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1  |  INTRODUC TION

Commercial shipping transports roughly 80% of international trade 
by volume and 70% by value via 100,000 vessels making millions 
of voyages across thousands of ports each year (UNCTAD, 2021). 
These voyages comprise a complex network that connects all ports 
on Earth and redistributes aquatic species among them (Carlton 
& Geller, 1993). This ship- borne spread of nonindigenous species 
(NIS) potentially blurs biogeographical boundaries, harms coastal 
ecosystems (Bax et al., 2003; Carlton, 1996) and causes billions of 
dollars in damage each year (Cuthbert et al., 2021). Despite decades 
of research to understand ship- borne species spread, especially via 
ballast water discharge, several uncertainties remain in our under-
standing of coastal biodiversity and the relative importance of biotic 
and abiotic drivers of species transport and establishment success 
(e.g., Bailey, 2015; Lodge, 1993; Sax et al., 2007). Filling these gaps 
would enable more efficient use of NIS prevention and management 
resources and ultimately mitigate the harms of this growing global 
phenomenon.

Ship- borne species spread is a complex process wherein each 
voyage potentially transports a diversity of organisms, from bacteria 
to fish, to new regions where they may or may not establish, de-
pending on the number and state of individuals introduced, environ-
mental conditions, biotic interactions, mitigation efforts or simply 
chance (Ruiz et al., 2000; Wonham et al., 2013). Further, because 
individual vessels visit multiple ports, predicting ship- borne species 
spread may require considering emergent network properties such 
as higher- order pathways and indirect stepping- stone connections 
(Apte et al., 2000; Saebi, Xu, Grey, et al., 2020).

The growing availability of data describing global shipping 
and environmental characteristics enables the modelling of ship- 
borne species spread at global scales (Drake & Lodge, 2004; Keller 
et al., 2011; Saebi, Xu, Grey, et al., 2020; Seebens et al., 2013). These 
models offer the potential to predict global patterns of species 
spread and invasion hotspots, and to evaluate alternative mitiga-
tion strategies at relevant regional scales (Wan et al., 2021; Wang 
et al., 2020, 2022; Wang, Saebi, et al., 2021; Wang, Silberman, & 
Corbett, 2021). However, the lack of standardized biodiversity data 
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Abstract
The spread of nonindigenous species by shipping is a large and growing global problem 
that harms coastal ecosystems and economies and may blur coastal biogeographical 
patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding 
with dissimilarity regression to test the hypothesis that ship- borne species spread 
homogenizes port communities. We first collected and metabarcoded water samples 
from ports in Europe, Asia, Australia and the Americas. We then calculated commu-
nity dissimilarities between port pairs and tested for effects of environmental dis-
similarity, biogeographical region and four alternative measures of ship- borne species 
transport risk. We predicted that higher shipping between ports would decrease 
community dissimilarity, that the effect of shipping would be small compared to that 
of environment dissimilarity and shared biogeography, and that more complex ship-
ping risk metrics (which account for ballast water and stepping- stone spread) would 
perform better. Consistent with our hypotheses, community dissimilarities increased 
significantly with environmental dissimilarity and, to a lesser extent, decreased with 
ship- borne species transport risks, particularly if the ports had similar environments 
and stepping- stone risks were considered. Unexpectedly, we found no clear effect 
of shared biogeography, and that risk metrics incorporating estimates of ballast dis-
charge did not offer more explanatory power than simpler traffic- based risks. Overall, 
we found that shipping homogenizes eukaryotic communities between ports in pre-
dictable ways, which could inform improvements in invasive species policy and man-
agement. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity 
regression for disentangling the drivers of large- scale biodiversity patterns. We con-
clude by outlining logistical considerations and recommendations for future studies 
using this approach.
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at accompanying large scales (Bailey, 2015) has limited testing and 
refinement of models of global ship- borne species spread, leaving 
their accuracy and useful unknown.

Environmental DNA (eDNA) metabarcoding can help close 
this biodiversity data gap because it provides robust estimates of 
community dissimilarity between sites (Coutant et al., 2021; Dully 
et al., 2021; Grey et al., 2018), and has been successfully used to 
survey for known NIS in commercial ships and ports, characterize 
community compositions, and infer biodiversity patterns within 
and between ballast water and ports (Borrell et al., 2017; Darling 
et al., 2020; Deiner et al., 2017; Grey et al., 2018; Koziol et al., 2019; 
Pearman et al., 2021; Rey et al., 2019).

Here we capitalize on eDNA metabarcoding's robust β- diversity 
estimates to test the hypothesis that shipping homogenizes port 
communities and to evaluate alternative models of global ship- 
borne species spread. Our main hypothesis was that all else being 
equal, ship- borne spread of species lowers community dissimilar-
ity between ports because successful spread results in more spe-
cies shared between ports. However, we expected that two other 
factors, environmental dissimilarity and biogeography, would have 
relatively larger effects than shipping on community dissimilarity be-
tween ports at the global scale because they have been influencing 
coastal biodiversity patterns far longer than shipping. Specifically, 
we hypothesized that environmental dissimilarity between ports in-
creases community dissimilarity, as ports with different temperature 
and salinity environments (Keller et al., 2011) will harbour species 

with different physiological requirements, and that ports in the same 
biogeographical region (Costello et al., 2017) will have lower com-
munity dissimilarities due to their shared evolutionary history. As 
its dependent variable, our approach relies on Jaccard and Unifrac 
community dissimilarity metrics that can be calculated from eDNA 
sequence data alone. By using these metrics, we avoid the need to 
identify taxa and their indigenous/nonindigenous status at each port, 
which is a formidable barrier limiting traditional methods. Similar 
dissimilarity regression approaches have been used to understand 
and predict β- diversity across sparsely sampled landscapes (Ferrier 
et al., 2002; Mokany et al., 2022; Tuomisto & Ruokolainen, 2006), in-
cluding NIS applications (Capinha et al., 2015), but to our knowledge 
have not yet been widely applied to aquatic metabarcoding studies 
(but see Clarke & Deagle, 2020).

We tested our predictions about community dissimilarities of 
port pairs using a regression model with shipping spread risk, abiotic 
environmental dissimilarity and biogeographical region as indepen-
dent variables. Since previous research leaves unclear which ship-
ping risk metrics are most informative for management and policy, 
we compared models that used four different ways of estimating 
species transport risk by ships between ports. To calculate these 
different shipping risk metrics, we created network models where 
ports are nodes which are connected to each other by edges that 
represent the relative risk of species transport along a particular 
shipping route (Figure 1). Specifically, we considered two methods 
for estimating the species transport risk for each voyage (either as a 

F I G U R E  1  Diagram outlining the four ship- borne species transport scenarios tested in this study. In the diagram, hypothetical ports i, j, 
x and y are nodes (circles) which are connected to each other by edges (lines) that we define as undirected species transport risks between 
ports (route risks). Initially, we estimated edges as the sum of all voyages along that route (e.g., each voyage has a uniform risk) (a) or as the 
sum of voyage risks, each of which is calculated as a function of ballast water discharge volume (which is a function of ship type and size) and 
the likelihood of species survival over the voyage length (b). With these voyage risks, we then estimate route risks (transport risks between 
two ports) as either a sum of direct voyage risks only (c) or as stepping- stone risks where species could be transported through intermediary 
ports (d, dotted black lines represented indirect stepping- stone risks between ports i and j). This resulted in four alternative models of 
ship- born species spread between routes that we named (1) Direct traffic risk, (2) Direct ballast risk, (3) Stepping- stone traffic risk and (4) 
Stepping- stone ballast risk. See Methods section for more details on transport risk estimation. Ship icons downloaded from https://publi 
cdoma invec tors.org/en/free- clipa rt/Ship- silho uette/ 43320.html under CC0 1.0 Universal (CC0 1.0) Public Domain Dedication.

https://publicdomainvectors.org/en/free-clipart/Ship-silhouette/43320.html
https://publicdomainvectors.org/en/free-clipart/Ship-silhouette/43320.html
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uniform value among all voyages or based on ballast discharge and 
species survival estimates), and then we integrate each set of voyage 
risk estimates into route risks, which considered only direct connec-
tions between two ports or considered direct plus indirect con-
nections between two ports. This process yielded four alternative 
models for ship- borne species spread which we named direct traffic 
risk, direct ballast risk, stepping- stone traffic risk and stepping- stone 
ballast risk (Figure 1).

By evaluating these four alternative scenarios of route trans-
port risks with observed biodiversity data, we aim to determine 
how much complexity is necessary to capture the dynamics of ship- 
borne species spread at the global scale. At the scale of individual 
voyages between ports, studies have documented the importance 
of ballast discharge and transport duration to successful NIS trans-
port (Seebens et al., 2013). However, when aggregating these risks 
across all voyages along a route, it remains unclear how much pre-
dictive value these complex metrics add over voyage number alone. 
For route transport risks, most scenarios consider only direct risks 
of a ship travelling from port to port (Seebens et al., 2013; Saebi, Xu, 
Grey, et al., 2020). However, here we also consider indirect stepping- 
stone NIS transport, which has been documented at regional scales 
(Apte et al., 2000). Stepping- stone spread occurs when a species is 
introduced from Port A to Port B by one ship, establishes in Port B 
and subsequently is transported by another ship from Port B to Port 
C. To our knowledge, this is the first study to directly evaluate the
importance of global species transport between ports even when
ship traffic does not directly connect the ports.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

We analysed five eDNA samples from or adjacent to commercial 
docks in each of 22 ports across seven biogeographical realms as 
defined in Costello et al. (2017) including Australia, Southeast Asia, 
Europe and the Americas. Although the number of unique amplicon 
sequence variants (ASVs) detected continued to increase beyond 
five samples (Figure S1), Jaccard (Figure S2) and Unifrac (Figure S3) 
dissimilarities between ports were insensitive to sample numbers 
greater than five. To reduce diurnal and tidal variation, all samples 
were collected during daylight hours at slack hightide after at least 
a 12- h period without precipitation (Table S1). Following the sam-
pling protocol for commercial ports established by Grey et al. (2018), 
we collected 250 mL surface water for each sample in a sterile 
wide- mouth bottle that was stored at 4°C. Within 12 h of sample 
collection, water was filtered through a 0.45- μm cellulose- nitrate 
membrane, immediately immersed in 700 μL Longmire's buffer, and 
stored at room temperature for up to 2 weeks and then at −20°C 
until extraction. If 250 mL could not be filtered through a single 
membrane, as was the case at some ports with high turbidity and 
algae, then additional membranes were used and stored in the same 
microtube. For each site, a collection “blank” sample was taken by 

filtering 250 mL of bottled or tap water, which was subsequently 
treated identically to other samples.

2.2  |  eDNA extraction

DNA extractions for the samples and collection blanks taken at the 
ports of Adelaide, Chicago and Singapore were done using phenol- 
chloroform in a dedicated polymerase chain reaction (PCR)- free 
laboratory at the University of Notre Dame as described by Grey 
et al. (2018). Total DNA from all other samples and collection blanks 
were extracted in an eDNA facility at Cornell University (UV light for 
8 h day−1, HEPA filtered air under positive pressure, personnel wear-
ing full body suits, face- shields and breathing masks) using a Blood 
and Tissue DNA extraction kit (Qiagen) protocol optimized for ex-
tracting eDNA from cellulose nitrate filters preserved in Longmire's 
buffer (detailed in Spens et al., 2017, Figure 1). We tested for the 
impact of these two different methods on our results in two ways 
(see Dissimilarity regression modelling section below).

2.3  |  Library preparation and sequencing

18S rRNA amplicon libraries were prepared using two primers tar-
geting the eukaryotic V4 region (18S_574F and 18S_952R) that were 
previously evaluated by Hadziavdic et al. (2014). For 19 ports (all but 
Adelaide, Chicago and Singapore), we followed a single- step am-
plification approach using a single set of primers including Illumina 
adapters and a 12- bp barcode unique to each sample (Figure S4). 
Three- fold PCR amplifications were carried out for all samples to 
account for amplification bias. Each reaction of 25 μL total volume 
contained 2 μL template DNA, 1.5 mm MgCl2, 1× Colourless GoTaq 
Flexi Buffer (Promega), 0.25 mm of each dNTP, 0.2 μm of forward 
and reverse primer and 1.25 units GoTaq Hot Start DNA Polymerase 
(Promega). After initial denaturation at 95°C for 2 min, we performed 
40 amplification cycles (95°C for 45 s, 49°C for 1 min, 72°C for 1 min) 
and a final elongation at 72°C for 5 min. Amplicon triplicates were 
pooled, visualized on 2% agarose gels and then purified using Mag- 
Bind Total Pure NGS beads (Omega Bio- Tek). DNA concentration for 
all samples was quantified using PicoGreen reagent (Thermo Fisher 
Scientific) and a Spectramax M2 multi- detection microplate reader 
(Molecular Devices). Libraries were prepared by combining samples 
in equimolar ratios, and pair- sequenced (2× 250 bp) on an Illumina 
MiSeq platform.

18S rRNA amplicon libraries for the ports of Adelaide, Chicago 
and Singapore were generated using a two- step protocol described 
in Grey et al. (2018). The first PCR amplified target fragments from 
the eDNA samples using the Hadziavdic 18S_574F and 18S_952R 
primers with Illumina Nextera adaptor overhangs in 50 μL PCRs 
consisting of 27 μL H2O, 10 μL 5× HiFi buffer, 1.5 μL 50 mm MgCl2, 
1 μL 10 mm dNTPs, 2.5 μL of 10 μm primer- F, 2.5 μL of 10 μm prim-
er- R, 0.5 μL Taq DNA Polymerase (iProof, Bio- Rad) and 5 μL DNA. 
The thermocycling protocol for this first PCR started with an initial 
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denaturation at 98°C for 2 min, followed by 25 cycles of denatur-
ation at 98°C for 10 s, annealing at 55°C for 20 s, extension at 72°C 
for 30 s and a final extension at 72°C for 10 min. Amplicons were 
run on a 2% agarose gel, band cut, and cleaned using a QIAquick 
Gel Extraction Kit (Qiagen) and eluted with 25 μL EB. The second 
PCR attached the remaining adaptor sequence and library- specific 
i5/i7 indices to the amplicons. This 50- μl PCR consisted of 22 μL 
sterile water, 10 μL 5× HF buffer, 1.5 μL 50 mm MgCl2, 1 μL 10 mm 
dNTPs, 5 μL of 10 μm Nextera ID (forward primer), 5 μL of 10 μm 
Nextera ID (reverse primer), 0.5 μL iProof Taq (Bio- Rad) and 5 μL 
DNA template (from band- cut and cleaned first PCR). Thermocycling 
consisted of initial denaturation at 98°C for 2 min, and eight cycles 
of denaturation at 98°C for 10 s, followed by annealing at 60°C for 
20 s. Amplicons were sized- selected with AMPure bead clean- up at 
a bead to volume ratio of 0.8:1. DNA concentrations were estimated 
with a Qubit HS Assay Kit (Life Technologies). Libraries were pre-
pared by combining samples in equimolar ratios and paired- end se-
quenced (2 × 300 bp) on an Illumina MiSeq platform.

2.4  |  Negative and positive controls

Alongside port sample DNA libraries, we generated libraries for 
three different types of negative controls (collection, extraction and 
amplification controls) and three positive controls: one containing 
genomic DNA of the freshwater fish Danio rerio, and two equimolar 
mixtures of either fiur freshwater fishes (Notropis topeka, Noturus tay-
lori, Umbra limi, Thoburnia atripinnis) or six marine fishes (Pseudanthias 
dispar, Ecsenius bicolor, Macropharyngodon negrosensis, Centropyge bis-
pinosa, Salarius fasciatus, Amphiprion ocellary; Figure S5). Reference 
sequences for all species listed above were generated using genomic 
DNA and Sanger sequencing on an ABI 3730xl. Except for M. negro-
sensis (the sequencing of which failed), we used reference sequences 
from these species to inform taxonomic assignment.

2.5  |  Sequence data processing

Amplicon sequence variants were generated from combined 18 S 
amplicon sequence data with qiime version 22019- 04 (Bolyen 
et al., 2019), after using bbtools version 37.44 (Bushnell, 2014) to in-
clude Adelaide and Singapore sequence data from Grey et al. (2018). 
To do so, reads were initially imported, paired and filtered using 
qiime's import functions with default parameters. Read pairs were 
then subjected to an additional round of adapter trimming using 
cutadapt version 1.18 (Martin, 2011), denoised using dada2 version 
1.6.0 (Callahan et al., 2016) and an Expected Error value of 9 (Edgar 
& Flyvbjerg, 2015). Prior to merging, reads were trimmed to 220 
nucleotides. The resulting unique ASVs were filtered using qiime's 
taxonomic classifier Vsearch (Rognes et al., 2016) to obtain eukary-
otic ASVs as follows. We appended our positive control reference 
sequences to the qiime release of the SILVA database version 132 
(Pruesse et al., 2007), and we then ran an in silico experiment to 

optimize the assignment settings of Vsearch. Specifically, we opti-
mized the Vsearch classifier to unequivocally identify the positive 
control species and to have maximum correspondence with taxon-
omy assignments obtained using blast+ version 2.8.- alpha (Camacho 
et al., 2009) and the March 2018 NCBI nt/nr database (Benson 
et al., 2018). We then used the optimized Vsearch classifier and the 
SILVA database version 132 to identify and retain all eukaryotic ASVs 
(- p- per- identity = 0.875, - p- min- consensus = 0.5, - p- query- cov = 0.9).

To account for contamination in the field and laboratory, we 
inspected and subtracted the small number of ASVs present in the 
negative controls (see blanks indicated in Figure S5d) from all subse-
quent datasets. Sequence run read outputs and read counts at each 
bioinformatics stage are shown in Figure S5.

We generated two data sets based on different criteria for read 
depth based on ASV accumulation by read curves (Figure S6). One 
data set included 19 ports (“deep rarefaction”; without the ports of 
Chicago, Nanaimo and Vancouver), and one contained 21 ports (“shal-
low rarefaction”; without the port of Chicago). Regression modelling 
results between these two data sets were comparable, so we present 
the results from the deeply rarefied data set in the main text and pro-
vide shallowly rarefied data set results in the Supporting Information.

2.6  |  Estimation of biological dissimilarity between 
port pairs

For both deep and shallow rarefaction data sets, we calculated 
two unweighted β diversity metrics between port pairs from 18 S 
ASVs: Jaccard (Jaccard, 1912) and Unifrac dissimilarity (Lozupone 
et al., 2011). While the Jaccard metric measures the total fraction 
of unshared ASVs, the Unifrac metric estimates the fraction of total 
unshared branch lengths when the port pairs are placed on a given 
phylogenetic tree. Thus, different port pairs with the same frac-
tion of unshared ASVs will always have the same Jaccard dissimi-
larity. However, their Unifrac dissimilarity will differ depending on 
the overall relatedness of the ASVs. The less related the unshared 
ASVs between ports are, the bigger the fraction of unshared branch 
lengths is, and larger the Unifrac dissimilarity. Ship- borne species 
spread can, therefore, have a different impact on these two metrics. 
For example, introducing a single species from one port to another 
will probably have a limited effect on the Jaccard dissimilarity be-
tween them, but it might have a relatively large impact in the Unifrac 
dissimilarity if the introduced species is phylogenetically distinct 
from existing species in the recipient port.

We calculated Jaccard dissimilarities between all port pairs using 
the vegdist function in the vegan 2.6- 4 package (Oksanen et al., 2022) 
after pooling ASV read counts from five samples per port. We cal-
culated Unifrac dissimilarities for all sample pairs using qiime version 
22019- 04 and then averaged five Unifrac sample- pairwise dissimi-
larities per port to obtain the average port- pairwise dissimilarities. 
This average pairwise dissimilarity approach follows the recom-
mendation of Marion et al. (2017) to reduce bias when comparing 
communities of difference sizes. To calculate Unifrac dissimilarities, 
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we first obtained reference trees by aligning eukaryote ASVs using 
mafft version 7.3922018/3/3 (Katoh & Standley, 2013) with auto-
matic algorithm and parameter selection. This initial alignment was 
then post- processed to retain only consenting columns supported 
by at least 50% of ASVs and allowing only columns with <10% gaps 
across the entire alignment, resulting in alignments 252 bp in length 
(original alignments were ~380 bp, Figure S4). Finally, reference trees 
were obtained using fasttree 2.1.8 (Price et al., 2010) with default 
settings, and unweighted Unifrac dissimilarities were calculated be-
tween all port pairs. As expected, Unifrac and Jaccard dissimilarities 
were positively correlated, with Unifrac estimates having a wider 
range than the Jaccard estimates (Figure S7, R2 = .622, p < .001).

2.7  |  Estimates of ship- borne species 
transport risks

We used 8 years of shipping data, spanning 1997– 2018 and obtained 
from Lloyd's List Intelligence, an Informa Group Company (LLI), to cre-
ate two higher- order networks from each of which we derived two 
estimates of species transport risk between ports (Figure 1). The two 
networks differed only in how they estimated initial edge weights: 
one where the estimated edge weights were based solely on the num-
ber of voyages between two ports (“traffic- risk”) and the other where 
edge weights were estimated with a function that weighted each 
voyage by its ballast transport risk (“ballast- risk”) (Figure 1). Ballast 
transport risks were estimated for each voyage v between ports i and 
j using a formula introduced by Seebens et al. (2013):

where Dij
v is the amount of ballast water discharged at the destination

port, λ is the species introduction potential per volume of discharge, μ 
is the daily mortality rate of species in ballast water and Δ tij

v voyage 
duration in days. Following Xu et al. (2014), the amount of ballast water 
transported between ports Dij

v is estimated based on ship type and
ship gross weight tonnage, μ = 0.02, and λ = 3.22 × 10−6.

Since many ships do not discharge water at their first port of 
call, we created higher- order networks for each model to account for 
this non- Markovian transport process prior to estimating final route 
transport risks. For both traffic and ballast transport risks, signifi-
cantly repeated multiport voyages, called higher- order dependen-
cies, were determined using the algorithm developed by Saebi, Xu, 
Kaplan, et al. (2020). For each higher- order dependency identified, 
we then calculated the total risk of direct species transport along 
the path and then used the algorithm of Xu et al. (2016) to create the 
higher- order network of species transport. Since several nodes in 
this higher- order network can map to a single physical port, we then 
built the physical adjacency matrix in which each edge weight (spe-
cies transport risk) is calculated by averaging over all higher- order 

network edges that correspond to that pair of ports. Finally, we 
normalized the edge weights by dividing each edge weight by the 
maximum value in the network to obtain the final direct route spe-
cies transport risks for networks built using traffic- risks or ballast- 
risk edge weights (Figure 1). While these estimates of direct traffic 
and direct ballast risks account for higher- order species transport 
between two ports connected by shipping (which are based on re-
peated ship movements), they do not include stepping- stone species 
transport risks (between ports that are not directly connected by 
ship traffic).

To test for potentially significant effects of stepping- stone risk 
on patterns of global ship- borne species spread, we calculated the 
stepping- stone risk as the Jaccard similarity score for each pair of 
ports. This score is equal to the number of shared directly connected 
ports normalized by the union of directly connected ports:

where Ni and Nj are the set of directly connected ports for ports i  and 
j, respectively.

2.8  |  Dissimilarity regression modelling

A critical first step in understanding the role of shipping traffic in the 
homogenization of marine biota is the selection of an appropriate 
set of models covering reasonable hypotheses. Marine species dis-
tributions are known to be influenced by temperature, salinity and 
biogeography. Therefore, we considered this additive dissimilarity 
regression model:

in which DU is either the Jaccard or Unifrac dissimilarity between two 
ports, the ports of origin (PortO) and destination (PortD) are random 
effects, shipping transport risk (SHP) and environmental dissimilarity 
(ENV) between two ports are fixed factors, biogeographical dissimi-
larity between two ports (BGR) is a binary fixed effect that reflects 
if the ports of origin and destination are in the same marine realm 
as defined by Costello et al. (2017) or not, and a “*” indicates an in-
teraction effect. Environmental dissimilarity (ENV) was estimated as 
Euclidean distance between mean annual temperature, mean annual 
salinity and annual temperature range (Keller et al., 2011). Shipping 
transport risk (SHP) was one of the four risks described in the previ-
ous section: direct traffic- based risk (SHPdt), direct ballast risk (SHPdb), 
stepping- stone traffic risk (SHPst) and stepping- stone ballast risk 
(SHPsb) (Figure 1).

To test for effects of alternative DNA extraction and library 
preparation methods used for Adelaide and Singapore samples, we 
took two approaches. First, we created and analysed models with 
a random “methods” effect, which was a binary term reflecting 
whether port pair samples were processed with identical laboratory 

(1)P(transport)v
ij
=

(

1 − e−�Dij
v
)

e−�Δtij
v

(2)J(i, j) =
∣ Ni ∩ Nj ∣

∣ Ni ∪ Nj ∣

(3)DU = � + �1ENV + �2BGR + �3SHP + �4
(
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)

+ �5
(

ENV∗SHP
)

+ �6
(

BGR∗SHP
)

+ �(PortO)� + �(PortD)� + �
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methods or not. Second, we ran the Jaccard model with and without 
the two ports (Adelaide and Singapore) with methods different from 
the other ports.

These complex models initially considered all additive effects 
and potential effects of all the two- way interactions. To avoid over-  
or under- fitting, we used a backward selection to identify optimal 
model structure. Statistical modelling and model selection were 
done separately for the Jaccard and Unifrac dissimilarity responses 
using the r programming language version 3.4.3 (R Core Development 
Team, 2019). Because the observed Jaccard dissimilarities between 
port- pairs were highly biased towards values near one (skew-
ness = −3.20, kurtosis = 15.85) we first fitted to a One- Inflated 
Beta model (family BEOI) and obtained the final generalized additive 
model for location, scale and shape (GMLSS) using mu (μ) selection 
as implemented in the “stepGAIC” function of the package gamlss 
(Rigby & Stasinopoulos, 2005). To account for any potential colin-
earity (concurvity) effect on the models' interactions, we performed 
all analyses using centred and untransformed response variables. 
For the Unifrac dissimilarities, final Gaussian models were obtained 
using stepwise regression using the “glmerselect” function and the 
lme4 package version 1.1- 16 (Bates et al., 2015).

Finally, we performed backward- selection on a dissimilarity 
regression model without BGR (biogeography) as an independent 
variable for two reasons. First, a priori we knew that ports have 
similar habitat structure globally and that local habitat condi-
tions may override the distinctiveness of biogeographical realms 
at this scale (Costello et al., 2017). Second, post hoc we found 
the distribution of taxa that we sampled was different from that 
which Costello et al. (2017) used to define biogeographical realms 
(Figure S8).

2.9  |  NIS identification

Although not the primary focus of this study, species identification 
with binomial nomenclature is still a critical component of ship- 
borne NIS research and management. Therefore, we assigned tax-
onomy to ASVs with blast version 2.9 (Camacho et al., 2009), to the 
April 2019 NCBI nr/nt reference database (Benson et al., 2018), ex-
cluding subject sequences solely identified as “environmental sam-
ple” and using a minimum e- value of 10−5. For each query– subject 
pair, we kept the top five high- scoring alignments (>98.5% identity) 
and excluded ambiguous assignments where more than one spe-
cies matched equally well to the query sequence. Unambiguously 
identified species were then matched to the World Register of 
Introduced Marine Species, WRiMS (Ahyong et al., 2022) and the 
species ports' presence data were contrasted with the known 
distributions of these species according to the World Register of 
Marine Species, WoRMS (WoRMS Editorial Board, 2019). The R 
packages phyloseq 1.22.3 (McMurdie & Holmes, 2013) and tidyverse 
1.2.1 (Wickham, 2017) were used to import ASV data and blast re-
sults. We used taxonomizr 0.2.2 (Sherrill- Mix, 2019) to obtain taxo-
nomic information of the best blast hits.

3  |  RESULTS

The locations of the 19 ports yielding deep rarefaction sequence 
data spanned seven of the 30 marine biogeographical realms de-
fined by Costello et al. (2017), with the majority situated in only 
three realms (North Pacific, Caribbean and Gulf of Mexico, and 
Northeast Atlantic, Figure 2a; see Figure S9 for similar Unifrac dis-
similarity plot). The 11,975 eukaryotic ASVs (Callahan et al., 2016) 
we obtained represented taxa that are predominantly planktonic as 
well as taxa that are predominantly benthic (Figure S10), although it 
would be impossible to confidently assign any specific ASV to either 
category. Port- pairwise Jaccard dissimilarities ranged from 0.78 to 1 
(mean: 0.98), while Unifrac dissimilarities ranged from 0.48 to 0.93 
(mean: 0.77) (Figure 2b; Figure S7). Port- pairwise values of our four 
shipping risk estimates correlated highly with each other (R ≥ .78 and 
p < .001 for all correlations, Figure S11), while stepping- stone traffic 
and ballast risks were both slightly negatively correlated with envi-
ronmental dissimilarity (R = −.18 and p = .02, Figure S12). Because 
results for Jaccard and Unifrac models were very similar and sup-
ported the same conclusions, for simplicity we present below some 
results for only Jaccard (and provide parallel results for Unifrac mod-
els in the Supporting Information).

For both Jaccard and Unifrac metrics calculated from deeply 
and shallowly rarefied data sets, dissimilarity regression modelling 
results supported our prediction that increasing environmental dis-
similarity and decreasing shipping transport risks would increase 
community dissimilarity among ports. All backward- selected models 
identified significant effects of environmental dissimilarity on com-
munity dissimilarity between ports (Table 1; see Table S2 for selec-
tion statistics); port pairs with similar environments tended to have 
smaller Unifrac (r = .368, p < .0001) and smaller Jaccard (r = .432, 
p < .001) metrics (i.e., more similar communities; Figure S13). Our 
prediction that shipping would reduce community dissimilarity was 
also supported: all four Jaccard and three of the Unifrac Akaike 
information criterion (AIC)- selected models included shipping as 
an explanatory variable (Table 1). Our prediction that shared bio-
geography would reduce community dissimilarity was not strongly 
supported: port communities within the same biogeographical realm 
tended to have lower community dissimilarities than those in differ-
ent realms (Figure S14), but this effect was only statistically signif-
icant in the direct risk models. When checking for multicollinearity 
between predictor variables that could complicate model fitting and 
interpretation, we found weak negative correlations between envi-
ronmental dissimilarities and shipping risk in both stepping- stone 
models (Figure S12, R = −.18, p = .02), but otherwise predictor vari-
ables were not significantly correlated (see Figures S12 and S15).

Consistent with our prediction, models using stepping- stone 
connection risks outperformed models using direct connection 
risks. Stepping- stone models were, on average, 8 AIC units lower 
for the Jaccard metric, and 10 AIC units lower for the Unifrac met-
ric (Table 1). Contrary to our expectations, including ballast either 
did not improve the stepping- stone model (Jaccard) or worsened 
it by 1 AIC unit (Unifrac) (Table 1). Including ballast improved only 
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the model predicting Jaccard dissimilarity with direct traffic risks 
(Table 1).

The simplest model predicting Jaccard dissimilarity between 
ports included environmental dissimilarity, biogeographical realm, 
stepping- stone traffic risk, and two- way interactions between 
stepping- stone traffic risk and environment and between stepping- 
stone traffic risk and biogeographical realm (Table 1, first row, with 
AIC tied for lowest among- Jaccard models). The simplest model pre-
dicting Unifrac dissimilarity between ports included only environ-
mental dissimilarity, stepping- stone traffic risk and the interaction of 
these two variables (Table 1, second row, with lowest AIC). For both 
Jaccard dissimilarity (Figure 3) and Unifrac dissimilarity (Figure S16), 

stepping- stone traffic risk decreases biological dissimilarity, partic-
ularly on routes whose origin and destination are environmentally 
similar. This interaction is consistent with our expectation that intro-
duced organisms are unlikely to survive in vastly different environ-
ments, regardless of how many times they are introduced by ships.

Jaccard, but not Unifrac, dissimilarity between ports is also par-
tially predicted by the interaction between stepping- stone traffic risk 
and biogeographical realm. For Jaccard dissimilarity, stepping- stone 
traffic risk reduces dissimilarity, as expected, when the two ports are 
in different biogeographical realms. However, unexpectedly, the op-
posite is true if the two ports are in the same biogeographical realm 
(Figure S17); we would have predicted a negative, but smaller, effect 

F I G U R E  2  Sampling extent and variable summary for the analysis of between- port Jaccard dissimilarities. (a) Sampled ports, coloured by 
biogeographical realms (Costello et al., 2017), in the “deep rarefaction” data set included Adelaide (AU- ADL), Antwerp (BE- ANR), Baltimore 
(US- BAL), Coos Bay (US- COB), Ghent (BE- GNE), Haines (US- HNS), Honolulu (US- HNL), Houston (US- HOU), Long Beach (US- LGB), Miami 
(US- MIA), New Orleans (US- MSY), Oakland (US- OAK), Portland (US- PDX), Puerto Madryn (AR- PMY), Richmond (US- RCH), Rotterdam 
(NL- RTM), Singapore (SG- SIN), Wilmington (US- ILG) and Zeebrugge (BE- ZEE). Port codes follow the United Nations Code for Trade and 
Transport Locations. (b) Summaries of network- like relationships between ports expressing biological similarity, environmental similarity 
and different shipping- risk estimates (see Figure 1). To allow for direct comparison with the ship- borne risk estimate patterns, we inverted 
biological and environmental dissimilarities by subtracting each dissimilarity value from either the theoretical (1 for Jaccard dissimilarities) or 
observed (4.36 for environmental dissimilarity) maximum. Line colour and width are scaled according to each metric, where thick black lines 
represent the highest similarities or strongest links and thin light- grey lines the lowest similarities or weakest links.
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relative to connectivity between different biogeographical realms, 
or no effect at all if biogeographical realms are internally homoge-
neous. When biogeographical realm was not included as a depen-
dent variable, results were little changed: biological dissimilarity was 
best predicted by environment, stepping- stone traffic risk and the 
interaction between those two variables (Table S3).

As expected, among the independent variables, environmen-
tal dissimilarity had the largest effect on both Jaccard and Unifrac 

dissimilarity, and coefficients associated with shipping risk were 
smaller than those associated with environmental similarity (Table 2).

Our dissimilarity regression modelling results were robust to se-
quencing depth and laboratory methods. Analogous analyses adding 
two more ports (Nanaimo, Vancouver) at a shallower sequencing 
depth yielded similar results, except with biogeographical realms also 
emerging as an additional explanatory variable for Unifrac dissimilar-
ity (Table S4). Likewise, considering different laboratory methods as 
a random effect yielded results similar to those without the random 
effect, although some Unifrac regressions with laboratory methods 
as a random effect resulted in singular fits, which indicate overpa-
rameterization (Table S2). Finally, dropping Adelaide and Singapore 
(the two ports with different laboratory methods) from the analysis 
also did not meaningfully change results (Table S5).

The taxa we detected overlapped with those on which Costello 
et al. (2017) based their biogeographical realm boundaries, but the 

TA B L E  1  Dissimilarity regression model summaries.

Ship risk metric AIC- selected model AIC

Stepping- stone traffic JACCARD = ENV + BGR + SHPst + ENV*SHPst + BGR*SHPst + (ORG) + (DEST) −1089

UNIFRAC = ENV + SHPst + ENV*SHPst + (ORG) + (DEST) −465

Stepping- stone ballast JACCARD = ENV + BGR + SHPsb + ENV*SHPsb + BGR*SHPsb + (ORG) + (DEST) −1089

UNIFRAC = ENV + SHPsb + ENV*SHPsb + (ORG) + (DEST) −464

Direct traffic JACCARD = ENV + BGR + SHPdt + BGR*SHPdt + (ORG) + (DEST) −1077

UNIFRAC = ENV + BGR + ENV*BGR + (ORG) + (DEST) −457

Direct ballast JACCARD = ENV + BGR + SHPdb + BGR*SHPdb + (ORG) + (DEST) −1085

UNIFRAC = ENV + BGR + SHPdb + BGR*ENV + BGR*SHPdb + (ORG) + (DEST) −454

Note: Parameters and Akaike information criterion (AIC) score for the four dissimilarity regression models for Jaccard and Unifrac dissimilarities. 
Initial model parameters included environmental similarity (ENV), shipping risk (SHP), biogeographical realm (BGR) and all pairwise interactions 
indicated by a “*.” Ports of origin (ORG) and destination (DEST) were modelled as random factors. For each biological dissimilarity metric (Jaccard and 
Unifrac), backwards selection was used to determine the best minimum adequate model; the best performing models with the simplest formulation 
of shipping risk are highlighted in grey.

F I G U R E  3  Interactive effect of stepping- stone traffic 
risk and environmental dissimilarity on Jaccard dissimilarity. 
Biological dissimilarity between ports is best explained by the 
interaction of stepping- stone traffic risks and the environmental 
dissimilarity between the ports of origin and destination (Table 1). 
Medium = mean; Low = mean − 1SD; High = mean + 1SD. Bars 
represent the ±95% confidence interval.

TA B L E  2  Parameter estimates (±SE) of the models best 
predicting biological dissimilarity (lowest AIC) and having the 
simplest shipping metric (stepping- stone traffic risk) (Table 1, grey 
rows).

Dissimilarity metric Parameter Estimate

Jaccard Intercept 3.687 (±0.020)

ENV 0.557 (±0.075)

SHPst 0.263 (±0.132)

BRG 0.262 (±0.204)

ENV*BRG −0.588 (±0.016)

ENV*SHPst 0.208 (±0.069)

Unifrac Intercept 0.767 (±0.011)

ENV 0.030 (±0.005)

SHPst −0.003 (±0.005)

ENV*SHPst 0.013 (±0.004)

Note: Model parameters included environmental similarity (ENV), traffic 
risk (SHPst) and biogeographical realm (BGR); *indicates an interaction 
effect.
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distribution among taxa was very different (Figure S8), confirming 
one of several reasons to suspect that the biogeographical realms as 
defined by Costello et al. (2017) may not be as relevant to our results 
as initially hypothesized.

Although species identification was not the focus of this study, 
from all the unique ASVs identified (Table S6), we inspected the 
subset of ASVs with taxonomic annotations matching species in the 
WRiMS (Ahyong et al., 2022) to explore known NIS distributions 
across our data set. We identified 273 ASVs of which 79 (28.9%) 
matched equally well to more than one nominal species, indicating 
possible reference database errors or a lack of taxonomic resolution 
with this primer set. The remaining 194 taxonomically unambiguous 
ASVs represented 11 classes and 57 unique species (Table S7), with 
the solitary tunicate Ciona savignyi (41 ASVs) and reef- forming poly-
chaete Ficopomatus enigmaticus (42 ASVs) comprising over 40% of 
all reads for these ASVs. Two of these 57 species were found in non- 
native areas where they had not been previously reported (Table S7): 
Pseudocalanus elongatus (Copepoda) at Coos Bay, and Botrylloides 
leachii (Ascidiacea) at Richmond and Oakland. One species, Oithona 
davisae (Copepoda), was found slightly outside of its reported native 
range in Singapore. All other species were found within their previ-
ously reported native and introduced ranges.

4  |  DISCUSSION

Our analysis of community dissimilarities among ports quantified 
the relative effects of shipping and the environment on biological 
homogenization at intercontinental scales. Our hypotheses that ship-
ping would reduce community dissimilarity between ports and that 
environmental dissimilarity would have the relatively largest effect on 
community dissimilarity were supported for both Jaccard and Unifrac 
dissimilarity metrics (Tables 1 and 2; Figure 3). The significant interac-
tion between shipping and environment suggests that high- volume 
shipping routes connecting environmentally similar ports pose the 
highest risk for species spread. These results clearly support holistic 
consideration of shipping, environment and their interaction for pre-
dicting and managing ship- borne NIS. The environment– shipping in-
teraction is particularly important to consider when predicting route 
risks under future climate change, which will probably alter port envi-
ronments and native ranges, subsequently altering predictions about 
which port- pair routes to prioritize for management.

The lack of a strong effect of biogeographical realms on port com-
munity dissimilarities was unexpected, and could result from multiple, 
nonmutually exclusive causes. First our ports represent substantial 
geographical bias (Figure 1), with a relatively low number of port- pairs 
occupying different versus the same biogeographical realms. Second, 
ports represent novel and globally similar habitats which support 
communities that may be more similar to each other than to surround-
ing habitats (Bulleri & Airoldi, 2005; Forrest et al., 2013; Lambert & 
Lambert, 2003; Megina et al., 2016; Piola & Johnston, 2008), blurring 
the signals of the biogeographical regions in which they are embedded. 
Indeed, Costello et al. (2017) noted that habitat effects are strong and 

may obscure biogeographical realm effects. Third, the biogeographical 
delineations that we used (Costello et al., 2017) are the best available 
but have limitations with respect to the goals of our study. They are 
based on data that do not adequately represent all taxa and may not 
be appropriate for the taxa we sampled (e.g., Figure S8 shows that our 
18S data set detected relatively more nonmetazoan eukaryotes than 
considered by Costello et al., 2017). Indeed, it is possible that better 
delimitations of biogeographical realms will result from future exten-
sive eDNA sampling. Finally, the limited temporal scope of our study 
(one sampling event per port) may not reflect β- diversity patterns over 
longer timescales (e.g., months to years) that might more reliably re-
flect biogeographical patterns. Additional studies including more ports 
from more realms, globally extensive eDNA sampling inside and out-
side of ports, and sampling throughout the year will be needed to test 
these hypotheses. In hindsight, it is not surprising that biogeographical 
realm was a weak predictor of between- port dissimilarity in our study.

Comparison of the four different models of ship- borne species 
spread risk partially supported our hypothesis that more complex 
metrics for shipping risks would perform better: stepping- stone 
models performed better than direct traffic models, but models in-
corporating ballast risks did not perform better than simpler risk met-
rics based on voyage counts alone. While the potential importance 
of stepping- stone connections was not surprising given earlier work 
(Apte et al., 2000; Floerl et al., 2009), the superior performance of 
models not incorporating ballast was unexpected. Although it is gen-
erally accepted that differences among ship types and related differ-
ences in ballast discharge result in unequal risks of species transport 
(Davidson et al., 2018; Drake & Lodge, 2004), the addition of ship 
type and voyage length in our ballast risk models did not significantly 
improve predictions of biological dissimilarity between ports. While it 
is appealing to think that the simpler metrics not incorporating ballast 
adequately capture risk, it is also possible that other ballast- related 
factors not included in our ballast parameter or species spread from 
other vectors (e.g., biofouling, aquaculture) not considered here ob-
scure the ballast discharge effect. The development and evaluation 
of additional global ship- borne species spread models with more de-
tailed risk estimates are needed to determine if this is the case.

While our study was not designed to identify specific NIS, we 
found that eDNA metabarcoding of even a few samples is useful for 
passive NIS surveillance at an intercontinental scale. For species mon-
itoring, the current drawbacks of eDNA applications are their inaccu-
racy in assigning taxonomy to some sequences when reference data 
are deficient, and their susceptibility to biased abundance estimates 
(Balvočiūtė & Huson, 2017; Kelly et al., 2019). Regardless, from just 
five samples per port we derived sequence variants highly similar or 
identical to many known NIS and discovered potential range expan-
sions of three species (Pseudocalanus elongatus, Botrylloides leachii and 
Oithona davisae), and identified population genetic diversity among 
ports for two species (Ciona savignyi, Ficopomatus enigmaticus). As 
other studies have shown, increased sampling effort across water 
depths would further increase the number of NIS detected (e.g., Koziol 
et al., 2019). Further development of eDNA techniques may soon 
enable population genetic inquiries (Sigsgaard et al., 2016; Andres 
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et al., 2021) and possibly abundance estimates (Spear et al., 2021) in 
and among global ports. We anticipate that with growing genetic ref-
erence libraries, eDNA metabarcoding will become increasingly use-
ful for species identification and monitoring in ports.

While eDNA metabarcoding offers many logistical benefits over 
traditional methods for large- scale, standardized biodiversity surveys, 
we did encounter difficulties in this study. First, controlling for tidal 
and weather variables in dynamic coastal habitats globally is logistically 
difficult given that some regions have prolonged rainy seasons and 
the interaction between diurnal and tidal cycles vary so that in some 
areas certain tidal periods occur only at night. Time- series surveys at 
each port would allow for estimating and controlling for some of these 
nontarget effects (and would also help capture a larger proportion of 
the biodiversity) while increasing effort and costs. Recent advances 
in automating eDNA sampling (e.g., Formel et al., 2021), laboratory 
processing (Buchner et al., 2021) and bioinformatics (e.g., Mousavi- 
Derazmahalleh et al., 2021) may alleviate these current constraints.

We also encountered difficulties shipping materials and samples 
between countries. While our sampling kits were small and did not 
contain any toxic or flammable substances, they were sometimes 
delayed or even refused by customs offices of multiple countries. 
Furthermore, confusion over how the Nagoya Protocol pertains to 
eDNA samples prevented our ability to obtain a material transfer 
agreement between some of our team's organizations (see Deplazes- 
Zemp et al., 2018 for more on this issue), dramatically reducing the 
number of ports and biogeographical scope of this study. We recom-
mend that future global eDNA metabarcoding surveys carefully con-
sider these issues prior to survey design, and that research funders 
provide support adequate for the administrative requirements 
of permitting. A global effort, in the context of the Convention on 
Biological Diversity, to clarify the legal and ethical considerations of 
international transport of eDNA is urgently needed (Lodge, 2022). 
One of the great strengths of eDNA metabarcoding is, in our opinion, 
its potential to rapidly and comprehensively survey regions that have 
been historically under- sampled (Czechowski et al., 2023). It is, how-
ever, essential that we do so in a legal, ethical and equitable manner.

Overall, this study shows that dissimilarity analysis of eDNA 
metabarcoding can reveal global biodiversity patterns and help us 
better understand their drivers. As expected, we found a strong 
effect of environmental similarity and a smaller but still significant 
effect of shipping risk on global port β- diversity patterns. This 
knowledge could help predict and mitigate ship- borne NIS spread 
in a world depending on shipping for the transport of goods in 
a rapidly changing climate. Currently, global ballast water policy 
takes a “one- size- fits- all” approach relying on onboard ballast 
treatment systems, and global biofouling policy remains under 
development (Tamburri et al., 2021). Consistent with our other 
studies (Wan et al., 2021; Wang et al., 2020, 2022; Wang, Saebi, 
et al., 2021; Wang, Silberman, & Corbett, 2021), the results re-
ported here suggest that prioritizing “risky” routes with targeted 
management and biomonitoring, or establishing land- based treat-
ment systems at hub ports, would be a more efficient way to re-
duce global ship- borne species spread. Further development and 

refinement of global ship- borne species spread models with eDNA 
metabarcoding and dissimilarity analysis, as we have begun here, 
would enable such risk- based policies.

Although our study's biased biogeographical scope limits our 
inferences, our results illustrate that environmental dissimilarity, 
shipping and their interaction reduce biological dissimilarity among 
commercial port habitats. This finding supports the use of routed- 
based models of the risks of ship- borne species spread in evaluation 
of policy and management. Future advances in methods, techniques 
and genetic reference libraries, together with collective efforts to 
overcome current barriers to globally coordinated surveys, will in-
crease the ability of eDNA metabarcoding to inform the patterns, 
processes and conservation of global biodiversity.
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