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Ocean carbon sequestration: Particle fragmentation by
copepods as a significant unrecognised factor?
Explicitly representing the role of copepods in biogeochemical models may
fundamentally improve understanding of future ocean carbon storage
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Abstract

Ocean biology helps regulate global climate by fixing atmospheric CO2 and exporting

it to deepwaters as sinking detrital particles. New observations demonstrate that par-

ticle fragmentation is the principal factor controlling the depth to which these par-

ticles penetrate the ocean’s interior, and hence how long the constituent carbon is

sequestered from the atmosphere. The underlying cause is, however, poorly under-

stood. We speculate that small, particle-associated copepods, which intercept and

inadvertently break up sinking particles as they search for attached protistan prey, are

the principle agents of fragmentation in the ocean. We explore this idea using a new

marine ecosystem model. Results indicate that explicitly representing particle frag-

mentation by copepods in biogeochemical models offers a step change in our ability

to understand the future evolution of biologically-mediated ocean carbon storage.Our

findings highlight the need for improved understanding of the distribution, abundance,

ecology and physiology of particle-associated copepods.
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INTRODUCTION

Carbon storage in the ocean

Photosynthetic unicellular organisms in the sun-lit, euphotic zone of

the open ocean produce ∼48 gigatonnes (Gt) of organic carbon each

year, almost half of total global primary production.[1] Between 5 and

12 gigatonnes of this organic matter sinks down into the mesopelagic

zone,[2] nominally defined as the region of water between 100 and

1000 m deep, as a mixture of dead or dying cells, animal carcasses
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and feces. Most of this sinking flux is remineralised via ocean biology

before it reaches 1000 m.[3–5] The depth at which organic matter is

remineralised determines the residence time of the constituent carbon

in the ocean, with important consequences for global climate.[6] It is

estimated that the suite of biological processes that result in the stor-

age of carbon in the deep ocean, collectively known as the “biological

carbon pump” (BCP), reduce the concentration of atmospheric CO2 by

up to 50% of what it would otherwise be.[7] Understanding themecha-

nisms that control the strength and efficiency of the BCP is integral to

developing our capacity to reliably predict future climate.
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The BCP is typically quantified bymeasuring the sinking carbon flux

at a range of water depths throughout the mesopelagic via a variety

of techniques, including the use of neutrally-buoyant sediment traps.

The resulting relationship between sinking carbon flux anddepth is fre-

quently characterised empirically by fitting particle flux data using a

power-law known as the “Martin curve,” with a fixed shallow reference

depth:[3]

Fz = F100
( z
100

)−b
(1)

where Fz is flux at depth z, F100 is (in this case) flux at a reference depth

of 100 m, and the exponent b quantifies the rate at which the sinking

flux is attenuated with depth. As such, b is often used as a metric when

examining the proximate controls on the efficiency of the BCP, i.e., the

fraction of organic carbon leaving the euphotic zone that penetrates

themesopelagic to a givendepth.Geographical variation inb correlates

with various factors including ocean temperature, seawater oxygen

concentrations and surface biological properties;[8–10] consensus on

the relative importance of these factors has yet to be reached. The

marine ecosystem components of contemporary Earth Systemmodels,

including thoseused to inform IPCCclimate assessments, typically rep-

resent the BCP via a range of semi-empirical formulations that gener-

ateMartin-type curves. These include theuseof particle turnover rates

that are fixed or depend on temperature or oxygen, increasing sinking

speed of detritus with depth, and mineral ballasting [e.g., 11–15].

The underlying biological processes (e.g., respiration, ingestion) and

ecological interactions (e.g., predation, fragmentation) that ultimately

control the fate of sinking detritus (particulate organic carbon, POC)

are usually implicit within such parameterisations. The uncertainties

associated with empirical approaches are large and may amplify when

making projections of the future strength of ocean carbon storage.One

way of reducing these uncertainties, and hence increasing confidence

in future climate predictions, is to explicitly account for the biological

processes that attenuate the sinking flux of organic particles.[16]

Particle fragmentation in the mesopelagic zone
controls the biological carbon pump

The first budget to balance the sources and sinks of organic carbon

in the mesopelagic zone to within observational errors was published

in 2014.[4] Analysis of this budget using a simple, steady-state flow-

analysis model suggested that zooplankton may intercept half of all

fast-sinking organic matter and fragment approximately 30% of this

fraction while feeding upon it. The identity of the animals responsible

for particle fragmentation,was, however, not resolved in that study and

there was no analysis of the consequences of particle fragmentation

for flux attenuation, i.e., Martin’s b, in the water column. New observa-

tional data from multiple ocean regions, generated using autonomous

profiling biogeochemical “Argo” floats [https://argo.ucsd.edu/], rein-

force this apparently counterintuitive finding: on average, 49% (±22)

of the observed decrease in particle flux with depth in themesopelagic

zone during high-flux events can be solely attributed to the

transformation of large, fast-sinking particles into small, slow-sinking

fragments.[17] Accordingly, particle fragmentation is suggested to be

“the single most important process in determining the depth at which

fast-sinking organic carbon is remineralised”.[17] Here, we speculate

that the primary agents of particle fragmentation in the mesopelagic

zone of the ocean are small particle-associated copepods (PAC). We

use a new ecosystem model, embedded within a simple 1-dimensional

representation of water column physics, to explore the role of particle

fragmentation by PAC in controlling the magnitude and depth-scale of

particle flux attenuation in the ocean, and thereby the efficiency of the

BCP.

Particle-associated copepods lessen the flux
of sinking organic matter

The suggestion that zooplankton play a quantitatively important role

in attenuating the vertical flux of carbon is not new.[18] Numerous

small copepods are reported to associate with detrital particles,

including the cyclopoid genera Oithona, Oncaea and Corycaeus, and

harpacticoids of the genusMicrosetella[19–21] (Figure 1). These animals

are typically <1 mm long and, despite frequently being under sampled

using “standard” 200 µm zooplankton nets, are believed to be amongst

the most abundant animals on Earth.[20,22] Several studies have

identified PAC as the “gate-keepers” of particle flux at the base of the

euphotic zone,[21,23–26] but exactly how they attenuate the flux of

sinking particles remains poorly understood. PAC are reported to con-

sume a diversity of living and non-living food items including ciliates,

dinoflagellates and diatoms, along with detrital particles and the fecal

pellets of larger animals.[23,27–29] Numerous studies note the capacity

of PAC to fragment, rather than ingest, detrital particles.[27,30] Such

activities may be associated with searching for attached or embedded

ciliates or other microbes.[31,32]

Here, we develop the hypothesis that mesopelagic PAC fragment,

rather than consume, the majority of the detrital particles that they

encounter. This counter intuitive trophic strategy is consistent with

findings from previous work[4] and provides a mechanistic explana-

tion for why almost half of all large fast-sinking particles are converted

into smaller ones within the upper mesopelagic zone.[17] We propose

that when mesopelagic PAC encounter fast-sinking detritus, their pri-

mary action is to mine these particles for attachedmicrobes[31,32] and,

in doing so, inadvertently fragment them. This “search and destroy”

feeding mode exploits the widely reported phenomenon that parti-

cles of detritus amplify the abundance of bacteria and protists by sev-

eral orders of magnitude relative to the surrounding seawater[33,34]

and provide a diet that is nutritionally superior to consuming non-

living detritus alone.[35] The associated fragmentation also reduces

or arrests sinking particulate fluxes and simultaneously increases

the total surface area available for microbial colonisation. Particle

fragmentation has previously been suggested as a means by which

mesopelagic zooplankton exploit the enzymatic machinery of microor-

ganisms to stimulate the local production of nutritious, harvestable

biomass.[36]
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F IGURE 1 Variousmarine copepods, including the cyclopoid families Oncaeidae (A) andOithonidae (B), are frequently associated with sinking
particles of detritus in the ocean. Scale bar≈ 1000 µm. Image copyright Daniel Mayor.

Explicitly representing PAC in a plankton ecosystem
model

We develop a mathematical characterisation of PAC population

dynamics that is suitable for implementation in marine ecosystem

models.We chose to incorporate itwithin the intermediate-complexity

model MEDUSA (Model of Ecosystem Dynamics, nutrient Utilisation,

Sequestration and Acidification) that is used to simulate global ocean

biogeochemical cycles and which includes non-diatoms, diatoms,

microzooplankton and mesozooplankton, slow-sinking detritus,

nitrate, silicate and iron as state variables.[12] MEDUSA has an implicit

representation of fast-sinking detritus via instantaneous remineralisa-

tion in the water column. We replace this formulation with an explicit

representation where large detritus is divided into two classes. The

first represents relatively slower-sinking aggregates of particles from

a range of sources, including dead phytoplankton and zooplankton,

and is assigned a sinking rate of 35m day−1 based on typical values for

this class of “marine snow” of between 20 and 50 m day−1.[37,38] The

second class represents zooplankton fecal pellets that are fast-sinking

owing to their increased density and more streamlined shape. A value

of 115mday−1 is specified for the fastest sinking fraction based on the

upper limit of fast-sinking particles,[17] and which is consistent with

field estimates.[34] Small detritus, in contrast, sinks at 0.5 m day−1 in

the model. The ecosystem is embedded within 1-dimensional physics

model in which the water column is divided into 5 m layers (0 to 1000

m) where the surface layers are completely mixed with an imposed

seasonal cycle. Nutrients are dynamic within the modelled mixed layer

but present in a fixed profile below, whereas the rest of the ecosystem,

including PAC and both fast-sinking detritus variables, is modelled

throughout the entire vertical domain. The model is set up to simulate

the seasonal cycle at the Porcupine Abyssal Plain (PAP) site in the

North Atlantic Ocean (49◦N 16.5◦W). A complete description of the

model is provided in the Supporting Information Sections S1-S6.

Our representation of PAC is necessarily speculative because

the physiology and ecology of these animals is poorly understood,

particularly in the mesopelagic. Key parameterisations in the model

are a functional response with low maximum feeding rate that is com-

pensated by the ability to feed effectively at low food concentrations,

low respiration and lowmortality. PAC are adapted to efficiently locate

sinking aggregates via their chemical plumes[39,40] and spend much of

their time motionless, interspersed with vigorous hops when particles

pass within their field of perception.[41] This ambush mode of feeding

has several consequences. Feeding rates tend to be relatively low

because of slow gut throughput that increases absorption of energy

and matter in their variable food environment. In compensation,

feeding thresholds are also low meaning that PAC are able to feed

at low prey concentrations.[42,43] Ambush feeding is energetically

efficient compared to the filter-feeding activities of larger cope-

pods such that metabolic rates of PAC may be as much as 2-8 times

lower than in calanoids.[43–45] Low respiration imparts starvation

tolerance, which allows animals to exploit environments with low

food concentrations,[41] such as the mesopelagic zone. Intercepting

and feeding upon microbes attached to fast-sinking particles further

reduces the amount of energy required to find otherwise diffuse prey

and minimizes their chance of detection by predators.[46] Another key

feature of the model is that, consistent with their search and destroy
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F IGURE 2 Model predictions for the Porcupine Abyssal Plain site
in the eastern North Atlantic (49◦N16.5◦W), 0-600m, illustrating the
seasonal evolution of: (a) Particle-associated copepod (PAC) biomass,
(b) sinking detritus (particulate organic carbon, POC) flux, and (c) the
proportional contribution of PAC to the attenuation of the flux of fast
sinking detritus (remainder to bacterial respiration)

feeding mode, PAC are assumed to ingest only 20% of all intercepted

particles of fast detritus (this fraction represents the biomass of

attached protists), the remainder being fragmented into small detritus.

The density of protists on detritus increases as particle size decreases

owing to the increased surface area:volume ratio that favors microbial

colonisation;[47] PAC are, therefore, assumed to consume 40% of the

captured small detritus and fragment the remainder. The flux of fast-

sinking detritus is attenuated with depth either by interception and

processing by PAC, or by microbial respiration, which is represented

as a temperature-dependent rate in the model. Parameter values for

PAC were carefully selected to best represent current understanding

of how these animals feed, in terms of their food preferences and func-

tional response, and also their likely response to predation (Supporting

Information Section S6).

Particle fragmentation by PAC dominates the
attenuation of detrital flux

The model recreates expected ecosystem dynamics in the surface

mixed layer (Supporting Information Figure S1) and predicts vertical

profiles of PAC biomass (Figures 2a and 3a) that are consistent with

field-observed values.[48,49] Following the phytoplankton bloom in

surface waters, the simulated vertical flux of sinking detritus and its

attenuation is highly variable through time (Figure 2b; Supporting

Information Figure S3). This result has important implications for the

timing of field programs, the operational deployment of equipment for

measuring flux attenuation and interpretation of the resulting data.

The model achieves a good fit to flux data derived from neutrally-

buoyant sediment traps at the study location during the key period of

export (Figure 3b, green line), thereby showing good correspondence

with the empirically-fitted “Martin curve” for this period (Figure 3b,

dashed grey line). Predicted particle fragmentation by PAC accounts

for 81% of the annual flux attenuation of fast-sinking detritus in the

mesopelagic (Figure 2c), dominating over microbial respiration in the

upper mesopelagic (Figure 3c). A large mismatch with data occurs

when the modelled particle flux is attenuated by microbial respiration

alone, i.e., when PAC are removed from the model (Figure 3b, red line).

Removal of PAC alleviates competition with mesozooplankton in the

mixed layer and results in a higher flux of large (fecal pellet) detritus

throughout themesopelagic.

CONCLUSIONS AND PROSPECTS

Particle-associated copepods are an integral component of oceanic

food webs. The proposed PAC model, which is based on our best

understanding of the physiology and ecology of these tiny zoo-

plankton, provides the first quantitative demonstration that PAC

may be largely responsible for attenuating particle flux in the upper

mesopelagic zone of the ocean. Our results thus indicate that PAC

potentially play a pivotal role in modulating carbon sequestration

in the ocean and hence climate regulation. Explicit representation
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F IGURE 3 Predicted vertical profiles on Julian day 190 of the simulation: (a) Particle-associated copepod (PAC) biomass (mmol Cm−3); (b)
particulate organic carbon (POC) flux (mmol Cm−2 d−1), comparing the standard simulation (PAC included; green line) with an equivalent no-PAC
simulation (PAC removed such that remineralisation is solely by bacteria respiration; red line) and the power-law equation: Fz = F50(z/50)

b with
the associated data;[4] (c) contributions of PAC andmicrobial respiration to turnover of fast detritus (mmol Cm−3 d−1)

of particle fragmentation by PAC in ecosystem and biogeochemi-

cal models, and how these “tiny but mighty” animals will respond

to environmental change, could therefore fundamentally improve

our ability to explain observed spatiotemporal variation in the BCP

and how it will evolve in response to continued anthropogenic

perturbations.

Representing PAC in biogeochemical models is currently compro-

mised by a lack of quantitative information on their physiology and

understanding of their ecological niche, as well as a relative paucity

of data on their abundance and distribution in the mesopelagic ocean.

Despite the ubiquity of PAC such as Oithona, we are currently unable

to fully explain how they simultaneously maintain viable populations

in the epipelagic and mesopelagic zones of the ocean, where the phys-

iological (e.g., temperature and hydrostatic pressure) and ecological

(e.g., quantity and quality of available food and presence of predators)

constraints are very different. Further observations and experiments

are urgently required to provide new, detailed understanding of basic

terms such as ingestion rates and food preferences of epipelagic- and

mesopelagic PAC, their capacity to tolerate food deprivation, and life

history parameters such as longevity andmortality.
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