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Abstract 

Background:  PFAS are persistent, bioaccumulative compounds repelling water, oil and stains which are widely 
used. There is mounting evidence linking exposure to a range of adverse health outcomes including renal, hepatic, 
immunotoxic, reproductive, endocrine disrupting and carcinogenic effects. PFAS possibly also induce neurobehavioral 
and developmental effects. Within Flanders Environment and Health Studies (FLEHS) internal exposure to PFAS and 
relevant health effects are assessed since 2008.

Results:  Adolescents 14–15 y (2010–2011) living in an industrially contaminated area (without known PFAS contami-
nation) and adults 50–65 y (2014) randomly sampled from the general Flemish population using a stratified clustered 
multi-stage design, were recruited. For the adolescents perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid 
(PFOA) were measured in serum, for the adults PFOS, PFOA, perfluorohexane sulfonate (PFHxS), perfluorononanoic 
acid (PFNA) and perfluorobutane sulfonate (PFBS). In adolescents the Neurobehavioral Evaluation System (NES3) 
computerized battery of tests developed to study the neurological effects of an exposure to environmental agents 
was applied. The adults did the Stroop test, the NES3 Continuous Performance Test and the NES3 Digit Span Test. 
In adolescents sleepiness, masculinity and femininity were assessed via the Epworth Sleepiness Scale and Personal 
Attributes Questionnaires, respectively. In adolescents PFOA was associated with significantly increased somnolence, 
and PFOS with a significant inverse association with boys’ femininity and with girls’ masculinity. In adolescents, PFAS 
were also associated with a marginal decrease in sustained attention (PFOS) and cognitive performance (PFOA) and 
a significant decrease in short-term memory (PFOS). However, in older adults PFOS was associated with a significant 
increase in the capacity to pay attention and PFHxS with a significant increase in sustained attention.

Conclusion:  Our observations point to neurobehavioral and cognitive effects of PFAS. The neurobehavioral effects 
might in part result from the changes in sex hormone levels that have been reported to be associated with internal 
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Background
PFAS were synthesized over 60 years ago as a new class 
of surfactants repelling water, oil and stains [1]. This 
allowed production of innovative consumer products 
such textile coatings, non-stick cookware, electronics, 
mist suppressants, and firefighting foams [1]. Emissions 
during its manufacture, usage, and disposal, resulted in 
the widespread abundance in the environment of this 
group of chemicals. From a regulatory and toxicological 
perspective, two substances of this chemical group have 
received past attention, PFOS and PFOA. Nowadays also 
much data are published on PFHxS and PFNA.

While being considered as persistent, PFAS are fun-
damentally different from traditional persistent organic 
pollutants such as polychlorinated biphenyls (PCBs). 
They have no aromatic ring in their structures, do not 
accumulate in fatty tissues and their solubility in aqueous 
solution is much greater than that of polycyclic aromatic 
hydrocarbons (PAHs) and polybrominated diphenyl 
ethers (PBDEs) [2]. PFAS are thermally, chemically, and 
biologically inert in many circumstances or give rise to 
terminally persistent degradation products [3], therefore 
rendering them very useful for certain industrial pur-
poses, but also non-biodegradable and bioaccumulative 
in the environment and food chains. Many PFAS that 
leach through the soil are highly mobile in groundwater 
systems, while others may evaporate and disseminate via 
the atmosphere [4]. PFAS have been detected in serum of 
populations in many countries including Belgium (Flan-
ders) [5].

As well as in the environment, PFAS can persist for a 
long time in the human body, posing a likely threat to 
human health [6]. The average half-life in humans is esti-
mated to be 5.4 years for PFOS, 3.8 years for PFOA and 
8.5  years for PFHxS [7], 3.2  years for PFNA [8]. Lower 
half-life values (1.77  years for PFOA, 2.87  years for 
PFHxS and 2.93 years for linear PFOS) have been found 
in a study on Swedish airport employees [9]. Concern-
ing exposure during the susceptible stage of early life, it 
is known that PFAS can transfer through the human pla-
centa and via human milk [10].

There is mounting evidence linking exposure to a range 
of adverse outcomes including renal, hepatic, immu-
notoxic, reproductive, and endocrine disrupting effects 
[11–15]. PFAS have carcinogenic properties [6, 16–21] 

and possibly induce neurobehavioral and developmen-
tal effects [14]. There is concern that fetal and child-
hood periods are sensitive exposure windows for adverse 
health outcomes of PFAS [14, 22].

In Flanders, the northern part of Belgium, the succes-
sive Flanders Environment and Health Study (FLEHS) 
campaigns provide data on internal exposure to pollut-
ants and associated early biological and health effects in 
participants of different age groups randomly sampled 
from the general population. Data on the determinants of 
exposure to PFAS and on the concentrations measured in 
umbilical cord plasma and in adult serum samples from 
FLESHS-2 (2007–2011) and FLEHS-3 (2012–2015) and 
in serum samples from adolescents living in an indus-
trially contaminated site (2010–2011) with no specific 
records of PFAS production were reported by Colles et al. 
[5]. Here we present, for adolescents from FLESHS-2 and 
adults from FLEHS-3, data concerning the association of 
internal exposure to PFAS with cognitive and neurobe-
havioral parameters.

Methods
Participants
Adults from the Flemish reference study FLEHS 3
In the FLEHS-3 (2012–2015) campaign, adults were 
recruited in all five Flemish provinces to establish ref-
erence values for Flanders [23]. PFOS, PFOA, PFHxS, 
PFNA and PFBS were analyzed in 209 adults (50–
65 years old) sampled between May 2014 and November 
2014 (FLEHS-3 ADU). A stratified clustered multi-stage 
design was used to obtain a sample representative of the 
Flemish population taking into account population den-
sity, sex, socioeconomic status and age (in the selected 
age range 50–65). Sampling took place in three steps: 
first by study area, secondly by entities, the primary 
sampling units (PSUs), for access to participants, and 
thirdly by random selection of participants in accord-
ance with the inclusion criteria. These PSUs consisted of 
general practitioner offices. Within each PSU, individu-
als were randomly selected. The study design aimed to 
obtain representative study populations in terms of social 
class, an equal distribution of males and females and of 
participants over age classes. Inclusion criteria were: (1) 
residing in Flanders for at least 10 years, (2) giving writ-
ten informed consent, and (3) being able to complete an 

exposure to PFAS. Interestingly, whereas in relation to cognition some adverse effects were recorded for adolescents, 
for elderly persons our observations rather suggest possible weak positive effects with respect to cognition. Our 
observations might be in line with the view that PFAS have many, sometimes contrasting health effects.
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extensive Dutch questionnaire. For the adults, exclusion 
criteria were: severe kidney disease (glomerular filtration 
rate < 60 mL/min) and active anti-cancer therapy (chem-
otherapy or radiotherapy). A map of Flanders (Fig.  1) 
shows in which area’s adult participants resided.

Adolescents from the FLEHS‑2 study
During the FLEHS-2 study PFOS and PFOA were meas-
ured in 199 adolescents aged 14–15  years, recruited in 
the municipalities Menen and Wevelgem in the “Grens-
land” industrial area (FL2-ADO). See Fig.  1 for a map. 
They were sampled from May 2010 to February 2011. 
The industrial contaminated area had no specific records 
of PFAS production. It was considered for assessment of 
internal exposure to PFAS because it was home to a large-
scale recycling plant of ferrous and non-ferrous metals, 
timber industry, pigment industry, several incinerators 
and, until 2005, a large-scale incinerator for municipal 
waste. The study area was delineated according to the 
predominant wind direction. More details about study 
design and recruitment can be found elsewhere [23–27]. 
Our results presented on our web site show that the ado-
lescents participating in the present study have a higher 
internal exposure to some industrial pollutants (https://​
www.​milieu-​en-​gezon​dheid.​be/​sites/​defau​lt/​files/​atoms/​
files/​Broch​ure%​20Men​en%​20ste​unpunt%​202.​pdf ).

The FLEHS studies were approved by the Ethics Com-
mittee of the University of Antwerp and the Antwerp 
University Hospital (UZA), Belgium. The dossier num-
bers for the different studies were, respectively, UA A08 

09 (FLEHS-2 adolescents of “Grensland” industrial area) 
and B300201419843 for FLEHS-3 adults.

Field work and sampling
Adult and adolescent participants were examined by 
trained research nurses and this included administra-
tion of the neurological tests (see further), collection of 
blood/urine samples, measurement of the height and 
the weight and filling out of a questionnaire. It took 
about an hour. Examination of the adolescents from the 
“Grensland” area in FLEHS 2 occurred from the 18th of 
May 2010 to the 12th of February 2011. Examination of 
the adults participating in FLEHS 3 occurred from the 
26th of May 2014 to the 18th of November 2014. Forty 
mL peripheral blood was collected from each adult or 
adolescent participant and used for several biomarker 
measurements included in the respective studies. Blood 
samples were centrifuged and/or fractionated at the local 
sampling center and afterwards transported to the cen-
tral laboratory where they were stored at −  80  °C in a 
biobank within 12  h after sampling. Plasma and serum 
were conserved at − 80 °C. All laboratory analyses were 
performed on coded samples, in laboratories that met 
quality-control standards.

Data derived from questionnaires
Participants completed a self-reporting questionnaire on 
personal and lifestyle factors, including: age, country of 
birth of their parents, weight, height, housing, residence 
history, occurrence of in-house structural modifications 
or painting, family composition, density of nearby traffic, 

Fig. 1  Map of Flanders showing the administrative borders of municipalities. Between the most western and most eastern point: about 230 km. 
In red the industrial “Grensland” area (without known PFAS contamination) where the 199 adolescents participating in FLEHS 2 resided. In blue, 
the areas where the 209 adults participating in the FLEHS-3 campaign resided, as a random sample of the Flemish population. In yellow, the 
agglomeration of Brussels which is not part of Flanders and is not involved in this study
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in-house use of pesticides, in-house exposures to pollut-
ants and chemicals, sports, hobbies, contact with ani-
mals, smoking and consumption of alcohol, health status 
and disease experience, occurrence of asthma or eczema 
or allergies among relatives.

To assess socioeconomic status (SES), two different 
variables were evaluated separately: equivalized house-
hold income (total monthly household income standard-
ized according to the number of household members) 
and highest educational attainment of the mothers in the 
case of neonates, of parents in the case of the adolescents 
and the household in the case of the adults.

Participants also completed food frequency question-
naires in order to assess the consumption of food items 
as described by Colles et  al. [5]. The consumption of 
locally produced food was also recorded. Additionally, a 
short questionnaire on recent exposure during the past 
3 days was filled out [28, 29].

Measurement of poly‑ and perfluoroalkyl substances 
(PFAS)
PFOS, PFHxS, PFOA, PFNA and PFBS were determined 
in peripheral serum and cord plasma using procedures 
as described by Kato et al. [30]. Blank bovine serum was 
spiked at levels of 0.4 ng/mL for PFBS, PFHxS and PFNA 
as well as 4.0 ng/mL for PFOA and PFOS for calculation 
of the recovery. As internal standards for quantification 
sodium perfluoro-1-hexane [18O2]sulfonate (MPFHxS) 
as well as sodium perfluoro-1-[1,2,3,4-13C4]-octane 
sulfonate (MPFOS) and perfluoro-n-[13C8]-octanoic 
acid (MPFOA) and perfluoro-n-[13C9]-nonanoic acid 
(MPFNA) were used. The analytical method consisted 
of an offline protein precipitation with acetonitrile, fol-
lowed by separation by HPLC and MS/MS detection. 
Liquid chromatography was carried out on an Agilent 
1100 Series HPLC apparatus. The Agilent G 1310A was 
used to load the processed sample (100 ul) on a restricted 
access material (RAM) phase, a LiChrospher RP-8ADS 
(25 um) 24 × 4 mm RAM from Merck (Darmstadt, Ger-
many) using a solution of 2  mM ammonium acetate 
buffer pH 4 in water (solvent A) and 2 mM ammonium 
acetate buffer pH 4 in acetonitrile (solvent B) (80:20,v/v) 
as the mobile phase and a flow rate of 0.3 mL/min. After 
this clean-up and enrichment step, we transferred the 
analytes after 2  min to a reversed-phase HPLC column 
(Luna C8 (2) 150 × 4.6 mm, 3 um particle size from Phe-
nomenex, Aschaffenburg, Germany) in back-flush mode. 
Tandem mass spectrometric detection was performed on 
a Sciex Applied Biosystems API 3000 triple quadrupole 
mass spectrometer (Foster City, CA, USA) in negative 
ionization MS/MS mode with multiple reaction moni-
toring. Two specific mass transitions to determine the 
analytes were used. Quality controls included reagent 

methods blanks comprising bovine serum as well as cali-
bration standards and quality-control samples in bovine 
serum (ACILA AG, Weiterstadt, Germany). Reproduc-
ibility was checked by analyzing spiked bovine serum and 
a native human plasma sample. Recovery rates were 102% 
for PFOS, 99% for PFOA, 104% for PFHxS, 95% for PFNA 
and 91% for PFBS. Detection limits (LOD) were calcu-
lated as three times the signal/noise ratio of the analytical 
background noise in the temporal vicinity of the analyte 
signal. The limit of quantification (LOQ) was determined 
as twice the LOD and was 0.3 µg/L for PFOS and PFOA 
in FLEHS-2 (2007–2011) and in FLEHS-3 (2012–2015) 
LOQ was 0.2  µg/L for PFOS, PFOA, PFHxS and PFBS, 
and 0.1  µg/L for PFNA. In terms of PFOS and PFOA, 
the only PFAS for which a round robin was available at 
G-EQUAS (GERMAN EXTERNAL QUALITY ASSESS-
MENT SCHEME for Analyses in Biological Materials 
www.g-​equas.​de), participation in the German round 
robin G-EQUAS was successful with deviation percent-
ages ranging from 11.7% to 15.9% for PFOS and 0.6% to 
8.2% for PFOA. To assess the comparability of measure-
ments performed during FLEHS-2 (2007–2011) with 
those performed during FLEHS-3 (2012–2015), PFOS 
and PFOA levels were re-measured in 3 samples from 
the biobank of FLEHS-2 together with the samples of 
FLEHS-3. Deviation percentages ranged from −  7.8 to 
−  29.4% for PFOS and + 5.0% to + 21.5% for PFOA. So, 
despite being measured at points in time differing by 
more than 3 years, the data from FLEHS 2 and FLEHS 3 
are quite comparable.

Neurobehavioral tests
In adolescents of the industrial contaminated site of 
FLEHS-2 sleepiness, masculinity and femininity were 
assessed via a questionnaire as described below. The 
Neurobehavioral Evaluation System (NES3) computer-
ized battery of tests developed to study the neurological 
effects of an exposure to environmental agents [31, 32] 
were performed in the adolescents of FLEHS-2 and in 
the FLEHS-3 adult reference population. Lack of time to 
perform the Stroop test in the adolescent study and other 
circumstances resulted in the fact that different sets of 
tests were applied in the adolescent and adult studies. 
The adolescents performed the NES3 Continuous Per-
formance Test, NES3 Digit–Symbol Substitution Test, 
NES3 Digit Span Test and NES3 Finger Tapping Test. 
The adults in FLEHS-3 did the NES3 Continuous Per-
formance Test and NES3 Digit Span Test, aside from the 
Stroop test.

In the Continuous Performance Test, a series of let-
ters is displayed on the screen, one at a time, and each 
for approximately 200  ms. The task is to immediately 
respond to the letter S, and not to other letters, by 
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pressing the spacebar. A new letter appears each 1000 ms. 
In total, the letter S appears 60 times. The mean reaction 
time for responding to the target letter in ms (CPTmean) 
and the number of incorrect (CPTincor) reactions were 
used as the measure of performance. The test evaluates 
sustained attention. It showed a good test–retest reliabil-
ity in a group of patients directed to a neuropsychological 
examination [32]. In the Digit–Symbol Substitution Test 
(DSST), used to measure general cognitive performance, 
a row of 9 symbols paired with 9 digits is displayed at the 
top of the screen. The same 9 symbols but in a different 
order are shown at the bottom. When a digit is displayed, 
the task is to indicate the symbol, which is paired with 
this digit, from the bottom row. A new digit appears only 
after the correct symbol has been indicated. In total, 
27 digits are displayed. The total time needed to com-
plete the test measured in seconds (DSSTlat) describes 
the performance. The number of errors (DSSTnerr) was 
recorded [Letz R.: NES3 user’s manual. Atlanta (GA): 
Neurobehavoral Systems Inc, 2000]. The Digit Span Test 
consists of two parts. In the first part, a subject hears a 
sequence of digits. The task is to reproduce them. In 
case of a correct answer, a one digit longer sequence is 
presented. In case of a mistake, a sequence of the same 
length is presented. When two incorrect answers in a 
row are given, the first part of the test finishes. The sec-
ond part is the same as the first one, but the sequences 
are reproduced in the reverse order. Digit Span For-
ward (DSF) is the maximum span reproduced in the first 
part. Digit Span Backward (DSB) is the maximum span 
reproduced in the reverse order. The first part of the test 
assesses the working memory span. Good performance 
in the second part requires both the ability to hold and 
manipulate information. For adolescents in the FLEHS-2 
industrial area, in a sub-population, the Digit Span Test 
was administered using computers with touch screens 
instead of a keyboard. In order to account for a possible 
effect of the way the test was administered, an indicator 
variable was included in the regression models for this 
test. In the Finger Tapping Test (FTT) a subject presses 
the spacebar as many times as possible during a trial of 
10 s. The first part of the test consists of 4 trials with the 
preferred hand. The second part consists of 4 trials with 
the non-preferred hand. The summary measures are the 
total number taps with the preferred hand (FTTpref ) and 
the total number of taps with the non-preferred hand 
(FTTnpref ). The test measures the manual motor speed.

The Stroop test assesses the person’s capacity to pay 
attention by changing colors and the way colors are writ-
ten (selective attention domain). In this test, four buttons 
are displayed on the screen (yellow, red, blue, and green). 
During the test, the name of one of these colors appears 
on the screen printed in a different color than the name. 

The task is to touch as fast as possible the button that 
has the same color as the name, ignoring the color of the 
printed name. Before the test, eight practice trials take 
place followed by 48 test trials. The mean reaction time 
is the average time that passed between the appearance 
of the name and touching the correct button, expressed 
in ms (Strooptime). The number of errors made was also 
recorded (Strooper).

Additionally, in the FLEHS-2 adolescents, sleepiness 
during the day was evaluated based on 8 questions (high 
to no chance of somnolence during activities such as 
reading, TV watching, inactivity). The scoring was done 
using the Epworth Sleepiness Scale, a scale between 0 
and 24 [33]. The extent to which male and female identity 
(masculinity or femininity) were present in the test per-
sons was evaluated using the Personal Attributes Ques-
tionnaire as proposed by Spence and Helmreich [34], 
with a scoring between 0 (completely agree) and 4 (not 
agree at all) on 24 questions on attitudes, such as aggres-
sion, independence, emotionality, passiveness, decisive-
ness, self-confidence.

Statistical analysis
Biomarker values were reported if they were above a 
quantifiable level as determined in the laboratory. Tak-
ing into account that, for the PFASs for which associa-
tions with biological or health effects could be studied, 
the percentage of measurements below the LOQ was 
low, values below the LOQ were replaced by LOQ/2. 
Associations between internal exposure to PFAS com-
pounds and parameters of biological or health effects 
were assessed using multiple linear regression or multiple 
logistic regression, taking into account predetermined 
confounding factors. Confounders were selected a priori 
based on experience in previous studies and a literature 
search. Potential covariates were included on the basis of 
mechanistic considerations or because they showed, in 
one of the cohorts in our study, an association (p < 0.25) 
with a dependent variable of interest. Confounders and 
covariates were included as continuous variables when-
ever continuous data were available. These potential 
covariates are listed in the additional file  1 Tables S1, 
and S2. Stepwise multiple linear or logistic regression 
analyses were done using R version 3.3.0 and RStudio 
version 1.0.136, and logistf for Firth logistic regression 
for associations where exposure variables showed quasi 
separation in the normal logistic regression. In the mod-
els the PFAS concentrations were included on the origi-
nal scale, without transformation. To limit the number 
of independent variables in the final models, confound-
ers were removed from the model if they had a p > 0.5 
and subsequently covariates were removed if they had 
a p  > 0.05. For each association the confounding factors 
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and significant covariates included in the final model are 
mentioned in the additional file 1 Tables S1 and S2. Con-
tinuous effect markers were ln-transformed if this nor-
malized the distribution of the regression residuals. For 
linear and logistic regression, estimates and odds ratios 
(OR) were calculated, respectively. Estimates, OR and 
their 95% confidence intervals were reported for inter-
quartile (IQR) increases in exposure.

Estimates for IQR differences in exposure, were either 
calculated as ‘ratios’ or ‘differences’ in the levels of effect 
markers, respectively, in case of ln-transformed or non-
transformed effect markers, used in the regression mod-
els. To put this estimate into context, this change in the 
effect marker was also expressed in percentage of the 
observed difference in effect marker between the 25th 
and 75th percentile within the respective study popula-
tion. Associations with a p  < 0.05 or a p  < 0.1 are, respec-
tively, designated as significant or marginally significant.

Regression analyses are sensitive to influential cases, 
whose deletion from the dataset would noticeably change 
the result of the calculation. Outliers are cases with y val-
ues—in this case effect marker values—deviating from 
the trend. Cases have high leverage if they have extreme 
or unusual combinations of predictor values, here expo-
sures, confounders or covariates. Although these are 
not necessarily faulty data, they lie ‘far’ from the other 
cases and are too few to develop robust models. We are 
aware that the exclusion of influential cases, in particu-
lar cases with high exposure values, can potentially have 
implications in terms of environmental justice [35], but 
the number of subjects in our studies was too low to 
address this problem. In order to get a model that was 
correct for the general population, it was decided to test 
exposure–response associations without influential outli-
ers, employing two methods for their identification. The 
first was to identify outliers as cases with Studentized 
residuals with an absolute value larger than 3, and check 
which of these also had high leverage by determining 
if their hat value was higher than twice the average hat 
value of all cases in the regression. The second method 
was to plot the Cook’s distance of each case. We decided 
not to work with a cut-off value for the Cook’s distance 

since the traditional cut-off values identified either no 
influential cases or too many (often 5% or more). Instead, 
cases that had a Cook’s distance clearly higher than the 
rest of the cases and/or higher than one of the influential 
cases identified using the first method were also identi-
fied as influential cases [36]. Combining these metrics 
allows identification of influential cases, and although the 
exact cut-offs to be used are as usual controversial  [37], 
we picked conservative values that seemed to produce 
at most a few influential cases in our models. We pre-
sent results after exclusion of influential cases. For most 
associations there were no or only one influential case, 
the maximum number of influential cases was 4 (this 
occurred in two associations as shown in Additional 
file 1: Tables S3 and S4 show results in which as well data 
with as without influential cases are described.

Results
PFAS serum concentrations
PFAS concentrations in cord plasma or serum of the sub-
jects participating in the FLEHS-2 and -3 studies have 
been published in detail by Colles et al. [5]. A summary is 
provided in Table 1. At least 99.5% of the PFOA or PFOS 
values were above LOQ in the FLEHS-2 and FLEHS-3 
studies. The same was true for PFHxS and PFNA meas-
ured in adults of FLEHS-3. For PFBS measured in adults 
of FLEHS-3, the detection rate was below 5%, so we did 
not attempt to study associations between PFBS and cog-
nitive parameters.

Results of the neurocognitive tests
The results of the neurocognitive tests are summarized in 
Table 2.

Associations between PFAS serum concentrations 
and neurobehavioral and cognitive parameters
Several neurobehavioral or cognitive parameters were 
assessed on adolescents in FLEHS-2 and on adults in 
FLEHS-3 (see methods). Associations after removal 
of any influential cases are shown in Figs.  2, 3. Statisti-
cal data, also comprising all cases, can be found in the 

Table 1  Summary of PFAS exposure levels measured in the adolescents (FLEHS2) and adults (FLEHS 3)

Campaign, population PFAS µg/L LOQ µg/L % above LOQ period n Median µg/L P25 µg/L P75 µg/L P90 µg/L

FLEHS-2, Adolescents aged 14–15 PFOS 0.3 100 2010–2011 199 5.70 4.00 7.80 10.80

FLEHS-3, Adults aged 50–65 PFOS 0.2 100 2014 205 7.58 5.22 11.15 16.30

FLEHS-3, Adults aged 50–65 PFHxS 0.2 99.5 2014 205 1.61 1.02 2.36 3.61

FLEHS-2, Adolescents aged 14–15 PFOA 0.3 100 2010–2011 199 2.60 2.13 3.00 3.62

FLEHS-3, Adults aged 50–65 PFOA 0.2 100 2014 205 2.94 2.13 3.69 4.93

FLEHS-3, Adults aged 50–65 PFNA 0.1 100 2014 205 0.87 0.60 1.18 1.64



Page 7 of 15van Larebeke et al. Environmental Sciences Europe           (2022) 34:98 	

Additional file 1 Table S3 and Table S4. Below the main 
findings are summarized.

NES‑battery of neurological tests
For the NES-battery of neurological tests, we observed 
only a few significant or marginally significant associa-
tions with the PFAS levels. In adolescents (of FLEHS-2) 
some of these associations pointed in the direction of 
decreased cognitive performance. Serum PFOA concen-
trations were marginally significantly associated with 
an increase in the number of errors (DSSTnerr) in the 
Digit–Symbol Substitution Test (p = 0.059) (Fig. 2), with 
an interquartile increase in PFOA associated with an 
increase of 0.182 in the number of errors, corresponding 
to 18.2% of the difference between the p75 and p25 values 
in the number of errors observed among all the adoles-
cents tested in FLEHS-2. PFOS concentrations were sig-
nificantly associated with a decrease in the maximum 
span reproduced in the reverse order (DSB) in the Digit 
Span Test (p = 0.02), with an interquartile increase in 
PFOS concentration associated with a decrease of 0.139 
digits in the number of digits that could be reproduced, 
corresponding to 13.9% of the difference between the p75 
and p25 values in the number of digits observed among all 
the adolescents tested in FLEHS-2 (Fig. 2), suggesting a 
decrease in short-term memory and capacity to hold and 
manipulate information. Also, PFOS concentrations were 

marginally significantly associated with an increase in the 
time needed to react (CPTmean) in the Continuous Per-
formance Test (p = 0.073), with an interquartile increase 
in PFOS concentration associated with an increases of 
0.7% in the mean reaction time, corresponding to 4,6% 
of the increase in reaction time at P75 compared to P25 
among all adolescents tested in FLEHS-2 (Fig.  3), sug-
gesting a possible decrease in the capacity to concentrate 
and maintain a sustained attention.

Contrasting with the findings for adolescents, for the 
older adults participating in FLEHS-3, 21 of the 24 asso-
ciations between PFAS serum concentrations and NES 
tests results pointed, non-significantly or significantly, in 
the direction of increased cognitive performance. Favora-
ble associations pointing in the direction of increased 
cognitive performance were observed for all associations 
studied, except for the association of PFNA with DSF 
and DSB and of PFOA with DSF which were in an unfa-
vorable direction (Fig. 2). Some of the associations were 
significant. Indeed, a higher PFOS serum concentra-
tion showed an inverse, thus favorable, association with 
the Strooptime, (p = 0.049). An interquartile increase in 
PFOS internal exposure was associated with a decrease of 
2.4% in the Strooptime (i.e., quicker reaction time), corre-
sponding to 11.1% of the decrease in reaction time at P25 
compared to P75 among all adults tested in FLEHS-3, sug-
gesting an increase in the capacity to concentrate (Fig. 3). 

Table 2  Scores of neurocognitive and neurobehavioral tests performed for adolescents or adults

a From personal attributes questionnaire

Campaign Population Effect parameter n Arithmetic mean Median P10 P25 P75 P90

FLEHS-2 Adolescents 2010–2011 CPTmean (ms) 186 411 400 363 379 435 474

CPTincor (number) 186 5.62 5 2 3 7 11

DSSTlat (seconds) 195 98.5 94.26 80.40 86.23 104.73 120.37

DSSTnerr (number) 194 0.959 1 0 0 1 2

DSF (number) 194 5.54 5 4 5 6 7

DSB (number) 194 4.48 4.5 3 4 5 6

FTTpref (number) 194 289 287 242 263 311 340

FTTnpref (number) 194 260 258 222 240 278 304

Epworth Sleepiness 
(Scale value)

182 5.30 5 1 3 8 10

Male adolescents 2010–2011 Masculinity scorea 107 2.46 2.50 1.88 2.13 2.75 3.25

Male adolescents 2010–2011 Femininity scorea 107 2.56 2.63 2.00 2.38 2.88 3.25

Female adolescents 2010–2011 Masculinity scorea 80 2.12 2.13 1.50 1.75 2.50 2.75

Female adolescents 2010–2011 Femininity scorea 80 3.03 3.00 2.50 2.75 3.31 3.50

FLEHS-3 Adults 2014 CPTmean (ms) 192 422 410 373 388 439 475

CPTincor (number) 183 2.02 1 0 0 3 5

DSF (number) 187 5.18 5 4 4 6 7

DSB (number) 186 4.24 4 3 4 5 5

Strooptime (ms) 198 1242 1173 984 1057 1344 1591

Strooper (number) 198 0.626 0 0 0 1 2
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The adults of FLEHS-3 also showed a significant inverse, 
favorable, association between higher PFHxS serum con-
centration and the CPTincor in the Continuous Perfor-
mance Test (p = 0.029), with an interquartile increase in 
PFHxS concentration associated with a decrease of 0.377 
errors corresponding to 12.6% of the decrease in errors 
between the p25 compared to the p75 values in the num-
ber of errors observed among all the adults tested in 
FLEHS-3, suggesting an increase in the capacity to con-
centrate and in sustained attention (Fig. 2).

Neurobehavioral parameters assessed for adolescents
Sleepiness during the day was assessed in adolescents of 
FLEHS-2. A higher PFOA serum concentration showed a 
significant positive association with sleepiness during the 

day (p = 0.007), with an interquartile increase in PFOA 
concentration associated with an increase in somnolence 
of 0.786 points in the Epworth Sleepiness Scale, corre-
sponding to 15.7% of the increase between the p75 value 
compared to the p25 value in somnolence score observed 
among all the adolescents tested in FLEHS-2. For PFOS, 
this association was non-significant (Fig.  2). Further-
more, masculinity and femininity were evaluated using 
the Personal Attributes Questionnaire in FLEHS-2 ado-
lescents. All 8 associations with PFOA or PFOS serum 
concentrations were non-significantly or significantly 
inverse (Fig.  2). For males the PFOS concentration 
showed a significant inverse association with feminin-
ity, with an interquartile increase in PFOS concentration 
associated with a decrease of 0.046 points in the Personal 

Fig. 2  Forest plot of the estimates of neurocognitive tests (NES3 tests, Stroop test) and behavior (somnolence score and femininity/masculinity 
score) in relation to the measured PFAS in the different FLEHS studies (with FL2 = FLEHS-2, FL3 = FLEHS-3, ADO = adolescents, ADU = adults). The 
estimate (95% confidence interval) is expressed as an increase or decrease in effect marker, associated with an IQR increase in exposure. Calculations 
based on effect marker values without logarithmic transformation. Confounders and covariates that were included at the start of the stepwise 
multiple regressions are mentioned in Additional file 1 Tables S1 and S2
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Attributes Questionnaire score (p = 0.006), correspond-
ing to 7.36% of the difference between the p75 value and 
the p25 value in femininity score observed among all male 
adolescents participating in FLEHS-2. For female adoles-
cents the PFOS serum concentration showed a significant 
inverse association with masculinity, with an interquar-
tile increase in PFOS concentration associated with a 
decrease in masculinity of 0.178 points in the Personal 
Attributes Questionnaire score (p = 0.015), correspond-
ing to 23.73% of the difference between the p75 value and 
the p25 value in the masculinity score observed among all 
female adolescents participating in FLEHS-2 (Fig. 2).

Discussion
Internal exposure to PFAS in Flanders in the period of 
2010–2014, covered by the studies included in this paper, 
were in the middle or low range compared to concentra-
tions observed in other Western countries [5]. Differ-
ences in PFAS serum levels between our adolescent and 
adult cohorts were described in detail and discussed by 
Colles et al. [5]. As described under Methods the meas-
urements on adolescents and adults were comparable in 
spite of being done at different points in time. So, in spite 
of the time trend towards decreasing internal exposure 
to PFAS in Flanders reported and discussed by Schoe-
ters et  al. [38], the serum levels measured in our adult 
cohort in 2014 were still higher than those measured in 
our adolescent cohort in 2010–2011. This is consistent 
with the increasing serum concentrations of PFAS with 
increasing age reported in several publications [39–41]. 
Differences between associations observed here for older 

adults and adolescents cannot rest on the fact that real 
internal exposure to PFAS of the older adults would have 
been lower than that of the adolescents.

Our results on the associations of PFAS levels in rela-
tion to neurobehavioral tests are in line with other con-
trasting and variable observations that are reported in 
the literature concerning the biological and health effects 
of PFAS.

Somnolence and gender identity
For adolescents of FLEHS-2, we observed a significant 
positive association between PFOA (but not PFOS) 
blood concentrations and somnolence during the day. 
In terms of gender identity as assessed through the Per-
sonal Attributes Questionnaire, a significant inverse 
association was seen for PFOS with femininity for boys 
and with masculinity for girls (Fig. 2) using the Personal 
Attributes Questionnaire as proposed by Spence and 
Helmreich [34]. We are, however, aware of the fact that 
this questionnaire is not able to measure the complex-
ity of global masculinity or femininity [42] and of limi-
tations affecting this questionnaire in terms of societal 
changes around gender identities [43]. We are not aware 
of any observations concerning PFAS and somnolence. 
Speculatively, it might be argued that induction of som-
nolence by PFAS may involve the possibility that PFAS 
share some physicochemical properties with fluorinated 
organics (such as fluorinated oxolanes and oxetanes) 
that were reported to produce somnolence or anesthesia 
[44]. To our knowledge, no associations between inter-
nal exposure to PFAS and masculinity or femininity have 

Fig. 3  Forest plot of the estimates of outcomes of the neurocognitive tests (NES3 tests, Stroop test) in relation to the measured PFAS in the 
different FLEHS studies (with FL2 = FLEHS-2, FL3 = FLEHS-3, ADO = adolescents, ADU = adults).). The estimate (95% confidence interval) is expressed 
for an interquartile increase in exposure (calculations on ln-transformed effect marker values). Confounders and covariates that were included at the 
start of the stepwise multiple regressions are mentioned in Additional file 1 Tables S1 and S2
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been reported in the literature. However, PFAS exposure 
associated to sex-, age- and compound-specific changes 
in sex hormone concentrations has been reported by Xie 
et al. [45]. These changes in sex hormone concentrations 
might well explain the changes in gender-specific behav-
ior we observed. In particular, a decrease in testosterone 
levels associated with PFOS as observed in Taiwanese 
girls 12–17  years of age [46], American girls 6–9  years 
of age [47] and American Girls aged 12–19 [45] might 
contribute to the quite important decrease in masculin-
ity observed for girls. Also for boys changes in oestradiol 
and testosterone concentrations were reported by Nord-
ström-Joensen et al. [48], Lopez-Espinoza et al. [47] and 
Xie et  al. [45], which might contribute to the observed 
decrease in boys’ femininity.

Other functions and cognition
Neonatal exposure to PFOS or PFOA caused neurobe-
havioral defects in adult mice [49]. Unfavorable develop-
mental or neurobehavioral effects on humans of prenatal 
exposure to PFAS were reported by Donauer et  al. [50] 
(hypotonic babies at 5  weeks of age) and Hoyer et  al. 
[51] (hyperactivity and behavioral problems in children). 
However, not all studies observed adverse effects. Fei 
et  al. [52] found, at concentrations higher than in our 
study, no convincing associations between developmen-
tal milestones in early childhood and levels of PFOA or 
PFOS measured in maternal plasma early in pregnancy. 
PFAS measured in cord plasma in the Netherlands, at 
concentrations lower than in our study, had no impact on 
18-month-old children examined using the Child Behav-
ior Checklist 1.5–5, in ‘Attention Deficit Hyperactivity 
Disorder’ scores but showed a significant inverse asso-
ciation with externalizing problem behavior [53]. Harris 
et  al. [54] reported that, at concentrations higher than 
in our study, higher prenatal levels of some PFAS were 
associated with a better non-verbal IQ in children with 
a mean age of 7.7 years. Stein & Savitz [55] observed, in 
5–18 years old children, an inverted J-shaped association 
between PFOA and attention deficit/hyperactivity dis-
order (ADHD) (small increase in prevalence for the sec-
ond quartile of exposure compared with the lowest, and 
a decrease for the highest versus lowest quartile). Forns 
et  al. [56] observed no association between PFOS and 
PFOA measured in breast milk samples one month after 
delivery and cognitive and psychomotor development at 
6 and at 24  months and behavioral development at 12 
and at 24 months. A systematic review by Roth & Wilks 
[57] concluded that the epidemiological evidence did not 
support a strong causal association between PFAS and 
adverse neurodevelopmental and neurobehavioral out-
comes in infants and children.

Considering neurocognitive effects, rather opposite 
findings were seen for adolescents vs. older adults. Our 
results concerning unfavorable effects on cognition in 
adolescents—unfavorable effects on sustained attention 
(CPTmean) (Fig.  3), short-term memory (DSB) (Fig.  2) 
and cognitive performance (DSSTnerr) (Fig. 2)—are con-
sistent with several published reports. In the Hokkaido 
Birth Cohort Study [58] PFOA, but not PFOS, adversely 
affected mental development in girls at 6 months of age. 
The association between maternal PFAS concentrations 
and early communication development in British girls 
at 15 and 38  months of age varied by maternal age at 
delivery. In daughters of younger mothers (< 25 years of 
age), every 1 ng/mL of PFOS was associated with a 3.82 
point (95% confidence interval (CI) − 6.18, − 1.47) lower 
vocabulary score at 15 months and a 0.80 point (95% CI 
− 1.74, 0.14) lower language score at 38 months [59].

The molecular mechanisms which might contribute to 
neurobehavioral or cognitive effects were studied in cell 
lines [60] (different mechanisms for different PFAS). As 
reviewed by Wang et  al. [61], PFAS could affect neuro-
transmitter concentrations, expression of neurotrans-
mitter receptors, synaptogenesis and synaptic plasticity, 
induce apoptosis of neuronal cells, and alter the expres-
sion of microRNAs. As to the basic mechanisms inter-
vening in the biological activity of PFAS, activation of 
PPARα, a ligand-activated transcription factor inter-
vening in lipid homeostasis and inflammation, probably 
plays a role [62]. In addition, other putative mechanisms 
have been proposed, such as gap junctional inhibition 
to disrupt cell–cell communication, mitochondrial dys-
function, interference of protein binding, partitioning 
into lipid bilayers, oxidative stress, alterations in calcium 
homeostasis and related signaling pathways [63] and 
changes in DNA methylation [64, 65].

Our results concerning favorable effects on cogni-
tion in older individuals of 50–65  y—favorable effects 
on the capacity to concentrate (Strooptime) (Fig. 3) and 
to sustain attention (CPTincor) (Fig.  2)—were consist-
ent with several publications. A cross-sectional study 
using data from participants from the 1999–2000 and 
2003–2008 National Health and Nutrition Examination 
Surveys (NHANES) (n = 1766, age 60–85 years) reported 
non-significant inverse associations between perfluoro-
alkyls and self-reported cognitive limitation consisting 
in difficulty remembering or periods of confusion [66]. 
Another cross-sectional study with 21,024 older adults 
(aged ≥ 50  years) who were exposed to high levels of 
PFOA from a chemical facility in the Mid-Ohio Valley, 
West Virginia, and participated in the C8 Health Pro-
ject, reported statistically significant inverse associations 
of self-reported short-term memory loss with PFOS, 
PFOA, and PFHxS [67]. A study of 126 older adults aged 
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55–74  years and living in upper Hudson River commu-
nities which utilized various neuropsychological assess-
ment tools (e.g., the California Verbal Learning Test, 
the Wechsler Memory Scale, the Wisconsin Card Sort-
ing Test) also showed that higher PFOA and PFOS con-
centrations were associated with better performance in 
memory and learning, executive function and visuospa-
tial function [68]. Park et al.[69], in a study on 903 adults 
aged ≥ 60 years from NHANES 2011–2014, found, after 
substantial adjustment, significant positive associations 
for PFOA and PFNA serum concentrations, but for PFOS 
a non-significant negative association, with a compos-
ite z-score for global cognition. After excluding persons 
suffering from chronic kidney disease, the positive asso-
ciations for PFOA and PFNA were no longer significant 
and the negative association for PFOS became signifi-
cant [69].In a study on 777 individuals aged > / = 60 from 
the National Health and Nutrition Examination Sur-
vey (NHANES) 2011–2014, Weng et  al. [70] found that 
PFOA was significantly inversely associated with cogni-
tive decline after multivariable adjustment and, in the 
Bayesian kernel machine regression, mixtures of 5 PFAS 
were significantly protective on cognitive decline in the 
Immediate Recall Test. Weng et  al. [70] concluded that 
low-dose (essentially below the median value observed 
in their cohort) mixed PFAS was inversely associated 
with the risk of cognitive decline and that no significant 
interaction between PFAS was observed for cognitive 
function.

Difference in impact between adolescents and older adults
For the neurocognitive effects, it was hypothesized that 
the difference in impact, seen between elderly and ado-
lescents, may have been due to the time frame difference 
in which they were born, implicating a higher prenatal 
PFAS exposure in the adolescents (born in 1995–1997) 
compared to the elderly group (born between 1943 and 
1964). It is also likely that adverse effects on the brain 
might result predominantly from early exposures. The 
effects of endocrine disrupting agents can differ impor-
tantly in function of the time window during which 
exposure takes place. That is well documented [71, 72]. 
Mechanisms leading to adverse effects of PFAS prenatal 
exposure on the nervous system later in life were shown 
in animal experiments: Johansson et  al. [73] (proteins 
important for neuronal growth and synaptogenesis), Lee 
et  al. [74] (more lipid oxidation and oxidative stress in 
fetuses than in dams), Wang et  al. [75] (reduced spatial 
learning and memory abilities of the offspring on post-
natal day 35), Zhang et  al. [76] (inhibition of long-term 
potentiation and changes in receptors after exposure 
starting in utero), and Zhang et al. [77] (tau hyperphos-
phorylation and beta-amyloid aggregation in adult rats 

after pre/postnatal PFOS exposure). Disruption of thy-
roid function might be involved, as thyroid hormones 
play an important role in the development of the brain 
[78]. Pedersen et  al. [79] observed changes in neuro-
chemical signaling in association with PFAS concentra-
tions in the brain of polar bears. Additionally, exposure 
to PFAS mainly during later life of the adults might have 
induced protective effects. As proposed by Power et  al. 
[66] and discussed by Quaak et al. [53], PFAS may have 
neuroprotective effects. It is known that PFAS are ago-
nist of PPAR receptors [80]. As reviewed by Kapadia et al. 
[81] PPAR agonists have both neuroprotective as well as 
central nervous system anti-inflammatory characteris-
tics. As PFASs are known to interfere with the immune 
function [11, 12, 82) and as neurodegenerative diseases 
are accompanied by inflammation, it may be speculated 
that exposure to PFASs may have a beneficial impact on 
brain health in older human adults. It is conceivable that 
increased leptin levels also play a role in possible posi-
tive cognitive effects of PFAS, especially on older peo-
ple. Leptin levels were not measured in the adolescents 
participating in FLEHS 2 nor in adults participating in 
FLEHS 3. However, a weak positive association with Lep-
tin was observed for PFAS cord plasma concentrations in 
mothers participating in the FLEHS 2 and FLEHS 3 cam-
paigns, significant only for PFHxS in FLEHS 3 mothers 
(unpublished results of the Flemish biomonitoring, see 
Note on Leptin in Additional Materials). Although some 
animal experiments [83] and observations in humans 
[84, 85] found negative associations between PFAS and 
Leptin concentrations, often positive associations were 
observed. Experimental evidence for induction of higher 
leptin concentrations by PFAS was observed in human 
cells in vitro [86] and in animals [87–90] and also obser-
vations on humans showed positive associations between 
internal exposure to PFAS and leptin serum concen-
trations [91–93]. Specially relevant in relation to our 
findings concerning cognition in elderly people is the 
observation of Ding et al. [94] who found that, in women 
aged 45–56, higher PFAS concentrations were associ-
ated with higher leptin and free leptin values. Leptin was 
observed to improve memory processing in AMP8 mice, 
which developed elevated amyloid-beta and memory 
deficits with advancing age [95], and this effect was more 
pronounced in older AMP8 mice. Studies in transgenic 
mouse models of Alzheimer’s disease have shown that 
chronic administration of leptin could ameliorate brain 
pathology and improve cognitive performance [96].

Strengths and limitations
As to strengths and limitations of the study, PFAS blood 
levels were analyzed in the same lab during the different 
surveys performed in a 4 year time frame. Furthermore, 
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well trained research nurses with much experience were 
responsible for the contact and interactions with the 
participants, including the administration of the neu-
robehavioral tests. Uniform study protocols facilitated 
comparability of the results.

Weaknesses in our study comprise that the question-
naire used to study gender identity is too simple to take 
into account the complexity of this issue and the soci-
etal changes involved. Many statistical associations were 
tested, increasing the likelihood of chance findings. 
However, in accordance with the views of the epidemi-
ologist Kenneth Rothman [97], and in view of the known 
endocrine disrupting properties of PFAS—which render 
observed exposure–effect relations biologically plausi-
ble—we did not apply corrections for multiple testing. 
Since the studies were cross-sectional, since we could not 
exclude reverse causality due to reuptake of PFAS in the 
kidneys and through the enterohepatic circulation, this 
study on its own does not provide evidence for causality. 
However, by confirming the results of other research, it 
contributes to the knowledge and evidence concerning 
the diverse effects of PFAS.

Conclusion
Our observations point to neurobehavioral and cogni-
tive effects of PFAS. The neurobehavioral effects might in 
part result from the changes in sex hormone levels that 
have been reported to be associated with internal expo-
sure to PFAS. Interestingly, whereas in relation to cogni-
tion some adverse effects were recorded for adolescents, 
for elderly persons our observations rather suggest pos-
sible weak positive effects with respect to cognition. Our 
observations might be in line with the view that PFAS 
have many, sometimes contrasting health effects.
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