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Fully convolutional neural
networks applied to large-scale
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In this study we applied for the first time Fully Convolutional Neural Networks

(FCNNs) to a marine bathymetric dataset to derive morphological classes over

the entire Irish continental shelf. FCNNs are a set of algorithms within Deep

Learning that produce pixel-wise classifications in order to create semantically

segmented maps. While they have been extensively utilised on imagery for

ecological mapping, their application on elevation data is still limited, especially

in the marine geomorphology realm. We employed a high-resolution

bathymetric dataset to create a set of normalised derivatives commonly

utilised in seabed morphology and habitat mapping that include three

bathymetric position indexes (BPIs), the vector ruggedness measurement

(VRM), the aspect functions and three types of hillshades. The class domains

cover ten or twelve semantically distinct surface textures and submarine

landforms present on the shelf, with our definitions aiming for simplicity,

prevalence and distinctiveness. Sets of 50 or 100 labelled samples for each

class were used to train several U-Net architectures with ResNet-50 and VGG-13

encoders. Our results show a maximum model precision of 0.84 and recall of

0.85, with some classes reaching as high as 0.99 in both. A simple majority

(modal) voting combining the ten best models produced an excellent map with

overall F1 score of 0.96 and class precisions and recalls superior to 0.87. For

target classes exhibiting high recall (proportion of positives identified), models

also show high precision (proportion of correct identifications) in predictions

which confirms that the underlying class boundary has been learnt. Derivative

choice plays an important part in the performance of the networks, with

hillshades combined with bathymetry providing the best results and aspect

functions and VRM leading to an overall deterioration of prediction accuracies.

The results show that FCNNs can be successfully applied to the seabed for a

morphological exploration of the dataset and as a baseline for more in-depth

habitat mapping studies. For example, prediction of semantically distinct classes
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1228867/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1228867/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1228867/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1228867&domain=pdf&date_stamp=2023-07-20
mailto:rarosio@ucc.ie
https://doi.org/10.3389/fmars.2023.1228867
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1228867
https://www.frontiersin.org/journals/marine-science


Arosio et al. 10.3389/fmars.2023.1228867

Frontiers in Marine Science
as “submarine dune” and “bedrock outcrop” can be precise and reliable.

Nonetheless, at present state FCNNs are not suitable for tasks that require

more refined geomorphological classifications, as for the recognition of

detailed morphogenetic processes.
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1 Introduction

In the fast-expanding field of marine habitat and geomorphological

mapping, with an increasing influx of data at high spatial resolution

being gathered by geophysical and remote sensing surveys (“Big Data”),

rapid, machine-based and cost-effective methods that capture the

nuances of the highly varying seabed environments have become

essential. Thus, computer-based supervised and unsupervised

mapping methods have become progressively more popular,

demonstrating equivalence or superiority to traditional manual

mapping (Micallef et al., 2012; Diesing et al., 2014; Ismail et al.,

2015). Presently, the leading supervised mapping approach is a

combination of object-based image analysis (OBIA) (Blaschke et al.,

2014) and conventional machine learning models (e.g. Decision Trees,

Support Vector Machines, Random Forests etc.). In this approach,

OBIA first segments raw data, for example imagery, into a suitable

internal representation of descriptive objects, then a machine learning

sub-system detects statistical patterns in extracted descriptive features

in order to distinguish different class domains. When the raw data are

digital surface models (e.g. from multibeam echosounders or Lidar

data), as it happens for most marine-based habitat mapping studies, the

segmentation and statistics are largely based on morphological and

substrate attributes (e.g. relative depth, roughness, backscatter etc.), and

habitat prediction is strictly linked to morphology. Recent applications

range between identification and analysis of coral mounds (Diesing and

Thorsnes, 2018; Conti et al., 2019; de Oliveira et al., 2021), sediment

wave characterisation (Summers et al., 2021) to general marine

mapping (Ierodiaconou et al., 2018; Linklater et al., 2019). However,

the OBIA method still requires careful engineering and considerable

domain expertise and manual intervention, which increases processing

time and effectiveness.

In the last decade, Deep Learning (DL), and in particular

Convolutional Neural Networks (CNNs) have supported more

traditional approaches, and have shown state of the art results on

a wide range of imaging problems (Long et al., 2014; He et al., 2017;

Krizhevsky et al., 2017). Fully Convolutional Neural Networks

(FCNNs) are a variant of CNNs that can perform per-pixel

classification. Contrarily to traditional machine learning, FCNNs

allow for hierarchical feature learning, which in effect combines

learning features and training a classifier in one optimisation

(LeCun et al., 2015). Furthermore, FCNNs can leverage semi-

supervised strategies whereby subsets of labelled data are used for

optimisation; this approach can be beneficial for practical
02
applications of FCNNs for marine geomorphology and ecology

mapping where the quantity and distribution of labelled data may

be limited due to associated costs of in situ surveying (Leitão et al.,

2018; Hobley et al., 2021). While interest in DL has been shown

early on by the marine community for ecological and habitat

mapping (Gazis et al., 2018; Yasir et al., 2021), only a few studies

have been focused on automated identification with DL of seabed

geomorphological features or textures (McClinton et al., 2012;

Valentine et al., 2013; Juliani, 2019; Keohane and White, 2022;

Lundine et al. , 2023), even though the significance of

geomorphology for habitat distribution is widely acknowledged

(Brown et al., 2011; Lecours et al., 2016; Harris and Baker, 2020).

Deep Learning in geomorphology has found instead a more fertile

ground in coastal and geohazard studies (Ma and Mei, 2021;

Buscombe et al., 2023), and in outer space, in particular for

Martian or Lunar geology, where several studies have taken

advantage of the high resolution optical imagery available and

attempted to separate specific landforms from a background

(Foroutan and Zimbelman, 2017; Palafox et al., 2017; Wang et al.,

2017; Rubanenko et al., 2021), or more generally characterise the

ground surface to identify optimal landing spots or assess rover

traversability (Wilhelm et al., 2020; Barrett et al., 2022). Barrett et al.

(2022) in particular have demonstrated the potential of large-scale

exploratory morphological mapping, where machine learning

assists the geomorphologist to isolate sections of interest in the

dataset, sifting through an enormous dataset.

Following on this latter example, and transposing it to the

marine realm, in this study we explore the potential of FCNNs to

map distinctive morphologies on the seabed, generate the

prospective to create an automated, streamlined method to

greatly increase the efficiency of many seabed mapping workflows

including data exploration of the main morphological signatures,

preliminary domain segmentation for ground-truthing campaigns

and the identification of areas of interest or generalised habitat

predictions. We align the exercise to recurrent situations and

practices in seabed mapping, and we test the capability of the

FCNNs to their limits, feeding the bare minimum usually available

to researchers:
1) we furnish only bathymetry and bathymetry-derived surface

functions as input layers (contrarily to the optical imagery

used for the planetary studies) and do not include

multibeam backscatter data as it is sometimes unreliable.
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Elevation as main input in itself poses challenges as DL

methods are designed for optical imagery.

2) we provide only a very limited amount of labelled data, as

the creation of large amount of labels would defeat the

purpose of automation and time saving. This constitutes a

second challenge, as in spite of CNNs success, these models

perform best with very large, labelled training datasets

(Tarvainen and Valpola, 2017). Labels are a pivotal

concern in many real-world scenarios as CNNs are

optimised based on an objective error metric between

model outcomes and known outcomes.
In the next sections of the paper, firstly we describe the dataset

utilised and the classification systems adopted, which include two

different classifications and label sets. Secondly, we concatenate

various combinations of bathymetry and derivative layer inputs to

create pseudo-images and assess the value of the different

derivatives in the predictions. In parallel, we trial two FCNN

encoders and semi-supervision techniques to gauge their

effectiveness with the non-standard input data (i.e. bathymetry).

Finally, we discuss the results from the point of view of applicability

to marine seabed or habitat mapping studies, including challenges

behind finding the optimal set of semantic morphological classes,

the impact of mapping landforms with diverging dimensions and

the importance of selecting appropriate derivatives for modelling

neural networks on bathymetry-derived data.
2 Materials and methods

2.1 Input layers: bathymetry and derivatives

The multibeam echosounder (MBES) bathymetry utilised in this

study was obtained from the INFOMAR hydrographic dataset, which

is freely accessible on the INFOMAR website (https://

www.infomar.ie) (Figure 1). Bathymetric data at 10 m resolution

were downloaded and processed using ESRI ArcMap v 10.6. Firstly,

fine holes in the dataset were filled with the mean of the surrounding

5x5 pixel neighbours. A general median filter (5x5 rectangle) was

applied to remove ‘salt-and-pepper’ imperfections and fine artefacts

before re-gridding using a nearest neighbour algorithm. For the

purpose of this large-scale mapping, a resolution of 25 m/pixel was

deemed a good compromise between morphological detail, partial

suppression of acquisition artefacts in the INFOMAR dataset

(especially at the outer beam) and computing speed. Bathymetry

derivatives were calculated using ArcMap built-in algorithms or with

the help of the Benthic Terrain Modeller (BTM) toolbox version 3.0

(Walbridge et al., 2018). The derivatives created include three

bathymetric position indexes, a vector ruggedness measurement,

two aspect functions (eastness and northness) and three types of

hillshades (Table 1). The aspect functions rasters were smoothed

using a Gaussian filter (5x5 rectangle) to simplify the signal and

reduce salt-and-pepper effects.

For the purposes of FCNN model training, the bathymetry and

derivatives were normalised to a double precision value between 0
tiers in Marine Science 03
and 1 based on the minimum and maximum value recorded or

calculated in the case for derivative layers.
2.2 Classification system and labelling

To train the weakly supervised convolutional neural network, we

had to define a dataset from which the model could learn the

relationship between bathymetry and derivative data and the

landforms present. So firstly, a suitable classification system had to

be chosen. The classification system adopted is derived from the

Mareano-INFOMAR-Maremap-Geoscience Australia (MIM-GA)

two-part marine geomorphology scheme, a standardised seabed

mapping glossary aimed to enable more consistent seabed

classifications (Dove et al., 2016; Dove et al., 2020). This framework

independently describes seabed features according to their observed

physical structure (Morphology), and the more subjective

interpretation of their origin and evolution (Geomorphology). The

separation between physical structure and genesis aligned well with

the scope of the machine learning-based mapping of this study, where

classes were defined based upon the textural characteristics of the

surface rather than apparent geological nature or proper

geomorphological definitions. This mapping approach was chosen

both because of the general lack of geological ground-truthing for

novel marine datasets, and for the exploratory nature of the exercise.

In general, defined classes describe archetypal seabed textures which,

in various combinations, form seabed landforms. The basic

distinction between sediment and rock landforms was nonetheless

retained (see Table 2), and the INFOMAR sediment grab dataset

(https://www.infomar.ie/maps/interactive-maps/seabed-and-

sediment) was consulted at the labelling stage (Figure 1). Three

principles for classification were adopted (following the advice in

Barrett et al., 2022): (a) classes had to be representative of the diversity

of seabed morphologies encountered on the Irish continental shelf.

This is a “completeness” rule; FCNNs classify pixels in maximum-

likelihood fashion, therefore it is essential to fully capture the problem

domain as the FCNNs cannot create a new class, or leave a space

blank, if an unknown type of seabed is encountered. (b) The

classification sets were kept simple and short, as a comprehensive,

lengthy list of classes would potentially create difficulties in the

training process and especially create more subjective

inconsistencies during the labelling work carried out by the expert,

and (c) last, but most importantly, classes had to be distinct so that

their differences could be confidently isolated visually by the human

mapper. This step is critical as the labelling stage may introduce

subjectivity and inconsistencies in class delineation that can affect the

capabilities of the networks. Therefore, care was taken to semantically

define each class, making sure that delineation could be performed

with a high level of confidence notwithstanding the limited

geological knowledge.

2.2.1 Terrain and landform classes
A list of 10 classes (Table 2, Figure 2) was considered sufficient

to capture the morphological domain of the study area. These

classes include three types (or textures) of hard substrate – Fissured,
frontiersin.org
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Hummocky and Layered (rock), which comprise bedrock outcrops

of meta-/sedimentary and igneous nature but can also include

rough or rubbly glacial surfaces which are often hardly

distinguishable from bedrock. Corrugated and Ridge (sediment)

capture the extensive current-induced bedform fields, respectively

the short wavelength megaripples, sediment ribbons or dunes and

the larger dunes of different type (transverse, linear, trochoidal etc.)

which occur especially in the Irish and Celtic seas (Van Landeghem

et al., 2009; Creane et al., 2022). The Irish shelf glacial vestiges,

which include prevalently moraines (Ó Cofaigh et al., 2012) and

drumlin fields (Benetti et al., 2010) are captured in the Large Ridge

and Hummocky (sediment) classes respectively, although we

included the Celtic “megaridges” (Lockhart et al., 2018) and

sediment banks in the Large Ridge class. The Depression class

includes the bathymetric lows on the shelf, which are prevalently

channel-like features including scouring, palaeofluvial channels/

tunnel valleys (Giglio et al., 2022) and some isolated cases of large

pockmarks. Finally, finer scale, elongated depressions or incisions as

iceberg ploughmarks and furrowing are represented by the Grooved
Frontiers in Marine Science 04
(sediment) class. The Plane class act as filler for the areas of smooth

and featureless terrain. A second list of 12 classes (Table 2, Figure 2)

was created to test the performance of the FCNNs with a slightly

more complex problem. The second classification set was

established increasing the detail for Large Ridge and Depression,

splitting them respectively into Bank (sediment) and Relict Ridge

(thus dividing the sediment banks from the glacial ridges), and

Depression (enclosed) and Depression (elongated) (thus separating

circular or quasi circular scouring and pockmarks from channels

and elongated scours).
2.2.2 Labelling procedures
The labelling of seabed classes was carried out by a single

human annotator (the first author) utilising expert judgement with

the support of published studies and sediment grain size data for

ground-truthing (GT samples in Figure 1) available from the

INFOMAR website. Classes were labelled by manually digitising

polygons on ArcGIS 10.6 and making sure they contained only the

landforms or terrain textures of interest, partially or completely,

regardless of their dimensions. Therefore, naturally larger

landforms (e.g. the class Large Ridge) are defined by larger labels.

Two sets of labels were created, one containing 50 labels per class,

and a second with 100 labels per class. The labelled areas constitute

only a very small proportion of the total study area (97,526 km2),

with the 100-label set covering only 3.2% of the total, the 50 label

(12 classes) 2.8% and the 50 labels (10 classes) 2.57%.

Each digitised polygon contains a unique semantic value

associated to the landform or terrain texture class. FCNNs were

trained with rasterised labels that contain one-to-one mappings of

pixels from input layers (Long et al., 2014). The rasterised labels

employed to train FCNNs were created using the geographic

coordinates stored in each digitised polygon label and converting

real-world coordinates for each vertex to image-coordinates.

Training pseudo-images were created by centre-cropping 256 x

256 pixel (Figure 3) blocks containing multi-layered raster

(bathymetry and derivatives) data. By centre-cropping digitised

label polygons, the edges of each pseudo-image may possess a

number of unlabelled pixels, which in turn allows for semi-

supervised approaches to be leveraged (see Section 2.3). Two

factors are behind the specific dimension of the pseudo-images.

Firstly, the power of two (256 = 28) grants numerical ease in image

resizing (i.e., the blocks are divided/multiplied by 2) with sequential

pooling operations and up-sample. Secondly, the image size is

appropriate for GPU memory constraints and mini-batch

optimisation. For instance, 256x256 may allow 8 images per batch

which was found to be optimal for neural network optimisation,

whereas an image of 512x512 allows only 1 to 2 images per batch

and converges the neural network incorrectly. In the case digitised

polygons covered a region that extended past the 256 x 256 area,

centre-crops were split into several 256 x 256 blocks. This process

generated 553 training images for the 50 label 12-class, 543 training

images for the 50 label 10-class and 1134 training images for the 100

label 10-class. For each dataset, the training imagery was randomly

subdivided into mutually exclusive training (90%) and validation

(10%) sets.
FIGURE 1

Areal extent of the INFOMAR bathymetric data used in this study,
with the location and density of ground-truthing sediment samples
consulted at the labelling stage.
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2.3 Fully Convolutional Neural Networks
Fully Convolutional Neural Networks (Long et al., 2014) are an

extension of traditional CNN architectures (Krizhevsky et al., 2017)

adapted for semantic segmentation. CNNs comprise a series of

layers that process lower layer inputs through repeating convolution

and pooling operations followed by a final classification layer. Each

convolution and pooling layer transform the input image, or in this

case bathymetric data, into higher level abstracted representations.

FCNNs can be broken down into two networks: an encoder and a

decoder network. The encoder network is identical to a CNN,

except the final classification layer is removed. The decoder network

applies transposed convolutions in order to up-sample feature maps

back to the original input size, and each decoding stage combines

corresponding feature maps created by the encoder network. The

final classification layer utilizes 1 by 1 convolution kernels (Lin

et al., 2014) to transform the original bathymetric data and

derivatives source into a set of dense probabilities using a softmax

transfer function. Network weights and biases are adjusted through

gradient descent by minimizing the loss function between network

outputs and the ground truth pixel labels.

The overall architecture of the FCNN used in this study

(Figure 3) is based on a U-Net (Ronneberger et al., 2015) and the

encoder networks are VGG-13 and ResNet50 (Simonyan and

Zisserman, 2015; He et al., 2017). Residual learning using ResNet

encoders has proven to surpass very deep neural networks such as

VGG, but for completeness in results we experimented with both

encoder networks. The decoder network applies a transposed 2 by 2
Frontiers in Marine Science 05
convolution for a learnt up-sample track and concatenates feature

maps from the encoding network at appropriate resolutions

followed by a final 3 by 3 convolution. The final 1 by 1

convolution condenses feature maps to have the same number of

channels as the total number of classes in the dataset (Figure 3).

Semi-supervision is the process of incorporating unlabelled

image samples for the optimisation of deep neural networks. This

branch of deep learning methods is more applicable when

unlabelled data are readily available, while labelled instances are

often hard, expensive, and time-consuming to collect. Semi-

supervised methods can be capable of building better classifiers

that compensate for the lack of labelled training data and therefore

present a cost-effective solution to label acquisition. In this study,

where semantic segmentation was achieved with a pixel classifier,

the masks that were used to label pixels did not cover entire 256x256

pseudo-images and therefore every pseudo-image had pixels that

were left unlabelled. This condition allowed for unsupervised loss

terms to be added into the optimisation process and thus for semi-

supervision to be implemented. The supervised loss term is

calculated by processing a mini batch of images X ∈ RB�C�H�W

and corresponding segmentation maps Y ∈ RB�C�H�W , where B,

C, H and W are batch size, number of input channels, height and

width. The network produces per-pixel logits �Y ∈ RB�K�H�W-

where K is the number of target classes. The softmax transfer

function (1) converts network scores into probabilities by

normalizing all K scores for each pixel to sum to one:

Pk(x) =
eYk (x)

SK
k0=1e

Y
k0 (x)

(1)
TABLE 1 List of derivatives and production parameters utilised in this study.

Derivative

Focal statistics parameters Hillshade parameters

DescriptionName
type dimension

1
dimension

2
Azimuth Altitude Exaggeration

Bathymetric
position
index

BPI 1 annulus 2 10 na na na BPI represents the positional difference
of a pixel compared to the mean of its
neighbours (defined by an annulus in
this case).

BPI 2 annulus 5 50 na na na

BPI 3 annulus 25 250 na na na

Vector
ruggedness
measurement

VRM circle 3 na na na na

VRM is a measure of surface roughness
as the variation in three-dimensional
orientation of grid cells within a
neighbourhood. Vector analysis is used
to calculate the dispersion of vectors
(orthogonal) to grid cells within the
specified neighbourhood.

Aspect
Northness
[cos(aspect)]

Northness

na na na na na na

Aspect identifies the downslope
direction of the maximum rate of
change in value from each cell to its
neighbours. Eastness and northness are
the sine and cosine functions of aspect

Aspect
Eastness [sin
(aspect)]

Eastness

Hillshade

HS 1 na na na multidirectional 10 A hillshade function produces a
grayscale pseudo-3D image of the
bathymetry, with the sun’s relative
position taken into account for shading
the image. Different sun positions give
different shading effects.

HS 2 na na na 315 45 10

HS 3 na na na 45 45 10
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TABLE 2 Classifications adopted in this study with either 10 or 12 classes and their correspondence to the MIM-GA classification system (Dove et al.,
2020).

MIM-GA
class Class (10) Class (12) Morphological description Geomorphology

Plane Plane Plane
Flat and smooth surface with either absent or imperceptible
relief.

Mainly represents areas of the seabed that are
covered with modern Holocene soft, potentially
mobile sediments (sands and muds)

Ridge
Ridge
(sediment)

Ridge
(sediment)

Surfaces characterised by a pattern of generally regular
corrugation or ondulation, with pronounced linear or curvilinear
crests. These are usually medium to high frequency and medium-
high relief.

Areas of developed and active or pristine dune
fields

Hummocks/
Hill

Hummocky
(sediment)

Hummocky
(sediment)

Distinct elongated ridges or hills with relatively smooth surface,
often occurring in swarms

High relief drumlin hills or other relict hilly terrain

Ridge
Corrugated
(sediment)

Corrugated
(sediment)

Surfaces characterised by regular or irregular corrugation or
ondulation. These are generally high frequency and small-scale.

Areas of subdued dune fields or megaripples,
scouring or sorted bedforms

Lineation
Layered
(rock)

Layered
(rock)

Surfaces characterised by quasi regular or irregular patterns of
repeated crests. These are generally high frequency and low relief.

Bedrock exposure where the bedding or tectonic
fabric is well-developed and regular.

Groove
Grooved
(sediment)

Grooved
(sediment)

Planar or quasi planar surfaces traversed by linear, shallow and
narrow incisions or grooves, that can be regular and sub-parallel
or irregular and criss-crossing.

Iceberg ploughmarks, elongated furrows or trawling
areas

Blocks
Fissured
(rock)

Fissured
(rock)

Polygonal and quasi-regular fractured seabed platforms, showing
high relief compared to surrounding seabed, often breaking up
into fragmented polygonal blocks, usually flat-topped.

Jointed and fragmented bedrock outcrops and
platforms

Hummocks
Hummocky
(rock)

Hummocky
(rock)

Rough, low-relief hummocky surfaces, often adjacent to Fissured
(rock) that have been interpreted as exposed or only partially
covered bedrock.

Bedrock exposure where the bedding or tectonic
fabric is cryptic or absent. Areas of consolidate or
partially consolidated irregular glacial sediment (e.g.
till).

Bank/Ridge Large ridge

Bank
(sediment)

Bank or large ridge-like feature with a generally smooth surface. Sediment bank or mounded sediment accumulation

Relict ridge
(sediment)

large, low and broad ridge or smaller irregular arcuate ridge-like
feature with a generally rough surface

Glacial moraines or grounding zone wedges

Hole

Depression

Depression
(enclosed)

Closed-contour bathymetric depression below the surrounding
seabed

Various negative relief including scours and
pockmarks

Channel
Depression
(elongated)

Elongated bathymetric depression below the surrounding seabed
Various negative relief including scours and palaeo-
channels

Arosio et al. 10.3389/fmars.2023.1228867
Where, x ∈ W;W⊆Z2 is a pixel location and Pk(x) is the

probability for the kth channel at pixel location x. The negative

log-likelihood loss is calculated between segmentation maps and

network probabilities:

L = −o
K

k=1

Yk(x)   log (Pk(x))   (2)

For each image, the supervised loss is the sum of all losses for each

pixel using Equation (2) and averaged according to the number of

labelled pixels in Y. Full details on the use of semi-supervision can be

found in Hobley et al. (2021). The training parameters and

convergence of FCNNs was analysed by testing multiple settings for

learning rate and batch size, and assessing computed confusion

matrices over several consecutive runs of the algorithm. This ensured

that a fair range of different convergence approaches was evaluated.

Furthermore, for the semi-supervised approach, several different loss

weights were experimented to tune for the unsupervised loss term. The

best performing networks were trained for 300 epochs with a batch-size

of 12 using AdamW optimiser with a learning rate set to 0.001. With

regards to the semi-supervised approach, the unsupervised loss was
Frontiers in Marine Science 06
scaled down by a factor of 10 and the confidence threshold for teacher

prediction was set to 0.97. All FCNNs were implemented and trained

using Pytorch version 10.2, the code is freely available on our GitHub

repository: https://github.com/BrandonHobley/geomorph_deep.
2.4 Quality assessment

The quantitative metrics of interest to evaluate a classification

algorithm are precision and recall (Equations (3) and (4)). These

metrics are adequate to test classification algorithms over different

datasets as well as their capability to detect false positives and false

negatives. Precision and recall are metrics that can show how a

classifier performs for each specific class, where precision measures

the ability of the model to identify only the relevant instances, while

recall measures the ability to detect correctly the occurrence of a class of

interest. For instance, in a dataset with 17 confirmed landforms and

121 false landforms, an algorithm that detects every case as false would

have an accuracy of 87%, but at the same time it would have an

extremely poor recall of 13%. The F1-score (Equation (5)) is the
frontiersin.org
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harmonic mean of recall and precision, giving a suitable generalised

single figure of merit to convey the performance of a classifier.

precision = true   positive
true   positive+false   positive   (3)

recall = true   positive
true   positive+false   negative (4)

F1   score = 2  � recall  �precision
recall+precision (5)

The quantitative evaluation metrics listed above are valid if the

dataset is labelled, which in our study covers a small subset of the total
Frontiers in Marine Science 07
surface mapped. Therefore, these results can give an indication of a

particular classifier performance, but visual inspection is still required

to fully grasp the capabilities of FCNNs for bathymetric data.
3 Results

3.1 Model performance

For this study, 40 different FCNN model runs were carried out,

and total mean of their performances are presented in Table 3.
FIGURE 2

General overview of the textures and geometries of the classes.
FIGURE 3

Example of the overall architecture of the FCNN used in this study, showing a VGG13 encoder network. The decoder network applies a transposed 2
by 2 convolution and concatenates feature maps from the encoding network at appropriate resolutions followed by a final 3 by 3 convolution. The
final 1 by 1 convolution condenses feature maps to have the same number of channels as the total number of classes in the dataset.
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Precision, recall and F1 scores for each class and model are instead

given in the Supplementary Material.

The first set of results (models #1 to #12) shows the initial tests

carried out on the two different encoders (VGG13 and ResNet50)

comparing their efficacy and assessing the utility of semi-

supervision and some preliminary combinations of input layers.

Overall, the scores show that neither VGG13 nor ResNet50

outperforms the other, although ResNet50 produces slightly

better scores at the second decimal point, with increases between

0.01 and 0.05 (e.g. compare models #6 and #7 or #10 and #11).

The use of semi supervision does not improve significantly nor

consistently the results, contributing to positive or negative

fluctuations. For example, ResNet50 model #11 acquires 0.053

points in Precision compared to non-supervised #12 (Figure 4),

with no change in Recall. ResNet50 model #8 gains only 0.004

points in Precision and loses 0.004 points in Recall compared to

unsupervised model #7. VGG13 models seem instead to suffer more

the application of semi-supervision, leading to higher loss in scores

(e.g. compare model outputs #5 and #6).

The best model results were achieved using the complete set of

input layers, with ResNet50 models #11 and #12 giving F1 scores of

0.724 and 0.688 respectively. Evaluation metrics are supported by

the visual assessment of the resulting thematic maps, where models

#11 and #12 show the most visually pleasing results (Figure 4).

Nonetheless, high scores were also obtained limiting the input to a

combination of bathymetry, BPIs, VRM and Aspect functions

(models #3 and #8, with F1 scores of 0.677 and 0.660) or

bathymetry and hillshades (model #4, F1 score of 0.641). In order

to test the contribution of the input layers to the model predictions,

a series of additional model runs were carried out using both

encoders but without implementing the semi-supervision -which

the previous results reveal to be relatively erratic, and increasing the

number of labels to 100 per class, to gauge the effect of boosting

label number to model performance.

The results of this series of tests are presented in Table 3, model

numbers #19 to #40. As expected, the scores show an overall

improvement caused by the increase in the number of labels from

50 to 100. While the time effort required to create labels for the

classes is doubled (from 500 to 1000 labels in total), the

improvements are significant, up to ~0.19 points, i.e., from 0.641

to 0.833 when comparing the F1 scores of the best VGG13

bathymetry and hillshade results (#4 vs #29).

Once again ResNet50 runs are slightly more successful in

evaluation metrics compared to VGG13, with ResNet50 scoring

higher in F1 8 times out of 11 model runs.

The exploration of the usefulness of each input layer in model

performance provides strong indications that the hillshades are the

most valuable set of layers for a correct prediction of morphological

classes. Models that utilise hillshades have consistently higher scores

than those that do not (cf. for example models #21 with #31 or #33

with #37, Table 3). The use of hillshades alone provides very good

results (model #26 F1 score: 0.774), although the combination of

layers with different azimuths is essential and a single hillshade is

insufficient to produce an accurate map. Overall, the combination of

the other derivatives alone or with bathymetry leads to substantially
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inferior predictions, with Precision scores consistently under 0.59 and

Recall scores only slightly better. Aspect functions and VRM do not

seem to provide useful information to the models, on the contrary

their addition is detrimental to their performance. For example,

bathymetry as input layer alone (#19 and #20) contributes to a

better score than bathymetry combined with aspect functions and

VRM (#33 and #34).While the bathymetric position indexes improve

the predictions of the bathymetry baseline, they do not seem to

enhance significantly the performance of the hillshade layers, with

oscillating results when comparing the “HS full” baselines (models

#25 and 26) and the “BPI + all HS” (models #31 and 32). The only

layer that does improve the predictions of the hillshades alone is the

bathymetry, with model runs #29 and 30 presenting the highest

scores obtained in this study (VGG13, Precision 0.845, Recall 0.850).

Visually comparing the map outputs of hillshades alone against

bathymetry-supported hillshades shows improvement in score

metrics obtained by the latter as reflected in the outlook of the

map (Figure 5), although the crispness of the boundaries is somewhat

diminished, creat ing more “padded” class interfaces

and generalisations.

The effect of the combination of all the input layers is given in

runs #39 and 40, where the scores are only slightly superior to the

model runs of the hillshades, but inferior to the bathymetry and

hillshades runs. Overall, Large Ridge, Plane and Fissured (rock) are the

three most successfully identified classes by all 10-class models, with

an average F1 score of 0.884, 0.772 and 0.716 respectively. Corrugated

(sediment), Hummocky (sediment) and Layered (rock) score instead

the lowest across all models, with average F1 scores of 0.471, 0.466

and 0.423. The confusion matrices (see the Supplementary Material)

show that the prevalent misinterpretation is related to Type II errors

(false negatives) where Layered (rock) is classified as Plane,

Hummocky (sediment) as Depression and Corrugated (sediment) as

Large Ridge. Probable causes for these misinterpretations are treated

in the discussion.

Finally, models #13 to #18 (Table 3) show the results of separate

tests carried out to investigate the performance of the FCNNs with

an increased number of labels. All the results show a substantial

decrease in all the scores when moving from the 10 class to the 12

class problem, with Precision and Recall ranging between 0.442-

0.567 and 0.451-0.584. Confusion matrices show a decline in

accuracy in all classes, and not only those that were split.

Depression (enclosed) and Bank (sediment) scored the lowest

amongst the classes, showing that the separation from the

original and more general Depression and Large Ridge classes (10

class division) weakens the training.
3.2 Modal voting and combined map

The use of several permutations and combinations of different

input layers allows for an ensemble learning scenario to be leveraged.

We have tested this hypothesis with a simple modal voting of FCNN

pixel classifications for the 10 best performing models (both in terms

of scores and visual quality), which produced an excellent map with

an overall F1 score of 0.96 and class precisions and recalls superior to
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TABLE 3 Complete list of model results from this study.

Eastn HS1 HS2 HS3 Precision Recall
F1

score

y n n n 0.675 0.629 0.644

y n n n 0.694 0.674 0.680

y n n n 0.717 0.660 0.677

n y y y 0.694 0.649 0.641

y n n n 0.646 0.638 0.622

y n n n 0.647 0.682 0.638

y n n n 0.697 0.688 0.668

y n n n 0.701 0.684 0.660

y y y y 0.707 0.766 0.656

y y y y 0.722 0.763 0.676

y y y y 0.771 0.775 0.724

y y y y 0.718 0.775 0.688

y n n n 0.442 0.507 0.430

y n n n 0.505 0.584 0.521

y n n n 0.520 0.549 0.513

y n n n 0.491 0.548 0.482

y y y y 0.567 0.491 0.460

y y y y 0.549 0.451 0.451

n n n n 0.343 0.385 0.274

n n n n 0.299 0.455 0.302

n n n n 0.457 0.584 0.460

n n n n 0.405 0.595 0.434

n y n n 0.489 0.661 0.508

n y n n 0.612 0.672 0.619

n y y y 0.665 0.757 0.683
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# Name Encoder Epoch
Semi

supervision
Class

number
Labels per

class Bathy BPI1 BPI2 BPI3 VRM Northn

1 bbd1 VGG13 128 n 10 50 y y y y y y

2 bbd2 VGG13 140 n 10 50 y y y y y y

3 bbd3 ResNet50 84 n 10 50 y y y y y y

4 bhsc1 VGG13 200 n 10 50 y n n n n n

5 bbd4 VGG13 227 y 10 50 y y y y y y

6 bbd4 VGG13 246 n 10 50 y y y y y y

7 bbd5 ResNet50 240 n 10 50 y y y y y y

8 bbd6 ResNet50 282 y 10 50 y y y y y y

9 cs1 VGG13 199 n 10 50 y y y y y y

10 cs2 VGG13 263 y 10 50 y y y y y y

11 cs3 ResNet50 228 y 10 50 y y y y y y

12 cs4 ResNet50 253 n 10 50 y y y y y y

13 bbd7 VGG13 279 y 12 50 y y y y y y

14 bbd8 VGG13 287 n 12 50 y y y y y y

15 bbd9 ResNet50 275 n 12 50 y y y y y y

16 bbd10 ResNet50 291 y 12 50 y y y y y y

17 cs5 VGG13 111 n 12 50 y y y y y y

18 cs6 VGG13 320 n 12 50 y y y y y y

19 b1 VGG13 228 n 10 100 y n n n n n

20 b2 ResNet50 298 n 10 100 y n n n n n

21 bp1 VGG13 161 n 10 100 n y y y n n

22 bp2 ResNet50 149 n 10 100 n y y y n n

23 hs1 VGG13 235 n 10 100 n n n n n n

24 hs2 ResNet50 243 n 10 100 n n n n n n

25 hsc1 VGG13 186 n 10 100 n n n n n n

https://doi.org/10.3389/fmars.2023.1228867
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


TABLE 3 Continued

Input layers

Bathy BPI1 BPI2 BPI3 VRM Northn Eastn HS1 HS2 HS3 Precision Recall
F1

score

n n n n n n n y y y 0.786 0.788 0.774

y y y y n n n n n n 0.521 0.656 0.544

y y y y n n n n n n 0.530 0.655 0.555

y n n n n n n y y y 0.845 0.850 0.833

y n n n n n n y y y 0.825 0.848 0.830

n y y y n n n y y y 0.731 0.779 0.733

n y y y n n n y y y 0.772 0.801 0.770

y n n n y y y n n n 0.287 0.291 0.291

y n n n y y y n n n 0.212 0.266 0.262

n y y y y y y n n n 0.365 0.530 0.393

n y y y y y y n n n 0.545 0.629 0.565

n n n n y y y y y y 0.598 0.753 0.614

n n n n y y y y y y 0.771 0.776 0.745

y y y y y y y y y y 0.720 0.823 0.735

y y y y y y y y y y 0.749 0.818 0.765
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# Name Encoder Epoch
Semi

supervision
Class

number
Labels per

class

26 hsc2 ResNet50 103 n 10 100

27 bb1 VGG13 243 n 10 100

28 bb2 ResNet50 286 n 10 100

29 bhsc2 VGG13 240 n 10 100

30 bhsc3 ResNet50 252 n 10 100

31 bphs1 VGG13 280 n 10 100

32 bphs2 ResNet50 165 n 10 100

33 bd1 VGG13 38 n 10 100

34 bd2 ResNet50 45 n 10 100

35 bpd1 VGG13 268 n 10 100

36 bpd2 ResNet50 240 n 10 100

37 hscd1 VGG13 150 n 10 100

38 hscd2 ResNet50 296 n 10 100

39 cs6 VGG13 176 n 10 100

40 cs7 ResNet50 280 n 10 100

https://doi.org/10.3389/fmars.2023.1228867
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Arosio et al. 10.3389/fmars.2023.1228867
0.87. The results and full map are presented in Table S1 and Figure S1

in the Supplementary Material.
4 Discussion

Scores and qualitative assessment of the results have shown that

both ResNet50 and VGG13 encoders can achieve good accuracy,

with performances driven mostly by the nature of the input layers

and the quantity and precision of the labelling. The unsuccessful

attempt with 12 classes is most likely caused by a fallacy in the

semantic definition of these classes more than weakness of the

networks, and it shows that FCNNs can be very susceptible to

deceptive labelling. In the first set of tests the best score result was

given by ResNet50 model #11, that included all input layers;

however, our subsequent analysis of layer contribution shows that

the best results are achieved with hillshades and bathymetry only. It

must be said that this discrepancy relies on the comparison with a

single observation in the first set (i.e. model #4 vs models #9 to 12),

and if we take the worst performing model with all input layers

(model #9), its scores are not too different from those of hillshade-

based model #4 (only Recall being significantly higher in #9). The

limitation in sample comparison coupled with the consistent

observation that non-hillshade derivatives do not enhance the

performance even in the best of cases, support the conclusion

that either model #4 is an underperforming outlier or that the

doubling of labels has substantially improved the prediction

performance based on hillshades. The evaluation metrics

improvement generated by the addition of the bathymetry layer

to the hillshades input is possibly partly due to the nature of the

offshore physiography, where some classes are preferentially found

at specific bathymetric ranges. For example, bedrock outcrops are

focussed close to the coastline, and unusually high F1 scores for
Frontiers in Marine Science 11
Fissured (rock) and Hummocky (rock) in the bathymetry-based

models (#19, #20, see Table S1 in Supplementary Material)

strengthen the suspicion of a regional bias. Therefore, the utility

of the bathymetry input is potentially lower in different datasets.

Figures 6–8 give an overview of the results provided by the best

performing model (#30) and the combined modal vote map. A

qualitative assessment of the maps shows that slightly better

performances are sometimes achieved to the detriment, in places,

of boundary crispness and detail. The evaluation metrics, calculated

on a pixel basis, give a good approximation of the effectiveness of a

model, however in order to fully assess the models’ performance

and potential for seabed mapping studies, we need to consider the

results in term of boundary position, nature of misclassifications,

type of class misclassified and general distribution of errors.
4.1 Sources of error and uncertainty

In the breakdown of evaluation metrics for each class (Table S1

in Supplementary Material) the three most recurring weakest

predictions are linked to the classes Corrugated (sediment),

Hummocky (sediment) and Layered (rock). Coupling the

observations of class type misinterpretation (see Results) and the

qualitative assessment of the map outputs has led to the

identification of three main types of errors or uncertainty.

Misclassifications linked to liminal spaces between classes is the

first type of ambiguities we discuss (Figures 9A, B). This

misclassification is reflected in the significant confusion between

Layered (rock) and Plane or Hummocky (sediment) and Depression.

Stratified, gently dipping bedrock possesses significant extents of

planar features within them (bedding planes), that transition into

fine elongated and often isolated ridges. This texture is sometimes

misidentified as Plane, but in unlabelled data can also be observed as
FIGURE 4

Comparison between non-supervised and supervised ResNet50 model runs #11 and #12. A visual inspection reveals only minor differences in the
overall classification.
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Layered (rock) in areas of sorted bedforms, that possess similar

geometry. A similar case is provided by the Hummocky (sediment)

class, which includes the occurrences of drumlins (oval shaped,

glacial-flow aligned, moraine hills formed beneath fast-moving

ablating ice flows). The drumlins are surrounded by depressed

areas, the “connecting surface” between the high relief landforms.

Models tended to confuse the proximal interconnecting surface as

Depression instead of “drumlin”, leading to the lower score. In
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defence of the networks, it is often very difficult even for a

geomorphologist to find the “correct” place to draw a boundary

to define a landform (Smith and Mark, 2003). One major reason

that labelling was carried out by a single expert, was to try to achieve

maximum consistency in delineation, as another geomorphologist

might introduce subjective bias and training conflicts for the

networks. Moreover, complex terrains or where class assignment

felt ambiguous were deliberately not labelled, leaving effectively the
FIGURE 5

Comparison between the results of ResNet model #40 (complete set of layers), #30 (bathymetry and hillshades) and #26 (only hillshades); visual
inspection supports the better accuracy metrics obtained by ResNet50 model #30.
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model to decide. We have stressed in the Methods section that good

care was taken in the definition of distinctive semantic classes,

however these errors indicate that morphological textures form part

of a spectrum that is fundamentally difficult to compartmentalise

(e.g., at what scale and configuration does a corrugation become a

hummock or vice-versa)?, and the shortcomings of the FCNNs are

at least partly by-products of natural variability and the inability of a

set of classes to fully capture it. Without using a more complex set of

classes and fuzzy classifiers it is not possible to treat any existing

terrain variation.

The second type of ambiguity is related to scale (Figures 7, 8,

10). Our classifications included the class Large Ridge (or Bank

(sediment) and Relict ridge), which can be significantly bigger than

other terrain or landform classes. This factor of scale ambiguity was

introduced wittingly into the models, as we wanted to explore the

“style” and ability of the networks to disentangle the problem of

multiscale classification, which is very common in geomorphology

and habitat mapping. If restricted to create a single map layer with a
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small number of classes, the human mind would prioritise the

assignation of a class depending on what they think is the most

important attribute to classify. So, for example, a large moraine

which is covered by a boulder field might be preferentially mapped

as “moraine”, even though both classes identify a correct

characteristic of the ground. The hierarchical nature of BTM

(Walbridge et al., 2018; Goes et al., 2019; de Oliveira et al., 2020)

perpetuates this problem. In our results, this multiscale ambiguity is

well reflected in the misclassification of Corrugated (sediment) as

Large Ridge; corrugated surfaces such as smaller dunes or sorted

bedforms occur extensively on the shelf and can overprint larger

features, such as sediment banks or large moraines. The networks

preferentially choosing the classification as Large Ridge might

reduce the scores in the evaluation metrics but do not technically

produce a wrong interpretation, rather a partial one. In some

instances (e.g. the on shelf edge, see Figure 10), model predictions

have dissected longer wavelength dunes (i.e. large underlying

landforms) interpreting them partially as Large Ridges and
FIGURE 6

Results from best performing ResNet50 model (#30 – bathymetry and hillshades only) and the modal vote map. While producing overall the best
precision and recall scores amongst the model runs, model #30 has underperformed in the detection of the Layered (rock) class (F1 score 0.584),
completely misinterpreting the sorted bedforms in the Celtic Sea as rock (A). The modal vote map is instead effective in recognising the bedforms,
having better efficacy in identifying Layered (rock) (F1 score 0.90). The glacial streamlined terrain in (B) is well captured by model #30, with only
minor mixing between Large Ridge and Hummocky (sediment) where Rogen moraines become larger and are intertwined with larger underlying
morainic ridges. While the modal vote map gives also a fair depiction of the area, it overestimates the presence of Depressions, probably due to the
interference of the BPI layers.
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partially as Corrugated (sediment), where the superficial sorted

bedforms are more pronounced. Class prioritisation seems to be

dependent on the way the model has learned the classes and

boundaries, which in turn depends on adjusted weights and

biases the model has learned during model training. However,

understanding the individual activations and the internal

workings of the neural network would require a study of class

activation maps or the visualisation of deconvolutional layers (Noh

et al., 2015).

Finally, a third type of recurring errors is connected to an

inherent problem of the input layers: namely artefacts. MBES data

can present many type of artefacts mostly caused by the limits of

the instrument, the motions of the survey vessel (dynamic

systematic errors), poor tidal or water sound velocity control

causing vertical shifts and sound refraction. These artefacts are

difficult to eliminate completely and a common obstacle in

automated marine mapping (Lecours et al., 2017). Artefacts are

recurrent in the extensive INFOMAR MBES bathymetry dataset,

which is a combination of data from hundreds of different surveys

with an array of vessels and survey operators, acquired with
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different (improving) instrumentation, in the space of about 25

years. The topographic variability introduced may consist in

pixelation (salt-and-pepper effects), undulation along the swath,

striping effects and cliff-like edges, and the vertical difference is

often comparable with real features at seabed (e.g. megaripples or

furrowing) (Figures 9C, D). Additionally, our hillshades are

particularly susceptible to this kind of “topographic noise”, as

they are vertically exaggerated to enhance the visibility of

faint terrain patterns, which diminishes considerably their

effectiveness. While a study of the effect of artefacts was outside

the scope of this paper, it is reasonable to affirm that much

stronger predictions can be achieved with a “cleaner” dataset.
4.2 Habitat mapping applications

Morphological maps provide the backbone for seabed habitat

mapping studies, with classifications commonly obtained using

semi-automated techniques as OBIA, BTM or other GIS tools

(Harris et al., 2014; Goes et al., 2019; Linklater et al., 2019; Arosio
FIGURE 7

Results from best performing ResNet50 model (#30 – bathymetry and hillshades only) and the modal vote map. (A) Model #30 classifies correctly
the extent of the large dune field, although once again the Layered (rock) class is erroneously predicted in liminal places. Both (A) and (B) show well
the higher detail provided by the modal vote map, for example in (A) singular dune ridges are mapped correctly at the centre of the field, while for
model #30 they are generalised with the surrounding flat or depressed terrain.
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et al., 2021) that segment the seabed in discrete parcels subsequently

classified on the basis of pixel group statistics or geometrical

characteristics. While grounded on mathematical rules and

granting replicability, these techniques lack flexibility (e.g. how to

treat morphological exceptions or near-isomorphisms) and require

a good measure of engineering. Moreover, rules applied in one

seabed region do not necessarily work elsewhere, so each dataset

might need to be treated differently. On the contrary, FCNNs can

provide the flexibility needed to capture any instance of discrete

landforms or terrain textures without requiring ad hoc

segmentation protocols (OBIA) or formulation of classification

rulesets (BTM).

A semi-quantitative assessment of the effectiveness of the

FCNN predictions for habitat mapping can be made comparing

bedrock or sediment texture substrates to existing maps. We

compared the predicted FCNN “bedrock” classes (Fissured,

Layered and Hummocky (rock)), with the bedrock substrate layer

produced by INFOMAR and available on the INFOMAR portal
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(INFOMAR, 2022). In Figure 11 we take the models with best scores

in “bedrock” prediction (model #29 and the modal vote map) and

overlap the INFOMAR layer. We limit the comparison area to a

subsection of the entire dataset (indicated in Figure 11C), as parts of

the INFOMAR layer are mapped at very low resolution (e.g. the

areas in Figure 11C pointed by the red arrows), introducing further

deviations, and in other zones the Hummocky (rock) class includes

also rough glacial till substrate. The best comparison is provided by

the modal vote map, with a total bedrock area of 2721 km2

(INFOMAR = 2336 km2) and an overlap of 77%. Model #29 has

a slightly better overlap (~78%), but has also a larger area mapped as

rock (3276 km2). Most of this excess bedrock is caused by

misinterpretation of Layered (rock) (Figure 11D), which is over-

represented in the model (F1 score 0.58). These numbers have to be

taken with a pinch of salt, the mapping approaches are different (e.g.

in the INFOMAR dataset the fissures in the bedrock outcrops are

given another class), at a slightly different resolution and using

different input layers (the INFOMAR map relies abundantly on
FIGURE 8

Results from best performing ResNet50 model (#30 – bathymetry and hillshades only) and the modal vote map. (A) this inset shows the
overinterpreted Depressions for the modal vote map adjacent to the rocky outcrops, possibly caused by the BPI layers and totally absent for model
#30. (B) model #30 correctly identifies the series of moraines in Donegal Bay, while the modal vote map produces a result which is a mixture of
textural interpretation (corrugated seabed over the moraines) and larger features interpretation. The bathymetry artefacts that cover the otherwise
featureless seabed in the southern portion of the inset have caused misinterpretations in both models; in particular model #30 shows again the
confusion in predicting the location of Layered (rock), assigning the artefacts that value.
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backscatter data). Nonetheless, there is a broad agreement between

the two, and the FCNNs consistently predict bedrock where it has

been effectively mapped (see Figure 11). Moreover they give further

information on the texture of the bedrock, which can be useful for

habitat predictions (Novaczek et al., 2017). A similar comparison

can be made with submarine dune fields. In Figure 12 we compare

the general location of submarine dune ridges extracted using semi-

automated techniques and checked manually (Arosio et al., 2023)

with the class Ridge (sediment) in the best performing models (#12

and the modal vote map). Once more the results show an overall

agreement, with Ridge (sediment) predictions corresponding with

dune field areas (Figures 12A, B). In some places the FCNN is more

efficient in identifying subtler ridges (e.g. Figure 12F), however in
Frontiers in Marine Science 16
parts the related classes Large Ridge and Corrugation (sediment)

were preferentially selected (e.g. Figures 12E, F). The models show

higher levels of confusion in the presence of trochoidal dunes

(Figure 12D) that are often misclassified as Fissured (rock)

indicating that the labelling is not effective enough to train for

this particular morphological distinction.
4.3 Final considerations

This exploratory study has shown that FCNNs have

considerable potential for the creation of large scale seabed

landforms and terrain textures map, and that even with relatively
FIGURE 9

Types of error and ambiguities encountered in the maps. (A, B) sharp class transitions/interfaces and misclassification due to the ambiguous nature
of the terrain. This is especially evident in (B), where the dunes cross a rugged bedrock terrain with a similar signature. (C) bathymetry artefacts
caused by MBES swath merging and correction that leads to a striping effect (misclassified as Large Ridge). (D) bathymetry artefacts and pixelation
produced by low quality older MBES data.
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modest human input the results can be satisfactory. A clear

semantic class definition and label delineation (including

numerous boundary cases) will improve the accuracy of the

classification, while a more rigorous consistency in mapping scale

will most likely reduce ambiguity. Our results show that the
Frontiers in Marine Science 17
optimisation of derivative selection helps the model outputs, and

a combination of hillshaded layers contribute substantially to

prediction improvements. Further insights on the contribution of

each layer could be obtained using techniques based on feature

importance, as saliency maps (e.g. Simonyan et al., 2014). The
FIGURE 10

Representation of the different classification styles adopted by the networks when dealing with “nested” bedforms with different dimensions (large
dunes, finer megaripples and sorted bedforms) using discrete and non-overlapping classes. All models map the most visible class in an area,
reaching different competing results. Models #30 and #40 produce good alternative representations, while model #29 fails to reach a proper
depiction of the area.
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ensemble voting map, which constituted the best outcome of these

experiments, clearly shows the utility of using learnt biases on

different subsets of input data, and that assembling predictions from

several ‘weak’ learners outperforms a single ‘expert’ network, which

is the premise of ensemble learning (Ganaie et al., 2022). For further

work, several FCNNs could be trained concurrently on different

subsets of input data, and a loss could be calculated based on the

confidence of individual networks (Goyal et al., 2020; Zhou et al.,

2021). The latter is akin to several Decision trees in a Random

Forest in classical machine learning (Cutler et al., 2012).

From a habitat mapper’s perspective, the use of FCNNs can be

successfully applied to seabed maps for morphological

characterisation, and very good results and flexibility can be

achieved provided the model is well trained and furnished with

clean data. Very large scale mapping endeavours, as that presented

in Harris et al. (2014), could be easily replicated and improved upon

using FCNNs. Moreover previously trained models could be applied

on the new datasets that are being collected and gathered for Seabed

2030. If a sufficient volume of labelled classes is cooperatively

assembled in a “dictionary” and made publicly available, it could

be used by the community to predict morphological classes across
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different datasets, improving upon map objectivity and inter-

comparison. The time invested in creating such a dictionary

would be considerable but worthwhile, as the FCNN method will

be eventually better, quicker and easily repeatable compared to

semi-automated or manual digitisations. We shared our labelled

dataset on GitHub (https://github.com/BrandonHobley/

geomorph_deep) as a starting point. While discrete computer

power it is necessary, the code is open source and requires a

relatively basic level of coding expertise to be run, allowing for a

widespread adoption.

FCNNs have also their significant drawbacks. Firstly, they are

essentially a blackbox whose internal workings are not fully

understood. Secondly, labelling and training at one determinate

pixel resolution is most likely not transferable to a different one. So

having mapped at 25m/pixel our dataset is probably ineffective to

map at 2m/pixel, and more ad hoc labelling will be required. Finally,

at this stage of sophistication, FCNNs fail to recognize complex

geomorphological processes, especially in cases of isomorphism, so

human intervention is still required. This limitation is also caused

by the input types themselves, as bathymetry-derived raster data

alone are often insufficient (for human geomorphologists too!) to
FIGURE 11

Bedrock mapping results for the best achieving models (in rock-related classes) and comparison with INFOMAR substrate map (A–C). Insets (D, E)
show a zoom-in for the results of models #29 and the modal vote map respectively, and the amount of correspondence to the INFOMAR shapefile.
The INFOMAR bedrock vector shapefile (in light red) is overlaid on the FCNN green shapefile. Inset (F) shows the hillshaded bathymetry of the
same area.
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unequivocally identify seabed landforms. Only when different types

of datasets (seismic lines, ground-truthing etc.) can be included in

the predictions, will machine learning be useful for more complex

seabed geological interpretations.
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