds.  
 
The frequency is characterized by the number of events that occur in the provided timeframe. An analysis 
can additionally be made to see for what time of the year the highest and lowest frequency of ED events 
occur. Seasonal trends are investigated where possible, as well as interannual trends such as the co-
occurrence with solar cycles. The duration of the ED events is considered to be the total time period in 
which the threshold values are exceeded. The event duration is measured in hours. Similarly, the mean 
and maximum values of the duration of ED events per region are provided. Regions that are considered 
are provinces, collections of provinces and the Netherlands in its entirety. In addition to solar EDs, 
adjusted solar EDs are also provided. These consider EDs based on all time periods in which the solar 
altitude angle is above 0, indicating the possibility of sunlight generating power. This category is added to 
observe the solar ED trends without including night times and observing the difference between the 
overall solar ED characteristics. 
 

2.6 Compounding energy droughts: technological and spatial 
 
For technological compound events, two methods are used for their characterization. The first method is 
to establish a weighted mean capacity factor that combines solar and wind technologies and to consider 
this value if it is below the established threshold. The second option is based on strictly considering 
moments in time where both solar and wind are below the threshold proposed previously. Rather than 
taking a weighted mean capacity factor, this method likely results in less frequent events however 
provides different information. As it considers the co-occurrence of minimal production by both sources, 
these events could describe an extreme event where both technologies are significantly underperforming. 
In contrast, the approach that takes the weighted mean capacity factor is more dependent on the 
influence of the technology with the highest share of overall installed capacity.  
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The co-occurrence of ED events can be determined through the use of copulas. Due to possible nonlinear 
dependencies, these dependence structures cannot be described by common calculation tools such as 
Kendall’s tau or Spearman’s rho (Ida et al., 2014). However, copulas are able to describe such dependence 
relations. Specifically, copulas are useful tools to capture the tail dependencies of variables. Since ED 
events are situated in the tail of CF distributions, copulas are a useful tool to employ. Copula functions are 
multivariate distributions and are defined as can be seen in ( 10 ) and ( 11 ). 
 

𝐶 ∶ [0,1]𝑛 → [0,1] 
( 10 ) 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝑃(𝑈1 ≤ 𝑢1, 𝑈2 ≤  𝑢2, … , 𝑈𝑛 ≤  𝑢𝑛) 

( 11 ) 

Where marginalizing gives 𝑈𝑖  ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  (Tedesco et al., 2022). As described by Otero et al., the 

joint cumulative distribution function of two variables X and Y can be given as seen in ( 12 ), where the 

marginal distribution functions of X and Y are presented by ( 13 ) and ( 14 ) respectively. 

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) 

( 12 ) 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) 

( 13 ) 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) 
( 14 ) 

The variables X and Y represent the capacity factors of the two technologies considered, solar and wind. 
Unlike the analysis for simple EDs and extreme ED events, the copula analysis considers the format of CF 
for both wind and solar PV as being measured in days rather than hours. To this purpose, the mean daily 
value is calculated based on the available hours. This allows the continuity requirement for working with 
copula functions to be upheld by eliminating zero returns, for instance for solar PV during the night, by 
ensuring synchronicity of ED events with similar durations. Additionally, it has been found that inter-
temporal cross-correlation (or lagged correlation) is eliminated when switching from hourly to daily data 
frequency (Grothe & Schnieders, 2011). This technique of assessing co-occurrence is similarly applied to 
spatial compounding ED events. To characterize this type of compounding event, the Netherlands is 
divided into two regions.  
 
The liberalized electricity market in EU countries is designed around zonal pricing (Klopčič et al., 2022). 
The appropriateness of the size of the bidding zone is partly determined by the share of VRE sources in its 
power generation, as its intermittent nature complicates scheduling (Pototschnig, 2020). The 
configuration of the Dutch electricity market is currently described by a single bidding zone (TenneT, 
2022a). However, as a result of structural congestion, the European Union Agency for the Cooperation of 
Energy Regulators (ACER) has instructed the TSO of the Dutch power system (TenneT) to investigate 
alternative bidding zone configurations (TenneT, 2022a). The proposed alternative configuration is two 
bidding zones that split the Netherlands and can be found in Figure 4. The dots in the figure represent 
network elements, which are allocated between the N1 and N2 regions. Based on a case study that 
includes the Netherlands, an increase in the number of bidding zones could lead to improved zonal market 
outcomes (van den Bergh et al., 2016).  
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To investigate spatial compounding ED events, the N1 and N2 zones are taken to assess co-occurrence of 
events. Similar to technological compounding, this is done through working with the previously described 
copula functions. A similar approach has been taken by Otero et al. to describe the co-occurrence of EDs 
between regions at the country level (2022).  
 

 
Figure 4: Proposed alternative configuration of bidding zones in the Netherlands (TenneT, 2022) 
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2.7 Extreme energy droughts  
 
The final sub-question of this research considers the extremes of the temporal aspect of ED events. 
Specifically, it investigates the extreme event distribution of ED event occurrences in the entire timeframe 
for the Netherlands. Extreme value theory (EVT) is used in numerous fields of research such as finance 
(Gilli & Këllezi, 2006), meteorology (Osei et al., 2021), and engineering (Rinaldi et al., 2007) to assess risk. 
Similarly extreme ED events and their associated duration can be estimated for certain return periods.   
 
The selection of extreme ED events in the dataset is performed using the Peak-Over-Threshold (POT) 
method. This method selects all events with durations lasting longer than the established threshold value 
(Mararakanye et al., 2022), which are subsequently fitted according to a distribution. In the field of EVT, 
two classes of distributions are considered. These classes are the generalized extreme value (GEV) 
distributions (Fréchet, Weibull, Gumbel) and the generalized Pareto (GP) distributions (Pareto, 
exponential, uniform) (Bali, 2003). The latter is more suitable for the POT approach (Pickands III, 1975) 
and is therefore used for fitting. The threshold for the POT approach is established following the 
methodology of Thompson et al. (2009), in which extreme wave height was analyzed. The authors 
developed an automatic threshold selection method that can be applied in this research, where the main 
criteria applied is statistical significance through p-value assessment. This method was developed to 
increase the accuracy of return level estimates of extreme events and improves the validity of found 
results for this study compared to alternative (mostly arbitrary) methods of threshold selection. The 
extRemes R package (Gilleland & Katz, 2016) is used to analyze the datasets containing extreme events. 
 
The distribution of the duration of ED events has been found to be characterized by a thick right-tail in 
some instances, as the shape parameter ξ > 1, even without considering an upper threshold.  
Consequently, the conventional methodology for fitting this distribution might not be adequate for 
estimating the mean, variance, or risk of extreme ED events (Hain et al., 2023). With a shape parameter 
value above one, the tail may not converge to a finite value. To correct for this, the study by Cirillo & Taleb 
(2016) proposed a new methodology for these instances to be more accurately described. This is done by 
introducing an upper bound value for the range of ED durations and then transforming the bounded 
distribution into a shadow variable Z as shown in equation ( 15 ).  The upper threshold for this research 
has been set at 150% of the highest recorded empirical value of the respective dataset that this method 
has been applied to.  
 

𝑍 = 𝜙(𝑌 ) = 𝐿 − 𝐻 log (
𝐻 − 𝑌

𝐻 − 𝐿
) 

( 15 ) 

 
Where Y is the original distribution, Z is the shadow variable, L is the lower bound, and H is the upper 
bound. The upper tail of Z can now be characterized, specifically the tail parameters such as shape and 
scale. These parameters can be used to return to Y and assess its properties. The mean of the readjusted 
Y is given by equation ( 16 ).  
 

𝐸[𝑌|𝑌 ≥ 𝐿] = (𝐻 − 𝐿) 𝑒
𝜎

𝐻𝜉  (
𝜎

𝐻𝜉
)

(
1
𝜉

)
 𝛤 (

𝜉 − 1

𝜉 
,

𝜎

𝐻𝜉
) + 𝐿 

( 16 ) 

 
Where ξ is the shape parameter, σ is the scale parameter, and Γ is the incomplete gamma function. The R 
package pracma (Borchers & Borchers, 2022) is used to calculate the incomplete gamma function. Finally, 
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the value-at-risk (VaR) and conditional value-at-risk (CVaR) of the readjusted Y can be computed as 
described in equations ( 17 ) and ( 18 ).  
 

𝑉𝑎𝑅𝑝 =  𝑒
−

𝜎 (1−𝑝)−𝜉

𝐻𝜉  (𝐿 𝑒
𝜎

𝐻𝜉 − 𝐻  𝑒
𝜎

𝐻𝜉 + 𝐻  𝑒
𝜎(1−𝑝)−𝜉

𝐻𝜉 ) 
( 17 ) 

 

𝐶𝑉𝑎𝑅𝑝 = 𝑉𝑎𝑅𝑝 + (𝐻 − 𝐿) 𝑒
𝜎

𝐻𝜉(
𝜎 − 𝐻𝜉 𝑙𝑜𝑔 (

𝐻 − 𝑉𝑎𝑅𝑝
∗

𝐻 − 𝐿
)

𝐻𝜉
)

(
1
𝜉

)
 𝛤 (

𝜉 − 1

𝜉
 ,

𝜎

𝐻𝜉
− 𝑙𝑜𝑔 (

𝐻 − 𝑉𝑎𝑅𝑝
∗

𝐻 − 𝐿
)) 

( 18 ) 

 
Where p is the probability of the VaR and CVaR, and 𝑉𝑎𝑅𝑝

∗  is estimated as described in equation ( 19 ). 

 

𝑉𝑎𝑅𝑝
∗ = 𝑉𝑎𝑅𝑝 −  

𝜎

𝜉
(1 −

𝑛𝑢

𝑛
) 

( 19 ) 

 
Where n is the number of events in the original distribution, and 𝑛𝑢 is the number of events crossing the 
threshold determined in the POT threshold selection.  
 
VaR and CVaR are commonly used in the field of finance as valuable tools for risk management. Where 
the VaR is a percentile of a loss distribution, and the CVaR approximates the average loss under worst-
case scenarios (Sarykalin et al., 2008). These worst-case scenarios are contextually described as losses 
that exceed the previously mentioned VaR value. This principle is presented in an example ED duration 
distribution in Figure 5. The VaR and CVaR are calculated as their definition states, unless otherwise 
specified. Additionally, once in 50-year and once in 100-year extreme ED event durations are presented 
as a method of assessing return periods. 
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Figure 5: Example distribution of ED durations 

As can be seen from the figure, there is a dashed line that indicates a threshold, in this case a percentile, 
value of the example distribution. Any value found to be higher than this threshold value is marked in red. 
The VaR value can be considered as the value where the dashed line is positioned, whereas the CVaR is 
the expected value once this threshold value has been exceeded. The CVaR is represented by the value 
corresponding to the solid line. The CVaR value is also considered to be ES value. Since the EVA of this 
research considers the longest found ED durations through the POT method, the VaR and CVaR are 
considered to be adequate risk assessment tools to analyze the most extreme ED durations.  
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3: Results 
 

3.1 Spatial analysis 
As is outlined in Appendix A, the spatial analysis was performed on the Netherlands to retrieve potential 
area suitable for solar panel and wind turbine installation per grid cell. The grid cells are sized similar to 
the retrieved data from the ERA-5 and MERRA database. The result of the spatial analysis can be found in 
Figure 6. 
 

 
Figure 6: Spatial extent of Dutch offshore and onshore area (left) and available area for installing VRE capacity (right). 

The results of the spatial analysis are used to determine the potential installed capacity per grid cell. As is 
outlined in Appendix A, the specific array-spacing used for assessing potential installed capacity for wind 
is an area of six times the rotor diameter in length and width. This spacing considers the most suitable 
wind turbine type per grid cell, or offshore where applicable. For the solar PV spacing, the calculated 
shadow factor to prevent self-shading is established per grid cell. While this value varies per grid cell, on 
average the required area is increased with a factor of 1.4 compared to the surface area of the PV unit. 
The potential installed capacity for wind is presented in Figure 7. 
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Figure 7: Potential installed capacity for wind onshore and offshore per grid cell 

It should be mentioned that the high upper limit for the installed capacity of wind in the legend is 
established based on the highest amount of installable wind capacity in the offshore region, which 
amounts to roughly 14 TW. This is in stark contrast to the maximum installable wind capacity for the 
onshore region, which is roughly 4 Gigawatt (GW) per grid cell. From the onshore region it can be observed 
that generally the installable capacity per grid cell is highest in the north-eastern section of the country, 
in the provinces of Groningen, Drenthe and Overijssel. Within these provinces, the highest value per grid 
cell is consistently found near the border with Germany. In contrast, relatively low values for installable 
capacity are observed in the ‘Randstad’ region, which is characterized by its high urban density and 
roughly comprises the regions of Noord-Holland, Zuid-Holland and Utrecht (Mashhoodi, 2018).  
 
As was mentioned previously, the offshore region outperforms any onshore region with regard to 
installable wind capacity. The offshore wind area, and therefore capacity, is mainly restricted by distance 
to port. This suitability factor prevents any installable potential for floating offshore wind. Without this 
limitation, small amounts of installable potential are found near the Western section of the EEZ, in the 
relative vicinity of English waters.  
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The potential installed capacity for solar PV is presented in Figure 8.  
 

 
Figure 8: Potential installed capacity for solar PV per grid cell 

Similar to the results for installed potential capacity for the wind technology, a trend that can be observed 
is relatively high potential in the north-eastern section of the country. This area contains the provinces of 
Groningen, Drenthe and Overijssel, and similar to the wind technology assessment, values are highest 
along the border with Germany. This is due to similar geographic constraints and suitability assessment 
for the observed land covers. A noticeable difference is observed in the ‘Randstad’ region, where unlike 
wind technology, relatively high potential is observed. This is most likely the result of the urbanized areas 
in this region, as this land cover type is suitable for solar PV installation. The maximum amount of 
installable capacity per grid cell is roughly 47 GW.  
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3.2 Wind conversion 
The results for the wind conversion based on ERA-5 data is presented in Figure 9. 
 

 
Figure 9: Onshore and offshore mean wind CF values per grid cell based on ERA-5 data 

The results for the wind conversion based on MERRA data is presented in Figure 10.  
 

 
Figure 10: Onshore and offshore mean wind CF values per grid cell based on MERRA data 
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For the ERA-5 data conversion, the modelled performance of onshore wind reflects values that have been 
observed by Nortier et al. (2022). In this study, estimated onshore performance of wind turbines ranges 
between 0.1 and 0.45. Additionally, the modelled performance of offshore wind is in line with literature, 
which estimates a mean regional offshore wind capacity factor of 58% for the Netherlands (Bosch et al., 
2018). The spatial distribution of mean CF values follows a pattern of decreasing performance moving 
land inwards. This closely resembles the pattern for mean wind speed values in this area (Stepek & 
Wijnant, 2011) which is an indicator of wind turbine performance, and therefore mean CF values.  
 
For the MERRA data conversion, the modelled performance of onshore wind shows higher mean CF values 
when compared with the ERA-5 data conversion. It seems that even with bias adjustment, the MERRA 
data conversion generates CF values that are slightly higher than described in literature (Bosch et al., 2018; 
Nortier et al., 2022). Similar to ERA-5 data conversion, offshore wind is characterized by higher mean CF 
values than onshore wind. However, the trend of decreasing CF values when moving land inward is less 
noticeable for MERRA results.  
 

3.3 Solar conversion 
 
The results for the solar conversion based on ERA-5 data is presented in Figure 11. 
 

 
Figure 11: Solar mean CF value per grid cell based on ERA-5 data solar conversion 

 
 
 
 
 



33 
 

The results for the solar conversion based on MERRA data is presented in Figure 12. 
 

 
Figure 12: Solar mean CF value per grid cell based on MERRA data solar conversion 

The availability of studies presenting observed mean capacity factors of solar PV for the Netherlands is 
limited. However, for the ERA-5 data conversion, the modelled performance of solar PV reflects the results 
found in other studies modelling Dutch or European mean solar PV capacity factors. The values presented 
in these studies estimate a mean from 0.13-0.14 (Zappa & Van Den Broek, 2018) to roughly 0.20 (Moraes 
Jr et al., 2018). However, it must be stated that for the higher values in the range of 0.20, these are 
determined by analyzing only summer months. Additionally, the distribution of performance for the grid 
cells from high to low CF closely follows the pattern for solar irradiance amounts in the Netherlands 
(SOLARGIS, 2020). 
 
For the MERRA data conversion, the modelled performance of solar PV similarly reflects the estimates 
found in simulations from other studies (Moraes Jr et al., 2018; Zappa & Van Den Broek, 2018). Similar to 
the wind conversion results, the MERRA results present higher mean CF values than the ERA-5 results. 
Finally, the spatial trend is slightly different from the trend found for the ERA-5 results. The MERRA results 
follow a trend in which the southernly located grid cells result in higher mean CF values than the 
northernly located grid cells.  
 
The difference between the results using the ERA-5 and MERRA datasets is considerable for both solar PV 
and wind. Previous research has shown that ERA-5 data outperforms MERRA data in accuracy for wind 
power simulation (K. Gruber et al., 2022). Additionally, it has been shown that ERA-5 data outperforms 
MERRA data in terms of solar irradiation estimation under cloudy-sky conditions (Amjad et al., 2021). 
Taking this into account, the results from ERA-5 data conversion seem to depict mean wind and solar PV 
CF values better than the results from MERRA data conversion. As is stated in the methodology section of 
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the report, the MERRA results are bias adjusted to resemble the ERA-5 results more closely, and used in 
the next section of this study which is the characterization of ED events.  
 

3.4 Energy drought characterization 
 
For ERA-5 ED characterization, the number of yearly ED events for solar PV, adjusted solar PV, onshore 
wind and the combination of solar PV and onshore wind is presented in Table 5. Overall, the technology 
with the least amount of ED events is onshore wind. The adjustment of solar PV on average results in a 
decrease of ED events by 20.6%, yet still results in more events than onshore wind and for some provinces, 
the combination of solar PV and onshore wind. The large discrepancy between ED events based on the 
combination of solar PV and onshore wind for the difference provinces is most likely the result of the 
various configurations of installed capacity per technology for each province. The provinces of Gelderland, 
Limburg, Noord-Brabant, Overijssel and Utrecht show a high amount of ED events even with solar PV and 
onshore wind combined. These provinces share the same trait of having proportionally high amounts of 
solar PV installed capacity as part of the share of this VRE land combination and are therefore more 
influenced by solar PV performance trends.  
 
Table 5: Number of yearly ED events for solar PV, solar PV adjusted, onshore wind and the combination of solar and onshore 
wind (VRE land combined) as well as offshore wind and all VRE combined from ERA-5 data 

Province Solar PV Solar PV 
adjusted 

Onshore 
wind 

VRE land 
combined 

Offshore 
wind 

All VRE 
combined 

Drenthe 333 271 119 277 - 277 

Flevoland 335 273 115 127 - 127 

Fryslân 336 276 100 167 - 167 

Gelderland 336 267 133 349 - 349 

Groningen 334  274 111 182 46 105 

Limburg 338 259 137 346 - 346 

Noord-
Brabant 

338 258 132 353 - 353 

Noord-Holland 339 270 98 180 45 146 

Overijssel 334 268 127 342 - 342 

Utrecht 337 267 125 343 - 343 

Zeeland 340 258 121 165 53 68 

Zuid-Holland 339 265 120 249 47 208 

Mean 336.6 267.2 119.8 256.7 47.75 235.9 

 
For ERA-5 ED characterization, the mean, maximum and standard deviation of the ED events per province 
is presented in Table 6. The maximum duration is on average 10.7 times as high as the mean duration. 
The province with the lowest mean ED duration is Flevoland, however Noord-Holland has a significantly 
lower maximum ED duration as well as the lowest standard deviation of the ED durations. The provinces 
with the highest mean ED duration are Overijssel and Utrecht, with both provinces additionally having ED 
events lasting for over 200 hours.   
 
 
 
 



35 
 

 
Table 6: Mean, max and standard deviation of the ED duration observed per province from ERA-5 data 

Province Mean ED duration 
(hours) 

Max ED duration 
(hours) 

Standard deviation of 
ED duration (hours) 

Drenthe 14.4 167 6.77 

Flevoland 12.3 176 8.21 

Fryslân 12.4 126 6.53 

Gelderland 18.0 166 7.94 

Groningen 11.2 125 5.96 

Limburg 18.3 191 8.49 

Noord-Brabant 17.4 167 6.81 

Noord-Holland 11.8 93 5.68 

Overijssel 18.6 215 9.59 

Utrecht 18.6 239 9.29 

Zeeland 9.85 70 5.44 

Zuid-Holland 12.8 119 6.02 

Mean 15.1 161.8 7.50 

 
In addition to solar PV and onshore wind, offshore wind is considered as a separate category for ED events. 
For ERA-5 ED characterization, the model results depict 24 ED events per year for offshore wind. This value 
is significantly lower than solar PV and onshore wind. The maximum duration of an ED event for offshore 
wind is 55 hours. Similarly, this value is significantly lower than results for solar PV and onshore wind. The 
mean value for ED events is 9.72 hours, with the standard deviation being 5.86 hours.  
 
For MERRA ED-characterization, the number of yearly ED events for solar PV, adjusted solar PV, onshore 
wind and the combination of solar PV and onshore wind is presented in Table 7. The results are similar to 
the results from the ERA-5 ED characterization with the exception of the adjusted solar PV category. The 
adjusted solar PV on average has 153.3 yearly ED events for the MERRA data results, whereas for the ERA-
5 data this number is 267.2. This difference could be caused by a relatively high energy conversion of solar 
PV in the MERRA solar conversion compared to ERA-5 solar conversion in the following or leading the 
filtered ‘dark’ hours where the solar altitude angle is below 0. Other differences are characterized by lower 
mean ED duration for onshore wind and VRE land combined.  
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Table 7: Number of yearly ED events for solar PV, solar PV adjusted, onshore wind and the combination of solar and onshore 
wind (VRE land combined) from MERRA data 

Province Solar PV Solar PV 
adjusted 

Onshore 
wind 

VRE land 
combined 

Offshore 
wind 

All VRE 
combined 

Drenthe 335 160 108 272 - 272 

Flevoland 336  160 105 113 - 113 

Fryslân 336 160 95 151 - 151 

Gelderland 337 154 122 348 - 348 

Groningen 334  157 102 162 48 101 

Limburg 340 151 127 347 - 347 

Noord-
Brabant 

340 149  123 354 - 354 

Noord-Holland 340 148  95  171 48 140 

Overijssel 335 156 116 342 - 342 

Utrecht 338 155 114 343 - 343 

Zeeland 341 144 111 147 56 70 

Zuid-Holland 340 146 109 232 52 193 

Mean 337.7 153.3 110.6 248.5 51.00 231.2 

 
For MERRA ED characterization, the mean, maximum and standard deviation of the ED events per 
province is presented in Table 8. As can be seen from the table, comparable results for the mean and 
standard deviation are presented as observed in the ERA-5 ED characterization, although slightly lower 
values for the MERRA results. However, the maximum ED duration is significantly shorter for the MERRA 
ED-characterization than for its ERA-5 counterpart. Generally, the observed difference between ERA-5 
and MERRA energy conversion is highest for the solar PV technology. The results from the ERA-5 and 
MERRA data are similar for onshore and offshore wind.  
 
Table 8: Mean, max and standard deviation of the ED duration observed per province from MERRA data 

Province Mean ED duration 
(hours) 

Max ED duration 
(hours) 

Standard deviation of 
ED duration (hours) 

Drenthe 13.5 108 5.74 

Flevoland 11.4 158 7.14 

Fryslân 11.7 117 5.35 

Gelderland 17.0 119 7.70 

Groningen 10.8 93 5.22 

Limburg 17.1 118 7.93 

Noord-Brabant 16.5 92 6.15 

Noord-Holland 11.3 63 4.81 

Overijssel 17.5 165 9.25 

Utrecht 17.4 118 8.83 

Zeeland 9.81 66 4.89 

Zuid-Holland 12.0 67 4.95 

Mean 14.2 107.3 6.61 

 
Similar to ERA-5, the offshore wind performance for MERRA ED-characterization shows a significantly 
lower number of events and shorter maximum and mean duration of events than for solar PV, onshore 
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wind, or its combination. For MERRA ED-characterization, the model depicts 28 ED events per year, with 
a mean and maximum duration of 10.1 hours and 69 hours respectively. The standard deviation for the 
duration of these events is 6.36 hours. These values are even lower than for ERA-5 offshore wind, 
highlighting a relatively high performance of offshore wind.  
 
For the ED characterization of the bidding zones, the two regions are formed to contain different 
provinces. The N1 region contains the provinces of Flevoland, Gelderland, Limburg, Brabant, Noord-
Holland, Utrecht, Zeeland, and Zuid-Holland. In contrast, the N2 region contains the provinces of Drenthe, 
Friesland, Groningen and Overijssel. Furthermore, all solar and onshore wind capacity from the provinces 
is allocated to the two different regions. Additionally, for offshore wind, the locations of the different 
wind farms are taken into consideration. The wind farm to the north of Groningen (Gemini, 600MW) is 
allocated to the N2 region. All other offshore wind farms are allocated to the N1 region, as they are off 
the coast of Zeeland, Zuid-Holland, and Noord-Holland.  
 
The yearly number of events, and the mean, maximum and standard deviation of their durations is 
presented in Table 9. These results are based on hourly timesteps. The yearly number of events is 
determined by dividing the total occurred ED events by the number of years that span the dataset. As can 
be seen from the results, the N1 region has a lower number of recorded events, with lower mean and 
maximum durations as well as lower standard deviation of the durations compared to the N2 region. This 
could be caused by the different share of technologies in their generation portfolio. The N2 region only 
has access to one offshore wind farm, which is shown from the general characteristics above to be the 
technology that leads to the least amount of ED events if deployed. Additionally, the N1 region comprises 
of a larger surface area than the N2 region. This difference could lead to the N1 region experiencing the 
effect of spatial smoothing more than the N2 region.  
 
As outlined in the methodology, the regions are also characterized based on daily mean CF values, serving 
as input for the co-occurrence determination in section 3.5. The results for the yearly number of events 
and the mean, maximum and standard deviation of their duration based on daily mean CF values is also 
presented in Table 9. Similar to the results based on hourly timesteps, the results based on daily timesteps 
show less ED events, with lower mean and maximum durations in the N1 region. The difference in the 
maximum duration of the recorded ED events is greater than the one observed in the results based on 
hourly timesteps, with the maximum duration in the N2 region being nearly twice as high as the one in 
the N1 region. 
 
Table 9: Yearly number of events, mean, max and standard deviation of ED events based on ERA-5 data and hourly and daily 
timesteps for the bidding zone regions 

 Yearly number of 
events  

Mean duration 
(hours) 

Maximum 
duration (hours) 

Standard 
deviation (hours) 

N1 hourly  328 14.4 94 5.23 

N2 hourly 358 16.8 118 5.44 

 Yearly number of 
events  

Mean duration 
(days) 

Maximum 
duration (days) 

Standard 
deviation (days) 

N1 daily 29 2.25 22 2.20 

N2 daily 34 2.85 39 3.72 

 
For the MERRA ED-characterization, the yearly number of events, and the mean, maximum and standard 
deviation of their duration based on hourly CF values is presented in Table 10. In contrast to the ERA-5 
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ED-characterization, the number of events is lower, and their mean and maximum duration lower than 
for the ERA-5 data. Similar to the ERA-5 ED-characterization, the N2 region has more events than the N1 
region, and its events last longer and have a higher maximum duration. Additionally, the yearly number 
of events and the mean, maximum and standard deviation of their duration based on daily mean CF values 
is presented in Table 10. The results are overall lower than for the ERA-5 ED characterization, with the 
main difference being a significant decrease for the maximum duration of the ED events in the N1 region.  
 
Table 10: Yearly number of events, mean, max and standard deviation of ED events based on MERRA data and hourly timesteps 
for the bidding zone regions 

 Yearly number of 
events  

Mean duration 
(hours) 

Maximum 
duration (hours) 

Standard 
deviation (hours) 

N1 hourly  318 13.9 68 4.33 

N2 hourly 358 15.9 92 5.16 

 Yearly number of 
events  

Mean duration 
(days) 

Maximum 
duration (days) 

Standard 
deviation (days) 

N1 daily 26 1.87 13 1.53 

N2 daily 35 2.23 21 2.22 

 
Finally, the aggregated CF for the entire Netherlands is used to characterize the ED events. All technologies 
are included in this characterization. The results for the ED characterization of the Netherlands based on 
ERA-5 data as input and hourly timesteps is presented in Table 11. In addition to the ED events based on 
the 10% CF threshold, events for 5% and 2% CF thresholds are described. Additionally, the results for the 
ED characterization of the Netherlands based on ERA-5 data as input and daily timesteps is presented in 
Table 11. Similar to the hourly assessment, regular and adjusted CF thresholds are assessed. 
 
Table 11: Yearly number of events, mean, max and standard deviation of ED events based on ERA-5 data and hourly timesteps 
for the Netherlands for regular and adjusted CF thresholds 

 Yearly number of 
events 

Mean duration 
(hours) 

Maximum 
duration (hours) 

Standard 
deviation (hours) 

NL hourly – 10% 
CF 

357 15.1 117 4.88 
 

NL hourly – 5% CF  175 11.6 47 4.22 

NL hourly – 2% CF 47 8.92 20 3.44 

 Yearly number of 
events 

Mean duration 
(days) 

Maximum 
duration (days) 

Standard 
deviation (days) 

NL daily – 10% CF 29 2.46 22 2.64 

NL daily – 5% CF 5 1.67 10 1.24 

NL daily – 2% CF <1 1 1 - 

 
For the ERA-5 data as input, the outcome of the ED-characterization for the Netherlands presents near 
daily ED events when based off of hourly timesteps as input. For the method that uses mean daily CF 
values, ED events occur between two to three times per month on average. The maximum duration is 22 
days, which is significantly higher compared to the result based off of hourly timesteps, as this results in 
117 hours as the max duration of ED events. As is expected, lowering the threshold CF value reduces the 
event occurrence. Additionally, the mean and maximum duration reduces as the threshold is lowered. In 
the case of assessing ED events based on average daily CF values, the 2% CF threshold results in seven ED 
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events across the entire time-period. The frequency of such events occurring is therefore less than once 
every nine years.  
 
The results for the ED characterization of the Netherlands based on MERRA data as input and hourly and 
daily timesteps are presented in Table 12. To compare with ERA-5 results, regular and adjusted CF 
thresholds are assessed.  
 
Table 12: Yearly number of events, mean, max and standard deviation of ED events based on MERRA data and hourly timesteps 
for the Netherlands for regular and adjusted thresholds 

 Yearly number of 
events 

Mean duration 
(hours) 

Maximum 
duration (hours) 

Standard 
deviation (hours) 

NL hourly – 10% 
CF 

339 14.2 70 4.21 

NL hourly – 5% CF 182 11.5 42 3.84 

NL hourly – 2% CF 53 9.2 20 3.47 

 Yearly number of 
events 

Mean duration 
(days) 

Maximum 
duration (days) 

Standard 
deviation (days) 

NL daily – 10% CF 26 2.00 15 1.73 

NL daily – 5% CF 3 1.24 4 0.51 

NL daily – 2% CF <1 1 1 - 

 
The MERRA results show a smaller number of events, and lower mean and maximum duration for both 
hourly and daily timesteps than the results from the ERA-5 ED characterization. This observation is also 
made when comparing the results for similar CF threshold values. Similar to the ERA-5 results, lowering 
the CF threshold results in a lower number of ED events. For the ED events based on average daily CF 
values for a 2% CF threshold, only one ED event occurs across the entire time period.  
 
The seasonal trends of the recorded ED events are assessed by considering the percentage share of the 
overall duration of all events per month of the year. The share of total ED duration per month is presented 
in Figure 13. 
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Figure 13: Percentage shares of overall ED duration per month for both ERA-5 and MERRA datasets and corresponding to 10%, 
5% and 2% CF thresholds for ED event definition 

The year-to-year variability in ED duration is presented in Figure 14. The variability is determined for both 
datasets and expressed in a percentage share of the overall duration of all ED events recorded. As can be 
seen from the figure, for both datasets the interannual variability increases as the threshold CF value for 
defining ED events is reduced. Furthermore, a trend can be observed that earlier years in the dataset 
contain a slightly higher share of the overall ED duration compared to the latest years. This is observable 
in both datasets, however for the ERA-5 data the trend is more noticeable as a larger time period is 
considered.  
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Figure 14: Year-to-year variability of the share of overall ED duration for 10%, 5% and 2% CF thresholds for ERA-5 (upper) and 
MERRA (lower) data 
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3.5 Co-occurrence 
 
To accurately determine the co-occurrence between the two regions, the individual regions are first 
statistically characterized. The aggregated daily CF values of the two regions are fitted using a Cullen and 
Frey plot. These plots provide information on the skewness and kurtosis of the distribution of the CF values 
and how they compare to other distribution types (Shehata & Yousof, 2022). The Cullen and Frey plot for 
region N1 can be found in Figure 15. 

 
Figure 15: Skewness-kurtosis plot of the distribution of daily mean CF values of the N1 region according to ERA-5 data 

The daily CF values of the N1 region seem to be thin tailed, as the kurtosis is lower than that of a normal 
distribution. The distributions that could fit the dataset for the N1 region are Weibull, normal, gamma, 
lognormal and uniform. To determine which distribution fits the data the best, the Aikake information 
criterion (AIC) and Bayesian information criterion (BIC) are used. The AIC provides information on the 
minimized mean squared error of model fittings to a certain distribution (Vrieze, 2012). The BIC provides 
information on the asymptotic approximation to a transformation of the Bayesian posterior probabilities 
of considered models, which in simpler terms is described as the plausibility of the fitting of the model to 
the data (Neath & Cavanaugh, 2012). Both values of the possible distributions are estimated, and the 
lowest AIC and BIC values determine the fit that is used. Both values are determined using the fitdistrplus 
R package (Delignette-Muller et al., 2015). The results are presented in Table 13. As can be seen from the 
table, the Weibull distribution has the lowest AIC and BIC values and is therefore chosen as the fit.  
 
Table 13: AIC and BIC values of the Weibull, normal, gamma, lognormal and uniform distributions for the N1 region daily mean 
CF values based on ERA-5 data 

 Weibull Normal Gamma Lognormal Uniform 

AIC  -61070.12 -60335.46 -60039.63 -57913.70 -45856.99 

BIC  -61054.09 -60319.44 -60023.61 -57897.68 -45840.97 

 



43 
 

The goodness of fit of the selected distribution can be visually assessed through the use of a quantile-
quantile (Q-Q) plot. The Q-Q plots in this section are expressed in terms of aggregated CF values for the 
considered regions. The Q-Q plot for the selected distribution is presented in Figure 16. As can be seen in 
the figure, the Weibull distribution fits the data well, with slight deviations in the lower and upper tails. In 
these tails, the empirical distribution seems to be thinner tailed than the simulated data. 
 

 
Figure 16: Q-Q plot of the Weibull distribution to fit the daily mean CF values of the N1 region based on ERA-5 data 

Additionally, a histogram is constructed to compare simulated and empirical data. This histogram is 
presented in Figure 17. 
 

 
Figure 17: Histogram of empirical and simulated data for the Weibull fitting of the mean daily CF values for the N1 region based 
on ERA-5 data 
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The skewness-kurtosis plot for the N2 region based on ERA-5 data is presented in Figure 18. 

 
Figure 18: Skewness-kurtosis plot of the distribution of daily mean CF values of the N2 region according to ERA-5 data 

The Weibull, normal, gamma, lognormal and uniform distributions are assessed based on AIC and BIC 

values. The AIC and BIC values of the different distributions for the N2 region based on ERA-5 data are 

presented in Table 14. 

Table 14: AIC values of the Weibull, normal, gamma, lognormal and uniform distributions for the N2 region daily mean CF values 
based on ERA-5 data 

 Weibull Normal Gamma Lognormal Uniform 

AIC  -59424.70 -58134.23 -58663.14 -56753.85 -46610.12 

BIC  -59408.68 -58118.21 -58647.12 -56737.83 -46594.10 

 
As can be seen from the table, the distribution with the lowest AIC and BIC values is the Weibull 
distribution. This distribution is further assessed in the form of a Q-Q plot, and a histogram fitting in Figure 
19 and Figure 20 respectively.  
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Figure 19: Q-Q plot of the Weibull distribution to fit the daily mean CF values of the N2 region based on ERA-5 data 

 

 
Figure 20: Histogram of empirical and simulated data for the Weibull fitting of the mean daily CF values for the N2 region based 
on ERA-5 data 

The type of copula to use is based on the margins of the two distributions used, namely the N1 and N2 
mean daily CF values. The correlation of the original data is calculated to be 0.72 based on Kendall’s tau. 
The copula is characterized by a value of 12 for the degrees of freedom (df). Due to the dependence 
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between the variables, the t-copula is determined to be the best copula to use. This is determined through 
the use of the VineCopula package in R (Schepsmeier et al., 2015). The distributions of the mean daily 
values for N1 and N2 are plotted against each other as presented in Figure 21. 
 
 
 

 
Figure 21: Distributions of the daily mean CF of the N1 and N2 region based on ERA-5 data 
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The transformed uniform marginals of the N1 and N2 distributions for the ERA-5 data are presented in 
Figure 22. 
 

 
Figure 22: Uniformed marginals of the mean daily CF values of the N1 and N2 region according to ERA-5 data 
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From the uniformed marginals, the joint probability distribution between the two regions can be 
constructed and is presented in Figure 23. 
 

 
Figure 23: Joint probability distribution of the mean daily CF values of the N1 and N2 region based on ERA-5 data 
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The density plot and cumulative distribution function (CDF) of the transformed data is presented in Figure 
24. 
 

 
Figure 24: Density and CDF plot for the transformed data of the mean daily CF values of the N1 and N2 regions based on ERA-5 
data 

The density function of the transformed data for the distribution between the mean daily CF values of N1 
and N2 based on ERA-5 data and its contour plot are presented in Figure 25. 
 

 
Figure 25: Density and contour plot for the transformed data of the mean daily CF values of the N1 and N2 regions based on ERA-
5 data 
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The CDF of the transformed data for the distribution between the mean daily CF values of N1 and N2 
based on ERA-5 data and its contour plot are presented in Figure 26.  
 

 
Figure 26: CDF and contour plot for the transformed data of the mean daily CF values of the N1 and N2 regions based on ERA-5 
data 

The empirical probability of the co-occurrence of ED events in the two regions can be established with the 
originally produced CF data, whereas the modelled probability of such events can be established through 
simulated data stemming from the constructed copula. The empirical and modelled probabilities of co-
occurrence of ED events between the two regions for different CF thresholds using ERA-5 data are 
presented in Table 15. Additionally, a visualization of the captured events between empirical data and the 
modelled data is presented in Figure 27. 
 
Table 15: Empirical and modelled probabilities of ED co-occurrence between N1 and N2 regions at different CF thresholds using 
ERA-5 data 

 Empirical probability (%) Modelled probability (%) 

10% CF threshold 15.24 14.93 

5% CF threshold 1.517 2.163 

2% CF threshold 0.000 0.166 
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Figure 27: Empirical and modelled probability of co-occurrent ED events between the N1 and N2 regions based on ERA-5 data 

 
As can be seen from the results, the model captures more ED events at the 5% and 2% CF thresholds. At 
the 10% CF threshold, the model captures slightly less events than are present in the empirical dataset. 
The results indicate that the copula model is a useful tool to capture the tail behavior of the co-occurring 
CF values, and therefore co-occurring ED events between the regions. This is especially relevant for the 
2% CF threshold where no empirically recorded events are found. Due to the limited amount of empirical 
data, the simulated data provides a method of assessing these co-occurrence events in absence of them 
occurring historically. Finally, the return periods for co-occurrent ED events between the N1 and N2 
regions based on ERA-5 data are 6.70 days, 46.2 days, and 602 days for the 10%, 5% and 2% CF thresholds, 
respectively.  
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The skewness-kurtosis plot of the distribution of daily mean CF values of the N1 region according to 
MERRA data is presented in Figure 28. 
 

 
Figure 28: Skewness-kurtosis plot of the distribution of daily mean CF values of the N1 region according to MERRA data 

Similar to the skewness-kurtosis plots of the distributions based on the ERA-5 data, the distributions that 
are seemingly suitable for fitting are the Weibull, normal, gamma, lognormal and uniform distributions. 
The AIC and BIC values of these distributions are presented in Table 16. 
 
Table 16: AIC and BIC values of the Weibull, normal, gamma, lognormal and uniform distributions for the N1 region daily mean 
CF values based on MERRA data 

 Weibull Normal Gamma Lognormal Uniform 

AIC  -43998.09 -43698.58 -42734.59 -41241.04 -35582.82 

BIC  -43982.86 -43683.35 -42719.37 -41225.82 -35567.59 

 
As can be seen from the table, the lowest AIC and BIC values belong to the Weibull distribution. This 
distribution is used to fit the data. This distribution is further assessed in the form of a Q-Q plot, and a 
histogram fitting in Figure 29 and Figure 30 respectively. Compared to the Q-Q plot of the N1 region 
according to ERA-5 data, the fitting is skewed slightly further in the upper tail. The histogram fits the data 
adequately, with slight deviations presenting primarily near the mean of the data. Deviations are 
additionally observed in the tails of the distribution. 
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Figure 29: Q-Q plot of the Weibull distribution to fit the daily mean CF values of the N1 region based on MERRA data 

 

 
Figure 30: Histogram of empirical and simulated data for the Weibull fitting of the mean daily CF values for the N1 region based 
on MERRA data 
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The skewness-kurtosis plot of the distribution of daily mean CF values of the N2 region according to 
MERRA data is presented in Figure 31. 

 
Figure 31: Skewness-kurtosis plot of the distribution of daily mean CF values of the N2 region according to MERRA data 

Similar to the skewness-kurtosis plots of the distributions based on the N1 region, the distributions that 

are seemingly suitable for fitting are the Weibull, normal, gamma, lognormal and uniform distributions. 

The AIC and BIC values of these distributions are presented in Table 17. 

Table 17: AIC and BIC values of the Weibull, normal, gamma, lognormal and uniform distributions for the N2 region daily mean 
CF values based on MERRA data 

 Weibull Normal Gamma Lognormal Uniform 

AIC  -42215.62 -41723.55 -41126.69 -39688.64 -36398.51 

BIC  -42200.40 -41708.32 -41111.46 -39673.41 -36383.28 

 

As can be seen from the table, the Weibull distribution is associated with the lowest AIC value and is 
chosen to fit the data. This distribution is further assessed in the form of a Q-Q plot, and a histogram 
fitting in Figure 32 and Figure 33 respectively. The Q-Q plot shows that the Weibull distribution does not 
fit the N2 region as well as the N1 region. Similar to the N1 region, the Q-Q plot shows a larger deviation 
of the simulated data from the empirical data in the right tail.  
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Figure 32: Q-Q plot of the Weibull distribution to fit the daily mean CF values of the N2 region based on MERRA data 

 

 
Figure 33: Histogram of empirical and simulated data for the Weibull fitting of the mean daily CF values for the N1 region based 
on MERRA data 

 
Unlike the copula for the ERA-5 data, the copula type selected for the MERRA data is the Frank copula. 
The selection of the copula type is again determined by the VineCopula package in R. While the Frank 
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copula and t copula are selected as potential suitable fits, after visual assessment the t copula has again 
been chosen as most suitable. A visual comparison between the Frank copula and t copula can be found 
in Appendix C. The correlation of the original data is 0.70 based on Kendall’s tau, and the constructed t 
copula is characterized by a df of 13. 
 
The distribution between the mean daily CF values of the N1 and N2 region based on MERRA data is 
presented in Figure 34. 
 

 
Figure 34: Distributions of the daily mean CF of the N1 and N2 region based on MERRA data 
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The uniformed margins of the distribution of mean daily CF values of the N1 and N2 regions based on 
MERRA data is presented in Figure 35. 
 

 
Figure 35: Uniformed marginals of the mean daily CF values of the N1 and N2 region based on MERRA data 
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The joint probability distribution of the mean daily CF values of the N1 and N2 region based on MERRA 
data is presented in Figure 36. 
 

 
Figure 36: Joint probability distribution of the mean daily CF values of the N1 and N2 region based on MERRA data 
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The 3D density distribution and CDF plot for the mean daily CF values of the N1 and N2 regions based on 

MERRA data is presented in Figure 37. 

 
Figure 37: Density and CDF plot for the transformed data of the mean daily CF values of the N1 and N2 regions based on MERRA 
data 

The density and contour plot for the transformed data of the mean daily CF values of the N1 and N2 

regions based on MERRA data is presented in Figure 38. 

 
Figure 38: Density and contour plot for the transformed data of the mean daily CF values of the N1 and N2 regions based on 
MERRA data 
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The CDF and contour plot of the transformed data of the mean daily CF values of the N1 and N2 regions 

based on MERRA data is presented in Figure 39. 

 
Figure 39: CDF and contour plot for the transformed data of the mean daily CF values of the N1 and N2 regions based on MERRA 
data 

The empirical and modelled probabilities of co-occurrence of ED events between the two regions for 
different CF thresholds using MERRA data are presented in Table 18. Additionally, a visualization of the 
captured events between empirical data and the modelled data is presented in Figure 40. 
 
Table 18: Empirical and modelled probabilities of ED co-occurrence between N1 and N2 regions at different CF thresholds using 
MERRA data 

 Empirical probability (%) Modelled probability (%) 

10% CF threshold 10.70 9.609 

5% CF threshold 0.681 1.055 

2% CF threshold 0.000 0.013 
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Figure 40: Empirical and modelled probability of co-occurrent ED events between the N1 and N2 regions based on MERRA data 

 
The modelled data captures less ED events at the 10% CF threshold, while more events are captured at 
the 5% and 2% CF thresholds. Similar to the analysis of the copula analysis for the ERA-5 data, no recorded 
events at the 2% CF threshold are found in the empirical data but have been simulated in the generated 
model. As was found when analyzing the ERA-5 data, the established copula model provides a useful 
method of assessing the co-occurrence of ED events between the N1 and N2 regions, especially at the 2% 
CF threshold definition. Finally, the return periods for co-occurrent ED events between the N1 and N2 
regions based on MERRA data are 10.4 days, 94.8 days, and 7692 days for the 10%, 5% and 2% CF 
thresholds, respectively. 
 
In addition to modelling the co-occurrence of ED events between the N1 and N2 regions, the co-
occurrence between solar PV and wind ED events in the Netherlands based on ERA-5 data is modelled. A 
t copula with a df value of 18 is constructed based on the margins for wind and solar PV. However, the 
results are most likely similar for a Gaussian copula based on the high df value (Malevergne & Sornette, 
2003). The margin of wind is characterized by a Weibull distribution with a shape parameter of 1.82 and 
a scale parameter of 0.48. The margin of solar PV is characterized by a Weibull distribution with a shape 
parameter of 1.44 and a scale parameter of 0.12. The results of the dependency modelling are presented 
as the empirical and modelled probabilities of the co-occurrence of ED events between solar PV and wind 
and can be found in Table 19. 
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Table 19: Empirical and modelled probabilities of ED co-occurrence between solar PV and wind technologies at different CF 
thresholds using ERA-5 data 

 Empirical probability (%) Modelled probability (%) 

10% CF threshold 1.912 1.477 

5% CF threshold 0.148 0.085 

2% CF threshold 0.000 0.000 

 
As can be observed from the results, the model captures less events based on its simulated data when 
compared to the available empirical data for the ED co-occurrence of solar PV and wind based on the 10% 
and 5% CF thresholds. For the 2% CF threshold, no empirical events are recorded nor simulated by the 
model. The return period of co-occurring ED events between the technologies is 67.7 days and 1176 days 
for the 10% and 5% CF thresholds, respectively.  
 
Furthermore, the co-occurrence of ED events between solar PV and wind in the Netherlands is modelled 
for the MERRA data. Instead of a t copula, a normal copula is constructed due to the high df value of an 
attempted t copula. It is constructed based on the margins for wind and solar PV. The margin of wind is 
characterized by a Weibull distribution with a shape parameter of 1.93 and a scale parameter of 0.48. The 
margin of solar PV is characterized by a Weibull distribution with a shape parameter of 1.70 and a scale 
parameter of 0.13. Similar to the results for the ERA-5 data, the results of the dependency modelling are 
presented as the empirical and modelled probabilities of the co-occurrence of ED events between solar 
PV and wind. These results can be found in Table 20. 
 
Table 20: Empirical and modelled probabilities of ED co-occurrence between solar PV and wind technologies at different CF 
thresholds using MERRA data 

 Empirical probability (%) Modelled probability (%) 

10% CF threshold 1.342 0.855 

5% CF threshold 0.073 0.033 

2% CF threshold 0.000 0.000 

 
The results present similar findings to the ones derived from ERA-5 data, as the model captures less co-
occurrence events than are empirically found for the 10% and 5% CF thresholds. For the 2% CF threshold, 
no empirical events are recorded nor simulated by the model. The return period of co-occurring ED events 
between the technologies is 117 and 3030 days for the 10% and 5% CF thresholds, respectively. 
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3.6 Extreme event analysis 
 
For the ERA-5 data, the suitable threshold found for p-values of over 0.05 is at 19 hours and longer. The 
threshold is established at 21 hours due to suitable amount of data. It is the smallest threshold that covers 
enough extreme events. Any event lasting 21 or more hours is therefore included in the extreme event 
dataset. The selection of extreme events is visualized in Figure 41. In this figure, the red dots are 
representative of selected extreme events, as they all have a duration of 21 or more hours.  
 

 
Figure 41: Extreme event selection according to the POT method, where red dots are included as extreme events based on ERA-5 
data 

This extreme event dataset based on ERA-5 data is fitted to an exponential distribution. The resulting fit 
presents information on the distribution. The scale parameter of the distribution is 10.4. The AIC value of 
the distribution is 3420, and the BIC value is 3424. The fitting is presented in Figure 42 as a plot displaying 
empirical and modelled ED durations. As can be seen from the figure, plot shows that the simulated data 
follows the empirical data well. Since the Pareto distribution was not chosen as a fit, the shadow variable 
approach in calculating the VaR and CVaR was not applied as outlined previously. Rather, a conventional 
method is chosen to calculate the CVaR, which can be found in Appendix D. The VaR is calculated as 
defined in the methodology.  
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Figure 42:  Plot of the extreme ED event dataset when fitted against a simulated exponential distribution based on ERA-5 data 

The mean tail value, VaR-95%, CVaR-95%, 50-year ED duration and 100-year ED duration based on the tail 
of the extreme dataset based on ERA-5 data is presented in Table 21. The values for the 50 and 100-year 
ED durations are higher for the different thresholds than the VaR-95% and CVaR-95% values. This indicates 
the tail of the distribution is thin tailed. 
 
Table 21: Mean tail, VaR-95%, CVaR-95%, 50-year ED duration and 100-year ED duration values of the extreme event dataset 
based on ERA-5 data 

 Mean tail value 
(hours) 

VaR-95% 
(hours) 

CVaR-95% 
(hours) 

50-year ED 
duration 
(hours)  

100-year ED 
duration 
(hours) 

Extreme event 
risk – 10% CF 
threshold 

25.3 46.0 58.1 84.2 91.4 

Extreme event 
risk – 5% CF 
threshold 

17.3 21.0 21.6 39.5 41.5 

Extreme event 
risk – 2% CF 
threshold 

15.4 19.0 19.4 20.0 20.1 
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For the MERRA data, the suitable threshold found for p-value of over 0.05 is at 17 hours and longer. 
However, similar to the selection based on the ERA-5 data, the threshold is established at 21 hours due 
to a suitable amount of data. It is the smallest threshold that covers enough extreme events. Any event 
lasting 21 or more hours is therefore included in the extreme event dataset. The selection of extreme 
events is visualized in Figure 43. In this figure, the red dots are representative of selected extreme events, 
as they all have a duration of 21 or more hours.  
 

 
Figure 43: Extreme event selection according to the POT method, where red dots are included as extreme events based on MERRA 
data 

This extreme event dataset based on MERRA data is fitted to a GP distribution. The shape parameter of 
the distribution is 1.19, whereas the scale parameter of the distribution is 0.25. The AIC value of the 
distribution is 1651, and the BIC value is 1661. The plot of this fitting is presented in Figure 44. As can be 
seen from the figure, the simulated data fits the empirical data well, with the simulated data being slightly 
higher than the empirical data. 
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Figure 44: Plot of the extreme ED event dataset when fitted against a simulated exponential distribution based on MERRA data 

After transforming the dataset into the shadow variable and back, as described in the methodology, the 
risk statistics are estimated. As mentioned in the methodology, the upper threshold chosen is calculated 
to be a factor of 1.5 multiplied with the longest ED duration found empirically. The mean tail value, VaR-
95%, CVaR-95%, 50-year ED duration and 100-year ED duration based on the tail of the adjusted extreme 
dataset based on MERRA data is presented in Table 22. As can be seen from the table, the various risk 
statistics are lower compared to the results from the ERA-5 generated extreme data.  
 

Table 22: Mean tail, VaR-95%, CVaR-95%, 50-year ED duration, 100-year ED duration values of the adjusted extreme event 
dataset based on MERRA data 

 Mean tail value 
(hours) 

VaR-95% 
(hours) 

CVaR-95% 
(hours) 

50-year ED 
duration 
(hours) 

100-year ED 
duration 
(hours) 

Extreme event 
risk – 10% CF 
threshold 

21.8 27.2 41.6 99.0 107 

Extreme event 
risk – 5% CF 
threshold 

17.3 20.0 20.4 34.1 35.0 

Extreme event 
risk – 2% CF 
threshold 

15.2 19.0 19.6 20.2 20.3 
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The EVA of the ED based on the aggregated CF between technologies for the Netherlands does not 
consider the lack of stationarity of the solar PV performance. Due to the seasonal characteristics of this 
performance, the EVA has additionally been conducted when considering only onshore and offshore wind 
for the Netherlands. Following the same methodology previously used for the aggregated CF for all 
technologies, based on the ERA-5 data the established threshold for the POT method is 23 hours when 
excluding solar PV. A visual representation of the included data in this extreme dataset is presented in 
Figure 45, where red dots are included as extreme events. 
 

 
Figure 45: Extreme event selection according to the POT method, where red dots are included as extreme events based on ERA-5 
data when excluding solar PV 

 
The extreme value dataset has been fitted by a GP distribution. The fit is presented in Figure 46. As can 
be seen from the figure, the modelled data follows the empirical data well, and more closely than when 
solar PV was included. The scale parameter of the distribution is 0.80, whereas the shape parameter is 
0.05. Since the shape parameter is below 1, the adjustment of the risk calculations through the use of the 
shadow variable is not applied.  
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Figure 46: Plot of the extreme ED event dataset excluding solar PV when fitted against a simulated GP distribution based on 
ERA-5 data 

The mean tail, VaR-95%, CVaR-95%, 50-year ED duration and 100-year ED duration values of EVA excluding 
solar PV based on ERA-5 data are presented in Table 23. 
 
Table 23: Mean tail, VaR-95%, CVaR-95%, 50-year ED duration, 100-year ED duration values of the adjusted extreme event 
dataset based on ERA-5 data when excluding solar PV 

 Mean tail value 
(hours) 

VaR-95% 
(hours) 

CVaR-95% 
(hours) 

50-year ED 
duration 
(hours) 

100-year ED 
duration 
(hours) 

Extreme event 
risk – 10% CF 
threshold 

33.3  55.0 63.4 110 115 

Extreme event 
risk – 5% CF 
threshold 

20.0 33.0 38.6 74.6 78.8 

Extreme event 
risk – 2% CF 
threshold 

6.71 7.00 7.67 8.99 9.00 

 
As can be observed from the table, the exclusion of solar PV leads to higher risk values for the analysis 
based on ERA-5 data. An exception to this is the 2% CF threshold values. These seem to be lower for all 
measured risk values when excluding solar PV. 
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A similar approach is taken when considering the MERRA data excluding solar PV. The threshold for the 
POT method has been established at 22 hours. A visualization of the selected extreme data is presented 
in Figure 47, where red dots are considered as extreme events.  
 

 
Figure 47: Extreme event selection according to the POT method, where red dots are included as extreme events based on 
MERRA data when excluding solar PV 

The extreme dataset has been fitted by a GP distribution. The fit is presented in Figure 48. The scale 
parameter of the distribution is 13.2, whereas the shape parameter is -0.12. The simulated data follows 
the empirical data well, and similar to the ERA-5 results the model performs better when excluding solar 
PV.  
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Figure 48: Plot of the extreme ED event dataset excluding solar PV when fitted against a simulated GP distribution based on 
MERRA data 

The mean tail, VaR-95%, CVaR-95%, 50-year ED duration and 100-year ED duration values of EVA excluding 
solar PV based on ERA-5 data are presented in Table 24. 
 
Table 24: Mean tail, VaR-95%, CVaR-95%, 50-year ED duration and 100-year ED duration values of the adjusted extreme event 
dataset based on MERRA data when excluding solar PV 

 Mean tail value 
(hours) 

VaR-95% 
(hours) 

CVaR-95% 
(hours) 

50-year ED 
duration 
(hours) 

100-year ED 
duration 
(hours) 

Extreme event 
risk – 10% CF 
threshold 

32.5  53.0 61.8 97.4 100 

Extreme event 
risk – 5% CF 
threshold 

19.2 28.0 31.5 45.0 46.0 

Extreme event 
risk – 2% CF 
threshold 

9.75 10.0 10.3 10.9 11.0 

 
Similar to the results that exclude solar PV for the ERA-5 data, the results for the MERRA data seem to be 
associated with higher risk values when excluding solar PV. As was found for the ERA-5 results, an 
exception is found for the 2% CF threshold. For this threshold, the risk values are lower when excluding 
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solar PV. The 50 and 100-year ED durations are higher when excluding solar PV for both ERA-5 and MERRA 
data, except for the 2% CF threshold. This indicates that the contribution of solar PV to extreme ED event 
occurrence defined by the 2% CF threshold is proportionally larger than wind.  
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4: Discussion 
 
The aim of this study is to characterize ED events in the Netherlands. There are some aspects of the study 
that require elaboration for proper interpretation of the results. Firstly, the importance of validation is 
apparent in any study, however options for extensive sensitivity analysis based on input data are not as 
extensive as it ideally could be. The two datasets used as climate input data, ERA-5 and MERRA, are widely 
used in studies modelling wind and solar PV power. If more options for input data were available, the 
results of this study could be more refined and perhaps lead to other insights. Due to the unavailability of 
this data and the computational requirement it takes to include more input data, even if it were available, 
the validation of results is limited. However, the datasets that are included in this study are widely used 
in the field of wind and solar PV energy simulation, and in some cases are verified to be reliable in 
assessing renewable energy generation.  Namely, the input data used for this research, specifically the 
ERA-5 climate data is considered to be the most accurate available data for energy conversion and is used 
in models such as highRES-Europe (Price & Zeyringer, 2022), and CorRES (Koivisto, 2019) in the near 
future.   
 
Secondly, the results for this research are constrained by the time span of the original climate data that is 
used, with 1960-2020 for the ERA-5 data and 1980-2020 for the MERRA data. An argument could be made 
that the availability of more data could influence the found results. Since there are no larger historical 
climate data sets available for the considered region, a possibility could be to use simulated time series as 
input data. This has been done in multiple studies, for example in by utilizing a k-nearest neighbor 
algorithm to model solar PV and wind power production in Texas (Amonkar et al., 2022). Additionally, 
methods for autocorrelation-based copula models have been used to simulate realistic solar PV power 
generation time series (Munkhammar & Widén, 2017) and residual load time series (Koivisto et al., 2019). 
While these techniques could prove useful for future research on ED events in The Netherlands, they do 
not discredit the results found in this study. Furthermore, the time periods that are considered are large 
enough to capture a significant amount of ED events for all considered CF thresholds. Nonetheless, future 
research could place an emphasis on these simulation techniques to validate findings in this research and 
to model ED events in the future considering effects by climate change on power generation.  
 
Thirdly, the copper plate assumption made in this study might influence the results and their 
interpretation. The ED characterization does not account for transport constraints of power. The effect of 
this is that at certain moments in time, power generation is curtailed due to grid congestion. These 
moments could be of a sufficiently long duration that the effective capacity factor falls below the set ED 
threshold of 10%. However, it is assumed that this effect is not significant, as most curtailment takes place 
in periods where there is a high amount of VRE generation. This would therefore mainly be of importance 
in moments of time where part of the grid is unavailable due to technical issues. The effect of the copper 
plate assumption is disregarded as energy demand and residual load has not been incorporated in this 
study.  
 
Additionally, the assumptions made for the installed capacity and in particular the share of installed 
capacity per technology type are made off of historical figures and might not be representative for the 
future. With the installation of new wind farms or solar parks, the share of installed capacity per region, 
whether for provinces, bidding zones or on a national scale, changes for the different technologies. This 
impacts the amount and duration of ED events, as the results found in this study are based off of static 
values. However, irrespective of the share of installed capacity per technology for the aggregated CF or 
share of installed capacity per region, there always exists a zone in which ED events will occur. This is 
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represented in Figure 49. The dots in the figure represent hourly timesteps of solar and wind performance 
expressed in CF values. On the left section of the figure, the zone is depicted in which there will always be 
ED events, regardless of the share of installed capacity for wind and solar PV. The middle and right section 
of the figure depict situations in which there is a high share of solar PV and wind, respectively. Minimizing 
the amount of ED events within any configuration requires the minimizing of the amount of hourly 
timesteps underneath the blue line. It can be observed from the figure that regardless of the 
configuration, this critical zone depicted on the left side of the figure always exists.  
 
 

 
Figure 49: Representation of ED events in a scatterplot depicting solar PV and wind performance expressed in CF with the critical 
zone (left), a portfolio heavily dependent on solar (middle) and a portfolio heavily dependent on wind (right) 

Furthermore, the study assumes an isolated Dutch power system, without considering the possibility of 
the import of electricity through international cables from for example the UK or Germany. While true, 
there is a strong correlation between ED event occurrence in the Netherlands and Belgium (0.7), Germany 
(0.5), Denmark (0.5), and the UK (0.5) (Li et al., 2021a). Consequently, the availability of renewable power 
from neighboring countries is not guaranteed and perhaps not even likely. Nonetheless, some ED events 
can certainly be mitigated through the use of these international cables, and it would be interesting for 
follow-up research to characterize ED events across the interconnected grid of Europe. It is likely that the 
geographic smoothing effect would reduce the number of ED events, if the copper plate assumption is 
maintained.  
 
Finally, this research does not include energy demand or residual load. Including this aspect of energy 
consumption provides a clearer overview of the moments of imbalance between renewable energy 
production and consumption. While this is true, this study still presents relevant findings from the 
perspective of energy supply risks of renewable energy technologies. Follow-up research on this study 
could focus more on the energy demand perspective, especially when considering the local or regional 
perspective as was done in a study on ED occurrence in Poland by Jurasz et al. (2021) 
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5: Conclusion 
 
The aim of this study was to characterize the ED events that occur in the Netherlands. This characterization 
is considered to be useful due to the risks that are associated with the occurrence of such ED events. 
These risks are present in the form of high electricity prices, rolling blackouts or brownouts. For the simple 
energy droughts, solar PV is associated with the highest amount of ED events followed by onshore wind 
and offshore wind. Furthermore, the occurrence of ED events for the historical time periods considered 
is not equal between provinces. The provinces of Gelderland, Limburg, Noord-Brabant, Overijssel and 
Utrecht experience higher amounts of ED events than other provinces based on technologically 
compounding ED characterization. In contrast, the province of Zeeland experiences the least ED events. 
The maximum duration of such ED events is higher for characterization based on ERA-5 data than MERRA 
data, lasting 239 hours and 165 hours, respectively. These results relate to the first two sub-questions of 
the research and provide useful information for policy makers and parties involved in the development of 
new VRE installations. For these stakeholders, the potential installable capacity of VRE technologies per 
grid cell provides useful information for future projects. Additionally, the planning of new VRE capacity 
can consider the provincial differences of VRE performance to minimize ED event occurrence as a result 
of the findings of this research.  
 
The third sub-question of this research considers the spatially compounding characteristics of ED events. 
Through the construction of copula models, the dependency between ED occurrence in the two sub-
regions of the Netherlands is assessed. For the ERA-5 data, the co-occurrence between ED events in these 
N1 and N2 regions is captured better with the constructed model than with empirical data at the 5% and 
2% / multiple CF threshold ED definition. For the 10%, 5% and 2% CF thresholds the return periods of co-
occurring ED events are 6.70, 46.2 and 602 days, respectively. Similarly, for the MERRA data the 
constructed copula model captures co-occurrence better than the empirical data at the same threshold 
ED definitions as the model based on ERA-5 data. The return periods of co-occurring ED events between 
the regions at the 10%, 5% and 2% CF thresholds are 10.4 days, 94.8 days, and 7692 days, respectively. 
Finally, copula models are constructed to analyze the dependence between solar PV and wind 
technologies in terms of simple ED co-occurrence. No co-occurrences are modelled or empirically found 
for the 2% CF threshold. For the ERA-5 data, the return periods are 67.7 days and 1176 days for the 10% 
and 5% CF thresholds, respectively. Higher values are found for the MERRA data, as the return periods are 
117 days and 3030 days for the 10% and 5% CF thresholds, respectively. The results of the copula models 
are useful for the Dutch TSO, TenneT, in context of the alternative bidding zone proposal submitted that 
divides the Netherlands from a singular bidding zone to the N1 and N2 regions. The findings can be used 
to reconsider the energy infrastructure and estimate the requirement capacity for international grid 
connections for both regions more accurately. In the case of ED occurrence in only one region, zonal 
pricing can stimulate power transfer from the other region. Since the co-occurrence of ED events 
necessarily implies no possibility of compensating the lack of power generation in one region with the 
other, international grid connections are necessary for both regions separately.  
 
The final sub-question of this region considers extremely long duration ED events. Various theories have 
been applied, including introducing an upper threshold to estimate risk values more accurately for certain 
distributions. The risk values are measured in the duration of ED occurrence. For the ERA-5 data, the VaR-
95% risk value is estimated at 46 hours, 21 hours, and 19 hours for the 10%, 5% and 2% CF thresholds, 
respectively. Furthermore, the CVaR-95% risk value is estimated at 58.1, 21.6 and 19.4 hours for the 10%, 
5% and 2% CF thresholds, respectively. The risk values for the MERRA data calculations are mostly 
different at the 10% CF threshold when compared to the ERA-5 results. The VaR-95% based on MERRA 
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data is estimated at 27.2 hours, 20.0 hours, and 19.0 hours for the 10%, 5% and 2% CF thresholds, 
respectively. Additionally, the CVaR-95% is estimated at 41.6 hours, 20.4 hours, and 19.6 hours for the 
10%, 5% and 2% CF thresholds, respectively. 50-year and 100-year ED durations are found to be between 
84 and 99 hours and 91 and 107 hours, respectively. To exclude the effect of non-stationarity in the 
results, the extreme long duration ED events are also characterized excluding solar PV. The results for this 
EVA are characterized by higher risk values for the 10% and 5% CF thresholds compared to the previous 
results. For ERA-5 data, the VaR-95% results are 55 hours, 33 hours, and 7 hours for the 10%, 5% and 2% 
CF thresholds, respectively. Additionally, the CVaR-95% results are 63.4 hours, 38.6 hours, and 7.67 hours 
for the 10%, 5% and 2% CF thresholds, respectively. The MERRA results are slightly lower than ERA-5, 
however still higher than the results that included solar PV for the EVA for the 10% and 5% CF thresholds. 
The VaR-95% results for this data are 53 hours, 28 hours, and 10 hours for the 10%, 5% and 2% CF 
thresholds, respectively. The CVaR-95% results are 61.8 hours, 31.5 hours, and 10.3 hours for the 10%, 5% 
and 2% CF thresholds, respectively. Finally, 50-year and 100-year ED durations are found to be between 
97 and 110 hours and 100 and 115 hours when excluding solar PV, respectively. Similar to considering 
other extreme events for risk management such as floodings or droughts, these results provide useful 
information for grid operators in the Netherlands. Assessing the duration of extremely long duration ED 
events enables these operators to take appropriate measures to overcome these periods of time with 
alternative means of supplying power such as battery systems and back-up generators to prevent black 
outs.   
 
To conclude, this study has characterized the occurrence of ED events in various domains. Periods of low 
power generation based on technologies in isolation, as well as technologically and spatially compounding 
events are analyzed. Finally, the risk of extremely long duration ED events is analyzed. Future research of 
this topic should focus on investigating ED events based on residual load instead of only power supply. 
Furthermore, valuable insights could be gained from analyzing ED events in the context of an 
interconnected grid in Europe to assess the influence of international power transfer capacity. Finally, the 
incorporation of future power generation through simulation techniques such as autocorrelation and k-
nearest neighbor could be used to reflect on the findings in this study.  
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Appendix 
 

A: Spatial analysis 
 
The spatial analysis follows the methodology of Hu et al. (2019) and Jung & Schindler (2023). The 
respective areas of the Netherlands, both onshore and the EEZ, are assessed based on the possibility of 
VRE technology installation.  The modelling software used for the spatial analysis is ArcGIS Pro. Firstly, the 
selected available area is filtered through geographical constraints, which differ by technology. The 
geographical constraints can be found in Table 25.  
 
Table 25: Geographical constraints by VRE technology 

Constraint for 
each VRE 
technology 

Data sources Resolution 
of data 
(NA in 
case of 
shapefile) 

Onshore wind Offshore wind Utility-PV Rooftop PV 

Territory (km2) (CBS, 2023) 
 

NA Administrative 
terrestrial area 

Economical exclusive 
zone 

Administrative 
terrestrial 
area 

Administrative 
terrestrial 
area 

Distance to 
shore (km) 

NA NA NA 10-185 
A minimum distance to 
shore at ~10 km is set 
to restrict visibility and 
environmental impacts 
of offshore wind 
farms. The maximum 
distance to shore is 
limited to 185 km for 
cost consideration 
(Eurek et al., 2007) 

NA NA 

Depth (m) Institute (2019) 0.004° 
(0.25 
arcmin) 

NA ≤ 60 
Only offshore wind 
turbines with bottom 
fixed foundations (no 
floating) are 
considered. They 
usually suit water 
depth below 60 m (Hu 
et al., 2019) 

NA NA 

Vessel identity 
and location 
information 

Halpern et al. 
(2019) 

0.1°  
(6 arcmin) 

NA ≤1500. If the grid cell 
includes more than 
1500 vessel locations, 
it is considered as 
vessel-intensive areas 
to be excluded from 
the available area for 
offshore wind farms. 

NA NA 

Oil rigs  (National Centers 
for Environmental 
Information, 
2023) 

0.008° 
(0.5 
arcmin) 

NA Fully exclusion NA NA 

Submarine 
communications 
cable 

(Mahlknecht, 
2023) 

NA NA 1 km2 buffering from 
both sides of the cable 
(Bosch et al., 2018) 

NA NA 
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Distance to port (SEARATES, 2023) NA NA ≤ 80 km to the 
nearest port (Jung & 
Schindler, 2023) 

NA NA 

Protected areas 
(km2) 

(WDPA, 2023) NA Terrestrial protected 
areas 

Terrestrial & maritime 
protected areas  

Terrestrial 
protected 
areas 

Terrestrial 
protected 
areas 

Permafrost (%) (S. Gruber, 2012) 0.008° 
 (0.5 
arcmin) 

≤0.1 
 

NA ≤0.01 ≤0.01 

Elevation (m) (Science, 1996) 0.05°  
(30 
arcmin) 

<=2500 
Following Eurek et al. 
(2017), elevation 
above 2500 m is 
considered as too 
high for onshore wind 
development due to 
substantial reduction 
of wind power 
density associated air 
density losses.  

NA NA NA 

Slope (degree) Calculated based 
on Elevation 

0.05°  
(30 
arcmin) 

<11.31 (or 20%) 
(Eurek et al., 2017) 

NA <4 (0r 6.99%) 
(Sun et al., 
2013) 

NA 

Land cover  (Copernicus, 
2023) 

0.003° 
(1.67 
arcmin) 
for 
GlobCover 
2009 V2.3; 
100m for 
CLC2018 

Depending on 
suitability factor per 
land cover type   

NA Depending on 
suitability 
factor per 
land cover 
type 

Depending on 
suitable 
rooftop areas 
in built-up 
area 

 
After the geographical constraints have been applied, the CLC land cover classification system is used to 
determine the potential suitable area within the available area. The available area is multiplied by a 
predetermined factor, based on the cover classification. The land cover classification can be found in Table 
26. 
  
Table 26: Land cover classification (Copernicus, 2018)  

Main 
Clas

s 

1st Sub- 2nd CLC 
Cod

e 

Onshor
e wind 

Offshor
e wind 

Utility
- PV 

Rooftop PV 

Class Sub-Class 
   

Tilte
d 
roof 

Flat 
roof 

A
rt

if
ic

ia
l s

u
rf

ac
e

s 

Urban fabric Continuous urban fabric 111 0 0 0 0.119 0.00
7 

Discontinuous urban fabric 112 0 0 0 0.067 0.00
4 

Industrial, 
commercial 
and transport 
units 

Industrial or commercial units 121 0 0 0 0.041 0.04
5 

Road and rail networks and associated land 122 0 0 0 0 0 

Port areas 123 0 0 0 0 0 

Airports 124 0 0 0 0 0 

Mine, dump 
and 
construction 
sites 

Mineral extraction sites 131 0 0 0 0 0 

Dump sites 132 0 0 0 0 0 

Construction sites 133 0 0 0 0 0 

Green urban areas 141 0 0 0 0 0 
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Artificial, non-
agricultural 
vegetated 
areas 

Sport and leisure facilities 142 0 0 0 0 0 

Arable land Non-irrigated arable land 211 0.2 0 0.01 0 0 

Permanently irrigated land 212 0 0 0 0 0 

Rice fields 213 0 0 0 0 0 

Permanent 
crops 

Vineyards 221 0.1 0 0.01 0 0 

Fruit trees and berry plantations 222 0.1 0 0.01 0 0 

Olive groves 223 0.1 0 0.01 0 0 

Pastures Pastures 231 0.2 0 0.01 0 0 

Heterogeneou
s agricultural 
areas 

Annual crops associated with permanent crops 241 0.2 0 0.01 0 0 

Complex cultivation patterns 242 0.2 0 0.01 0 0 

Agricultural land with significant natural 
vegetation 

243 0.2 0 0.01 0 0 

Agro-forestry areas 244 0.1 0 0 0 0 

Fo
re

st
 a

n
d

 s
em

i n
at

u
ra

l a
re

as
 

Forests Broad-leaved forest 311 0 0 0 0 0 

Coniferous forest 312 0 0 0 0 0 

Mixed forest 313 0 0 0 0 0 

Scrub and/or 
herbaceous 
vegetation 
associations 

Natural grasslands 321 0.2 0 0.01 0 0 

Moors and heathland 322 0.1 0 0.01 0 0 

Sclerophyllous vegetation 323 0.1 0 0.01 0 0 

Transitional woodland-shrub 324 0 0 0 0 0 

Open spaces 
with little or 
no vegetation 

Beaches, dunes, sands 331 0 0 0 0 0 

Bare rocks 332 0 0 0 0 0 

Sparsely vegetated areas 333 0.5 0 0.05 0 0 

Burnt areas 334 0 0 0 0 0 

Glaciers and perpetual snow 335 0 0 0 0 0 

W
e

tl
an

d
s 

Inland 
wetlands 

Inland marshes 411 0 0 0 0 0 

Peat bogs 412 0 0 0 0 0 

Maritime 
wetlands 

Salt marshes 421 0 0 0 0 0 

Salines 422 0 0 0 0 0 

Intertidal flats 423 0 0 0 0 0 

W
at

e
r 

b
o

d
ie

s 

Inland waters Water courses 511 0 0 0 0 0 

Water bodies 512 0 0 0 0 0 

Marine waters Coastal lagoons 521 0 0 0 0 0 

Estuaries 522 0 0 0 0 0 

Sea and ocean 523 0 0.4 0 0 0 

 
The suitable area per grid cell is retrieved after applying the classification to the available area per grid 
cell. This suitable area is converted into a potential of installable capacity for solar PV or wind turbines 
through array spacing. For wind, the area allocated for a single wind turbine is determined to be six 
diameters by six diameters, based on the rotor diameter of the considered wind turbine. For solar PV, the 
area considered is the surface area of the solar panel multiplied with a factor to prevent self-shading. As 
mentioned in the methodology, this value is in the range of 1.40 and differs per grid cell. 
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B: Offshore wind turbine power curves 
 
The power curves of the onshore turbine types are presented in Table 27 (The Wind Power: Wind 
Energy Market Intelligence, 2023). 
 
Table 27: Power curves for the different onshore turbine types that are considered in the energy conversion  

 
Vestas V105 – 3.3 MW Vestas V117 – 3.3 MW Vestas V126 – 3.3 MW 

Wind speed (m/s) Power (kW) Power (kW) Power (kW) 

0 0 0 0 

0.5 0 0 0 

1 0 0 0 

1.5 0 0 0 

2 0 0 0 

2.5 0 10 12 

3 0 24 30 

3.5 40 82 102 

4 92 147 179 

4.5 155 235 286 

5 229 327 397 

5.5 330 461 553 

6 441 597 711 

6.5 617 788 931 

7 799 978 1150 

7.5 989 1230 1437 

8 1178 1482 1723 

8.5 1428 1798 2079 

9 1677 2114 2434 

9.5 1995 2459 2780 

10 2313 2803 3090 

10.5 2608 3060 3235 

11 2903 3216 3290 

11.5 3100 3275 3298 

12 3227 3297 3300 

12.5 3275 3299 3300 

13 3281 3300 3300 

13.5 3295 3300 3300 

14 3300 3300 3300 
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14.5 3300 3300 3300 

15 3300 3300 3300 

15.5 3300 3300 3300 

16 3300 3300 3300 

16.5 3300 3300 3300 

17 3300 3300 3300 

17.5 3300 3300 3300 

18 3300 3300 3300 

18.5 3300 3300 3300 

19 3300 3300 3300 

19.5 3300 3300 3300 

20 3300 3300 3300 

20.5 3300 3300 3300 

21 3300 3300 3300 

21.5 3300 3300 3300 

22 3300 3300 3300 

22.5 3300 3300 3300 

23 3300 3300 3300 

23.5 3300 3300 3300 

24 3300 3300 3300 

24.5 3300 3300 3300 

25 3300 3300 3300 

25.5 0 0 0 

26 0 0 0 

26.5 0 0 0 

27 0 0 0 

27.5 0 0 0 

28 0 0 0 

28.5 0 0 0 

29 0 0 0 

29.5 0 0 0 

30 0 0 0 
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The power curves of the offshore turbine types are presented in Table 28 (The Wind Power: Wind 
Energy Market Intelligence, 2023). 
 
Table 28: Power curves for the different offshore turbine types that are considered in the energy conversion 

 
Vestas 
V164 9.5 
MW  

Siemens 
Gamesa 
8.0 

Siemens 
SWT 4.0 

Vestas 
V112 

Vestas 
V80 

Vestas 
V90 

Wind speed (m/s) Power 
(kW) 

Power 
(kW) 

Power 
(kW) 

Power 
(kW) 

Power 
(kW) 

Power 
(kW) 

0 0 0 0 0 0 0 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

1.5 0 0 0 0 0 0 

2 0 0 0 0 0 0 

2.5 0 0 80 0 0 0 

3 0 0 193 0 0 0 

3.5 115 48 300 36 35 38 

4 249 169 479 76 70 77 

4.5 430 350 705 134 117 133 

5 613 593 916 192 165 190 

5.5 900 930 1120 269 225 271 

6 1226 1307 1329 346 285 353 

6.5 1600 1737 1555 465 372 467 

7 2030 2186 1788 584 459 581 

7.5 2570 2730 2040 737 580 733 

8 3123 3278 2300 890 701 886 

8.5 3784 3980 2590 1098 832 1079 

9 4444 4687 2872 1306 964 1272 

9.5 5170 5400 3170 1514 1127 1484 

10 5900 6112 3453 1722 1289 1696 

10.5 6600 6690 3700 1942 1428 1901 

11 7299 7249 3869 2162 1567 2106 

11.5 7960 7570 3970 2352 1678 2298 

12 8601 7795 4000 2542 1788 2489 

12.5 9080 7895 4000 2701 1865 2643 

13 9272 7947 4000 2860 1941 2797 

13.5 9410 7990 4000 2930 1966 2874 

14 9500 8000 4000 2970 1990 2951 

14.5 9500 8000 4000 2983 2000 2972 

15 9500 8000 4000 2995 2000 2993 
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15.5 9500 8000 4000 3000 2000 2996 

16 9500 8000 4000 3000 2000 2999 

16.5 9500 8000 4000 3000 2000 3000 

17 9500 8000 4000 3000 2000 3000 

17.5 9500 8000 4000 3000 2000 3000 

18 9500 8000 4000 3000 2000 3000 

18.5 9500 8000 4000 3000 2000 3000 

19 9500 8000 4000 3000 2000 3000 

19.5 9500 8000 4000 3000 2000 3000 

20 9500 8000 4000 3000 2000 3000 

20.5 9500 8000 4000 3000 2000 3000 

21 9500 8000 4000 3000 2000 3000 

21.5 9500 8000 4000 3000 2000 3000 

22 9500 8000 4000 3000 2000 3000 

22.5 9500 8000 4000 3000 2000 3000 

23 9500 8000 4000 3000 2000 3000 

23.5 9500 8000 4000 3000 2000 3000 

24 9500 8000 4000 3000 2000 3000 

24.5 9500 8000 4000 3000 2000 3000 

25 9500 8000 4000 3000 2000 3000 

25.5 0 0 0 0 0 0 

26 0 0 0 0 0 0 

26.5 0 0 0 0 0 0 

27 0 0 0 0 0 0 

27.5 0 0 0 0 0 0 

28 0 0 0 0 0 0 

28.5 0 0 0 0 0 0 

29 0 0 0 0 0 0 

29.5 0 0 0 0 0 0 

30 0 0 0 0 0 0 
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C: Visual comparison of the Frank copula and t copula fitting for aggregated CF in the N1 

and N2 region based on MERRA data 
 
The visual comparison between the Frank copula and t copula for the MERRA based aggregated CF for 
the N1 and N2 region is presented in Figure 50. 
 

 
Figure 50: Visual comparison of the Frank copula and t copula of the CF values for the N1 and N2 region based on MERRA data 
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D: Conventional methodology for calculating CVaR for exponential distributions 
 
The calculation of the CVaR for the exponential distribution is based on the study by Norton et al. (2021) 
and is presented in ( 20 ). 
 

𝐶𝑉𝑎𝑅𝑝 =  
− ln(1 − 𝑝) + 1

𝜆
 

( 20 ) 
 
Where 𝜆 is the rate parameter, which is the inverse of the scale parameter β. 


