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i Executive summary 

In line with the Working Group on Application of Genetics in Fisheries and Aquaculture’s 

(WGAGFA) research focus, which includes ecosystem-based fisheries and aquaculture manage-

ment, conservation and biodiversity preservation and climate change forecasting, the scientific 

work presented in this report aims at i) exploring cutting-edge genomic advancements that show 

promise in realizing ICES vision, ii) facilitating the integration of genetic methods in fisheries 

and aquaculture management and iii) generating new genetic knowledge to better understand 

marine ecosystems. The specific questions addressed in the Terms of Reference tackled during 

this three-year term include the exploration of how genetic advances are revolutionizing stock 

identification, the review of the potential of adaptive variation for fisheries forecasting, the eval-

uation of the power of genetic tools to better understand the deep ocean and to explore the use 

of genetic methods for conservation program broodstocks. This work highlighted that despite 

the proven utility of genetics in fisheries stock delimitation and identification, DNA-based ap-

proaches are not routinely used, which could be due to a lack of understanding by stock assess-

ment expert of genetic methods. Additionally, this work highlighted the power of using climate-

associated adaptation information derived from genetic data to predict impact of climate change 

in marine species and develop consequent management measures, and the potential of a panoply 

of genetic methods to help understand the complex deep ocean at the individual, population, 

species, and ecosystem level. Concerning broodstock programs, our work reviews examples on 

how genetic gains are possible through genetically informed breeding and can be useful in long 

term conservation programs.  Several review manuscripts derived from the Tors are in prepara-

tion and there will be a topic sheet and a scientific highlight produced. Future work should focus 

on continuing this discussion by including fisheries stock assessment and data collection experts 

as well as aquaculture researchers, which will be mandatory to ensure our results are applied in 

practice. 
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ii Expert group information 

Expert group name Working Group on the Application of Genetics for Fisheries and Aquaculture 
(WGAGFA) 

Expert group cycle Multiannual fixed term 

Year cycle started 2021 

Reporting year in cycle 3/3 

Chair(s) Naiara Rodriguez-Ezpeleta, Spain  

Meeting venue(s) and dates 10-12 May 2021, Online (50 participants) 

 17-19 May 2022, Online (40 participants) 

 9-12 May 2023, Sukarrieta, Spain (40 participants – 25 online & 15 remote) 

 

 

Scope and Remit 

Under the remit of the ICES Aquaculture Steering Group, the Working Group on Application of 

Genetics in Fisheries and Aquaculture (WGAGFA) provides recommendations on methods to 

describe, conserve, and manage intraspecific biodiversity, focusing on the application of genetic 

and genomic analyses. WGAGFA works on management themes spanning from commercial 

fisheries to ecosystems, recreational exploitation, and aquaculture. This ICES Working Group 

also looks at several applications for genetic methods. Examples include identifying populations, 

tracing the origin of fish and fish products, tracing migratory behaviours and habitat use, deter-

mining the dynamics of non-indigenous species, and evaluating the effects of aquaculture escap-

ees. Technological developments that have enabled environmental genomics are also consid-

ered, with recommendations given on application in species and ecosystem management. Rec-

ommendations focus on knowledge generated from applications of molecular genetics and ge-

nomic tools to identify, trace, restore, and manage local populations of fish and shellfish. The 

group also hindcasts and forecasts how drivers – for example physical, climatic, and fisheries 

ones – affect distributions. During this fixed-term cycle, from 2021 to 2023, in line with its objec-

tives, the WGAGFA addressed through four Terms of Reference:  

• How the rapid advances in genomics and analytical methods are revolutionising popu-

lation identification in marine fish and invertebrate species; 

• To review and evaluate the potential of adaptative variation for assessing fisheries;  

• To evaluate available genetic-based solutions to better understand the mesopelagic eco-

system; 

• Explorative cost-benefit analysis of genetic methods with emphasis on SME and conser-

vation program broodstocks dedicated to aquaculture or natural population enhance-

ment 
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1 Tor A: How the rapid advances in genomics and an-
alytical methods are revolutionising population 
identification in marine fish and invertebrate spe-
cies 

1.1.1 Introduction 

Fisheries are managed in units, or stocks. These are defined as self-sustained populations, where 

growth, recruitment, and natural and fishing mortality are not dependent on immigration or 

emigration rates (Cadrin, 2020). Yet, stock structure is often defined by geo-political boundaries 

rather than biological ones, hampering efforts for sustainable fisheries management. Signals of 

population structure have often been difficult to identify in marine species, because of a lack of 

physical barriers to adult or larval dispersal and large population sizes, and despite the many 

technologies applied (Mariani & Bekkevold, 2014). In more recent years, genetics has been used 

to successfully unravel patterns of population structure (Bernatchez et al., 2017; Casey et al., 

2016). Nevertheless, the integration of genetic data into assessment and management has been 

lagging (Waples et al., 2008). Given that stock structure is the starting point of a solid assessment, 

there has been growing interest in including genetics as a tool for stock delimitation and identi-

fication (Cadrin et al., 2023). 

The term ‘stock’ has many definitions depending on who is describing it (Carvalho & Hauser, 

1994; Secor, 2014). When delineated using molecular approaches, they are referred to as genetic 

stocks, and are considered reproductively isolated units (Ovenden, 1990). It is important to high-

light the difference between genetic stock delineation (finding stock structure) and genetic stock 

identification or GSI, which refers to the use of previously identified genetic markers for assigning 

samples to stocks of origin in mixed-stock analysis. Where genetics is successful in delineating 

stocks, it has often become part of the management toolbox. As illustrated below, after describing 

stock structure, genetics can be used to monitor catches through GSI in the case of mixed fisheries 

(like in cod, herring and tuna). In other cases, this might not be needed, and the genetic bound-

aries described are used to define the fisheries stocks, spatially and temporally. 

The aim of this paper is to contribute to the discussion among fisheries and stock assessment 

scientists about how to standardise the use of genetic results so that their interpretation by non-

geneticists becomes more straightforward. Here, we take the first step by presenting a frame-

work that illustrates how to sample, generate, and analyse genetic data for stock structure and 

identification. We start with illustrating practical examples where genetics is now routinely em-

ployed for advising management and discuss best practices that should be applied to the inter-

pretation of genetic data when deciding whether stocks should be managed separately or not.  

1.1.2 Representative success stories  

Nowadays, there is a growing number of cases where genetics is used for delineating stocks 

before they are assessed. Given the initial investment required by genetics at the onset, in terms 

of cost and skills, these are very often fisheries of very high commercial value which traditionally 

attract more research efforts.  

In salmonids, the successful implementation of genetic measures is relatively straightforward 

due to their reproductive strategy, which limits gene flow and in many cases results in genetic 
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differentiation between regions, rivers, and tributaries within rivers higher than it is normally 

detected in marine species. The management of Pacific salmonids on the west coast of North 

America is the longest-running example of the incorporation of such genetic techniques into fish-

ery management, with the Columbia River spring chinook salmon (Oncorhynchus tshawytscha) 

gillnet fishery applying genetic approaches since the 1990’s. In the same period, genetics was 

used to delineate stocks for pink salmon (Oncorhynchus gorbuscha) in British Columbia, chum 

salmon (O. keta) in Alaska, and coho salmon (O. kisutch) off Vancouver Island (Shaklee et al., 

1999). For Atlantic salmon (Salmo salar), genetics has been incorporated into management strate-

gies more recently, possibly because the genetic markers used in the ‘80s were not powerful 

enough to distinguish stocks (Griffiths et al., 2010; Koljonen, 1995; Verspoor et al., 2005). How-

ever, recent enhanced stock resolution between river groups in the Barents Sea has now allowed 

fishery management units to be re-defined (Anon, 2020). 

In Atlantic cod (Gadus morhua), coastal and offshore populations have been identified genetically 

(Berg et al., 2017; Bradbury et al., 2013; Johansen et al., 2020; Pampoulie et al., 2011). In northern 

Norway (>62°N), these units are the Northeast Arctic cod (NEAC) stock in the Barents Sea, and 

the coastal cod (CC) along the coast and in the fjords. They differ in growth and maturity rates 

(Nordeide et al., 2011) and genetically (Johansen et al., 2018; Johansen et al., 2020; Jorde et al., 

2021), and have been managed as separate stocks since 2000 (ICES, 2021;). In Spring, they are 

caught in a mixed fishery, so management in some areas is done in real-time, with the proportion 

of CC/NEAC estimated genetically (Dahle et al., 2018; Johansen et al., 2018), to keep the propor-

tion of CC in the catch <30% over time. 

In Atlantic herring (Clupea harengus), numerous attempts to identify population structure using 

genetics have been inconclusive up until the application of whole genome sequencing (Han et 

al., 2020; Lamichhaney et al., 2017). This approach revealed significant genetic differences be-

tween populations and has produced highly discriminatory genetic markers that are now rou-

tinely used to distinguish stocks in the North Sea-Baltic Sea (Bekkevold et al., 2023), and around 

Ireland and the UK, where stocks have been redesigned (Farrell et al., 2022). 

Atlantic bluefin tuna Thunnus thynnus has traditionally been managed as two stocks separated 

at the 45°W meridian, the Gulf of Mexico and the Mediterranean Sea, despite tagging analysis 

demonstrating extensive trans-Atlantic migration (Arregui et al., 2018). Both, otolith chemistry 

(Rooker et al., 2014) and genetic data (Rodríguez-Ezpeleta et al., 2019) sources of information are 

now used for mixed stock identification and are now integrated into management.  

1.1.3 The way forward: a standardised approach 

Here we propose a framework for using genetics for delineating population structure, with the 

aim of answering basic questions to those bodies interested in using genetics for fisheries, as well 

as clarifying the interpretation of published results.   

1.1.3.1 Samples 
Adequate sampling effort, tailored towards the species of interest, which considers the available 

biological knowledge on spawning and feeding seasons and migrations, population sizes, age 

structure and the geographic distribution, is important to ensure a successful outcome. Generally 

speaking, it is important to carefully design the sampling, in order to avoid bias: sampling of 

individuals should be random, and spatial and temporal replication are important factors in en-

suring that any inference of population structure is stable and biologically meaningful (Waples 

and Naish, 2009). 

Where? The number of locations sampled depends on the species’ distribution range, migration 

patterns and reproductive behaviour (spawning areas and time), the budget and the time 
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available. Sampling grids like the ICES and NAFO statistical areas, represent a good starting 

point for sampling any species of interest, and the basic design should aim at collecting individ-

uals from each area amongst those occupied by the species. If the species is already managed as 

separate stocks, they should be included in the sampling. If information on spawning areas and 

migration patterns between areas are known, these areas should be reflected in the sampling 

design as well. In general, it is always advisable to include samples ‘outside’ of the region of 

interest, to better understand the ecological dynamics causing the presence (or lack) of genetic 

structure.  

What? When spawning grounds and seasons are known, spawners should be sampled because 

they likely contribute with genetic material to the next generation. If this is not feasible, due to a 

lack of knowledge or access, collect juveniles and adults (Gíslason et al., 2023), making sure that 

most age groups are sampled. 

How many? Historically, when only very few (<10) genetic markers were used to assess genetic 

diversity, between 30-50 individuals were collected per sampling location; now that it is feasible 

to look at thousands of loci (see section 2), estimates of population structure appear to be quite 

robust against the number of specimens collected per location, and sampling a minimum of 20 

individuals per location is recommended (Foster et al., 2021), depending on budget and time 

availability. 

How? Tissue samples can be taken from fins, gill or muscle using clean scissors, scalpels or bi-

opsy punch, and should be preserved in ethanol until processing. This assures DNA integrity 

which is important for all downstream applications. Collecting additional life history data such 

as length, weight, but also sex, maturity or age will greatly improve the ability to understand 

any pattern seen in the genetic results. 

1.1.3.2 Sequencing and Markers 
The more commonly used markers for stock delineation are microsatellites or SNPs (single nu-

cleotide polymorphisms). Microsatellites have individually more resolution power, but they are 

less frequent and more difficult to discover and genotype. In contrast, SNPs are numerous, 

spread across the genome and easier to genotype. If markers are already available for the target 

species, and have been used to successfully identify structure, we recommend keeping using 

them. If no markers are available, SNPs development is recommended. The use of SNPs has 

improved the ability to resolve fine-scale population structure with reduced biases, when com-

pared to microsatellite markers (Coscia et al., 2013, 2020; McGill et al., 2023). The spatio-temporal 

resolution needed might dictate the type of markers to develop through sequencing: if looking 

for structure at a fine spatial scale or between cohorts, SNPs are more likely to deliver than mi-

crosatellites, but next-generation sequencing (NGS) can, however, help discover hundreds of very 

useful microsatellites at once, which can inform on specific management issues – see (Bradbury 

et al., 2018). There are several sequencing approaches to develop SNPs, often variations of the 

same protocols, aimed at optimising the trade-off between the number of markers obtained, cost 

and simplicity of the laboratory procedures. The whole genome of individual samples can be 

sequenced (Whole Genome Sequencing – WGS) or reduced-representation sequencing (RADseq and 

derived methods). These two approaches’ main differences lie in the costs, complexity of the 

analysis, and amount of information they deliver (higher for WGS), all reviewed in da Fonseca 

et al. (2016). After markers have been developed, diagnostic SNPs (i.e., those best suited for ad-

dressing the question of interest from the many thousands identified) can be assembled as panels 

on SNPchips for routine, fast and cost-efficient monitoring. 

How long will it take? The laboratory procedures needed for genomic methods (library prep-

aration) can be completed within a month, even when several hundred specimens need to be 

analysed. The actual sequencing takes 2-3 days using common sequencing chemistry (e.g., 
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Illumina platform) and delivery of raw sequencing data is usually accomplished within a month 

or two after sequencing. Bioinformatic processing of the raw sequencing reads using established 

bioinformatic pipelines can deliver a thorough population genomic analysis within 1-2 months. 

Consequently, a population genomic study can be completed within the timeframe needed for 

proper benchmarking (<2 years). Once SNPs have been discovered and assembled into panes, or 

SNPchips, the turnaround time is significantly faster (<1 year from DNA extraction to data). 

1.1.3.3 Data analysis 
Understanding the results of a genetic study, and transferring the insights gained into assess-

ment frameworks is not a trivial task. This set of guidelines might help users interpret and make 

use of published results too. Genetic results are usually presented by sample groupings on sim-

ple x/y plots and cluster analysis. Principal component analysis (PCA) is the simplest method to 

visualise population structure, as it will group individuals based on genetic similarities on the 

multivariate space. In the last decade, Discriminant Analysis of Principal Components (DAPC) 

(Jombart, 2008; Jombart et al., 2010) has gained traction in population genetic studies. DAPC 

maximises the difference between pre-defined groups (i.e. sampling locations, cohorts, sampling 

years), while minimising the variability within them. These multivariate approaches are virtually 

assumption-free, quick to run, and the output is easy to interpret. If data points are well clustered 

in the multivariate space, and separated along at least one of the axes, it is an indication of stock 

structure that should be further investigated with individual-based assignment methods. This is 

done using different softwares (e.g., STRUCTURE, fastSTRUCTURE, Admixture, sNMF, 

NGSadmix) (Pritchard et al., 2000; Raj et al., 2014; Skotte et al., 2013; Tang et al., 2005), all with 

different underlying approaches and assumptions. The choice will depend to a degree on the 

type of data available. The results are usually depicted in a ‘structure barplot’, a stacked barplot 

where each vertical bar (an individual) represents the probability of assignment (admixture co-

efficient) to each identified, colour-coded genetic group (a ‘cluster’). Below 80%, individuals can-

not be assigned: these can be hybrids, or individuals with high amounts of missing genotypes, 

where the assignment power drops. A further step is FST analysis (Weir & Cockerham, 1984). FST 

estimates the level of genetic differentiation among pre-defined groups (usually sampling loca-

tions). In the marine realm, FST values are typically low and tend towards zero (i.e., no structure) 

(Hauser & Carvalho, 2008).  

When sampling strategy has been conducted as recommended, and data analyses yield congru-

ent results in that cluster analyses show distinct groupings, population assignment analyses can 

be done with great certainty (>80%) and FST values are significant after correction, then genetic 

stocks can be robustly defined. It is not unlikely to have scenarios that are in between these two 

cases (i.e., a low but significant FST). In this case, detailed knowledge of the biology of the species 

and oceanographic conditions might clarify the results (Knutsen et al., 2011).  

1.1.4 Conclusions 

Genetics has slowly but steadily been included in fisheries advice, but it is still not considered a 

tool that can help routine monitoring and assessment. We set out to devise a framework and 

general guidelines on the basic steps involved, hoping to simplify the process as much as possi-

ble for fisheries scientists that want to approach these methods, but lack the time to get them-

selves acquainted with the extensive literature on fisheries genetics. Of course, this framework 

is not the ultimate tool needed to use genetics, but it wants to represent a starting point to un-

derstand what is required in terms of sampling effort, bioinformatic capacity and analytical 

skills. Ultimately, consulting an expert in the field will give the best chances of success.  

Genetics expertise will likely be required at the final stages, should results interpretation not be 

straightforward. This is possibly the one hurdle to the routine inclusion of genetics in stock 
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delineation studies. Results do need interpretation, as there is no ‘metric’ used to decide whether 

a set of samples screened with genetic markers represent one or more stocks. This is where future 

efforts should also be concentrated: developing an indicator, in the form of a threshold, a metric 

or a number, that can be used in stock delineation to guide the management decision of whether 

to split or group existing stocks. 
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1.1.6 Glossary 

A glossary (also included in the manuscript) has been compiled.  

DCF – Data Collection Frame-
work 

An EU agreement that provides the standards for sampling, managing and storing of 
samples to be used for fisheries. 

Restriction site-Associated 
DNA Sequencing (RAD; e.g. 
ddRAD, 2bRAD) 

A reduced-representation genomic method to discover SNPs using restriction-type 
enzymes. 

FIS A coefficient that measures the levels of inbreeding of individuals compared to the 
expected levels in the population. E.g. Fis<0, no inbreeding; Fis>0, inbreeding 

FST A coefficient that measures the levels of differentiation between two populations. 
E.g. Fst=0, no differentiation; Fst=1, completely isolated populations 

genetic diversity The genetic makeup of a population or species over which evolution acts on. Higher 
genetic diversity is essential for allowing a population to adapt to changes in their en-
vironment (e.g. climate change). 

genetics  Field that studies the genetic components of individuals and how they are inherited 
in an evolution framework. “Population” genetics is a branch that focuses on changes 
in the genetic traits within individuals of a population. 

genomics The study of the whole DNA sequence of an organism, including its genes, genomic 
architecture and functionality. 

genotyping-by-sequencing 
(GBS) 

Reduced-representation genomic method to discover and genotype SNPs by using re-
striction enzymes.  

GSI – Genetic Stock  
Identification 

Identification of the population/stock of origin of individuals as well as the estimation 
of the stock proportions 

Illumina Technology A type of Next-Generation Sequencing (NGS) platform that allows to determine nu-
cleotides from a DNA sequence using dye sequencing technique. 

Genomic library preparation A laboratory protocol to prepare DNA prior for sequencing, which apart from DNA ex-
traction, it often includes shearing of the DNA, adaptor ligation, etc. 

Microsatellites A type of genetic marker that consists of a repetition of a specific motif of nucleotides 
that is variable within individuals of a population. 

population structure –  
stock structure 

The study of genetic differentiation and connectivity levels (dispersal, gene flow, etc.) 
ongoing between the individuals of putative populations, to identify genetically dis-
tinct units within a sampled area/time. 

Reference genome An assembled genome of an individual that is taken as a representative of the DNA of 
the species 

SNPchip A panel of SNPs that have been selected from a wider set of genome-wide markers 
because considered to be the most informative for a specific purpose (e.g. animal 
breeding, stock identification).  

SNPs A base pair (C, G, T, A) in the DNA where there is variation within individuals of a pop-
ulation and between populations 

Locus/loci Points or regions of the genome where there is variation within the individuals of a 
population and between populations 
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2 Tor B: To review and evaluate the potential of ad-
aptative variation for assessing fisheries 

2.1.1 Introduction 

Globally, climate change continues to result in severe environmental change with recent years 

being the warmest on record since the industrialized period (Bush & Lemmen 2019). This global 

increase in average temperature has been accompanied by a suite of environmental changes in-

cluding increases in regional temperatures, atmospheric water vapor, ocean heat content, and 

decreases in pH, dissolved oxygen and land and sea ice cover. For marine ecosystems, climate 

change poses several challenges with a range of downstream impacts that are expected to influ-

ence biodiversity and ecosystem function. Current and expected impacts include sea level rise, 

ocean acidification, perturbations to freshwater inputs due to increased glacial runoff, and in-

creased sea temperatures (He & Sillman 2019). The consequences of these impacts are evident in 

changes in the distribution patterns across a range of taxa (Hammerschlag et al. 2022; Poloczan-

ska et al. 2013; Phillips & Perez-Ramirez 2018) with a contraction of trailing range edges and the 

leading range edges tracking climate shifting poleward or deeper (Polyakov et al. 2020; Pinsky et 

al. 2020). In fact, marine species and the fisheries they support appear to be more vulnerable to 

climate change than terrestrial species (Pinsky 2021). Given the reliance on marine resources 

globally, these changes will undoubtedly have impacts on food security and economic stability 

(Payne et al. 2021). Consequently, there is a need to ‘future proof’ marine communities and con-

servation areas through an understanding of the ecological and genetic impacts of climate 

change (Tittensor et al. 2019).  

As such, there is a pressing need to predict climate change impacts in marine species and eco-

systems to inform conservation strategies and these predictions are particularly relevant to 

global fisheries and aquaculture. In their report on the impacts of climate change on fisheries and 

aquaculture, the Food and Agriculture Organisation (FAO) recognized that changes in the avail-

ability of sea products due to global warming are likely to have important economic, social and 

geopolitical consequences (FAO 2016). In Europe, fisheries in the United Kingdom and southern 

Europe are at highest risk of climate impacts (Payne et al. 2021). Ocean warming has also been 

associated with a significant decrease in production capacity and shifts in the distribution of 

fisheries targeted species, such as tuna (Monllor-Hurtado et al. 2017) and arctic charr (Salvelinus 

alpinus) (Layton et al. 2021), which will likely cause or exacerbate conflicts between users at a 

local, national, and international scale (Mendenhall et al. 2020). 

Predicting range shifts in marine taxa in response to climate change remains a significant chal-

lenge and ultimately requires information on existing ranges, predictions of future environ-

ments, capacity for adaptive and plastic responses to environmental change, dispersal potential, 

and ecosystem structure and function. The latitudinal range of a species is hypothesized to di-

rectly result from its thermal tolerance as formulated in the climate variability hypothesis (Ste-

vens 1989). While this hypothesis has been challenged for terrestrial species, marine species’ 

range seems to better conform to their thermal limits (Sunday et al. 2012). This is the case for 

marine ectotherms, particularly tropical ones, for which the thermal safety margin (TSM; i.e., the 

relative proximity of an organism’s range of experienced temperatures to its heat-tolerance lim-

its) is narrower compared to terrestrial ectotherms (Pinsky et al 2019). Therefore, small changes 

in the thermal profile of a given marine region/ecosystem are expected to have measurable con-

sequences on population survival and subsequent local extinction or migration. 
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A growing body of research has been focusing on developing tools to predict the impact of cli-

mate change on wild populations. Ecological niche modelling - akin to species distribution mod-

elling (SDM) - has been used in the last 20 years to map the probability of occurrence of a species 

across a landscape (Elith et al. 2006; Kearney & Porter 2009). However, traditional SDMs do not 

consider the evolutionary response of populations to environmental change, for instance 

through multigenerational selection of advantageous genomic variants (e.g., standing genetic 

variation), or through the acquisition of epigenetic variants leading to acclimation via phenotypic 

plasticity. More recently, genomic offset - previously termed genomic vulnerability (Bay et al. 

2018) has been applied to both terrestrial and marine taxa to predict climate change responses 

(Fitzpatrick & Keller 2015; Laruson et al. 2022; Layton and Bradbury 2021). This approach maps 

contemporary genomic variation onto future environmental conditions and calculates the offset 

between present and future climate-associated genomic variation as a measure of maladaptation 

to climate change. Despite some limitations and challenges (Laruson et al. 2022), the approach 

seems to accurately predict climate change vulnerability when compared to experimental pre-

dictions (e.g., Fitzpatrick et al. 2021). Given the potential of genomic offset estimates to inform 

climate change predictions, and the observation that marine species are already being impacted 

by climate change, an evaluation of potential applicability of the method in marine species is 

warranted.  

There are several reasons to speculate that genomic offset calculations may be well suited to 

marine ecosystems and species. The poikilothermic nature of most marine fish, invertebrates, 

and plants means that temperature is likely a dominant selective pressure driving adaptive di-

versity across populations. The low genetic structure and generally large effective population 

sizes (Ne) often observed within marine species (Bradbury et al. 2008), means that the influence 

of genetic drift may be minimal compared with that of natural selection. Moreover, many marine 

species occupy large latitudinal ranges and genomic approaches have repeatedly demonstrated 

adaptation across these variable environments (e.g., Drinan et al. 2018; Hoey & Pinsky 2018). 

Taken together, our ability to resolve the genomic basis of climate-associated adaptation may be 

elevated in marine taxa compared with terrestrial taxa and it may translate into improved power 

to predict climate change responses in these systems. Here, our goal is to discuss the potential 

for genomic offset estimates in marine species to inform climate adaptation and mitigation strat-

egies. Specifically, we (1) review the literature on the genomic basis of climate adaptation in ma-

rine species; (2) evaluate current examples of genomic offset estimates in marine species; and (3) 

discuss the potential for validation of these estimates and their utility in informing climate 

change and fisheries policy.  

2.1.2 Genomic basis of adaptation in marine species  

Accurate prediction of evolutionary potential and climate change response requires an under-

standing of how species are adapted to their environments. The number of potential drivers of 

adaptation in the marine environment is broad and includes numerous environmental variables 

such as temperature, salinity, oxygen, pH, and depth. Although theory would predict that ex-

tensive gene flow facilitated by long pelagic larval durations (PLD) in marine species would 

erode and prevent local adaptation, recent studies employing genome-wide data have demon-

strated clear evidence for climate-associated adaptation in fish, invertebrates, and macrophytes 

(e.g. Sanford & Kelly 2011; Drinan et al. 2018; Vranken et al. 2021). The prevalence of climate-

associated genomic variants in marine organisms provides support for a role in adaptation. For 

species with high connectivity and gene flow, like cod (Gadus morhua), herring (Clupea harengus), 

horse mackerel (Trachurus trachurus), and northern sand lance (Ammodytes dubius), a few “large 

effect” chromosomal rearrangements (e.g. inversions) seem to explain most of the climate-asso-

ciated genomic variation (e.g., Barth et al. 2017; Kess et al. 2020; Fuentes-Pardo et al. 2023a). 
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However, different genomic architectures can underpin local adaptation even in species with 

similar life history traits, and some species may be more susceptible to this ‘genomic island’ sce-

nario based on their ecology and biology (Yeaman 2022). In other cases, a signature of local ad-

aptation is often restricted to many regions of “small effect” in the genome, fitting a polygenic 

model and requiring dense genomic data for detection, as seen in Arctic charr (S. alpinus), Atlan-

tic silversides (Menidia menidia) and the Baltic copepod (Eurytemora affinis) (Wilder et al. 2020; 

Kess et al. 2021; Stern et al. 2022). The genomic underpinnings of local adaptation can also vary 

across environments and climate gradients, and this is especially complex in marine systems 

where species are distributed across both latitudinal and bathymetric clines. 

Genomic signatures for thermal adaptation have repeatedly been reported and appear to be 

stronger in marine systems than in terrestrial or freshwater systems (Sasaki et al 2022). For ex-

ample, a thermal break across the Scotian Shelf in the northwest Atlantic (Stanley et al. 2018) has 

been shown to drive strong population structure among northern and southern populations of 

northern sand lance (Ammodytes dubius) (Jones et al., 2023). This temperature-driven structure 

has been observed in other marine species, including sea scallop (Placopecten magellanicus) (Van 

Wyngaarden et al. 2017), northern shrimp (Pandalus borealis) (Stanley et al. 2018), invasive Euro-

pean green crab (Carcinus maenas) (Jeffery et al. 2017), capelin (Mallotus villosus) (Cayuela et al 

2021), Tarakihi (Nemadactylus macropterus) (Papa et al 2022), and Atlantic herring (Clupea ha-

rengus) (Fuentes-Pardo et al 2023b). In the east Atlantic, a similar north-south genetic break has 

been observed in Atlantic horse mackerel (Trachurus trachurus) (Fuentes-Pardo et al. 2023a) and 

boarfish (Capros aper) (Farrel et al. 2016), which coincides with a biogeographical transition zone 

between temperate and subtropical waters off the coast of central Portugal (Gamito et al. 2016). 

Extreme thermal events can also result in a reshuffling of genetic clusters leading to local adap-

tation. For example, Coleman et al. (2020) demonstrated that an extreme marine heatwave caused 

a significant poleward shift in genetic clusters of kelp forests along the coast of western Australia, 

whereby ‘cool water’ alleles were replaced by ‘warm water’ alleles, resulting in a genetic tropi-

calisation of the populations. While within a given species the same adaptive alleles can be se-

lected multiple times in distinct geographic areas, resulting in parallel evolution of thermal ad-

aptation (Bradbury et al. 2010), universality of the molecular processes involved in thermal ad-

aptation is largely unknown in marine systems, partly due to the lack of genomic resources and 

functional validation of the markers under selection in published studies. 

Climate change projections not only indicate a rapid increase in ocean water temperature in the 

next century, but also lower salinity in relation to glacier melting and higher precipitation in 

some regions, like the northern hemisphere (Luo et al. 2016; Kniebush et al. 2019). Additionally, 

many marine species use a variety of habitats throughout their life cycle, some spanning fresh-

water and estuarine environments and thereby experiencing steep salinity clines, but little is 

known about local adaptation in these contexts. A significant body of work supports salinity 

adaptation in marine organisms (Johannesson et al. 2020), particularly in the Baltic Sea. For in-

stance, whole genome sequencing revealed hundreds of genetic regions across the genome of 

Atlantic herring (C. harengus) that showed significant differentiation between Baltic and Atlantic 

populations (Han et al. 2020). Equivalent comparisons of Baltic and Atlantic populations have 

yielded similar results in other species such as Atlantic cod (G. morhua) (Berg et al. 2015), sand 

goby (Pomatoschistus minutus) (Leder et al. 2021) and European plaice (Pleuronectes platessa) (Le 

Moan et al. 2021), indicating adaptation to low salinity levels. Within the Baltic, different species 

of mussels have also shown salinity-related adaptation between western and eastern regions 

(Zbawicka et al. 2014; Knöbel et al. 2021). Recently, Stern et al. (2022) showed experimental and 

genomic evidence of Baltic copepod (E. affinis) rapidly adapting to decreasing salinity. Similar to 

thermal adaptation, salinity adaptation can be both the result of parallel evolution or convergent 

evolution (Le Moan et al. 2021), and it can have a genomic background involving few genetic 

variants of large effect or many loci of small effect (e.g., Berg et al. 2015; Le Moan, et al. 2021).  
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2.1.3 Prediction of climate change impacts using genomic tools in 
marine taxa 

As discussed above, local adaptation to ocean climate appears to be widespread across marine 

species in a variety of taxonomic groups and ecological contexts. However, climate change is 

expected to quickly disrupt local adaptation in the coming years, resulting in maladaptation as 

the speed of change outpaces evolution in many species and populations (Davis & Shaw 2001; 

Razgour et al. 2019). The ability to resolve the genomic basis of adaptation, in conjunction with 

fine-scale climate projections, presents an opportunity to leverage these datasets to forecast fu-

ture climate-associated genomic variation and maladaptation. Genomic offset, defined as the dif-

ference in current and future adaptive potential, was first introduced by Fitzpatrick and Keller 

(2015) and later by Bay et al. (2018) and has been used to identify vulnerable, or maladapted, 

populations. In the past few years, this method has been increasingly employed across various 

terrestrial systems (e.g., Capblancq et al. 2020), with more recent work focussing on in situ vali-

dation of these offset estimates (Fitzpatrick et al. 2021). To derive the offset estimate, allele fre-

quencies (response variables) of putatively adaptive loci are used alongside environmental data 

(predictor variables) to model climate-associated genomic variation, using any number of mod-

elling approaches (e.g., random or gradient forest, generalized dissimilarity modelling, redun-

dancy analyses). Next, this model is used alongside environmental data from both current and 

future time periods and across the species’ range to predict current and future adaptive indices, 

respectively. The difference between these values represents offset, with larger values indicating 

that a population is less likely to respond to future climate change and will thus be maladapted. 

This method has typically been used in species with strong population structure distributed 

across well-defined environmental gradients but its utility, and downstream interpretation, in 

marine species has been understudied. However, recent work has begun to address this gap by 

employing these methods in marine systems, demonstrating its potential utility in seven species 

of fish, invertebrates and marine plants (Table 2.1).   
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Table 2.1: List of current publications employing genomic offset estimates in marine species.  

Organism Region Method Included Climate Variables Validated Reference 

Macrophytes 

Eelgrass (Zostera 
marina) 

Coastal North 
America 

RDA 
Seasonal, annual bottom & sur-
face temperature, salinity 

No 
Jeffery et al. 
(2023) 

Seaweed (Phyllo-
spora comosa) 

Southeastern 
Australia 

GDM Sea surface temperature No Wood et al. (2021) 

Kelp (Ecklonia ra-
diata) 

Western  
Australia 

GF 
Dissolved oxygen, sea surface sa-
linity, sea surface nitrate, sea-
water velocity, attenuation 

No 
Vranken et al. 
(2021) 

Vertebrates 

Arctic Char 
Newfound-
land/ 
Labrador 

GF Precipitation, air temperature  No 
Layton et al. 
(2021) 

Invertebrates 

Multi-species: Ur-
chin (Parechinus 
angulosus), crab 
(Cyclograpsus 
punctatus) & lim-
pet (Scutellastra 
granularis) 

South Africa GF 
Sea surface temperature, sea sur-
face salinity & air temperature 

No 
Nielsen et al. 
(2021) 

Coral (Acropora 
digitifera) 

Western  
Australia 

GF & GDM Sea surface temperature No Adam et al. (2022) 

Tubeworms 
(Galeolaria caes-
pitosa & Galeo-
laria gemineoa) 

Southeast 
Australia 

GF Sea surface temperature No 
Gallegos et al. 
(2023) 

 

Most of this work has focused on generating offset estimates in single species across their range, 

with variable patterns across taxonomic groups and geographic areas. For instance, in eastern 

Canada, offset estimates were highest in southern populations of Arctic charr (S. alpinus) (Layton 

et al. 2021), consistent with a scenario of contraction of the southern range limit of this Arctic 

species.  Alternatively, genomic offset values were higher in mid-range (subarctic) populations 

of a widely distributed eelgrass species (Z. marina) across a similar area (Jeffery et al. 2023). In-

terestingly, offset estimates in Acropora digitifera in western Australia were more spatially com-

plex, but populations living at the upper thermal limits (i.e. at lower latitudes) were predicted to 

require less of an adaptive shift than mid-latitude reefs (Adam et al. 2022). Similarly, Wood et al. 

(2021) show a spatially complex pattern of offset in a forest-forming seaweed (Phyllospora comosa) 

in Australia, demonstrating that offset estimates do not follow a simple latitudinal cline.  Finally, 

Nielsen et al. (2021) in a comparative study of three marine invertebrates, explore genomic offset 

values, and demonstrate that temperature was strongly correlated with genomic variation in 

some invertebrate species but not others and that species-specific responses were a better pre-

dictor of evolutionary potential than environmental data alone.  On the surface, these initial stud-

ies suggest broad generalizations of climate change vulnerability in marine species may be diffi-

cult even across similar species or geographic regions, but clearly many more examinations of 

genomic offset will be required.  

It is important to note that the majority of studies exploiting genomic offset in marine species 

(and others) have relied solely on single nucleotide polymorphism (SNPs) allele frequency 
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datasets of various sizes. But it is increasingly clear that the basis of local adaptation in marine 

taxa extends beyond SNPs to larger types of chromosomal rearrangements, copy number varia-

tion, and even epigenetic variation. For instance, environmental adaptation in American lobster 

(Homarus americanus) was driven almost entirely by CNVs with little to no signal in the SNP data 

(Dorant et al. 2020). Similarly, Layton et al. (2021) report spatial similar trends in genomic offset 

calculated from CNV and SNP datasets in Arctic Charr populations from eastern Canada, In 

three-spined stickleback, differentially methylated regions (DMRs) were more significantly as-

sociated with environmental variation (salinity) than outlier SNPs (Ruiz-Arenas et al. 2017). 

Given these findings, Layton and Bradbury (2022) suggest a revised offset approach incorporat-

ing normalized read counts and methylation scores alongside allele frequencies may better re-

flect adaptive responses improving prediction accuracy.  

2.1.4 Validating genomic offset estimates in marine systems 

Projections of climate change response via genomic offset are correlative in nature and as such, 

these models can be prone to errors when the underlying genomic data, climate projections, or 

their associations are of low resolution or inaccurate. Moreover, these models largely ignore 

much of the underlying complexity of the evolutionary response including effective population 

size and rates of mutation and recombination (Rellstab et al. 2021). The models also assume that 

a population currently exists at its adaptive optimum and that the genotype-environment asso-

ciation tracks spatial patterns in local adaptation, an assumption that can be impacted by local 

demographic patterns and genetic drift (Rellstab et al. 2021; Laruson et al. 2022). For instance, 

spatial changes in allele frequencies may reflect neutral drift rather than adaptation, and this is 

especially likely when population structure is aligned along environmental gradients. Laruson 

et al. (2022) employ simulations to demonstrate that although genomic offset is broadly corre-

lated with fitness, it could be confounded by demography, genomic architecture, and the nature 

of the offset-fitness relationship.  

Beyond this simulation study, few have attempted to validate the assumptions inherent, or the 

projections of population response based on genomic offset calculations. In theory, validation 

may come from experimental studies, or comparison of predictions with existing demographic 

data.  The only example of experimental validation to date is from a terrestrial species, the balsam 

poplar (Populus balsamifera), where genomic offset estimates were compared to population per-

formance in common gardens (Fitzpatrick et al. 2021). Here the authors report a negative rela-

tionship between genomic offset and common garden performance consistent with significant 

power of offset estimates to predict population response to climate change, exceeding that of 

climate differences alone. In contrast, Bay et al. (2018) used genomic offset to explore climate 

change variability in the yellow warbler (Setophaga petechia) and compared offset estimates to 

historical trends in abundance. Although they report a correlation between offset projections and 

demographic decline, this approach assumes consistency among historical and future trends, 

and can be biased by non-selective / demographic influences on the offset prediction (Laruson et 

al. 2022). Interestingly, no direct attempts to validate genomic offset predictions in marine species 

have been published to date. 

Although very informative and likely the gold standard, the potential for experimental valida-

tion of offset estimates through either reciprocal transplant or common garden experiments in 

marine species are limited by comparison with terrestrial plants or animals. This is largely due 

to the added complexity of these experiments in the marine environment, but some exceptions 

exist (see Jacobs et al. 2022). However, marine systems, particularly exploited species, often have 

extensive stock assessment and long-term monitoring programs with decades worth of time se-

ries data. Rather than comparing future estimates of climate change impact with past demo-

graphic data, this allows direct comparison of past demographic trends with predictions of past 
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climate-associated genomic change.  This approach, although not perfect, allows for some degree 

of validation if offset calculations are hindcast to the period over which population monitoring 

has occurred. In fact, due to the extensive population abundance data available for many eco-

nomically and ecologically relevant marine species, the potential for this sort of retrospective 

validation in marine systems is unprecedented. Furthermore, sampling programs spanning dec-

ades present the opportunity to retrospectively test for temporal changes in allele frequencies in 

response to climate change. Beyond validating offset estimates, identifying genomic regions 

linked to environmental variation provides additional support for climate-associated adaptation.  

2.1.5 Recommendations for marine management 

As genomic offset models are refined and applied to additional species of conservation interest, 

there will be a need to integrate predictions into management and decision making. While vali-

dating genomic offset models, through experiments or observations over time, will foster trust 

in the method, there are consequences to inaction as well (Salafsky and Redford, 2013). Different 

standards of proof of a model or prediction may be required depending on the relative conse-

quences of action versus inaction, and whether management or mitigation strategies are reversi-

ble; a relatively low standard of proof may be required if inaction would lead to long-term eco-

logical consequences when there is at least some certainty about a beneficial outcome for a pop-

ulation or species (Salafsky and Redford, 2013).  

To integrate genomic offset into management decisions, we recommend: 

1. Comprehensive sampling across the range of marine species, including locations and 

habitats of interest (e.g., latitude, conservation areas, spawning areas, temperature re-

gimes, depth, etc.)  

2. Suitable sampling for the genomic method to produce allele frequencies (i.e., minimum 

30 individuals per sampling location, high-resolution analysis ideally whole genome 

resequencing at moderate to high depth >5-10X) 

3. High resolution climate data for the study region, including biologically-relevant envi-

ronmental variables and preferably validated with in situ measurements accounting for 

depth and seasonal variation. 

4. Future climate change scenario models of the same resolution as contemporary climate 

data, usually with a trade-off of resolution and geographic scale 

5. Genomic offset can then be used for 'assisted evolution' or restoration through transplan-

tation, enhancing resilience to a changing climate (e.g., Wood et al., 2021). 

2.1.6 Conclusions 

Climate change poses a variety of significant challenges across marine ecosystems likely to in-

fluence both the suite of biodiversity present and ultimately ecosystem function. The global reli-

ance on marine resources means that these changes will undoubtedly have clear repercussions 

on food security and economic stability (Payne et al. 2021). Our ability to mitigate these changes 

and “future proof" management decisions and conservation actions will depend on a thorough 

understanding of the basis of climate adaptation and accurate predictions of the impacts of cli-

mate change in marine species. Our review of the existing literature reveals a wealth of examples 

demonstrating climate-associated adaptation in marine taxa resolvable with genomic analysis 

and marine climate data. The results suggest that our ability to resolve the genomic basis of cli-

mate-associated adaptation may be elevated in marine taxa compared with terrestrial taxa, 

providing improved power to predict climate change response in these systems. However, there 

remains a general lack of validation of genomic offset estimates, heightening the uncertainty of 

these predictions, both in terrestrial and marine systems. As such, there is a pressing need for 
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improved genomic and environmental sampling of marine species and targeted validation stud-

ies to quantify error and uncertainty in these estimates. Looking forward, significant methods 

development will also be required to integrate across multiple climate-associated genomic vari-

ants which are likely to improve prediction accuracy (i.e., Layton and Bradbury, 2022). 
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3 Tor C: To evaluate available genetic-based solutions 
to better understand the mesopelagic ecosystem 

3.1.1 Abstract 

Marine ecosystems are among the most exploited and threatened habitats on Earth, and the deep 

sea is no exception. At its upper limit (from 200 to 1000 m depth) lies the mesopelagic or twilight 

zone, a poorly known but ecologically key oceanic region. This ecosystem is unique with tens of 

biogeographic zones and a wide taxonomic diversity of organisms that provide essential ecosys-

tem services, sustain the entire marine ecosystem (including populations of commercial fish) and 

regulate climate. Yet, exploitation of resources of the twilight zone has recently gained increased 

interest, which calls for urgent research on the twilight zone so that sustainable management 

actions can be implemented before it is too late. Knowledge on the twilight zone remains incipi-

ent due to the challenges in exploring this deep and dark ecosystem. The continuous develop-

ment of modern sequencing technologies, coupled with the new sources of data such as environ-

mental DNA (eDNA), have opened a whole new horizon of big data omics information. It is 

expected to speed up and facilitate the compilation of missing basic knowledge about the meso-

pelagic ecosystem that will be essential to maintain its biodiversity and associated ecosystem 

services. Here, we showcase how molecular tools are essential to understand the mesopelagic 

ecosystem and provide genetic solutions for both basic and advanced biological questions at the 

individual, population, species, and ecosystem levels of biodiversity.  

3.1.2 Background 

Marine ecosystems are among the most exploited and threatened habitats on Earth. The deep 

sea, comprising the oceanic region between 200 m depth and the seafloor and representing 95% 

of the ocean’s volume (Danovaro et al., 2017), is no exception. At the deep ocean´s upper limit 

lays the mesopelagic zone, colloquially known as the twilight zone, which extends approxi-

mately to 1000 m depth, covers 60% of the planet's surface and represents about 20% of the 

ocean's volume (Bopp, 2021). This realm is characterised by decreasing gradients in light inten-

sity, which are not enough for supporting photosynthesis (Arístegui et al., 2009), and tempera-

ture with depth, and by an increasing gradient in salinity and pressure, as well as by the presence 

of low oxygenated areas (oxygen minimum zones, OMZs) (Ramirez-Llodra et al., 2010; Robinson 

et al., 2010). 

The mesopelagic zone is home to a wide taxonomic diversity of organisms (Robinson et al., 2010; 

Sutton et al., 2017), which are involved in global biogeochemical cycles, essential for sustaining 

the marine ecosystem and for climate regulation. The mesopelagic zone displays microbial ac-

tivity comparable to the epipelagic zone (Arístegui et al., 2005; Gasol et al., 2009)et due to absence 

of photosynthesis, the food web is heterotrophic, although primary production through chemo-

autotrophy has been reported (Arístegui et al., 2009). Mesopelagic bacteria and archaea consume 

most of the organic matter that reaches the twilight zone in the form of degrading dissolved 

and/or particulate organic matter (DOM and POM, respectively) produced in the upper layers. 

DOM/POM reach deeper layers through particle or aggregate sinking and faecal pellets excreted 

at depth by vertically migrating mesopelagic organisms after feeding at upper layers (Buesseler 

and Boyd, 2009; Calleja et al., 2018; Morán et al., 2022), or through the release of living POM by 

viral infection (Laber et al., 2018). This prokaryotic activity also promotes sinking organic matter 

to return to the trophic web through the microbial loop, underpinning a complex, well-
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established food web that involves a wide array of planktonic and nektonic organisms including 

heterotrophic protists (e.g., pico- and nanoflagellates, ciliates), invertebrates (e.g., crustaceans, 

salps and cephalopods), and fish (Steinberg and Landry, 2017; Silva et al., 2022). In the mesope-

lagic food web, zooplankton act as primary and secondary consumers and detritivores (Steinberg 

and Landry, 2017). Nektonic mesozooplankton (from 0.2 to 20 mm, mainly comprised of meta-

zoans such as copepods or amphipods) are in turn preyed upon by mesopelagic fish and cepha-

lopods, thus transferring energy from lower to higher trophic levels, and ultimately sustaining 

commercial fish and top marine predators (pinnipeds, cetaceans, seabirds, and tunas) (Naito et 

al., 2013; Battaglia et al., 2020; Braun et al., 2022). Through their activity, zooplankton and nekton 

are key regulators of the biological carbon pump, i.e., the transport of the organic matter pro-

duced in euphotic layers to the ocean depths (Legendre et al., 2015), by attenuating sinking of 

organic matter through feeding and fragmentation of particles, and by repackaging the organic 

matter into dense, quickly sinking faecal particles (Turner, 2002; Wilson et al., 2008). This whole 

process regulates the ocean’s carbon cycle through carbon and nutrient recycling and release of 

dissolved inorganic carbon (Arístegui et al., 2009). 

Mesopelagic organisms are also crucial in the vertical connectivity of marine food webs. Alt-

hough the strong vertical community structuring reported for many microscopic groups sug-

gests that mesopelagic species with limited movement capability across the water column such 

as protists and prokaryotes permanently inhabit mesopelagic depths (Countway et al., 2007; Ca-

nals et al., 2020; Giner et al., 2020), the mesopelagic trophic web highly connected with the sur-

rounding oceanic zones, especially with the epipelagic zone (0 to 200 m). In a phenomenon 

known as “The largest migration on Earth”, hundreds of mesopelagic species perform a vertical 

journey every night to feed at epipelagic depths (Hays, 2003; Aumont et al., 2018). This diel ver-

tical migration (DVM) is observed worldwide, including in the high latitudes despite the limited 

darkness in summer months. During the DVM, mesopelagic organisms are preyed upon by ep-

ipelagic species, such as sea mammals, seabirds, and commercially important fish species (Gimé-

nez et al., 2018; Komura et al., 2018). Ontogenetic migration is also a common trait of many mes-

opelagic species, based on which early development stages inhabit epipelagic depths and move 

down to the mesopelagic zone at subsequent phases (Steinberg et al., 2008; Yamaguchi et al., 2019; 

Olivar and Beckley, 2022). 

The mesopelagic zone is increasingly experiencing direct and indirect human interference. Indi-

rect interference relates to increasing levels of pollutants (e.g., plastics and eutrophication) and 

to climate change-derived effects through seawater warming, acidification, deoxygenation, and 

changing circulation patterns (Levin and Le Bris, 2015; Rogers, 2015; Brito-Morales et al., 2020; 

Yang et al., 2020). In the epipelagic layer, a reorganization of marine ecosystems with poleward 

movements of species is already evident (Richardson, 2008; Benedetti et al., 2021) and this will 

eventually affect the mesopelagic trophic web due to a close relationship between mesopelagic 

biomass and epipelagic productivity and carbon export. In turn biomass and productivity are 

dependent on local phytoplankton community composition (Guidi et al., 2016; Hernández-León 

et al., 2020). Seawater warming is also expected to significantly impact deep-sea ecosystems 

(Brito-Morales et al., 2020) due to the adaptation to stable conditions and therefore limited toler-

ance to change (Levin and Le Bris, 2015). 

Direct interference is related to interest in exploiting mesopelagic resources, which has increased 

mainly due to recent estimates pointing to total mesopelagic fish biomass of 9–19.5 gigatonnes 

(Irigoien et al., 2014; Proud et al., 2019; Martin et al., 2020). The latter represents a new, huge 

potential source of marine lipids and protein in supply of the nutraceutical, food, and feed in-

dustries. Industrial-scale mining also represents a threat to mesopelagic ecosystems due to the 

release of sediments plumes to the water column, in addition to habitat (and associated biodi-

versity) destruction (Ramirez-Llodra et al., 2010; Mengerink et al., 2014). An uninformed man-

agement of mesopelagic resource extraction could lead to significant local and global 
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consequences on its biodiversity (Mengerink et al., 2014; Danovaro et al., 2017; Martin et al., 2020), 

e.g., through ecological tipping points and cascading effects, and ultimately alterations and loss 

of biodiversity, impacting ecosystem services (Worm et al., 2006; Crist et al., 2017). 

Despite the current threats of the mesopelagic zone and its critical role in regulating global bio-

geochemical cycles and climate, it is barely understood, especially in comparison to the epipe-

lagic layer. The gaps of knowledge about the mesopelagic zone are immense. Even the most basic 

biological and ecological questions such as which organisms live there, how many species are 

present, or how abundant they are, remain largely elusive (Webb et al., 2010; Danovaro et al., 

2017; Martin et al., 2020; Bopp, 2021). More complex matters, such as the role of mesopelagic 

organisms in regulating the biological carbon pump and climate or predicting the impacts in 

marine ecosystems derived from the potential extraction of mesopelagic resources or from cli-

mate change, are even more challenging and still subject to high uncertainties (Buesseler and 

Boyd, 2009; Burd et al., 2010; Costello and Breyer, 2017; Bode et al., 2018; Brito-Morales et al., 

2020). Hence, the mesopelagic zone does not feature prominently on international fora of man-

agement and governance, not the least because of poor documentation (Schadeberg et al., 2023). 

The mesopelagic realm is not a trivial environment to study, mainly due to logistic hindrances 

and economic demands related to sampling. Data on the mesopelagic zone remain sparse, with 

very few time series, often consisting of single site measures with few physical samples and al-

ways obtained at a large effort. However, research on the mesopelagic realm is currently experi-

encing a notable increase (Figure 2.1), partly thanks to government-funded projects such as the 

EU Horizon 2020 MEESO (https://www.meeso.org) and SUMMER (https://summerh2020.eu) 

projects or the Joint exploration of the twilight zone ocean network (JETZON) UN Decade pro-

gram (https://jetzon.org/), coupled to the advent of new technological developments (Butler and 

Pagniello, 2021). In addition, research opportunities have never been so promising; molecular 

tools have opened a whole new horizon of big data omics information, which is expected to 

speed up and facilitate the obtention of missing, basic knowledge about the mesopelagic ecosys-

tem, as well as to provide alternative basics for biodiversity and ecosystem services management 

(Heuertz et al., 2023). 

While the development of molecular tools for studying organismal evolution and functioning 

has become firmly established in the previous century, the advent of high-throughput sequenc-

ing tools developed since the end of last century has greatly benefited the study of non-model 

organisms (Bernatchez et al., 2017; Casillas and Barbadilla, 2017). Questions addressing the or-

ganisation of a single genome, up to the evolution of populations and conservation management 

are feasible. A consequence is that the sparse samples from the mesopelagic zone offer uncharted 

opportunities for study at a high level of detail and understanding. For example, each animal 

harbours in addition to its genome a sample of the local prey and parasite assemblage, and its 

external and gut microbiome, thus providing information at the cellular, species, population, 

community, ecological and evolution level. It is therefore not surprising that there has been a 

marked increase in the number of studies in the mesopelagic zone using genetics in recent years 

(Figure 2.1). 
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Figure 2.1. Cumulative number of peer-reviewed primary literature publications mined from Web of Science for meso-
pelagics (grey bars), with keywords [mesopelagic OR mesopelagics OR "ocean´s twilight zone" OR "ocean twilight zone"] 
and for mesopelagics and genetics (black bars), adding keywords [DNA OR genomics OR eDNA OR "high-throughput se-
quencing" OR "next generation sequencing"] as of June 12th 2023. 

 

Here, we provide a synthesis review of how genetics could facilitate closing major knowledge 

gaps and increasing our understanding of the twilight zone diversity at the organismal, popula-

tion, species, and ecosystem level. Then, we discuss how this knowledge is expected to inform 

management of ecosystem services and conservation. Finally, we provide recommendations to 

guide future research. By choice, we rely on studies carried out in the mesopelagic zone, yet 

when missing such studies, we take advantage of studies in other environments to showcase its 

potential application to the mesopelagic realm. 

3.1.3 How genetic tools can help us understand the mesopelagic 
ecosystem 

Revealing the inventory and functioning of the mesopelagic biodiversity is key for the sake of 

sheer knowledge and management. Genetics provides information at the individual, population, 

species, and ecosystem level. Since the turn of the century, access to the mesopelagic zone has 

benefited from the development of a diverse and handy molecular toolbox. The tendency to de-

creasing costs and well-managed databanks has given the molecular approach to genetics a phe-

nomenal boost of which the following paragraphs pay testimony. What has been realised so far 

is only a part of the biodiversity the mesopelagic zone harbours. Here we provide an inventory 

by scientific discipline of what might be achieved in the near future. 
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3.1.3.1 Information at the individual level 
Age and sex of multicellular organisms represents important information at the individual level 

to understand population dynamics, and ecological and evolutionary processes is the age and 

sex of multicellular organisms. 

Genetic aging. Age determination is fundamental to population biology and thus highly relevant 

to fisheries management. Classically, seasonal and predictable growth marks in otoliths or other 

calcareous structures such as scales and fin spines have been used to estimate chronological age 

(Campana, 2001; Luque et al., 2014). However, several harvested fish lack an accurate and prac-

tical method for estimating age. In addition, such techniques can be expensive, time consuming 

(Helser et al., 2019), and of low accuracy (Campana, 2001). There are two alternatives under de-

velopment. Vertebrate telomeres shorten as they age (Carneiro et al., 2016). Hence telomere 

length functions as molecular clock, provided that a calibration curve is prepared (Nijland van 

Hal, pers. comm). So far, few marine organisms have attained the resolution required for field-

based application. An alternative is epigenetics, which is defined as the ensemble of processes 

that alter gene activity without changing the DNA sequence and which can be heritable and 

reversible (Weinhold, 2006), the most common being histone modifications, RNA-based mecha-

nisms, and DNA methylation. Among epigenetic mechanisms, DNA methylation, which consists 

of the addition of methyl groups to the DNA, typically cytosines within cytosine-phosphate-

guanine (CpG) sites, has been considered as a potential predictor of age (Horvath, 2013). There 

is a relationship between methylation change and age (Field et al., 2018), and increasing evidence 

support DNA methylation patterns as potential biomarkers for chronological age. This has led 

to the development of so-called epigenetic clocks (Field et al., 2018; Beal et al., 2022; Piferrer and 

Anastasiadi, 2023), which have been tested in several fishes (Venney et al., 2016; Gavery et al., 

2019; Anastasiadi and Piferrer, 2020). By extension, the molecular aging developed in verte-

brates, can be extended across the tree of life. 

Sex identification. There is a remarkable diversity of primary sex-determining mechanisms in in-

vertebrates and vertebrates (Devlin and Nagahama, 2002; Bachtrog et al., 2014; Pennell et al., 

2018). Sex differentiation might be gonochoristic or hermaphroditic, maturing either first as 

males or as females. Hence, except for birds and mammals (with a heterogametic sex), sex iden-

tification requires species-specific approaches, which vary from poly- and monogenic sex deter-

mination to factors located on auto- or sex chromosomes. In fish, molecular markers have been 

used to understand sex determination and are effective to discriminate among sexes (Star et al., 

2016; Toli et al., 2016). To our knowledge, no molecular information is available yet on any mes-

opelagic organism.  

3.1.3.2 Information at the population level  
Individuals grow, reproduce, and die; they form populations which expand and contract, move 

and adapt in response to environmental and interspecific interactions. Metapopulation theory, 

which considers patterns of dispersal and population dynamics, and population sources and 

sinks, provides an established and most useful concept to understand the dynamics of popula-

tions (Kritzer and Sale, 2004; Aiken and Navarrete, 2020). Species- and population-specific data 

on sex, age structure and life-history traits feed into population and production models, which 

provide the necessary information to assess ecosystem functioning. Taxa and functions revealed 

through (meta)barcoding and epigenetics from bulk DNA/RNA or environmental DNA/RNA 

reveal sex-and age-structured abundances (Yates et al., 2021). 

Genetic diversity and effective population size. A first measure to characterise populations is within-

species genetic diversity, which is determined by the accumulation of novel genetic variation 

through mutation, its spread in space and time through gene flow, and processes leading to ge-

netic drift and selection. Intraspecific genetic diversity represents the building blocks of evolu-

tion because genetic variation is a source for evolutionary responses to the changing 



ICES | WGAGFA   2023 | 25 
 

 

environment. Genetic variation is measured as indices of heterozygosity, inbreeding, allelic rich-

ness, and nucleotide polymorphism. The genetic variation of marine fish is higher than freshwa-

ter fish (Ward et al., 1994), because the larger the population the larger the genetic diversity. 

There is no difference in genetic variation between coastal and deep-sea species (Taylor and 

Roterman, 2017). Mesopelagic organisms with their large population size fit the observations of 

high genetic diversity (Van de Putte et al., 2012; Rodriguez-Ezpeleta et al., 2017; Domingues et al., 

2019). However, behaviour, such as diel vertical migration, impact the genetic diversity of some 

mesopelagic organisms (Timm et al., 2020). Hence, genetic variation determines the function and 

resilience of populations; the potential for adaptability of a population is proportional to its eco-

logical strategy and genetic diversity (Romiguier et al., 2014). Genetic diversity finds many ap-

plications in conservation biology (Hoban et al., 2020). For example, consequences of small pop-

ulation sizes or overexploitation are first noticed through the loss of rare alleles (decrease of al-

lelic richness) and at a later stage through the loss of heterozygosity and increased inbreeding 

(Pinsky and Palumbi, 2014; Rivera-León et al., 2019). 

Effective population size (Ne) quantifies the potential of a population for passing on genetic di-

versity to the next generation and hence quantifies population resilience. The value of Ne de-

pends on factors such as census size and life history traits (Waples, 2022). Theory predicts Ne/Nc 

ratios of ≥ 0.1 but ratios of 10-4 or even 10-5 are not uncommon in highly fecund taxa (Portnoy et 

al., 2008; Hare et al., 2011). For example, (Domingues et al., 2019) calculated an increase in Ne of 

the night shark over the past 50,000 years. Reliability of the Ne estimates is steadily improving 

with access to high quality genomic information (Davenport et al., 2021). 

Population structure and connectivity. Building further on the assumption that mesopelagic species 

have large population sizes and experience barriers in the ocean such as frontal systems, gyres 

and topographic features, genetic differentiation between populations is generally low com-

pared to epipelagic and shelf populations (Kristoffersen and Gro Vea Salvanes, 2009; Van de 

Putte et al., 2012; Rodriguez-Ezpeleta et al., 2017; Domingues et al., 2019). Spatially reduced gene 

flow between populations leads in many cases to isolation by distance (Taylor and Roterman, 

2017; Gonçalves da Silva et al., 2020). For example, Domingues et al. (2019) showed that popula-

tions of the night shark gradually diverge the further they live from each other (isolation by 

distance). In other cases, the underlying pattern may be attributed to selection (isolation by ad-

aptation). Demographic instability or selective sweeps are common in benthos according to a 

meta-analysis by Taylor and Roterman (2017). Another explanation for constrained gene flow in 

an environmental context is isolation by resilience. Boussarie et al. (2022) argued that unlike ge-

ographical distance, dispersal distance and ocean depth are major factors explaining the distri-

bution pattern of the grey reef shark on the coral reefs of the Indo-Pacific Ocean.  

Functional connectivity is a cornerstone of viable populations. The exchange of genetic material 

probably represents the largest insurance against inviable populations. While demographic con-

nectivity, also known as ecological connectivity, focuses on intragenerational phenomena, ge-

netic or evolutionary connectivity considers multi-generational phenomena (Lowe and Allen-

dorf, 2010). Each type of connectivity is studied with adapted methodologies and tools. Interest-

ingly, a shallow water example on tropical clown fish shows that ecological and evolutionary 

dispersal, each measured with genetic methods, are comparable (Pinsky et al., 2017). Dispersal 

of individual fish over long distances has been documented in the North Atlantic Ocean (McGill 

et al., 2023). This opens excellent opportunities to understand the dispersal dynamics and inter-

actions of mesopelagic organisms over a wide range of spatial-temporal scales. The information 

is crucial to identify management units and take conservation measures. 

Tracing populations. An interesting application of the characterisation of population structure is 

the assignment of individual organisms to their source population. The genetic profile composed 

of large numbers of genetic markers, often SNPs, characterizes a population. When selecting a 
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highly discriminating set of markers characteristic for each population, the individual genotype 

reveals the spawning unit. The EU funded project FishPopTrace successfully assigned fish biop-

sies to their geographical source (Nielsen et al., 2012). In another case, the fishery of two ecotypes 

of Atlantic cod is guided with a 5-day turnover test during spring spawning (Johansen et al., 

2018). 

Phylogeography. During Pleistocene glaciations hydrodynamics and climate zones left a regional 

imprint on the genome of organisms. Postglacial periods led to range shifts and population ex-

pansions or contractions, with clades (and cryptic species) leaving geographical traces and re-

vealing patterns of gene flow and suture zones of hybridization and introgression (Miyamoto et 

al., 2010; Domingues et al., 2019). Historical genetic patterns are scored with slow evolving orga-

nelle or nuclear loci, calibrated with fossil finds or parallel events for the era considered. For 

example, the mesopelagic night shark, which is often caught as bycatch in the pelagic longline 

fishery and listed ‘vulnerable’, differentiates in a southwestern and northwestern Atlantic line-

age (Domingues et al., 2019). Both lineages diverged during the Pleistocene with its fluctuating 

sea temperature, sea level and hydrodynamics. Phylogeographic and species patterns show con-

siderable similarities; this is not unexpected because population-level genetic divergences are a 

starting point for macroevolutionary divergences between species (Bowen et al., 2016). Oceano-

graphic barriers affect concomitantly the distribution and connectivity of marine biota, leading 

to overlapping multispecies biogeographical and phylogeographical patterns (Antich et al., 

2023). All this information on historical patterns may be accounted for in conservation through 

management units (Avise et al., 1987). Phylogeography of mesopelagic species can be studied “in 

bulk” through DNA metabarcoding (Turon et al., 2020; Tsuji et al., 2023) and species-by-species 

using SNP-based methods (Rees et al., 2020). 

Adaptation. Sampling of thousands to millions of genetic markers randomly spaced across the 

genome have transformed our understanding of genetic differentiation in marine systems. Con-

sequently, cryptic but biologically significant patterns of genetic differentiation have been re-

vealed in marine fishes. A toolkit consisting of genetic markers potentially under selection and 

structural variation (such as chromosomal inversions) that often capture multiple genes involved 

in local adaptation have been effective in delineating additional structure and hence connectiv-

ity. Deep-water conditions such as depth stratification and horizontally spaced structures (e.g., 

canyons, seamounts, and oxygen minimum zones) might induce species-specific adaptation. For 

example, signatures of adaptation in blue ling Molva dypterygia consisted in signs of selection in 

genes involved in growth, vision, and adaptation to lower temperatures (McGill et al., 2023). 

Genetic differentiation at functional loci of the rock grenadier Coryphaenoides rupestris distin-

guishes individuals living at different depths, independent of horizontal spatial distance 

(Gaither et al., 2018). A distinct pattern of cryptic genetic structure exists for putative functional 

loci, despite apparently high levels of gene flow in orange roughy Hoplostethus atlanticus. Juvenile 

orange roughy may have a distribution that is more mesopelagic than adults (Gonçalves da Silva 

et al., 2020). 

Seascape genomics. The ecological niche at the population level of genomically characterised ma-

rine organisms provides an integrated approach to generate analytical and predictive models of 

genetic differentiation. Seascape genomics helps to identify barriers to gene flow and connectiv-

ity corridors for incorporation into network design. It is achieved through statistical models that 

incorporate geographically referenced environmental features (the seascape) with genetic and 

phenotypic information (Selkoe et al., 2016). It finds applications in the functional delineation of 

populations, management units and conservation areas. To our knowledge no such study in the 

mesopelagic zone has been published because the approach requires an extensive and detailed 

spatially anchored data matrix of environmental and genetic data. Examples from the coastal 

zone cover taxa from across the tree of life (Wood et al., 2021; Jahnke et al., 2022; Benestan et al., 

2023). 
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3.1.3.3 Information at the species level  
Taxonomic diversity. Compiling inventories of species involves the most basic biological and eco-

logical knowledge and foundation for a deeper understanding of the ecosystem. The large pool 

of taxa in the mesopelagic zone awaiting description makes that species descriptions represent a 

prime task (Bopp, 2021). Taxonomy and phylogeny, largely based on genetic and genomic tools, 

provide important support to delineate, compile and understand species diversity (Christiansen 

et al., 2018; Lee et al., 2022). Hence, for routine identification increasingly relies on DNA metabar-

coding, implemented through high-throughput amplicon sequencing, or on DNA barcoding, if 

possible, in combination with well-established morphological tools (e.g., Govindarajan et al. 

(2021)). Due to the broader focus, multi-species methods are the most suitable to obtain insights 

on the community composition. Especially DNA metabarcoding is favoured due to its low cost, 

standardised pipelines, and the capability to target specific taxonomic clades. DNA metabarcod-

ing has been successfully applied in the mesopelagic zone using different types of DNA source 

including filtered water, sediment, and bulk samples (Wangensteen et al., 2018; Hirai et al., 2020; 

Canals et al., 2021). It provides a list of the sequences present in a sample, which are then taxo-

nomically assigned using a reference database. DNA metabarcoding is a powerful tool to get 

insights on the rare and hidden diversity (diversity that remains to be described or sequenced) 

(Lindeque et al., 2013; Logares et al., 2014), thus offering a deep view of an ecosystem biodiversity. 

DNA metabarcoding can be also a basis for widely used diversity descriptors such as alpha-, 

beta-, and gamma-diversity measurements (de Vargas et al., 2015). Just like DNA metabarcoding, 

long-read sequencing provides a list of species present in a sample with the advantage of being 

able to retrieve much longer DNA fragments, which may improve taxonomic assignment, hap-

lotype identification, and improve the phylogenetic placement of taxa that remain unidentified 

(Tedersoo et al., 2021). Metagenomes also provide information on the taxonomic diversity of a 

sample, with the advantage that the resulting data better reflects abundances (since this method 

does not include any PCR step) and avoids biases due to primer efficiency (retrieving biodiver-

sity that cannot be captured through DNA metabarcoding) (Cowart et al., 2018; Obiol et al., 2020); 

yet it is not possible to focus on specific clades of interest. Finally, taxonomic diversity can also 

be assessed by analysing RNA instead of DNA, which provides a view of the organisms that are 

active in the moment of the sampling (Yates et al., 2021).  

Diversity in the mesopelagic zone is large and unknown, and presence of cryptic species (i.e., 

species morphologically very similar but constituting two different reproductive units) is likely 

to occur, especially at the microscopic level due to the lack of (or difficulty to identify) distinctive 

traits. This limitation does not apply to genetics, since it relies on the differences in nucleotides, 

which will always differ between species. Thus, the identification of cryptic species from an en-

vironmental sample (e.g., bulk, filtered water) increases with multispecies approaches such as 

DNA metabarcoding or long-read sequencing (De Luca et al., 2021). Alternatively, DNA barcod-

ing or whole-genome sequencing technologies can be used in specimens, tissue, single cells, or 

bacterial/archaeal colonies to confirm whether two similar organisms are cryptic species (Brasier 

et al., 2016). In a similar way, genetics can help in matching early life stages with its correspond-

ing adult phase (Webb et al., 2006), which may be highly challenging in hard-to-reach, under-

studied marine environments such as the mesopelagic realm. 

It should be noted that the accuracy of genetic methods for the detection and identification of 

species highly relies on the completeness of reference databases (Claver et al., 2023). Just like 

many other marine ecosystems, they are far from completion in the mesopelagic zone (Bucklin 

et al., 2021; Govindarajan et al., 2021). Thus, there is the need to populate open access international 

reference databases (e.g., Ratnasingham and Hebert (2007); Guillou et al. (2012); Benson et al. 

(2018); Bucklin et al. (2021)) with sequences of mesopelagic species. One way to do so is by se-

quencing the DNA from tissues, single cells, or bacterial/archaeal colonies of, if possible, previ-

ously identified species. Reference sequences can be obtained from a relatively short genomic 
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region (DNA barcoding through Sanger sequencing; Hebert and Gregory (2005)), or from the 

whole genome or mitogenome (for instance, through whole-genome shotgun sequencing or the 

less expensive low-coverage whole-genome sequencing). 

Distribution. Biodiversity is not found evenly but each species presents its own distribution 

range. This range sets the geographic limits where a species is found, which may be static or 

dynamic (e.g., ontogenetic, or seasonal migratory organisms). Genetic tools can help uncovering 

species distribution ranges through both single-species and multi-species methods (Yu et al., 

2022), since both methods provide presence/absence information. However, it seems that spe-

cies-specific techniques such as quantitative PCR (qPCR) and digital PCR (dPCR) are most reli-

able for assessing the distribution of target species. The reason is that it does not depend on the 

proportion of target DNA in relation to the total DNA of the sample and is not affected by biases 

related to PCR, as occurs with DNA metabarcoding (Deagle et al., 2019). 

Abundance and biomass. Estimates on the abundance and/or biomass of marine organisms is es-

sential to evaluate ecosystem services and to manage harvesting. Genetics can provide infor-

mation on both parameters by using both single-species and multispecies approaches. Single-

species approaches (qPCR and dPCR) provide absolute estimates of the DNA abundance of a 

target species, which can serve as a proxy of organismal biomass and/or abundance (Techtman 

et al., 2017; Shelton et al., 2022). DNA metabarcoding is informative of how abundant a species is 

related to the others (Jing et al., 2018; Zhang et al., 2019; Ershova et al., 2021), but data should be 

used with caution due to biases associated to PCR amplification (Deagle et al., 2019), different 

gene copy number (Gong et al., 2013; Milivojević et al., 2021), and, in case of eDNA samples, 

different DNA shedding rates among species (Allan et al., 2021). These biases can be however 

minimised and corrected (thus making abundance data more reliable) by adding internal DNA 

standards to the samples (Ushio et al., 2018; Zemb et al., 2020) and by using mock samples to 

correct the bias due to primer efficiency (Shelton et al., 2023). Finally, close-kin mark-recapture 

(CKMR) is a method to estimate abundance of a species that provides a census count (Nc) based 

on genetic markers. It is being applied for highly commercial fish species (Bravington et al., 2016; 

Trenkel et al., 2022). 

3.1.3.4 Information at the ecosystem level  
Trophic web. Predator-prey interactions constitute the main pathway of energy transfer from 

lower to higher trophic levels and the key process on which trophic webs are built upon. Acquir-

ing knowledge on the structure, energy flows, and dynamics of the trophic web is an important 

step for implementing ecosystem-based management approaches. DNA-based methods provide 

a reliable tool to obtain information on predator-prey interactions in the mesopelagic zone (Chua 

et al., 2019). For instance, a comprehensive list of prey species in the stomach or faeces can be 

obtained by DNA metabarcoding (Clarke et al., 2020; Carlisle et al., 2021), and DNA barcoding 

can be applied to classify prey items that cannot be identified by visually inspecting the stomach 

contents (Dahl et al., 2017). Finally, single-species methods such as digital PCR (dPCR) and quan-

titative PCR (qPCR) provide the added advantage to detect and quantify specific prey target in 

the gut or faeces (Cuende et al., 2017). The modelling of mesopelagic food webs (Anderson et al., 

2019) might benefit from the molecular identification and quantification of hard to sample soft-

bodied taxa such as cnidarians and salps (Riaz et al., 2020). Even more important, the ocean me-

tabolism has become accessible outside the wet lab through sequencing of bulk DNA (meta-

genomics) and bulk RNA (metatranscriptomics). The Tara Oceans project, focussing on the eu-

photic zone, provides an exemplary case on how global ecosystems biology has become a reality 

(Sunagawa et al., 2020). 
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Metazoan parasite community. Metazoan parasites are highly diverse key actors in the regulation 

of the population dynamics and hence trophodynamics of the ocean (Poulin and Morand, 2000; 

Lafferty et al., 2008). For example, parasites and microbial pathogens change food-web topology, 

shunt energy of infected hosts to the free-living microbiome, and might stabilize ecosystems. 

Parasite diversity is huge (Poulin and Morand, 2000) and hence metabarcoding contributes to 

the growing inventory. Molecular identification has been already used to identify fish parasites 

below the epipelagic layer (Klimpel et al., 2008; Gaglio et al., 2018). Some taxa are highly host-

specific, such as monogenean parasitic flatworms, and hence are useful tags (Scheifler et al., 

2022). Overall, morphological studies on the parasite community of the mesopelagic zone could 

benefit a lot from metabarcoding (Woodstock et al., 2020), especially with the latest developments 

of benchtop and field proof long-read amplicon sequencing (Farhat et al., 2021). Meta-

transcriptomics might contribute to document the thermal performance curves of host and par-

asite, which might shift with global change and affect ecosystem functioning (Byers, 2021). 

Free-living microbiome and virome. The microbial and viral community of the world oceans is di-

verse, represents the biggest biomass of any taxon in the ocean, and is functionally of great im-

portance, either as part of the food web, nutrient dynamics, or climate (Tara Ocean Foundation 

et al., 2022). The state and functioning of the microbiome and virome of the mesopelagic zone is 

increasingly exposed thanks to an accelerated pace of discovery supported by molecular tools 

and bioinformatic analyses in analogy to research in the epipelagic (Salazar et al., 2016; Sunagawa 

et al., 2020). Several crucial features have been documented. The viral community regulates the 

population dynamics of bacteria and eukaryotes, and mediates the release of nutrients through 

the viral shunt (Brum et al., 2015). The first RNA virus-based study of the tropical and temperate 

mesopelagic zone points to a rich diversity and temperature variation as key factor for shaping 

the communities (Dominguez-Huerta et al., 2022). Deep-sea microbial communities are heavily 

influenced by epipelagic plankton communities (Ruiz-González et al., 2020). Metatranscriptome 

studies learn that long-term degradation of hydrocarbons is enhanced in the mesopelagic zone 

compared to epipelagic (Kampouris et al., 2023). It is expected that the full significance of the 

viral and microbial communities will be understood in the current decade. 

Community dynamics. The interactions between taxa, from species sorting, metacommunity dy-

namics to eco-evolutionary feedback mechanisms are the focus of community dynamics (Gia-

nuca et al., 2018; Urban et al., 2020; Govaert et al., 2021). Environmental DNA (eDNA), once dis-

covered that it is everywhere present in the ocean and provides a detailed view of the locally 

sampled mesopelagic community, has been embraced as a tool to document marine communi-

ties. Amplicon sequences of eDNA collected from bottle casts reflects day-night community pat-

terns and species-specific vertical distributions consistent with the known diel migratory behav-

iour of many mesopelagic fishes (Canals et al., 2021). In combination with acoustic analysis, the 

diel vertical migration of mixed consortia of organisms was observed in the Gulf of Mexico (Eas-

son et al., 2020). Consequently, community genetics has developed into a full discipline 

(Agrawal, 2003; Govaert et al., 2021). 
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4 Tor D: Explorative analysis of genetic methods with 
emphasis on SME (small and medium enterprises) 
and conservation program broodstocks dedicated 
to aquaculture or natural population enhancement 

4.1.1 Introduction 

Plant and animal agriculture have been shaped by domestication and directional selection for 

traits deemed beneficial to humans, dating back 13 000 years (Diamond et al. 2002). While more 

recent for most species, the same is true of aquaculture. Selection methods have evolved from 

the initial unintentional selection associated with domestication, to phenotypic mass selection, 

family selection, marker-assisted selection, and now genomic selection (see for review Boudry et 

al. 2021). The adoption of genetics and genomics in animal and plant breeding has been shown 

to provide objective, quantifiable benefits, both in general (Rexroad et al. 2019), and to aquacul-

ture in particular (Houston et al. 2020). It allows the development of an understanding of the 

composition, diversity, and adaptive or selective potential of a population or strain, as well as 

linking genetic regions, pathways and ultimately single genes or variants to traits of interest. As 

such, adoption of genetics and genomics are important at all stages of aquaculture development, 

from descriptions of candidate species and populations, to the initial collection of broodstock or 

source material where individuals are collected annually from the wild, through to fully domes-

ticated broodstocks which may be subjected to selective breeding, using the most sophisticated 

genomic selection methods.  

Genetics and genomics are utilized in conservation programs where the aim is to maintain bio-

diversity by ensuring sustainable reproduction of endangered species or populations. They may 

be used similarly in aquaculture to define populations of interest, document their genetic/ge-

nomic characteristics, determine and keep track of family structure and pedigrees, and to moni-

tor changes in genetic characteristics over generations. Inherent in this is the fact that the availa-

ble and usable genetic tools, the complexity of laboratory, bioinformatic and genetic/genomic 

analyses, and the physical and staff infrastructure required will differ depending on the aim of 

the program (selective breeding or conservation) and on the species in question. 

Genetics and genomics have been successfully used in aquaculture in a number of different set-

tings, such as selection for disease resistance (Fuji et al. 2007, Houston et al. 2010, Moen et al. 2009, 

Yáñez et al. 2022, AquaGen’s innOva BCWD selected stock), delayed maturation (Kause et al. 

2003, Moghadam et al. 2007), growth rate (Tsai et al. 2015, Wang et al. 2017, Garcia et al. 2018, 

Gutierrez et al. 2018, Palaiokostas et al. 2018, Yoshida et al. 2018, Wang et al. 2018, Yoshida et al. 

2019, Joshi et al. 2020, Gong et al. 2021, Vu et al. 2021, Wang et al. 2021, Jerry et al. 2022, Ke et al. 

2022, Verbyla et al. 2021), feed efficiency (Besson et al. 2019, Barría et al. 2021, Besson et al. 2022), 

appearance (Kause et al. 2004, Colihueque 2010, Colihueque and Araneda 2014), production traits 

and flesh quality (Kause et al, 2011, Quinton et al. 2005, Nguyen 2016), survival (Vehviläinen et 

al. 2008, 2010, 2012) and parentage assignment (Vandeputte and Haffray 2014, Liu et al. 2016, 

Holman et al. 2017, Weng et al. 2021). In addition to traditional selection-based methods, genetic 

modification has been employed to introduce desired traits into fish for commercial, research 

and ornamental purposes; the discovery and operationalization of CRISPR-Cas9 (Doudna and 

Charpentier (2014) is likely to facilitate the development of novel lines, whose acceptability de-

pends on consumers and local regulation (Qin and Brown 2006). Furthermore, the same tools 
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can be used in any breeding effort targeting restocking and conservation (Casey et al., 2016, 

Waples et al., 2020; Wenne, 2023).  

There are many possible obstacles in the adoption of these approaches, particularly for small and 

medium enterprises (SMEs) focusing on aquaculture and conservation programs. The obstacles 

include the cost of development and implementation of genetic technologies, the availability of 

specific genetic tools for the species being raised, and the specialized knowledge or skill sets 

required to undertake laboratory, bioinformatic, and analytical work. Here we consider SMEs as 

programs where producers operate as smaller independent operations where there is no pooled 

investment or research direction, or genomic resource development. This scenario is common in 

programs developing newer species in commercial aquaculture and in conservation programs. 

It also may apply to more established species where, despite the availability of resources, groups 

must develop their own genomic resources due to proprietary factors. Across all scenarios, there 

are likely more significant limitations in terms of financial or infrastructure resources to develop 

and implement genomic resources to improve the aquaculture program. 

Nevertheless, the use of genetic tools has benefits above and beyond the costs, and in some in-

stances, may even be required by legislation. In light of this, we explore the uses of genetic and 

genomic tools across the spectrum of aquaculture developments, from species for which no ge-

netic data exist and must be developed through to cases where genomic selection is routinely 

applied to select for advantageous traits, and finally we touch on the possibility of using gene 

editing in both commercial aquaculture and conservation settings.  

4.1.2 States of genetic method application 

Here we define and describe five states of development and application of genetic and genomic 

tools in aquaculture and conservation breeding programs. For each state, we characterize the 

genetic and genomic tools applied as well as the types of applications that may be common to 

that state for SME aquaculture and conservation-focused programs (Table 2.2). For each state, 

examples are highlighted for both SME aquaculture and conservation programs, where possible. 

The term “state” is purposefully chosen to remove connotations or implications that a program 

should or must advance from one state to the next; a program may find that the tools and data 

available at a given level may be adequate for their needs and thus remain at that particular state. 

In addition, current technologies make it much easier for programs to skip to higher states with-

out sequential progression. 

4.1.2.1 State 0: No previously developed genetic markers or genomic resources 
This state refers to a situation where there are no specific genetic resources for a species, either 

for evaluating wild populations or characterizing cultured programs. Programs at this state may 

be collecting and rearing wild caught individuals in cages or tanks until they reach market size, 

or may be in the initial stages of determining whether a species, either for commercial or conser-

vation purposes, is amenable to culture. While many species of interest have now been subjected 

to genetic studies, Tripletail (Lobotes surinamensis), is an example of a candidate aquaculture spe-

cies in this state. This fish is of interest for culture in the U.S.A., and wild broodstock have been 

collected to identify and optimize spawning techniques for the development of commercial cul-

ture (Saillant et al. 2021). To date, there are no genetic resources available for Tripletail, and no 

genetic studies have been conducted on this species other than DNA barcoding using a universal 

mitochondrial marker approach (Sirisha et al. 2018). If a culture program wants to apply genetic 

methods for this species, then markers will need to be developed de novo. 

For species in State 0, the long history of genetic and genomic tool development on which to rely 

has led to de novo genetic resource development no longer being an arduous process; it has be-

come nearly trivial. The purpose of this document is not to describe how to develop the tools, 
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but to give examples of their use. The development of microsatellite markers, and their applica-

tion to aquaculture was reviewed by Chistiakov et al. (2006), however since that time methods to 

identify microsatellites and SNPs have advanced considerably. Reduced representation sequenc-

ing (e.g., RADseq, and others) have been used to discover SNPs (single-nucleotide-polymor-

phism), microsatellites and more recently haplotypes. Where available, high-quality whole ge-

nome data allow for identification of SNPs and microsatellites using in-silico means. Develop-

ment of an annotated reference genome is generally recommended because of the advantages it 

affords such as being able to link traits associated with phenotypes of interest to their underlying 

genes. This will be discussed in more detail in the section on “State Skipping”.  

For programs or species in this state, decisions as to what type of genetic or genomic marker 

development to pursue should consider both future goals and opportunity cost of limiting the 

amount and versatility of selected genomic tools. Even for programs that do not anticipate mov-

ing beyond State 2, individual genetic tagging (see below), pursuing the development of an an-

notated whole genome at this stage may be recommended. This is because it would allow the 

relatively simple development of goal-specific panels of molecular markers, as well as serving 

as the backbone for future marker assisted breeding and linking traits and markers to putatively 

causative genes.  

4.1.2.2 State 1: Stock choice - Information available about populations genetics  
Once a candidate aquaculture or conservation species has been identified, local regulations gen-

erally require permits or licenses for both collection of aquatic organisms from the wild as well 

as the aquaculture operations themselves. In many cases, the issuance of collection permits will 

be contingent upon the applicant demonstrating that the collection will not result in harm to the 

species or populations. Part of this process may involve determination of effective population 

sizes and structure. The delineation of population structure can be accomplished using genetics 

or genomics and this is often the first opportunity to develop and employ genetic tools and col-

lect genetic information for the species that can be put to use in the other stages of aquaculture 

development. 

There are myriad examples of population genetic and genomic studies in aquatic organisms. 

First based on allozymes, most studies now rely on microsatellite or single nucleotide polymor-

phisms (SNPs) as markers (see notably Wenne (2023) for a review about the applications of SNPs 

in conservation and exploitation of aquatic populations). Some studies have started to use struc-

tural variants such as copy number variants (e.g., Dorant et al. 2020), while others have begun to 

explore synteny (Schultz et al. 2023) and three-dimensional genomic conformation (Marletaz et 

al. 2023). Whatever the choice of marker, the goal is typically to define population units, deter-

mine degree of differentiation between them, and when collection and incorporation into aqua-

culture is the goal, determine the genetic diversity within the collection.  

The choice of marker type, the degree of population divergence, the number of markers used in 

a study can influence the degree of genetic differentiation that is detectable. While studies his-

torically relied on a handful of markers, advancements in genotyping technology have made 

panels of tens to hundreds of microsatellites (e.g., Bradbury et al. 2018) or hundreds to thousands 

of SNP markers the norm (e.g., Jeffery et al. 2018). Lehnert et al. (2023), used a weight of evidence 

approach and a combination of genetic and genomic data to identify previously unresolved land-

scape scale genetic distinction in Atlantic salmon. Similarly, using a panel of 101 microsatellites, 

Bradbury et al. (2018) were able to resolve 26 predominantly river-level Atlantic salmon genetic 

reporting groups across approximately 3 degrees of latitude in Labrador, Canada, where previ-

ous analyses using smaller numbers of SNPs were only able to detect three groups in the same 

area (Jeffery et al. 2018). Another example is seen in population genetic studies of lumpfish (Cy-

clopterus lumpus), a species where both translocated and domesticated individuals are used in 

the aquaculture industry for biological control of sea lice. A study based upon 14 microsatellites 
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suggested that interbreeding between wild and aquaculture escapes would have little impact on 

the genetic composition of the wild stocks in Norway (Jónsdóttir et al, 2018), while a more recent 

study using thousands of genome wide SNPs demonstrated fine-scale population structure with 

the potential for breakdown of local adaptation if introgressed by aquaculture escapees (Jansson 

et al, 2023).    

Available, or purposely produced, population genetic information can be used, often in conjunc-

tion with life history and morphological data, to select populations from which to collect indi-

viduals for culture. Ensuring that a wide range of genetic diversity, and thus adaptive and selec-

tive potential, is included may be more important for broodstock collection when the goal is to 

transition from State 1 to 2. A prime example of this is the Norwegian Atlantic Salmon breeding 

program history. In this program, life history and morphological data were used to select salmon 

from a diverse range of rivers, including populations that exhibited late maturity and large size 

at maturity (Gjedrem et al. 1991). Initial collections were spread across 41 rivers to maximize 

genetic variation and four separate breeding populations were formed (Gjedrem et al. 1991). The 

same approach was recently used during the establishment of the Norwegian Lumpfish breed-

ing program, where milt from males collected along the entire Norwegian coastline were utilized 

in order to obtain genetic diversity for traits such as disease resistance and appetite for consum-

ing sea lice (AquaGen NamGuard GEN2Boost strain). 

Within conservation programs, a typical set of goals involve the maintenance of existing genetic 

characteristics of the species or population(s) of concern. This generally entails undertaking pop-

ulation genetic or genomic study to determine metrics such as genetic or allelic diversity, heter-

ozygosity, and effective population size. Theoretical linkages can then be made to predict the 

species’/population’s risk of genetic impact from inbreeding and drift over time, among other 

concerns. A special case in conservation, where populations have been extirpated and reintro-

duction is desired, the identification of genetically, and presumably adaptively, similar source 

populations is generally recommended, and these can be identified by screening nearby extant 

populations (e.g., Anderson et al. 2014). An adjunct to this for populations where reductions in 

genetic diversity is affecting their fitness and population resilience is genetic rescue. In this sce-

nario, individuals are intentionally translocated into the imperiled population to restore genetic 

variation and adaptive potential (Kovach et al. 2022). While difficult to predict, the outcome of 

genetic rescue may rely in part on effective population size of the recipient and donor popula-

tions and their genetic divergence, metrics which can be measured using population genetics 

(Wells et al. 2019).  

In some situations, genetic approaches can be used across species (e.g., universal primers to PCR-

amplify specific mitochondrial DNA fragments) or across related species (e.g., cross amplifica-

tion of microsatellite markers). For example, because of the (relatively) conserved nature of many 

genes and stretches of the genome between closely related species, genetic resources that have 

been developed for one species can often be utilized between species. This can be seen in an 

examination of linkage maps created for salmonids which generally reveal the extensive use of 

markers developed for one species in many species (e.g., Nichols et al. 2003; Moghadam et al. 

2007; Reid et al. 2005); within salmonids extensive cross amplification of microsatellites among 

species appears to be the norm (Cairney et al. 2000).  Cross amplification of microsatellites be-

tween related species is widely observed: Hamilton and Tyler (2008) found that a set of microsat-

ellites designed for roach (Rutilus rutilus) amplified in other cyprinid species; Leclerc et al. (2000) 

cloned microsatellite loci in Yellow Perch (Perca flavescens) which showed successful amplifica-

tion in four other fish in the family Percidae; and King et al. (2001) developed microsatellites in 

Atlantic Sturgeon (Acipenser oxyrinchus) that showed amplification in other species in the 

Acipenseridae. 
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4.1.2.3 State 2: Individual genetic tagging 
Founding aquaculture programs, by necessity, requires sourcing or collecting aquatic organisms 

from the wild; in many cases the culture of wild-caught organisms is the entirety of the program. 

This process is the norm for many shellfish species, as well as some finfish. Collection of indi-

viduals from the wild is also the norm in many conservation and supplementation programs 

which may operate as fully closed, fully open, or partially-open breeding programs. These types 

of programs differ in whether, or what proportion of, captive-bred individuals are incorporated 

into breeding programs. Where the program is not fully open, a method that can rapidly, accu-

rately and non-lethally distinguish wild from hatchery-produced individuals is required (e.g., 

Horn et al. 2022). For commercial aquaculture, if organisms are collected from the wild each gen-

eration, this generally precludes the ability to undertake directed selection, although uninten-

tional domestication selection may occur. However, it need not mean that the development of 

genetic tools and undertaking genetic work is not without its benefits.  

One of the most immediately informative genetic approaches to utilize for a breeding program 

is individual genetic tagging. Individual genetic tagging refers to the use of genetic markers to 

unequivocally identify an individual, link an individual to genetic information pertaining to 

family relationships (e.g., parentage and pedigree analyses), and/or to trace the individual back 

to their breeding program, or origin (e.g., farmed versus wild, and/or location) (Norris et al. 2000, 

Chistiakov et al. 2006). Both parental assignment and pedigree reconstruction can be used to 

manage the level of inbreeding and genetic diversity in the culture program across generations 

(Meuwissen and Sonesson 2004, Wellmann et al. 2014, Vandeputte and Haffray, 2014, Gebregi-

wergis et al. 2020, Gautason et al. 2022), which are important parameters for both commercial and 

conservation breeding. 

Genetic kinship data available across generations can be used for parental assignment (Lacy 

2012) and pedigree reconstruction (Mendes et al. 2022). These data can be helpful in exploring 

spawning dynamics and assessing individual spawning success for naturally spawning species 

in culture settings (Herlin et al. 2007, 2008, Horreo et al. 2008). These analyses may also assist in 

tracing physical traits (due to genetic or non-genetic factors) back to individual broodstock. This 

type of application can be immensely helpful to quickly inform breeding designs and culturing 

approaches. In the California Yellowtail (Seriola dorsalis), for example, parentage analyses using 

a small number of microsatellites (developed for other Seriola species) revealed that only one or 

occasionally two female broodfish contributed to individual spawning events and dominated 

spawning seasons regardless of the number of females in a tank (Schmidt et al. 2021). This ap-

proach was also used to identify females contributing eggs of poor quality. In the White Abalone 

(Haliotis sorenseni) Recovery Program (a collaborative effort with the University of California, 

Davis, NOAA Fisheries Southwest Fisheries Science Center, and other partners) parentage and 

pedigree analyses, using microsatellite markers, informed crosses of gametes for the captive 

breeding program to maximize genetic diversity in this endangered species. 

Supplementation or conservation program efficacy may also be evaluated using genetic marking 

and pedigree reconstruction (Araki et al. 2007). In order for a conservation program to be suc-

cessful, the individuals removed from the wild population to be bred in captivity must produce 

at least as many adult offspring as they would have had they been left to reproduce in the wild. 

Whether the program meets this objective can be evaluated by genotyping the parents in captiv-

ity and subsequently sampling and genotyping the next generation and conducting genetic par-

entage assignments. This methodology may also reveal if the parents in captivity contribute to 

the next generation to such an extent that it ultimately reduces the effective population size and 

thus the genetic variation in wild populations. For supplementation programs, providing har-

vest opportunities may also be among its objectives. Such is the case for Canada’s West Coast 

Salmonid Enhancement Program, which includes rebuilding vulnerable populations and 

providing harvest opportunities among its goals. The Salmonid Enhancement Program uses 
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parentage-based tagging to track fish captured in the fishery back to their hatchery (and thus 

population) of origin. While technically not a breeding goal, genetic tagging can be used for 

product traceability in production systems, and traceability to a producer or cage facility is a 

legal requirement for aquaculture in some jurisdictions (Håstein et al. 2001, Espiñeira and Vieites 

2015, Holman et al. 2017). 

From a conservation standpoint, the goals of captive breeding are avoiding loss of genetic vari-

ability and inbreeding, and avoiding genetic drift and accidental selection, or other program-

specific targets such as retention of rare alleles or maintenance of a target effective population 

size (Waters et al. 2015, Rollinson et al. 2104, Attard et al. 2016, Wright et al. 2020, Marshall et al. 

2022). Additionally, it is important to monitor both the genetic trends of reintroduced popula-

tions, and the effect of reintroduced individuals on the genetics of the wild remnants of the spe-

cies/population (Russello and Amato 2004, Christie et al. 2012, Christie et al. 2014, Water et al. 

2015, Hagen et al. 2020, Auld et al. 2021, Marshall et al. 2021), especially in order to avoid the 

Ryman-Laikre effect (Ryman and Laikre 1991), where hatchery fish increase the number of 

spawning individuals fish while simultaneously decreasing the effective population size 

(Morvezen et al. 2016). As an example, genetic approaches are used to identify the origin of Nor-

wegian Atlantic Salmon. Due to declines in natural populations, Atlantic salmon is being stocked 

for conservation purposes in multiple areas of their natural range. Genetic screening of wild 

caught broodstock can be an effective tool for improving the accuracy of such programmes. From 

a 7kSNP-chip, a set of 59 SNPs have been identified with the purpose of separating Norwegian 

Atlantic salmon individuals of farmed and wild origin (Karlsson et al. 2011, 2014). Introgression 

of farmed salmon has been documented throughout Norway (Karlsson et al. 2016), leading not 

only to genetic but also phenotypic and phenological alterations in introgressed individuals (Bol-

stad et al. 2017, 2021, Besnier et al. 2022). It has furthermore been documented that farmed ances-

try have been inadvertently selected for in supplementary stocking of Atlantic salmon (Hagen et 

al. 2019) and genetic screening for introgressed individuals in broodstocks used for conservation 

breeding is now routinely done in Norway.   

As demonstrated in the examples above, it is still possible to use genetic technologies such as 

microsatellites, or sets of SNP markers for the applications described under this State. Some of 

these goals may benefit from the adoption of genomic technologies due to the greater precision 

potential they have for estimating population parameters (Supple and Shapiro 2018). The ana-

lytical and bioinformatic support required for these applications is not extensive, but will depend 

on how often they are required for the desired analyses. 

4.1.2.4 State 3: Develop and apply linkages between phenotypes/traits and ge-
netic markers 

In State 3 genetic markers are used to develop linkages to traits or phenotypes of interest. Pro-

grams in this state may focus on targeting simple traits with Mendelian inheritance or pheno-

types associated with genes (and markers) of major effect, and this may include family-based 

selection. Development of these linkages between phenotypes and genetic markers at this level 

allows programs to use marker assisted selection (MAS) to identify and screen individuals at 

genomic loci for those traits of interest. While many traits do not fall under this category, and are 

instead controlled by many genes or loci of small effect (discussed further in State 4), marker 

assisted selection and/or application of genetic screening for these traits offers a rapid approach 

to make improvements in the breeding program or inform breeding decisions. 

If phenotypic markers have already been developed in other research projects or breeding pro-

grams, then the application of this approach may only require genotyping (SNPs, microsatellites, 

or PCR and gel electrophoresis) to assess the phenotype. Alternatively, if linkages between phe-

notypes and genetic markers do not yet exist, the identification of these linkages will require 

genome-wide association studies (GWAS) using linkage maps or genomic data to identify 
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regions in the genome associated with the trait(s) of interest. While linkage maps may be pro-

duced through various forms of reduced representation sequencing to obtain markers across the 

genome for this purpose, it is often nearly as cost effective and easy to generate a reference ge-

nome. Combinations of sequencing technologies (e.g., short-read, long-read, super-scaffolding 

approaches) can both provide good coverage depth and high contiguity (e.g., chromosomal level 

scaffolds) in the de novo genome assembly and result in a high-quality reference genome. How-

ever, the cost (in terms of sequencing, computational, and bioinformatic support) of assembling 

a reference genome will depend on the size and complexity of the species’ genome. Some species 

may require modest increases in sequencing and assembly resources to generate due to larger or 

more repetitive genomes, for example, in the blue mussel (Mytilus edulis), and penaeid shrimp 

species (Corrochano-Fraile et al. 2022, Yuan et al. 2021, Zhang et al. 2019), while a few species may 

require considerably more resources and intensive assembly approaches to sort out duplicate or 

polyploid genomes (e.g., catfish, salmon and sturgeon) (Lebeda et al. 2020, Lien et al. 2016, 

Drauch et al. 2011). Regardless, a reference genome is an important investment for a cultured 

species (Yanez et al. 2023); this resource is valuable to guiding development of genetic tools that 

may be used across any of the genetic and genomic applications described in this report. 

There are widespread examples of the use of genomic resources described in State 3, but frequent 

applications include identification of genetic sex, improvements in disease resistance, and indi-

cating degree of introgression by aquaculture escapees in fish destined for breeding programs. 

For example, the reference genome developed for California Yellowtail (Seriola dorsalis) was used 

in conjunction with a GWAS on resequenced (i.e., lighter coverage whole genome sequencing) 

sexed individuals to identify a genomic region associated with sex. This approach identified both 

a genomic region associated significantly with sex, but also an insertion/deletion in the region. 

PCR primers spanning this region were amplified and visualized on an agarose gel to identify 

sexes of brood and offspring fish by the banding pattern (e.g., presence/absence with a positive 

control), which has become a useful tool for a species with no external sex-distinguishing char-

acteristics (Purcell et al. 2018). At the NOAA Southwest Fisheries Science Center, in collaboration 

with Iowa State University, a similar approach is currently being attempted for the endangered 

white abalone (Haliotis sorenseni) to improve the breeding program. A recently assembled chro-

mosomal-scale reference genome for this species is being used to inform a GWAS using geno-

typing-by-sequencing (GBS) data from sexed white abalone specimens. One highly significant 

genomic region associated with phenotypic sex has been identified, and genetic variants are cur-

rently being assessed and screened (as of the writing of this report) to determine if a sex-specific 

marker may be developed. Development of a sex-specific marker for this species would be tre-

mendously important for the breeding program to identify appropriate individuals to bring into 

the broodstock population without the need to extensively handle wild abalone to determine sex 

(e.g., a swab and subsequent genotyping would work for these more-often-than-not stationary 

animals) and to inform outplanting groups of juvenile white abalone to ensure mixed sex groups 

or match-make with wild individuals in the region.   

In Atlantic salmon, outbreaks of infectious pancreatic necrosis virus (IPNV) were a major con-

cern to the aquaculture industry. Research groups identified a single major quantitative trait lo-

cus (QTL) that explained 80 to 100% of genetic variation in resistance IPNV. Marker assisted 

selection, utilizing a SNP-based genetic screening for the favorable, resistant, and dominant al-

lele, was rapidly adopted by salmon breeding programs to help prevent further outbreaks of this 

virus (Houston et al. 2012). Similarly, disease outbreak of Ostreid herpesvirus 1 (OsHV-1) has 

greatly impacted aquaculture of Pacific oysters (Crassostrea gigas).  A QTL on chromosome 8 of 

the Pacific oyster genome was determined to be associated with improved survival (13% pheno-

typic variance) to mortality events in Tomales Bay, California, where OsHV-1 is endemic.  

Marker-assisted selection for this QTL resulted in 47% greater survival in breeding values for 

families undergoing MAS than based solely on pedigree selection (Divilov et al. 2023).   



ICES | WGAGFA   2023 | 47 
 

 

Developing and applying genotype-phenotype linkages is also important from a conservation 

perspective. A good example is the European flat oyster, Ostrea edulis, which is currently a spe-

cies of relatively low interest in aquaculture, particularly when compared with the Pacific oyster 

Crassostrea gigas. However, there is an increasing interest in restoration of oyster beds, particu-

larly in northern Europe where populations have been severely depleted, or gone totally extinct 

due to overfishing, parasites and habitat degradation (see https://noraeurope.eu/). Genomic re-

sources have been developed for this species, and these currently include several low- to me-

dium-density SNP arrays (Lapègue et al. 2014, Gutierrez et al. 2017), RAD-Seq data, three inde-

pendently developed chromosome-level assemblies and low-coverage whole genome sequenc-

ing (Bean et al. 2022, Boutet et al. 2022, Gundappa et al. 2022, Li et al. 2023). While most studies 

have been dedicated to population genomics aimed at studying population structure and iden-

tifying signatures of local adaptation (e.g., Vera et al. 2019, Lapègue et al. 2023), GWAS has also 

been applied in hatchery-produced progenies to target traits of interest for aquaculture (Pe-

ñaloza et al. 2022). In particular, molecular breeding to improve resistance against bonamiosis 

(an infection caused by a protozoan parasite that impacts wild and cultured populations) is a 

major objective in this species (Pouvreau et al. 2023). However, the development of selective 

breeding programs remains limited for O. edulis due to the small-scale nature of the aquaculture 

industry and to the constraints related to seed supply for restoration projects (Colsoul et al. 2021). 

Determination of what constitutes a ‘species’ is foundational to conservation as well as endan-

gered species legislation, especially given that most programs and legislation consider subunits 

below the level accepted as biological species. For instance, in determining designatable units, 

the Committee on the Status of Endangered Species in Canada considers the proposed group’s 

discreteness and evolutionary significance (Lehnert et al. 2023). This is similar to the US evolu-

tionarily significant unit (ESU) being based on “reproductive isolation” and “evolutionary leg-

acy” (Waples et al. 2022). This determination is generally accomplished through investigation of 

population structure using panels of (typically neutral) markers (e.g., Lehnert et al. 2023). How-

ever, adaptive diversity at single markers exists within identified conservation units, and the 

appropriateness of considering designations based on variants at these markers has been de-

bated (Waples et al. 2022).  

For instance, within salmonids, variants for single genes have been detected that have major 

influence on important life history traits. In Atlantic Salmon, variants of the genes six6 and vgll3 

have been found to have pronounced effects on age at maturity in some genetic and habitat 

backgrounds (Barson et al. 2015, Sinclair-Waters et al. 2020). While in Pacific salmon, six6 has also 

been associated with age at maturity in Steelhead and sockeye salmon, but no link was found in 

Chinook and Coho (Waters et al. 2021). Of particular note for conservation programs are the links 

that have been detected between an approximately 200 Kb region of the Steelhead and Chinook 

salmon genomes between the genes GREB1L and ROCK1 (Narum et al. 2018, Hess et al. 2016). 

Variants at this region are associated with the propensity to exhibit ‘early’ or ‘late’ migration, 

where the migration type allows individuals to access spawning habitats that are inaccessible 

under different flow/temperature conditions (e.g., sandbars can block river mouths during low 

flows). Despite being loci of large effect, the presence of both variants in a number of populations 

suggests that this diversity is being maintained by ongoing selection. The importance of selection 

in maintaining diversity is also demonstrated by allele frequency changes resulting from inter-

breeding when habitat that was previously inaccessible to one or the other type is made available 

through anthropogenic alteration. Waples et al. (2022) discuss loci of large effect in Pacific Salmon 

in relation to conservation and the definition of conservation units. 
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4.1.2.5 State 4: Genomic selection and/or genomic imputation and prediction us-
ing family- or pedigree-based selection. 

In state 4, genomic selection and/or genomic imputation and prediction using population, or 

pedigree-based selection is executed. In this state many species will have been bred in captivity 

and undergone selection for generations, but genomic prediction methods are now increasingly 

being applied to wild populations of conservation interest as well. The theme unifying these 

approaches is to leverage existing genomic information to predict unobserved data, whether that 

is a trait of interest, signatures of environmental association, or genotypic state at a given locus. 

Family- or pedigree-based selection relies on known family relationships to evaluate the breed-

ing value of an individual and has been commonly used for many years. Although not required, 

the availability of genetic information has improved the effectiveness of pedigree-based selec-

tion. With advances in high throughput sequencing, genomic selection has emerged as a power-

ful tool in aquaculture to enhance selective breeding programs and improve trait outcomes. It 

relies on the analysis of a large number of markers distributed genome-wide to estimate the ge-

netic potential, or genomic estimated breeding value (GEBV), of individuals for various traits, 

even those with complex genetic architectures. During the development of the prediction equa-

tion, phenotypic information for the traits of interest and genome-wide genetic information is 

necessary for a training population. However, once the prediction equation has been established, 

only genotypic information is required, which makes the subsequent application of genomic se-

lection straightforward and cost efficient, despite the elevated initial labor- and economic- costs. 

Several approaches and technologies now allow generation of genome-wide genotypes required 

for genomic selection, even for species with limited genomic resources available. Reduced-Rep-

resentation Sequencing - such as Restriction site-Associated DNA (RAD) sequencing or GBS - or 

RNA sequencing have been as successful as candidate approaches with no prior genomic infor-

mation for a species of interest. However, independently of how a new SNP panel is created, it 

is important to achieve a number of markers that are informative while not being redundant. 

Cross-validations tests carried out in multiple aquaculture species and traits indicated that the 

target number of these panels should be about 2000-7000 SNPs to achieve a satisfactory accuracy 

in genomic evaluation (Kriaridou et al. 2020). These efforts might be beneficial in conservation 

settings as well, depending on the genetic variability of the species being bred. As genomic re-

sources become more available, it is advantageous to build upon pre-existing resources to create 

cheaper and more stream-lined tools and workflows, both in data generation and processing, 

such as RAD-cap (i.e., sequence capture of dual-digest RADseq libraries technologies; Hoffberg 

et al. 2016) or SNP chips. SNP chips normally require a much simpler processing pipeline, which 

is faster and cheaper. Additionally, SNP chips normally provide data that can be much more 

easily compared over time and/over datasets. On the other hand, the predictability and uni-

formity of SNP chips and many genotyping–by-sequencing approaches, mean that they only 

provide information for a predetermined set of genetic markers, this limitation may lead to miss-

ing important genetic information that might be present in the stock in analysis, due to ascer-

tainment bias. The discovery of molecular markers in a limited set of samples can bias all down-

stream genetic diversity inferences in non-reference populations. The availability of off-the-shelf 

genetic tools is likely more challenging for conservation efforts aimed at species of little or no 

commercial value, yet all the above considerations are nonetheless valid even in those specific 

circumstances. 

The combination of long- and short-read technologies allows high-fidelity genomes to be pro-

duced that include repeated elements, inversions and other structural variants that have been 

shown to have fitness and phenotypic implications, but were not easily detected using older 

methods that relied more heavily on short reads alone. Having a high-quality genome for a spe-

cies of interest opens up opportunities to produce genome-level data for individuals at a much-

reduced cost through low coverage whole genome sequencing (Lou et al. 2021) or by sequencing 
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at a reduced number of loci and then imputing to the whole genome (Kijas et al. 2017). In recent 

years, whole genome sequencing approaches that leverage low-coverage data and imputation or 

error correction approaches have begun to be used in both aquaculture (Gundappa et al. 2023) 

and wild population studies (Kess et al. 2022) when a reference genome is available to maximize 

the number of informative markers for genetic analyses. Imputation methods leverage missing 

genotype information at the pedigree or population level to assign unobserved or low confidence 

genotypes therefore reducing rates of missing data (Marchini & Howie 2010). Alternatively, gen-

otype likelihood approaches utilize the combined information across sequenced individuals to 

infer population genetic parameters (Kim et al. 2011). These methods have been generally found 

to out-perform reduced representation and SNP-array based approaches in both informativeness 

for detected trait associated loci (Jørsboe & Albrechtsen 2023, Homburger et al. 2019), and in 

accurately inferring population divergence (Szarmach et al. 2021). Imputation-based whole ge-

nome sequencing (WGS) approaches have been applied in Atlantic Salmon in aquaculture and 

wild population settings for both marker discovery and GWAS (Kess et al. 2022). Similarly, low 

coverage WGS and genotype likelihood methods have been applied across multiple wild species 

of management interest, including Atlantic Silversides (Therkildsen et al. 2019), Atlantic Eel 

(Enbody et al. 2021), Sandlance (Jones et al. 2023) and Cunner (Nugent et al. 2023), to uncover 

population differentiation relevant to species management. These methods represent the fore-

front of WGS approaches that can be utilized to optimize the tradeoff between marker and indi-

vidual sample number, and provide relatively unbiased estimates of genomic diversity, popula-

tion structure, and trait association. However, reference population divergence and local popu-

lation structure and linkage can bias imputation accuracy (Lou et al. 2021). Genotype likelihood 

approaches should also be considered as a validation step in cases of low divergence and linkage, 

or high divergence from a reference population. 

Genomic predictions of phenotype are now increasingly used in both wild and aquaculture pop-

ulations, to infer unobserved phenotypes from observed genomic data. Similarly, polygenic risk 

score approaches, first utilized in human disease studies, have also been developed to summa-

rize individual genomics-based phenotype probabilities (Dudbridge 2013). These methods have 

been utilized for prediction and trait improvement across many aquaculture species (reviewed 

in Song & Hu 2022), and the automation of this process is now also underway, with the devel-

opment of reference genotype panels across many aquaculture species, as well as web-based 

infrastructure to support analyses (Zeng et al. 2023). Machine learning approaches are now also 

being deployed to better account for non-linearity of interactions among trait-associated loci (Bri-

euc et al. 2018), and have shown improvements beyond traditionally used additive genetic mod-

els under certain genetic architectures (Abdollahi-Arpanahi et al. 2020, Azodi et al. 2019). In wild 

populations, genomic vulnerability approaches provide a methodologically similar approach to 

using genomic information for predicting phenotypes (Bay et al. 2018, Capblancq et al. 2020), but 

phenotypic information is instead inferred indirectly through environmental or climate data, as-

sumed to reflect local adaptation (Hoban et al. 2016). Polygenic score approaches have been ap-

plied in this context, predicting individual environmental associations in Eastern Oyster (Ber-

natchez et al. 2019) and Sea Cucumber (Xuereb et al 2018). Additionally, genomic vulnerability 

estimations of future climate impacts have been conducted in Arctic Charr (Layton et al. 2021), 

marine invertebrates (Nielsen et al. 2021), seaweed (Wood et al. 2021) and eelgrasses (Jeffery et al. 

2022). Similarly, all-cause decline rate risk has also been estimated at the river level in Atlantic 

Salmon (Lehnert et al. 2019), indicating genomic prediction methods may show utility in conser-

vation planning and prioritization. 

4.1.2.6 State 5: Gene editing 
Gene editing and genetic engineering are rapidly emerging technologies. However, their ac-

ceptance by the public and the legislation regarding their use in commercial, and especially con-

servation programs, varies considerably across the world. Therefore, consideration of local laws 



50 | ICES SCIENTIFIC REPORTS 5:99 | ICES 
 

 

and public perspective and acceptance should be carefully investigated before they are consid-

ered for use in a program.  

There are multiple methods for performing gene editing, with Zinc fingers (ZFN) (Miller et al., 

1985, Klug 2010, Urnov 2010) and TALENs (transcription activator-like effector nucleases) (Joung 

and Sander 2013) being the first technologies developed. Today these techniques are considered 

to be both time consuming and expensive. The CRISPR (Clustered Regularly Interspaced Short 

Palindromic Repeats)/Cas technology, first presented in 2012, is a simpler, inexpensive, and ef-

fective method for targeted gene editing, and can be used in all organisms and cells (Doudna 

and Charpentier 2014). Thus, compared to ZFN and TALENs, the CRISPR/Cas technology was 

identified early as a promising tool (Gaj et al. 2013). However, all three techniques are based upon 

the same principle; a protein that cuts DNA in a targeted place.  

Compared to the traditional methods of gene modification, where whole genes (often from other 

organisms) are randomly placed into the genetic material of the organism, gene editing can be 

used to precisely modify genes already present in the organism, to inactivate (knockout) 

genes/genetic sequences or to add (knock-in) genetic material at specific locations of the genome. 

Thus, a prerequisite for editing genes with CRISPR/Cas is to know the sequence of the specific 

piece of DNA that is to be edited, as well as the sequence of the entirety of the genome to reduce 

the potential for off-target editing and effects. In this way, gene editing by knock-in can also be 

used to transfer genes from other organisms to specific sections of the genome, so called 

transgene knock-ins. The CRISPR technology also has the potential to switch off genes without 

altering the genetic code, thus to alter the epigenome (Nunez et al. 2021), although the full po-

tential for CRISPR-epigenetic editing is still unknown.  

As a potential solution for hindering gene flow from aquaculture escapees to wild conspecifics, 

the CRISPR/Cas technology can be used to block the ability for the aquaculture fish to reproduce, 

thus rendering them sterile. This can be accomplished by inhibiting the function of proteins that 

are important for germ cell development and/or survival (Wong and Zohar 2015), and has been 

demonstrated in Atlantic salmon (Wargelius at al. 2016, Güralp 2020, Kleppe et al. 2022). There 

are also several examples where CRISPR/Cas-induced knockout of genes have been shown to 

improve commercial important traits, such as growth, pigmentation, disease resistance and 

omega 3-production (see Roy et al. 2022). In 2019, the first CRISPR/Cas-edited aquaculture spe-

cies, a strain of Tilapia (Oreochromis niloticus), became available for commercial sale in Argentina 

(Okoli et al. 2022). The producers state that an improvement in feed conversion ratio, growth rate 

and filet yield has been achieved, without it containing any foreign DNA (https://www.fishfarm-

ingexpert.com/aquabounty-argentina-gene-editing/aquabounty-gets-argentina-go-ahead-for-

edited-tilapia/1151140; Accessed July 19, 2023). More recently, CRISPR-edited for faster growth 

tiger puffer (Takifugu rubripe) and red sea bream (Pagrus major) (Kishimoto et al. 2018) were ap-

proved for the Japanese market.  

The discovery of the CRISPR/Cas system has also begun to supplant the use of random transgen-

esis techniques. There is a relatively long history of development and production of transgenic 

fish in culture through multiple random transgenesis methods; the first transgenic aquaculture 

fish were produced over 35 years ago (Devlin et al., 2006), and in that intervening period over 35 

species have undergone transgenesis (Devlin et al., 2015). Through traditional methods of gene 

modification transgenes have been introduced to aquaculture species to achieve a number of 

desired phenotypic outcomes such as: improved disease resistance, altered metabolism, and in-

creased growth (Devlin et al., 2006). CRISPR-edited transgenes have been produced in an effort 

to achieve increased disease resistance (Simora et al., 2020), and today, effort is directed towards 

identifying genes or causative mutations in Pacific salmon related to sea lice resistance (Robinson 

et al., 2023). If such genes are successfully identified, they could be transferred to Atlantic salmon, 

a species highly susceptible to sea lice, using the CRISPR technology.  

https://www.fishfarmingexpert.com/aquabounty-argentina-gene-editing/aquabounty-gets-argentina-go-ahead-for-edited-tilapia/1151140
https://www.fishfarmingexpert.com/aquabounty-argentina-gene-editing/aquabounty-gets-argentina-go-ahead-for-edited-tilapia/1151140
https://www.fishfarmingexpert.com/aquabounty-argentina-gene-editing/aquabounty-gets-argentina-go-ahead-for-edited-tilapia/1151140
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The transition from the use of random transgenesis techniques to achieving transgenesis through 

CRISPR/Cas can also be seen within the ornamental aquarium trade, and supporting commercial 

culture systems. Incorporation of transgenes that express different fluorescent colour proteins, 

and thus result in novel colour phenotypes, has been undertaken through random transgenesis 

techniques for a number of species including the Black Tetra (Gymnocorymbus ternetzi) and 

Zebrafish (Danio rerio) (DFO 2018, 2019, 2020). More recently, CRISPR/Cas has been used to in-

troduce the same genes and achieve similar colour phenotypes in Siamese fighting fish (Betta 

splendens; DFO 2021). The single gene to single trait nature of these modifications make the de-

velopment of these types of ornamental fish relatively simple. As these technologies advance, 

the development of fish that incorporate more sites of modification and thus more complexity in 

the modification of phenotypes is likely.  

Although few commercial CRISPER-edited species are available for human consumption today, 

the number might increase as regulations of their use are being evaluated in multiple regions. In 

conjunction with this, more commercial companies are increasing their research efforts in regard 

to this powerful technique. 

The commercial applications of genome editing are clearer than its use in conservation programs. 

Moreover, public and legislative acceptance is more likely for genome editing in commercial 

settings than for conservation purposes, especially when the program will result in the release 

of gene-edited individuals into the wild. That said, uses of gene editing in conservation programs 

have been proposed, albeit mainly theoretically. For instance, a case wherein changes to a single 

region that results in increased immunity to a disease agent that is endangering a species is easily 

imaginable. Phelps et al. (2020), propose a number of other potential uses of gene editing in con-

servation ranging from relatively simple (i.e., inducing neutral changes to a single base pair for 

marking) to vastly more complex and likely controversial (e.g., utilizing synthetic biology to rec-

reate genomes and species that have been lost through extinction).   

4.1.2.7 State Skipping 
In many ways the states presented here are a product of the history of the development of ge-

netic, and subsequently genomic, tools in non-model species. While it is understood that aqua-

culture has been practiced for thousands of years, the broad adoption of selective breeding and 

expansion of aquaculture programs began in the latter half of the 20th century. This time period 

also corresponded to initial development and application of genetic tools in non-model species. 

Perhaps the prime example would be Atlantic Salmon: collections occurred from the wild in the 

1970s to form large-scale family-based breeding programs in Norway (State 0; Gjedrem (1985)), 

around this time descriptions of genetic variation and population genetic studies began being 

conducted, including hatchery-reared populations (State 1; e.g. McKenzie and Paim (1969) 

Moller (1970); Payne (1974); Davidson et al. (1989)), followed by the development of markers to 

identify individuals and populations (State 2; e.g. Davidson et al.(1989); Taggart and Ferguson 

(1990)), the linkage of traits of interest with gene regions (State 3; e.g. Reid et al. (2005)), and more 

recently the use of genome-scale data in breeding programs (State 4; D’Agaro et al. (2021)) and 

the creation of both transgenic lines and gene editing (State 5; e.g. Du et al. (1992)), Wargelius et 

al. (2016), Güralp et al. (2020). However, this transition through stages is more a product of the 

progress of science and technology than it is a deliberate process. Because of the relative ease 

with which a de novo chromosome-level, fully annotated genome can itself be produced - from 

which most commonly used genetic and genomic tools can be themselves be developed - new 

programs can today rapidly begin operating at any state they desire, effectively skipping those 

states below the chosen state. State skipping, as we have termed this, has advantages in terms of 

cost (developing only tools needed), efficiency (tools optimally designed to the problem at hand), 

and time (application of tools nearly immediately; optimized tools allow for faster results). As 

such, we would recommend that new programs seek to develop genomic resources with broad 
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applicability such as whole genomes that will allow for the development of tailored tools. At the 

same time, developing program goals (e.g., testing for the maintenance of genetic diversity in a 

conservation program, undertaking genomic selection in an aquaculture strain, etc.) will facili-

tate conversations with experts to help determine the best set of tools to develop given the goal. 

Taken another way, the advances in genotyping technology and the reduction in genotyping 

costs on a per-base basis mean that a candidate species can be moved from State 0 to practically 

any State of a researcher or SME’s choosing fairly easily. For example, Cunner (Tautogolabrus 

adspersus) is a temperate reef fish native to the northwest Atlantic, that is currently being consid-

ered as a candidate species to be used as cleaner fish in Atlantic Salmon aquaculture in Atlantic 

Canada, and for which, until recently few genetic tools were available (Chen 2020; Costa et al. 

2016, Monk et al. 2016). Nugent et al. (2023), describe the production and annotation of a chro-

mosome-level genome assembly for this species, as well as the characterization of population 

structure in Atlantic Canada. This genome will allow the development of many different types 

of genetic tools (e.g., microsatellites, SNPs, copy number variants, etc) and because it has been 

annotated, functional relationships can be determined from linkages between traits of interest 

and genomic markers. Annotated reference genomes can improve the quality of genomic tools 

by allowing users to avoid targeting repeated elements and to optimally space their markers 

across the genome. Moreover, an annotated reference genome allows for the transfer of data and 

information between projects or groups because they can reference standardized positions and 

names for genetic loci. Finally, comparisons can be made between annotated reference genomes 

of different species to target loci or ecologically significant genes that have been identified as 

being important in a given species, habitat or context. An excellent example of the use of a de 

novo generated annotated genome alongside data from another project is described in Gao et al. 

(2023). These researchers outline the development of a 50K SNP array designed for North Amer-

ican Atlantic Salmon which was based on SNPs detected in the North American salmon genome 

they developed with the European salmon genome’s annotation used as a proxy for the location 

of genic regions.  

4.1.3 Considerations and constraints of genetic methods 

The widespread adoption of genetic methods is constrained by economic and practical consid-

erations. The economic considerations are centred on the overall costs associated with the use of 

these approaches, and whether the expected outcome or improvement will result in a net eco-

nomic gain. The practical considerations range from what technology stage the species of interest 

currently is in, to availability of all ancillary resources (such as bioinformatic and analysis pipe-

lines, data storage and management) required to actually translate raw genetic data into action-

able breeding or conservation information.  

Expense considerations will need to take into account the total cost of genetic/genomic ap-

proaches, including both genotypic and phenotypic data collection, data analysis, and data stor-

age, on top of the actual cost of genotyping. Part of this consideration should be the development 

of a breeding objective which should note the traits that influence income, expenses, or both; 

where the goal is to improve multiple traits, they should be prioritized based on economic im-

portance (Lhorente et al. 2019). It is worth noting that any cost/benefit analysis in the adoption of 

genetic/genomic tools will be dependent on the species and the technological stage the work can 

be carried out at – for instance, moving from a high-throughput sequencing approach to the use 

of an off-the-shelf genotyping solution, or moving from a dense genome-wide marker set to a 

low density marker set with genome-wide imputation, could substantially decrease costs and 

thus substantially change medium and long term cost-benefit predictions. 

Technical constraints are likely to be less amenable to state skipping, especially in terms of data 

collection. Depending on the goals that are pursued, different types, and different quantities of 
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data will need to be collected and handled, starting from tissue sample collection for genotyping, 

up to full phenotypic and genotypic characterization of hundreds or thousands of samples, po-

tentially over multiple generations. For applications in State 1 and 2, the infrastructure require-

ments are generally lower as the focus is on sampling wild individuals or broodstock and off-

spring. Genetic sampling tools and methods of preservation are usually inexpensive; methods 

are available to preserve genetic samples at room temperature, although in some cases, storage 

of DNA samples could require freezer space, or flash-freezing (e.g., liquid nitrogen). The best 

approach will depend on the species and on the genetic application. In most instances, staff can 

be easily trained to collect samples for genetic processing. However, careful record keeping will 

be necessary to match genetic samples back to individual organisms (e.g., utilizing physical tags) 

or families. 

Beginning in State 3, and more extensively in State 4, trained staff will be necessary to accurately 

phenotype the animals. The importance of precise and standardized phenotyping approaches 

cannot be overstated. To a large extent, the success in associating traits to genotypes will depend 

on the ability to collect good phenotypic information. In State 3, phenotypes are often easier to 

collect (e.g., sex based on gonads, length of fish, presence of deformities), but become more com-

plex in State 4 (e.g., fillet yield, color, oil/fat content, feed conversion rates, disease/parasite re-

sistance), and require not only more highly trained staff but may also require specialized equip-

ment for some traits. As mentioned above, applications in State 3 and State 4 also require a large 

number of individuals to be phenotyped and genotyped, and as trait complexity or the number 

of targeted traits increases, a greater number of samples are needed for analyses. The time, labor, 

and (if needed) equipment necessary to phenotype large numbers of animals (and repeatedly 

phenotype in successive generations - as is the case in State 4) must be considered. Often in State 

3, and certainly in State 4, family and/or selected lines also need to be maintained, which in-

creases the infrastructure required to maintain these populations within the aquaculture pro-

gram. State 5 has similar infrastructure requirements as State 4; however, the intensiveness of 

phenotyping will depend on the specific target(s) of gene editing. In addition, State 5 may require 

close coordination with genomic scientists to obtain gametes, fertilized eggs, or larval stages 

needed for genome editing approaches. Therefore, the availability of both a skilled workforce, 

and access to a sufficiently large sampling population (and the ability to house it) needs to be 

addressed before any further action is taken. In these considerations, it is assumed that pro-

cessing of genetic samples occurs offsite (see Resources section) since it is unusual for SME or con-

servation aquaculture programs to have their own genetic laboratory capacity.  

Once costs and practical considerations have been addressed, it is also important to understand 

the limitations of each and every genetic approach. Individual identification (barcoding) requires 

a set of informative markers, but the information content of markers is dependent on polymor-

phism rates, a parameter itself dependent on population inbreeding and actual sample size. The 

information content of markers used for individual identification is therefore not stable across 

neither time nor space, requiring regular testing against a known standard to assess the useful-

ness of the markers used. Limitations of markers used in pedigree reconstruction largely follow 

the considerations mentioned in individual identification. In both cases it is also important to 

estimate genotyping error rates, and take them into consideration in the actual barcoding or ped-

igree reconstruction. For high throughput sequencing, it is extremely important to recognize that 

error rates are not constant across fragments, but normally increase as fragments are read. While 

large, genome-wide marker panels are unlikely to be error limited, smaller panels might be, de-

pending on sample handling, and genotyping quality. 

GWAS can provide an understanding of the genetic architecture of a trait, but with a number of 

caveats. The first is that sample size and marker density must match the effect size of any locus 

associated with the phenotype of interest to identify loci associated with a phenotype – if the 

marker set is too sparse, or if the sample size is too small, power might not be sufficient to identify 
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loci that are associated with the phenotype. Conversely, it is paramount to remember that at 

normal marker coverage GWAS identify genomic locations associated with a phenotype, gener-

ally covering many loci, and that association is not causation, and thus any locus identified in a 

GWAS cannot be considered causal for a phenotype. Independent GWAS, carried out on the 

same trait(s) but on different populations help validate the effect of a locus on a phenotype, ob-

viously with increasing costs to support these experiments. A further complication has to be 

considered in breeding settings, where alleles associated with a desirable trait are selected into 

fixation, causing them to disappear in further GWAS, because all samples are selected to be the 

same at that locus. 

The limitations of genetic approaches for genomic selection programs are closely associated with 

the ability to reconstruct pedigrees, and, more broadly, kinship across samples. Genomic selec-

tion calculations include the inverse of the kinship matrix between individuals to calculate vari-

ance components and breeding values. Informative markers genotyped at low, or very low error 

rates will enable calculation of those parameters with the greatest precision, whereas markers 

that do not enable correct calculations and precise kinship estimates will negatively affect the 

outcome of genomic selection approaches. 

4.1.4 Resources for implementing genetic/genomic work 

SME and conservation programs interested in the adoption of genomic technologies can find 

support through contact and/or partnership with aquaculture societies and organizations, re-

search consortia, governmental institutes and academic institutions, and fee-for-service provid-

ers (Table 2.3). The support these partners or partnerships can provide range from advice, to 

access, to development and implementation of genomic resources, to funding dedicated to 

breeding or conservation, making it worthwhile for SME and conservation programs to investi-

gate these resources, both at the national and supranational level.  

Multiple aquaculture societies (such as, the European Aquaculture Society (https://aquaeas.eu); 

the World Aquaculture Society (https://www.was.org), the Food and Agriculture Organization 

of the United Nations (https://www.fao.org/fishery/en/aquaculture); the US Aquaculture Society  

(https://www.usaquaculture.org/); the American Fisheries Society (https://fishculture.fisher-

ies.org); the Sociedad Chilena de Ciencias del Mar (https://www.schcm.cl); the Instituto Tecno-

lógico del Salmón (https://www.intesal.cl); the Aquaculture Stewardship Council (https://asc-

aqua.org/)), both national or international, with general or specific focus, can be contacted or 

joined to obtain specific know-how, to receive recommendations on service providers, or access 

to available funding. While the focus of aquaculture societies might be primarily business re-

lated, the importance of sustainability and conservation in the aquaculture sector means that 

aquaculture societies could be interested in collaborating or supporting conservation programs, 

especially those focused on the wild counterparts of farmed species. 

A second source of support for SME and conservation programs are research consortia. Research 

consortia might be permanent bodies akin to aquaculture societies and organizations (such as 

Aqua Vitae (https://aquavitaeproject.eu/); Aquaexcel (https://aquaexcel.eu/); the Global Salmon 

Initiative (https://globalsalmoninitiative.org/en/); the Aquaculture Collaborative Research and 

Development Program (https://www.dfo-mpo.gc.ca/aquaculture/acrdp-pcrda/index-eng.htm); 

SYSAAF (https://www.sysaaf.fr/)), or might be limited in time and scope, and specifically created 

to apply for national or international funding opportunities. Drivers of the latter type of consortia 

is the availability of national or international funding, such as the EU Horizon funding instru-

ments, which require the involvement of industrial/non-academic partners in consortia applying 

for funding. Active involvement in trade or research organizations and consortia could allow 

SME and conservation programs to increase their visibility and their professional network, facil-

itating their inclusion in consortia responding to funding calls.  

https://aquaeas.eu/
https://www.was.org/
https://www.fao.org/fishery/en/aquaculture
https://www.usaquaculture.org/
https://fishculture.fisheries.org/
https://fishculture.fisheries.org/
https://www.schcm.cl/
https://www.intesal.cl/
https://aquavitaeproject.eu/
https://aquaexcel.eu/
https://globalsalmoninitiative.org/en/
https://www.dfo-mpo.gc.ca/aquaculture/acrdp-pcrda/index-eng.htm
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Academic or institutional research organizations and institutes (e.g., NOFIMA, IMR, INRAE, 

Ifremer, DFO, NOAA, USDA, LUKE, DTU, The Roslin Institute, University of Santiago de Com-

postela) often have a sustained interest in aquaculture and/or conservation breeding, and thus a 

partnership with these research institutions can facilitate access to the pertinent know-how con-

cerning the acquisition, use, and analysis of genomic data. Depending on funding, research in-

stitutes can provide access to specific infrastructure, and grant agreements can cover specific 

costs (such as genotyping, personnel, data analysis), decreasing the investment required for ge-

nomic work. It is important to remember that, unless working as service providers, research in-

stitutes and funding agencies expect dissemination of results, the details of which should need 

to be agreed upon before work commences. 

In addition to these resources, fee-for-service providers are also available to help guide, develop, 

and implement the use of genomic approaches within the breeding programs.  There are several 

that have extensive experience in, or are specifically focused on, the aquaculture sector, and 

many of these companies have worked on a broad array of species. Because providers may vary 

by region or change rapidly with this growing field, specific providers are not listed in this re-

port. However, many of the above resources would be able to provide information on service 

providers working in a region or on a specific species.  If the financial resources make this option 

a possibility, progress will likely be quickest using this route. This investment may be particu-

larly worthwhile for emerging aquaculture species, where the species may not be on the radar 

of larger funding agencies, which could lead to challenges in developing institutional or aca-

demic collaborations, and where critical mass may not yet exist to form research consortia fo-

cused on that particular species. Although, it should be noted that there may be funding oppor-

tunities specifically geared towards development of newer species for both commercial and con-

servation programs.  

4.1.5 Summary 

Ultimately, the argument for the use of genetics and genomics by SME was stated succinctly by 

Gjedrem et al. (2012): “investments in well planned and managed breeding programs are unique, 

because genetic gains obtained in such programs are eternal and cumulative”. Large genetic 

gains are possible and will be made more rapidly through the use of genetically-informed breed-

ing. Long term conservation of threatened aquatic species cannot be achieved without consider-

ing genetic diversity and proper broodstock management. 
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Table 2.2. Five states in the development and application of genetic and genomic tools in aquaculture and conservation 
breeding programs.  

State Description Applications / categories of research 
questions 

Tools  

State 0 No previously developed 
genetic markers or ge-
nomic resources 

No genetic resources exist for this spe-
cies for wild or cultured programs; 
markers may be available in related 
species, or through the use of universal 
primers. 

No species-specific tools are availa-
ble to utilize for genetic / genomic 
projects. Newer technologies make 
it easier to develop these tools de 
novo.  

State 1 Stock choice - Infor-
mation available about 
populations genetics 

Characterize the population(s) or the 
species of interest (e.g., determination 
of effective population sizes, popula-
tion genetic structure, degree of differ-
entiation, genetic diversity, etc.) 

Allozymes, Sanger sequencing of 
small sections of nuclear or mito-
chondrial regions, microsatellites, 
SNPs 

State 2 Individual genetic tag-
ging 

Individual identification, parentage and 
pedigree analyses, trace the individual 
back to their breeding program, or 
origin, diversity estimates compared to 
wild populations 

Microsatellites, SNPs, Sanger se-
quencing of small sections of nu-
clear or mitochondrial regions, 
RAD-Seq, low-coverage genome se-
quencing 

State 3 Development and appli-
cation of linkages be-
tween phenotypes/traits 
and genetic markers 

Link genotypes to phenotypes for sim-
ple traits (Mendelian inheritance) or for 
genes (and markers) of major effect; 
implement marker assisted selection to 
guide broodstock development or to 
improve traits. 

Genotyping-by-sequencing ap-
proaches (e.g., RADSeq, ddRADSeq, 
WGS); screening using SNPs, PCR, 
microsatellites. 

State 4 Genomic selection 
and/or genomic imputa-
tion and prediction using 
family- or pedigree-
based selection. 

Implement genomic selection, utilizing 
family- or pedigree-based selection for 
complex polygenic traits, typically re-
quiring breeding programs and/or ge-
nomic selection/imputation to improve 
trait outcomes.  

SNP arrays, genomic resequencing 
(e.g., GenCove - use resequencing 
for genome imputation and predic-
tion instead of developing SNP 
panel) 

State 5 Gene editing Utilize gene editing to precisely modify 
genes already present in the organism 
(or from another organism - trans-
genic), to inactivate genes/genetic se-
quences or to add genetic material at 
specific locations of the genome. 

Zinc fingers, TALENs, CRISPR-CAS 
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Annex 2: Resolutions 

2020/FT/ASG02 The Working Group on the Application of Genetics in Fisheries and Aqua-

culture (WGAGFA), chaired by Naiara Rodriguez-Ezpeleta, Spain, will work on ToRs and gen-

erate deliverables as listed in the Table below. 

 

MEETING 

DATES VENUE REPORTING DETAILS 

COMMENTS (CHANGE IN 

CHAIR, ETC.) 

Year 2021 10–14 May Olhao, PT E-evaluation to SCICOM  Chair: Naiara Rodríguez-

Ezpeleta 

Year 2022 17–19 May Online E-evaluation to SCICOM Chair: Naiara Rodríguez-

Ezpeleta 

Year 2023 9–12 May Sukarrieta, 

Spain 

Final report by 30 June to 

ASG, SCICOM and ACOM 

Chair: Naiara Rodríguez-

Ezpeleta 

 

ToR descriptors 

TOR DESCRIPTION BACKGROUND 

SCIENCE 

PLAN 

CODES  

DURA

TION 

EXPECTED 

DELIVERABLES 

a Documentation: 

How the rapid ad-

vances in ge-

nomics and ana-

lytical methods 

are revolutionis-

ing population 

identification in 

marine fish and 

invertebrate spe-

cies  

Stock identification has always been a major aspect of 

fisheries genetics. In the genetic context, the term “stock” 

means population or discrete breeding stock, and has 

biological reality. For populations to be accepted as the 

fundamental units on which assessment is based, it is 

essential to accurately classify these units, and ideally 

describe how they originated and are maintained.   Until 

recently, population identification has been limited by 

the availability of sufficiently powerful molecular 

markers and analytical methods. Now however complete 

genome sequences are available for several commercial 

species, it is quick and economical to compile WGS for 

other species, and exponentially-increasing computer 

power has led to a plethora of new analytical methods. 

The aim of this proposed TOR would be to list and 

describe these methods, and their actual or potential 

application in population identification. It would be 

presumed that details would be constantly updated 

during the next three year period, thus ultimately 

producing an up-to-date document for publication. 

Power analyses would be invoked to calculate suitable 

sample sizes and locus number, and relative implications 

of different approaches would be compared. How these 

population entities were formed during post glacial 

range expansion and are maintained, for example, by 

heterogeneous spawning habitat, oceanic barriers and 

other factors would also be investigated. Many marine 

species, while homing to discrete natal areas to spawn, 

mix at other life history stages. These stages, usually 

involving harvest, would be investigated using mixed 

stock analysis (MSA) methods, presuming that 

sufficiently large differences can be demonstrated 

between component populations. Adaptive loci, under 

directional selection, might be particularly useful in the 

2.7, 5.6, 6.1 3 

years 

Review paper and 

metrics for measures 

of indirect genetic 

impacts 

http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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TOR DESCRIPTION BACKGROUND 

SCIENCE 

PLAN 

CODES  

DURA

TION 

EXPECTED 

DELIVERABLES 

latter context, but also in investigating population 

response to climate change. 

b To review and 

evaluate the po-

tential of adapta-

tive variation for 

assessing fisher-

ies. 

A growing body of evidence suggests marine species dis-

play local adaptation over moderate to fine spatial scales, 

and the genes and genomic regions contributing to adap-

tive diversity (e.g., temperature, pathogens, etc.) have 

been identified in a variety of marine species.  Yet de-

spite this knowledge and widespread biodiversity losses 

across the North Atlantic, we still lack an understanding 

of species responses to disturbance, such as future cli-

mate change, in many commercially, culturally, and eco-

logically important marine species.  The overarching goal 

of this ToR is to evaluate the current capacity to quantify 

relevant adaptive diversity in marine species; and ex-

plore how this information may be utilized in predictions 

of future biodiversity response to change.  Specifically, 

we will review the literature regarding the genomic basis 

of adaptation in marine species, and examine how ge-

nomic architecture (e.g., single loci, CNVs, and chromo-

somal rearrangements) influences phenotype associa-

tions and our ability to resolve relevant variation.  Sec-

ondly, we will evaluate new methods that utilize ge-

nomic data to establish an evolutionary framework for 

understanding adaptive diversity and to predict future 

responses.  These will include “genomic vulnerability”, a 

metric that quantifies the shift in genomic variation re-

quired to adapt to future change and uses machine learn-

ing to incorporate genomic descriptions of adaptive di-

versity, climate projections, and ecological modelling.  

Such approaches have the potential to identify highly 

vulnerable marine populations and transform science ad-

vice regarding fisheries management and marine conser-

vation.  Thirdly, we will provide recommendations for 

how this information could be practically integrated with 

existing advisory and management frameworks in the 

Northern Atlantic. Ultimately, this ToR will directly in-

form the use of genomic approaches to both quantify 

adaptive diversity and to predict future responses to dis-

turbance in marine species.      

1.3, 1.5, 1.7, 

2.2, 2.5, 5.2, 

6.1, 6.3 

3 

years 

Review paper and 

recomendations on 

the use genomic data 

to predict future 

population responses 

to environemtnal 

change and 

disturbance. 

c To evaluate avail-

able genetic-based 

solutions to better 

understand the 

mesopelagic eco-

system. 

Recent estimates suggest that mesopelagic fish represent 

90% of the fish biomass of the planet, which has raised in-

terest in exploitation of this unknown ecosystem. Yet, the 

high estimated biomass also suggests that mesopelagic 

fish might play a key role in sustaining other commer-

cially relevant species and carbon sequestration. Thus, 

there is an urgent need to understand this still pristine 

ecosystem before it becomes too late to take protecting ac-

tions. This ToR could be dedicated to explore and evaluate 

the different alternative genetic methods available that 

could be used for that aim such as environmental DNA 

1.4, 1.6 3 

years 

Review Paper and 

non-technical review 

topic sheet. 

http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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TOR DESCRIPTION BACKGROUND 

SCIENCE 

PLAN 

CODES  

DURA

TION 

EXPECTED 

DELIVERABLES 

samples for estimating biomass and species identification, 

stomach content DNA analysis for understanding trophic 

networks, population genomics for species connectivity 

and diversity as proxies for resilience, etc. 

d WGAGFA & 

WGSEDA: Ex-

plorative cost-

benefit analysis of 

genetic methods 

with emphasis on 

SME and conser-

vation program 

broodstocks dedi-

cated to aquacul-

ture or natural 

population en-

hancement. 

Managing genetic relation-ships and diversity within 

broodstock enables a long-term basis for both selection of 

improved food fish material for aquaculture production 

and supportive augmentation of natural populations. 

The loss of genetic variability due to inbreeding is detri-

mental for the cost-effectivity of re-stocking and it may 

even be impossible to retrieve variability again from the 

wild. While the use of genetic tools is part of day-to-day 

routines in large breeding companies, the lack of logisti-

cally feasible and cost-effective tools has so far prevented 

proper broodstock genetic management in SME's and 

conservation programs. This ToR is planned as a shared 

ToR between WGAGFA and WGSEDA and has linking 

points to WGs with fish stock conservation focus (e.g. 

WGNAS) and contributes to the Science Plan topics 

“Emerging techniques and technologies“, “Seafood pro-

duction” and “Conservation and management science” 

 

4.4, 5.5, 7.6 1 

(initiall

y. - 

Reservi

ng the 

possibi

lity to 

extend 

further

) 

Explorative study on 

market availability 

for genetic breeding 

consultation and 

genotyping services, 

evaluating the 

occuring costs and 

contrasting these to 

their benefits in 

report form. 

e Provide a review 

of the recent ge-

netic studies on 

white anglerfish 

(Aguirre-Saraiba 

et al., 2021). Mo-

lecular genetic 

data have found 

widespread appli-

cation in the iden-

tification of 

aquatic species’ 

population and 

conservation 

units. For white 

anglerfish, the re-

cent study shows 

that i) the species 

forms a panmictic 

population 

throughout the 

Northeast Atlantic 

(the two stocks 

belong to the 

same population), 

ii) there is hybridi-

zation between 

Request from the Working Group for the Bay of Biscay 

and the Iberian Waters Ecoregion (WGBIE) 

1.8 1 year Provide input to 

SIMWG for further 

inclusion in 

contribution/ 

response to WGBIE. 

 

http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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TOR DESCRIPTION BACKGROUND 

SCIENCE 

PLAN 

CODES  

DURA

TION 

EXPECTED 

DELIVERABLES 

white anglerfish; 

iii) there is misi-

dentification be-

tween the white 

and black an-

glerfishes even if 

the color of the 

peritoneum is 

used for taxo-

nomic identifica-

tion. 

 

Summary of the Work Plan 

Year 1 ToR a) Review the literature, with special focus on the application of genomic data analysis to the 

study of population structure and connectivity in exploited (directly or indirectly) marine species 

(vertebrates and invertebrates). 

ToR b) Review the literature regarding the genomic basis of adaptation in marine species, and 

examine how genomic architecture influences phenotype associations and our ability to resolve 

relevant variation.  We will identify approaches that build on this genomic understanding of 

adaptive diversity, to predict future responses of populations to disturbance. 

ToR c) Produce an overview of the mesopelagic ecosystem, identify key species and review the 

literature on different genetic methods available to study this ecosystem. In addition to this 

overview, focus will be on identifing where especially eDNA and stomach contant DNA analysis 

are being used or could be used in the mesopelagic ecosystem. Identify the key species in the 

mesopelagic ecosystm with respect to the trophic network – create a simple flowchart. 

ToR d) Report on explorative study on market available genetic advices and genotyping services, 

evaluating the occuring costs and contrasting these to their benefits in report form. Evaluation of 

outcome and value of further deepening of anlysis. Decision as to whether ToR will be carried on. 

Year 2 ToR a) Identify analytical approaches used and evaluate their power and accuracy. Start drafting 

an “analytical framework” that will attempt at standardising the sampling/processing/ statistical 

approaches to be used when producing results that will feed into management measures. 

ToR b) Evaluate new methods which build on a genomic understanding of adaptive diversity, to 

predict future responses of marine populations to distburbance  These will include but not be 

limited to an examine of genomic vulnerability. 

ToR c) Continue the evaluation and identification of genetic methods as well as key species for 

studies of the mesopelagic ecosystem, including any relevant studies describing the ecosystem. 

Evaluate any new genetic methods for utilisation in studies of the mesopelagic ecosystem. Start to 

formulate review paper manuscript. 

ToR d) To be determined. Pending decision of year 1. 

ToR e) Provide a review of the recent genetic studies on white anglerfish (Aguirre-Saraiba et al., 

2021). 

Year 3 ToR a) Complete review paper for publication and develop recommendations. 

ToR b) Complete a review paper for publication and develop recommendations. 

ToR c) Finalise and update the evaluation: identify problematic areas requiring future research as 

well as identify areas where novel techniques show particular promise. Finish review paper and 

non-technical review topic sheet. 

ToR d) To be determined. Pending decision of year 1 and 2. 

 

http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
http://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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Supporting information 

Priority The WGAGFA Terms of Reference for the reporting period 2021 to 2023 will 

produce information, knowledge and advice in line with the ICES Science 

priorities. Particularly ecosystem science, impacts of human activities, 

observation and exploration, emerging techniques and technologies and seafood 

production, as well as conservation and management will be tackled and 

reported upon. 

Resource requirements The research programmes which provide the main input to this group are 

already underway, and resources have been committed. 

Participants The Group is normally attended by some 15-25 members and guests. 

Secretariat facilities None. 

Financial No financial implications. 

Linkages to ACOM and 

groups under ACOM 

Joint SCICOM/ACOM group. 

Linkages to other 

committees or groups 

There is a very close working relationship with EPDSG, EOSG and EPISG. 

Additionally, several EGs, particularly WGSEDA but also including WGITMO, 

WGBIODIV, WGBOSV. 

Linkages to other 

organizations 

European Commission; Scientific, Technical and Economic Commitee for 

Fisheries (STECF); European Fisheries Control Agency (EFCA); GFCM; FAO; 

IFREMER, NOAA, DFO Canada. 

 

 


