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A B S T R A C T   

Due to the growing global energy needs, renewable energy systems, particularly wave energy converters (WECs), 
are a feasible solution to satisfy current energy demand. Recently, wave farms with diverse technologies, ge-
ometries, and layouts have been developed; however, evaluating the performance of these devices is complicated 
and requires precise hydrodynamic modeling to efficiently deploy wave farms. This study proposes a multi- 
scenario model using boundary element method (BEM) solver, NEMOH, integrated with evolutionary many- 
objective algorithms to evaluate the performance of a multi-axis point absorber WEC with respect to cylindri-
cal, triangular, quadrilateral, and octagonal geometries and varying dimensions, that is, radius, draft, and height. 
To this end, six objective functions were considered to maximize the energy absorption and significant velocity 
and to minimize the separation distance, levelized cost of energy, net present value, and q-factor. Accordingly, 
three EMnO frameworks were utilized: the non-dominated sorings genetic algorithm (NSGA-III), reference point- 
based NSGA-III (R-NSGA-III), and multi-objective evolutionary algorithm by decomposition (MOEA/D). The 
results of the three optimization algorithms indicate that R-NSGA-III converges faster than the other two and also 
found that the cylindrical and octagonal geometries produce more annual energy among other forms. Comparing 
the performances of the three different layouts for cylindrical and octagonal geometries reveals that the arrow 
layout with thirty buoys produced more energy and had a lower levelized cost of energy and net present value.   

1. Introduction 

It is vital to develop a more efficient system and manage renewable 
energy devices to support the large power generation that can be linked 
to the smart grid. Such a system is affected by the importance of 
renewable energy, growth of the energy sector, and promising applica-
tions of ocean waves. As seen in Fig. 1, the smart grid cannot function 
without the widespread installation of small electricity producers, spe-
cifically WECs. Jin and Greaves [1] explores the UK’s advancement in 
wave energy and the 2050 net-zero objectives, noted by experts to assess 
wave energy resources, strategic zones, and available data. The authors 
emphasized accomplishments and the vital involvement of government 
and industry. It also addressed wave energy’s part in decarbonization 
and necessary future actions. Meanwhile, Guo and Ringwood [2] 

provide an exploration of wave energy technology and its commercial 
possibilities. They highlighted obstacles in commercializing wave en-
ergy prototypes such as diverse operational principles, deployment al-
ternatives, and a lack of consensus in technology. They mentioned that 
the slow pace of advancement and business failures have affected 
investor confidence and also provided an up-to-date survey of the po-
tential of wave energy. Constructing wave farms would enable us to 
gather more electricity than merely installing individual devices due to 
the abundance of ocean wave energy compared to other kinds of energy, 
such as wind, solar, hydropower, etc. In addition, determining the shape 
and size of WECs for a specific location is another crucial step in gath-
ering more energy. Clemente et al. [3] provided a comprehensive review 
of WECs, outlining their advantages over other green energy sources 
such as solar and wind, while also addressing the challenges hindering 
their commercial success. Their investigation examined technologies 
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that can complement WECs and highlighted potential applications in 
both nearshore and offshore specialized markets. The primary objective 
was to present new perspectives that can facilitate WEC development 
and successful deployment. To this end, several investigations focused 
on the development of WECs and designing wave farms considering 
various aspects. 

2. Recent advancements in WEC optimization 

Various hydrodynamic models, including BEM solvers like NEMOH 
[5] and WAMIT [6], are commonly used to assess the performance of 
individual WEC and wave farms. Babarit and Delhommeau [7] provided 
a comprehensive overview of NEMOH for accurate evaluation of WEC 
efficiency and features. Cameron McNatt et al. [8] emphasized the sig-
nificance of assessing water-wave interactions in offshore renewable 

energy scenarios and discussed the effects on structural load and per-
formance of devices like wind turbine and WEC arrays. Reikard et al. [9] 
conducted experiments to forecast wave energy at multiple global lo-
cations, incorporating noise distributions to represent sea state vari-
ability. Their analysis revealed lower power balancing reserves 
compared to wind and solar power. Penalba et al. [10] compared 
NEMOH and WAMIT for modeling WECs, evaluating various stages for 
common WEC concepts. Furthermore, Sheng et al. [11] compared the 
performance of NEMOH, hydrodynamic analysis of marine structures, 
and WAMIT, finding that NEMOH and HAMS provide satisfactory results 
for basic structures but differ in handling more complex structures. 

The placement of WECs in an array affects power absorption due to 
hydrodynamic interactions. Diffraction and radiation are two phenom-
ena associated with near-field and far-field effects, respectively. 
Diffraction refers to changes in the incident wave field caused by WECs, 

Nomenclature 

Abbreviations 
AEP Annual energy production 
BEM Boundary element method 
CapEx Capital expenditure 
CFD Computational fluid dynamics 
EMnO Evolutionary many-objective 
GA Genetic algorithm 
LCoE Levelized cost of energy 
MOEA/D Multi-objective evolutionary algorithm by decomposition 
NSGA-III Non-dominated sorting genetic algorithm v3 
NPV Net present value 
OpEx Operational expenditure 
PTO Power take-off 
RAO Response amplitude operator 
RNSGA-III Reference point-based non-dominated sorting genetic 

algorithm v3 
WEC Wave energy converter 

Symbols 
S(f) Wave energy spectrum 
f Wave frequency 
Hs Significant wave height 
Tav Mean wave period 
Tz Mean zero-up crossing period 
m2 Second power of wave frequency 
ρ Fluid density 
g Gravity acceleration 
E Overall energy in wave per unit area 
vg(f) Group velocity 
P Level of wave power per unit width in wavefront 
ξ̈ WEC displacement 
M Inertia mass 
fh Hydrodynamic force 
fg Gravitational force 
fPTO PTO force 
fm Mooring lines force 
fadd Additional force 
fFK Froude-Krylov force 
fd Diffraction force 
fr Radiation force 
fhs Hydrostatic force 
fe Excitation force 
v Particle velocity 
μ Dynamic viscosity 
υ Kinematic viscosity 

p Pressure 
z Depth of the seabed 
AEPy Wave power plant based on the annual energy production 
CFy Cash flow at year 
L Total number of years of the project’s lifespan 
r Rate of interest 
CapExy Capital expenditure 
OpExy Yearly operational expenditure 
FIT Feed-in tariff 
(2s)s Double amplitude motion 
Sss(f) Dynamic multi-axis velocity 
PAEP Power in annual energy production 
Pi(Hm0,Tm0) Power in each combination of significant wave height 

and wave period 
Ji(Hm0,Tm0) Wave energy flux per wave height and wave period 
P̂AEP Maximum power in annual energy production 
q Analytical hydrodynamic interaction of WECs 
Parray Power of the WEC arrays 
Pindividual Power of individual WEC 

Units 
f Hz 
Hs m 
Tav, Tz S 
ρ kg/m3 

g ms− 2 

E Jm− 2 

vg(f) S2m− 1 

P Whm− 1 

ξ̈ m 
M kg.m− 2 

fh, fg, fPTO, fm, fadd, fFK kN 
fd Wm− 2 

fr Wm− 2 

fhs kN 
fe N/m 
v ms− 1 

μ Pa-s 
υ m2s− 1 

p Pa 
z m 
AEPy MWhy− 1 

CFy, OpExy US$y− 1 

CapExy US$ 
FIT US$MWh− 1 

PAEP MWhm− 1y− 1  
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while radiation occurs when WECs radiate wave fields due to induced 
oscillations. Babarit [12] discussed the near-field effect resulting from 
the interplay of diffracted and radiated wave fields. Marchesi et al. [13] 
presented a numerical model for a two degree-of-freedom WEC called 
the energy double system, consisting of a heaving float and a surging 
paddle with individual power take-off (PTO). Their study involved 
simulating the system using computational fluid dynamics under 
experimental conditions. 

Reduced wave height due to the wake created by WECs enables them 
to absorb and redistribute wave energy nearby. This phenomenon, 
known as the far-field effect, has been extensively studied to optimize 
array design for maximum power output. Various wave-structure 
interaction approaches, including computational fluid dynamic (CFD), 
BEM, and numerical array models with semi-analytical coefficient 
calculation, have been used to investigate interaction parameters and 
the near-field effect of WECs. Bozzi et al. [14] studied hydrodynamic 
interactions among heaving WECs in wave energy parks using a com-
bined hydrodynamic-electromagnetic model and BEM. Verao Fernandez 
et al. [15,16] developed a methodology that combines MILDwave and 
NEMOH models to simulate near- and far-field effects of WEC arrays 
with varying bathymetry. The results demonstrate the suitability of the 
coupled model for simulating far-field effects under regular and irreg-
ular waves. Conversely, Silva et al. [17] evaluated the effectiveness of 
multiple WEC technologies in the coastal environment of Portugal, 
assessing their production capabilities at various locations. Various 
factors, including wave direction, sea states, and overall design, signif-
icantly impact the effectiveness of WEC arrays. Optimization techniques 
are employed to determine the optimal layout for both regular and 
irregular waves. Teixeira-Duarte et al. [18], Yang et al. [19], and Giassi 
and Göteman [20] provided comprehensive reviews on the progress of 
WEC park layout, emphasizing the influence of methodologies, partic-
ularly the increasing use of computational intelligence techniques. 
Loukogeorgaki et al. [21] focused on optimizing linear arrays of heaving 
WECs near a vertical wall in mild wave environments of the Aegean Sea 
using a genetic algorithm (GA) coupled with a frequency-domain hy-
drodynamic model. Their study identified optimum layouts that ach-
ieved higher energy absorption, positioning clusters of WECs near the 
wall edges. 

To optimize the interaction between WECs in an array, global opti-
mization is required due to the complex nature of hydrodynamic inter-
action. Accurate modeling of hydrodynamic interaction is 
computationally demanding in array optimization. For analyzing the 
park effect in WEC arrays, moderately fast BEM solvers are recom-
mended to achieve accurate hydrodynamics. However, analytical ap-

proximations, like the point absorber approximation, may limit the 
analysis of more complex array configurations. Lyu et al. [22] used 
advanced methods to optimize the configuration of various WEC forms, 
considering device size, geometry, and spacing. Budal [23] introduced 
the q-factor as a measure of the array’s power collection compared to 
isolated WECs, indicating the impact of interactions on performance. 
Developed models and an algorithm to optimize the positioning of WEC 
devices in a wave farm, maximizing performance using the q-factor. 
Mercade Ruiz et al. [24] proposed an optimization approach for WEC 
array layouts, considering absorbed power, q-factor, spacing, and 
deployment area. They compared three optimization algorithms: 
covariance matrix adaptation evolution strategy, GA, and glowworm 
swarm optimization, which found that GA and GSO to perform slightly 
better than CMA-ES with lower computational requirements. Analyzed 
the interaction and directionality in WEC arrays with optimized oscil-
lating rigid bodies in regular waves. Sarkar et al. [25] utilized a machine 
learning approach to optimize array layouts, using a statistical emulator 
and active learning strategy. They employed GA to obtain the optimal 
layouts for a wave farm with 40 W ECs, considering arbitrary bathym-
etry and space constraints. Moreover, Shadmani et al. [26] used 
NSGA-III to optimize the location and layout of wave farms along the 
coast of Oman, considering maximum annual energy production (AEP) 
and minimizing q-factors. Sharp and DuPont [27] developed a 
real-coded GA to optimize the configuration of WEC arrays in a 
continuous space, considering power and cost objectives. Moreover, 
Abdulkadir and Abdelkhalik [28] studied the impact of device di-
mensions on WEC array performance. Comparing heterogenous and 
homogeneous arrays with equal volumes, they used a dynamic model 
and optimized control to analyze power output. Through efficient 
calculation of hydrodynamic coefficients and GA optimization, the 
heterogeneous array showed a significant performance improvement of 
up to 40 % in specific wave conditions. 

Goggins and Finnegan [29] utilized a GA to optimize the geometric 
configuration of a WEC structure, aiming to maximize average power 
extraction at the deployment site. The focus was on devices of different 
radii to identify the optimal configuration for increased profitability. 
McCabe [30] used a GA to optimize the shape of a WEC, considering 
bi-cubic B-spline surfaces and three cost functions. The optimization 
process involved twelve procedures with varying constraints and pen-
alties on candidate size. Bouali and Larbi [31] developed a sequential 
optimization procedure for an oscillating water column WEC. Their 
study examined the impact of PTO model, geometry, and wave di-
rections on device performance using simulations in a numerical wave 
tank. They identified a single optimal operating point based on factors 

Fig. 1. Future smart-grid flowchart respective to renewable energy serviceability, reproduced from Ref. [4].  
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such as PTO damping, wall thickness, immersion depth, and wave 
conditions. Poguluri et al. [32] used an artificial neural network model 
to optimize WEC rotor design parameters. The ANN considered variables 
like ballast weight, position, wave frequency, viscosity, and PTO 
damping to predict mean extracted power. The study involved designing 
25 rotor types using linear potential theory and CFD. Ding et al. [33] 
proposed an integrated cylindrical WEC type breakwater system that 
optimized performance using CFD and potential flow solver, HAMS. 
Parametric studies are conducted to improve efficiency, with an addi-
tional arc structure significantly enhancing the integrated system. 
Shadman et al. [34] developed a methodology to optimize the design of 
a WEC in a nearshore region. By utilizing statistical analysis and hy-
drodynamic modeling in the frequency-domain, they aimed to maximize 
power absorption and bandwidth, where design of experiment approach 
incorporated to obtain the optimized WEC geometry. 

Guo et al. [35] examined the current state of geometric optimization 
in WEC devices, comparing various methodologies and highlighting 
constraints that hinder future advancements. Moreover, Shadmani et al. 
[36] reviewed recent trends in the optimal configuration of WECs and 
emphasized the importance of multi-objective optimization algorithms. 
Garcia-Teruel et al. [37] optimized WEC geometry to maximize AEP and 
minimize costs, exploring different definitions and algorithms. Results 
showed improved objective functions values with adaptable geometry 
and suitable optimization algorithms. Other studies, such as [38,39], 
also focused on WEC modeling and geometry optimization. Alamian 
et al. [40] used multi-objective optimization to optimize a pitch point 
absorber WEC for the Caspian Sea, by maximizing absorbed power and 
minimizing construction cost while considering various design shapes. 
Neary et al. [41] and Previsic and Chozas [42] studied marine energy 
conversion technologies and their potential impact on the renewable 
energy market, focusing on the levelized cost of energy (LCoE) in rela-
tion to technology performance level and technology readiness level. 
Additionally, Curto et al. [43] proposed a mathematical model to opti-
mize the energy mix for achieving a fixed percentage of annual elec-
tricity production from renewables, considering the LCoE. Piscopo et al. 
[44] presented a cost-based design procedure for heaving point ab-
sorbers, providing recommendations for the design of WEC devices in 
the Mediterranean Sea. Furthermore, Macadre et al. [45] investigated 
optimal power aggregation methods for energy converters, considering 
economic and reliability factors. Their study focused on a case study 
platform concept combining one wind turbine and twenty WECs to 
achieve cost savings and risk reduction. Nevertheless, there is no 
investigation on the optimal configuration of WECs based on the ge-
ometry, layout, and economic costs. 

While several studies focused on each one of the systematic designs, 
a minority of recent investigations have considered these factors 
simultaneously. Kotb et al. [46] focused on enhancing the power output 
of a Wells turbine for WEC using a CFD-driven response surface ampli-
tude optimization. Through a four-parameter tip modification, the tur-
bine’s efficiency was increased, leading to a significant 41.6 % boost in 
power. Saveca et al. [47] presented a new version of success 
history-based adaptive multi-objective differential evolution for opti-
mizing the multi-objective WEC problem. This improved version in-
tegrates machine learning, particle swarm optimization, and a modified 
bubble net attaching technique from the Whale optimization algorithm. 
Through simulations and benchmark tests, the results showed that this 
new algorithm outperforms recent alternatives, adeptly enhancing WEC 
designs to boost annual energy yields and reduce energy costs per unit. 
Lin et al. [48] proposed an approach to optimize the shape of a point 
absorber buoy to decrease drag from ocean currents while maximizing 
wave energy capture. The shape of the buoy was outlined using a 
twelve-parameter parametric model. By employing neural networks, 
computational time was greatly reduced, sidestepping the need for hy-
drodynamic equation resolutions in each iteration. Using a GA with 
several functions, they pinpointed an optimal shape that reduced cur-
rent drag force by 68.7 % compared to a cylindrical buoy, without 

compromising the energy capture efficiency from waves. Additionally, 
Tournant et al. [49] optimized a quayside rectangular WECs design to 
improve wave energy efficiency and cost-effectiveness. Using rectan-
gular designs enabled validation with a linear potential model, and the 
CMA-ES evolutionary algorithm was used for optimization. In open sea 
settings, a flat rectangle with specific dimensions maximized efficiency, 
with a vertical wall enhancing energy capture. Quayside optimal shapes 
differed from open sea designs. In regular waves, optimal shapes varied, 
but in irregular waves, one shape stood out. However, adjusting float 
width in irregular waves barely affected energy capture. The study of 
Garcia-Teruel and Forehand [50] emphasized the importance of 
considering manufacturing and material factors in WEC design optimi-
zation. They introduced methods to incorporate manufacturing param-
eters into the design, yielding WEC shapes specific to certain 
manufacturing techniques. Comparisons revealed improved 
manufacturing features in designs with manufacturability constraints. 
Their methodologies offer a foundation for future WEC designs that 
prioritize innovative shapes that are also manufacturable. Moreover, Jia 
et al. [51] initiated a WEC design using a gyroscope for energy capture, 
which incorporates a vacuum-sealed flywheel to improve energy con-
version. They created a dynamic model considering interactions among 
the floater, gyroscope, and PTO system. Numerical simulations analyzed 
key parameters like flywheel speed, showing their impact on energy 
capture. For optimization, they applied an advanced multi-objective 
evolutionary algorithm by decomposition targeting power conversion. 
Using the technique for preference by similarity to the ideal solution 
(TOPSIS) method with entropy weighting, they identified the best 
design solution, aiming to guide efficient WEC system design and 
operation. 

Accordingly, the success of wave energy largely depends on WEC 
design and optimization. This study offers an adaptive approach to 
optimize a multi-axis WEC, aligning with global sustainability and 
environmental goals. Among global climate challenges, this research 
underscores the critical need to efficiently tap into the oceans’ energy 
potential. This study proposes a methodology to optimize the layout, 
shape, size, and economic cost of a wave farm deployed along the coast 
of Oman. Wave energy calculations and hydrodynamic modeling were 
performed using NEMOH incorporated in Capytaine [52], Python 
package. Various shapes (i.e., cylindrical, triangular, quadrilateral, and 
octagonal) and dimensions (i.e., height, draught, and radius) were 
considered to compute response amplitude operator (RAO) coefficient 
and other hydrodynamic coefficients. Subsequently, the economic 
function and layout design objective were also defined to find the 
optimal solution for WEC performance in arrays concurrently. Finally, 
evolutionary many-objective optimization (EMnO) algorithms, 
including NSGA-III, R-NSGA-III, and MOEA/D, based on PyMOO [53] 
and DEAP [54] Python libraries, were implemented to find the optimal 
solutions. 

The hypothesis considered in this study includes three pre-defined 
structured arrays and simple geometries to find the optimal configura-
tions. The optimal location and layout, economic model, and geometry 
objective functions were derived from the mathematical models pre-
sented by Shadmani et al. [26], Giassi et al. [55], and Goggins and 
Finnegan [29], which modifications applied to these models to capture 
different aspect of the multi-axis WEC. Considering the proposed 
methodology, the contributions of this research are highlighted below.  

• Novel objectives were utilized in this investigation based on the 
layout, geometry, and economic aspects of WECs.  

• The wave climate condition of the coast of Oman was considered 
with respect to different wave angles to obtain the optimal design for 
wave farm deployment.  

• For the first time, six different objective functions were developed to 
evaluate the systematic design of WEC. 

• To verify the systematic adaptive design of WECs, three EMnOs al-
gorithms were developed and performed to compare several aspects 
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of the device, e.g., hydrodynamic coefficient, layout, geometry, and 
economic cost.  

• The optimal configuration of WECs was obtained by solving the 
objective functions concurrently. 

This research contrasts its findings with a single direction point 
absorber WEC to identify shared challenges and methodologies across 
various regions. Although this research centered on multi-axis WECs, the 
principles can also be relevant to commonly used point absorbers. Using 
insights from prior studies, a methodology was developed to address 
current limitations. The study discusses the advantages and disadvan-
tages of current WEC technologies and justifies the chosen analysis 
method’s benefits over traditional techniques. While this research is 
region-specific, the utilized method can be adjusted for diverse wave 
climates. 

The rest of this study is structured as follows. Section 3 discusses the 
methodology used in this research, which includes wave energy re-
sources, hydrodynamic modeling and forces, eave farm design, and the 
developed economic model. Section 4 describes the proposed optimi-
zation algorithms and the developed objective functions for this study. 
Section 5 discusses the results of this research by presenting the optimal 
geometry design and layout of WECs. Finally, Section 6 concludes the 
research. 

3. Materials and methods 

In this section, the research methodology is presented, encompassing 
various aspects related to wave energy resource assessment and WEC 
simulation. It covers details about the wave scatter data, power matrix, 
and the hydrodynamic equations that govern the WEC process. The 
economic model used in this study is also described. Furthermore, the 
section provides a comprehensive explanation of the objective functions 
developed for the study, along with a thorough description of the opti-
mization algorithms utilized. 

3.1. Wave energy resources 

The wave energy spectrum, S(f), is the approach that is most often 
used to describe the energy in natural sea waves. It specifically shows 
how the wave energy at a certain point varies with wave frequency, f , 
which gives a precise insight into the energy distribution over a specific 
period since the sea state at a particular point is continually changing. 
The significant wave height, Hs and mean wave period, Tav, are the two 
key factors to characterize the wave climate of a particular spot. Sig-
nificant wave height is determined by integrating the wave energy 

spectrum, 4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫∞

0 S(f)df
√

. The mean wave period and wave energy spec-
trum are calculated by the mean zero up-crossing period, Tz, so that 
Tav = 1.09

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m0/m2

√
, where m2 is the second power of wave frequency in 

the wave energy spectrum. 
Lastly, the overall energy in a wave per unit area in terms of Hs and 

m0 is defined as follows [56]: 

E= ρg
∫∞

0

S(f )df =
ρgH2

s

16
(1)  

where ρ is the fluid density and g is the gravity acceleration. Accord-
ingly, the level of wave power per unit width in a wavefront is 
measurable using the group velocity in deep waters, where vg(f) =

g
4πf =

gTav
4π , as follows: 

P= ρg
∫∞

0

vg(f )S(f )df =
ρg2H2

s Tav

64π (2) 

The wave resource and direction along the coast of Oman are dis-
played in Fig. 2 in terms of wave rose, in which only two stations’ wave 
data were available. Moreover, the wave energy resource at these two 

Fig. 2. Wave rose of two stations along the coast of Oman. The left wave rose is for Barka station, and the right is for Quriyat station.  

Fig. 3. Probability of occurrence of sea states along the coast of Oman: (a) 
Barka and (b) Quriyat stations. 
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stations was measured respective to the probability of occurrence of 
each sea state, as shown in Fig. 3. 

3.2. Hydrodynamic modeling and forces 

The hydrodynamic model plays a crucial role in WEC design and 
optimization as it significantly impacts the optimal configuration. 
Similarly, PTO modeling and parameter tuning are essential factors in 
WEC configuration. While the hydrodynamic model requires careful 
consideration for trade-offs between computing practicability and 
modeling accuracy, the PTO model is comparatively simpler due to 
fewer alternatives and uncertainties [57]. The dynamics of a point 
absorber WEC are described below. 

The dynamics of a point absorber are demonstrated using a floating 
cylinder. Newton’s second law outlines the regulations that a motion of 
body must follow, as expressed in Eq. (3): 

Mξ̈(t) = f h(t) + f g(t) + f pto(t) + f m(t) + f add(t), (3)  

where WEC displacement is denoted by ξ; and M is the inertial matrix. 
The hydrodynamic, gravitational, PTO, and mooring line forces are 
denoted as f h, f g, f pto and f m, respectively. The term fadd is used to 
describe additional forces, such as those brought on by safety strategies. 
The magnitude of each of these elements corresponds to the number of 
WEC objects and degrees of freedom considered. A WEC body can move 
in six degrees of freedom: surge, sway, heave, roll, pitch, and yaw. For 
the movements in pitch, roll, and yaw, torque expressions are employed 
in place of the corresponding components of the force vector [58,59]. 

The hydrodynamic force f h is comprised of several elements: the 
Froud-Krylov force f FK, diffraction force f d, radiation f r, and hydrostatic 
force fhs. Each of these forces is defined by its own particular equation: 

f h = f FK + f d + f r + f hs (4)  

f FK = ρ
∫∫

S

∂φi

∂t
nhdS (5)  

f d = ρ
∫∫

S

∂φd

∂t
nhdS (6)  

f r = ρ
∫∫

S

∂φr

∂t
nhdS (7)  

f hs = ρ
∫∫

S
gznhdS (8) 

It is important to remember that while a WEC object is floating and 
motionless in the water, the excitation force is defined as f e = f FK+ f d 
and f hs + f g = 0. When there is an imbalance between buoyancy and 
gravity, the hydrostatic pressure applies a balancing force in the heave, 
roll, and pitch directions when the structure deviates from equilibrium. 
For linear incident waves, it is common to find an analytical solution. 
However, for certain standard WEC shapes such as spheres and cylin-
ders, analytical solutions for φd and φr [60]. Since it is difficult to 
analytically solve φd and φr for different WEC shapes, BEMs are most 

often utilized to provide numerical estimates of φd and φr. For instance, 
WAMIT, NEMOH, AQWA, AQUA+, and WADAM are all significant BEM 
solvers for calculating the frequency-domain response. For the 
time-domain response, ACHILD3D is the standout [12,36,56]. 

The pressure layout within a fluid is typically acquired by numerical 
solutions to either the Navier-Stokes equations or the Laplace and Ber-
noulli equations. CFD for Navier-Stokes equations and potential flow 
theory for the Laplace and Bernoulli equations are the two primary 
methods for solving these equations [35]. Table 1 shows how the 
Navier-Stokes equations may be reduced to the Laplace and nonlinear 
Bernoulli equations under the presumption of an ideal fluid, i.e., 
incompressible, inviscid, and irrotational flow. 

The movement of a WEC in response to wave excitation follows 
Newton’s second law, but in a linear dynamic system, this motion can be 
analyzed in the frequency domain. The BEM solver NEMOH is used to 
calculate hydrodynamic coefficients and excitation forces, providing 
insights into the hydrodynamic characteristics of the WEC structure [61, 
62]. A linear damper model represents the PTO system, assuming a 
constant PTO damping factor (b1). This model is compatible with 
frequency-domain solutions and is used to evaluate the dynamic 
response. RAO can be determined based on the equation of motion, 
considering the excitation force and wave amplitude. 

3.3. A multi-axis WEC mechanism 

It is clear that most point absorber WECs produce energy only from a 
single direction. For this purpose, a multi-axis point absorber WEC 
incorporating a heavy ball is assumed to generate energy from multiple 
axes. Aggidis and Taylor [62] conducted preliminary experiments on 
this innovative and particular form of WEC. The heavy ball and PTO 
mechanism can be easily seen from the cut-off in the design of the 

Table 1 
Comparison of Navier-Stokes equation and potential flow theory.  

Navier-Stokes equation compressible Navier-Stokes equation incompressible 

∂ρ
∂t

+ ∇.(ρv) = 0 

∂ρv
∂t

+∇.(ρv⨂v) = − ∇p+ μ∇2v+ ρg 

∇.v = 0 
∂v
∂t

+ ∇.(v⨂v) = −
1
ρ∇p+ v∇2v+ g 

Nonlinear potential flow Linear potential flow 

∇2φ = 0 
∂φ
∂t

+
(∇φ)2

2
+

p
ρ+ gz = C  

∇2φ = 0 
∂φ
∂t

+
p
ρ+ gz = C   

Fig. 4. Schematic view of multi-axis WEC and potential DOF of a 
floating structure. 

Fig. 5. Initial dimensions of multi-axis WEC.  
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multi-axis WEC, shown in Fig. 4. The main advantage of the multi-axis 
WEC is that it can absorb energy from multiple directions. Thus, the 
hull shape used in this study is based on the TALOS-II design, which was 
created with a triangle chamfered edge section. Fig. 5 shows the overall 
dimensions of the original geometry. 

3.4. Wave farm design 

Wave farm design involves optimizing the layout of multiple WECs, 
anchoring, mooring, electrical infrastructure, and adaptive control sys-
tems, all while considering the unpredictable ocean environment and 
ensuring long-term reliability. The project cost is significantly influ-
enced by the number of WECs, warranting its consideration in optimi-
zation. To ensure the array layout does not become overly expansive, 
deployment is confined to a specific region. This approach simplifies 
lease area implementation for the wave energy project [63]. Constraints 
on WEC separation and the q-factor further ensure the layout does not 
become overly dense. With respect to hydrodynamical interactions be-
tween the buoys, two approaches can be followed: (i) semi-analytical 
approach such as the point-absorber approximation and (ii) numerical 
methods. The point absorber approach assumes buoys are sufficiently 
small, leading to non-scattered wave interactions only [64]. This is valid 
for larger separation and lower frequencies. While increasing structures 
can magnify errors, it also lengthens simulation times, inhibiting full 
interaction analysis. In the numerical methods, such as NEMOH, com-
plete hydrodynamical interactions are incorporated. Therefore, this 
numerical approach can validate the approximate analytical procedure 
[24,28]. 

This research aimed to design wave farms using structured layouts, 
set in rows and columns, with WECs positioned based on interactions, as 
depicted in Fig. 6. Layouts can be described using various parameters 
such as row spacing, column spacing, row angles relative to the x-axis, 
and the angle between rows and columns. The x-axis is presumed to 
align with the primary wave propagation direction, while the y-axis 
stands perpendicular to x. When considering wave directionality for sea 
state depiction, the primary direction with the highest likelihood is 
selected. Further details about the structure of arrays are discussed in 
Section 4.4. 

3.5. Economic model 

Here, an economic model, introduced by Giassi et al. [55], is offered 
to calculate the capital expenditure (CapEx), operational cost or 
expenditure (OpEx), NPV, and LCoE. Each sub-variable of these pa-
rameters is illustrated and described in Table 2. 

The inputs required consist of details about the buoy and park, the 
power output of the platform or park, the efficiency of the WEC con-
version, project lifespan, the distance between the installation site and 
the shore, interest rate, and feed-in tariff. Additional information 
regarding these parameters can be found in Ref. [55]. 

The yearly income, cash flow, payback time, NPV, and LCoE are 
computed once CapEx and OpEx have been estimated. For a designated 
number of WECs and a constant configuration, the annual income (US$) 
is always similar to the annual park output multiplied by the feed-in 
tariff. The result of deducting yearly OpEx from yearly income is 
known as the CFy. The payback time is the number of years that must 
elapse until the cumulative cash flow is positive. Efficiency assessments, 
including those of wave power plants, may make use of the NPV, which 
is determined as follows: 

NPV =
∑L

y=0

CFy

(1 + r)y = − CapEx +
∑L

y=1

AEPy.FIT − OpExy

(1 + r)y (9)  

where AEPy is wave power plant based on the annual energy production 
(MWh/y); CFy is the cash flow at year (US$/y); L is the total number of 
years of the project’s lifespan; r is the rate of interest; CapEx is the 
capital expenditure (US$); OpExy is the operational expenditure (US 
$/y); and FIT is the feed-in tariff (US$/MWh), which is frequently 
subsidized to support initiatives using renewable energy. To guarantee 
that the venture is successful, the NPV should be positive. 

The ultimate goal of the economic model is to compute the LCoE [US 
$/MWh]. This is determined by dividing the current value of the wave 

Fig. 6. Sketch of WECs within the interaction domain for the simulation 
of layouts. 

Table 2 
Economical model variables.  

Economical 
Model 

Capital Cost 
(CapEx) 

Cost of the Device 
(CapExWEC) 

Cost of the buoy 
(Cbuoy) 

Cost of the casing 
(Ccasing) 
Cost of the 
foundation 
(Cfoundation) 
Cost of the stator 
(Cstator) 
Cost of the 
translator 
(Ctranslator) 
Cost of the labor 
(Clabor) 
Cost of the extra 
material (Cextra- 

material) 
Cost of the Electrical 
System (CapExES) 

Cost of the cables 
(CapExcables) 
Cost of the 
substation 
(CapExSS) 

Cost of the Installation 
(CapExInst) 

Cost of the WEC 
Installation 
(CapExInst-WEC) 
Cost of the 
electrical system 
(CapExES) 

Cost of the 
Decommissioning 
(CapExDec) 

Cost of the WEC 
Installation 
(CapExInst-WEC) 
Cost of the 
electrical system 
(CapExES) 

Operation Cost 
(OpEx) 

Cost of the annual repair of the buoy (OpExr- 

Buoy,y) 
Cost of the annual repair of the generator 
(OpExr-Gen,y) 
Insurance Cost (Cinsurance,y) 

Levelized Cost 
of Energy 
(LCoE) 

Capital cost (CapEx) 
Operational Cost (OpEx) 
Net Present Value (NPV)  
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energy farm’s expenses by the electricity output, adhering to Eq. (9), 
thereby producing the LCoE, expressed as follows: 

LCoE =

CapEx +
∑L

y=1

OpExy
(1+r)y

∑L

y=1

AEPy
(1+r)y

(10) 

This metric displays the minimum cost of generated power, which 
should be sold to break even during the project. This makes it the most 
often utilized metric for comparing various power production tech-
niques. Throughout this research, the rate of interest and FIT were 
considered constant, and no inflation was provided. 

4. Evolutionary many-objective optimization algorithms 

Optimization algorithms aim to find a set of non-comparable solu-
tions called the Pareto-front, representing the trade-off between multi-
ple objectives [65]. While two- and three-objective problems can be 
graphically represented, many-objective problems typically involve four 
or more objectives. Most existing techniques focus on one to three ob-
jectives, but there is no explicit limit on the number of objectives [66]. 
To address this, algorithms such as NSGA-III, R-NSGA-III, MOEA/D, and 
multi-objective particle swarm optimization have been developed to 
find optimal solutions for problems with many objectives. These algo-
rithms expand the capabilities of multi-objective optimization beyond 
three objectives. Generic EMnO techniques have limitations as they treat 
multi-objective problems as “black boxes” without utilizing 
problem-specific knowledge. This can lead to inefficient search queries 
and detrimental mate selection, impacting the final solution’s perfor-
mance [67]. In this context, three EMnOs are discussed in the following 
sections. 

4.1. NSGA-III 

NSGA-III is an extension of the NSGA-II algorithm that can handle a 
larger number of objectives, typically ranging from four to fifteen. It 
introduces the concept of reference points to guide the selection process 
and maintain population diversity. By providing benchmarks, NSGA-III 
ensures a balanced representation of solutions across the objectives 
[68]. The fundamental principles of NSGA-III are described as follows 
[69].  

• Highlights non-dominated sorting relying on optimum Pareto fronts, 
as seen in Fig. 7; exhibits various optimum solutions in each front 
group between two goals; and works to acquire several Pareto opti-
mum solutions in the examination cycle.  

• Utilizes a system designed to maintain variety.  
• Compares crowding distances and selects the solutions with the 

highest score for solutions in the last member of the level (last front 
FL).  

• Utilizes the elitism idea of passing on favorable characteristics from 
one cycle to the next. 

Even though NSGA-II has computational complexity O(mN2), most 
optimization methods exhibit a complexity of the algorithm of O(mN3), 
where m denotes the number of objectives and N is the population size. 

The pseudo-code and general algorithm of NSGA-III is presented in 
Fig. 8. 

4.2. R-NSGA-III 

The reference point-based NSGA-II (R-NSGA-II) was introduced by 
Deb et al. [68] to address two- and three-objective optimization prob-
lems. To further enhance its capabilities, R-NSGA-III was proposed by 

Fig. 7. Non-dominated sorting of a population based on Pareto-front [70].  

Fig. 8. NSGA-III pseudo-code.  

Fig. 9. An illustration of the reference point Za calculation process for the R- 
NSGA-III, adopted from Vesikar et al. [71]. 
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incorporating reference points to handle multiple objectives [71]. This 
approach allows for simultaneous exploration of multiple frames of 
references, similar to NSGA-II. Compared to standard NSGA-III, 
R-NSGA-III is expected to be faster as it focuses on the Pareto-optimal 
front. The functionality and efficiency of R-NSGA-III were demon-
strated through solving various problem instances and realistic scenarios 
with different objectives. This approach offers two key benefits: iden-
tifying additional trade-off points and verifying the existence of 
Pareto-optimal solutions in previously challenging areas. 

Fig. 9 Shows the R-NSGA-III approach in action for the two input 
aspirational values (r(k), r(k′)). A projection is made from the points to the 
center (pointing out the optimal point of the problem). The projected 

coordinates ṙ(k) and ṙ(k
′) mark the point where the line meets the unit 

hyperplane. The shrinking Das and Dennis point, hj, is then transferred 

to the process to identify ṙ(k) and ṙ(k
′) by moving via their centroid, g, on 

the hyperplane. The whole points collection, Za, on the unit hyperplane 
for an NSGA-III run is made up of the M maximal points and H shrunk 
points. Thus, R-NSGA-III stands in need of a population size of: 

NIII =

〈(

M + K
(

M + p − 1
p

)

, 2
)〉

, (10a)  

where 〈α,2〉 denotes the lowest positive value divisible by 2 and larger 
than α. 

4.3. MOEA/D 

The MOEA/D has a lower processing sophistication at each genera-
tion than NSGA-II by decomposing a multi- and many-objective opti-
mization problem into many scalar sub-problems and optimizing them. 
The salient characteristics of the MOEA/D method, which was first 
presented in 2007 b y Zhang and Li [72], include.  

i. Presents a simple and effective decomposition method for achieving 
multi-objective evolution in evolutionary computing. 

ii. Lower computational burden than that of NSGA-III at each genera-
tion because it solves N scalar optimization issues optimally rather 
than solving the problem. In addition, it has a rapid rate of conver-
gence [73]. 

Weighted sum, Tchebycheff, and boundary intersection methods are 
used to decompose a problem into a set of smaller scalar problems. As 
shown in Fig. 10, the MOEA/D framework can often break down the 
approximation Pareto-front issue into N scalar sub-problems via the 
Tchebycheff method. 

The reason for opting for the many-objective optimization is pri-
marily because WEC design inherently involves multiple conflicting 
objectives, like maximizing power output often conflicts with mini-
mizing construction cost or environmental impact. Therefore, EMnO 
algorithms are beneficial to comprehensively explore these trade-offs. In 
general, advantage and disadvantage of these three algorithms are 
presented in Table 3 and compared with other algorithms that can 
handle many-objective problems. 

Regarding the comparison provided in Table 3, the NSGA-III, 
RNSGA-III, and MOEA/D are chosen to solve the many-objective prob-
lem in this study, which the following section will discuss the developed 
objective functions. Previous studies in WEC design optimization often 
employed single-objective algorithms that do not fully account for the 
interplay between conflicting goals like cost, layout, and geometry. By 
utilizing three EMnO algorithms, this research conducts a comparative 
analysis to validate the robustness and reliability of the optimization 
results. This multifaceted approach adds a layer of rigor to this study, 
ensuring that the solutions provided are both optimal and achievable. 
The adoption of these algorithms provides actionable insights that are 
not just academically valuable but also industrially relevant; for 

Fig. 10. MOEA/D pseudo-code.  

Table 3 
Comparison of three proposed EMnO algorithms with other techniques.  

Algorithms Advantages Disadvantages 

NSGA-III  • Efficient on high-dimensional 
data  

• Better diversity and 
convergence  

• Performance may degrade with 
the increasing number of 
objectives 

RNSGA-III  • Highly scalable  
• Use of reference points to 

guide the search towards the 
Pareto front  

• Able to obtain a good balance 
between convergence and 
diversity  

• Able to maintain a diverse set 
of non-dominated solutions 
while converging to good 
solutions  

• Requires the selection of 
appropriate reference points  

• Computationally expensive 

MOEA/D  • Highly scalable  
• Handling many-objective 

optimization problems  
• Handling complex problems  
• Effective decomposition 

strategy  
• Able to find a diverse set of 

non-dominated solutions 
while converging to good 
solutions  

• May struggle with non-convex 
and non-smooth Pareto fronts  

• Requires the use of difficult 
points, which may be difficult 
to choose  

• May converge to sub-optimal 
solution if the decomposition 
weight vectors are not properly 
set 

SPEA2  • Can handle a wide range of 
optimization problems  

• Good balance between 
diversity and convergence  

• Performance may reduce with 
more complex or high- 
dimension problems 

HypE  • Directly optimizes the 
hypervolume metric  

• No need for additional 
parameters like ε in 
ε-dominance  

• Struggle in higher dimensional 
objective spaces 

OMOPSO  • Simple and easy to implement  
• Low computation cost  
• Able to handle multiple 

objectives without requiring 
any weighting or aggregation  

• Suitable for problems with 
continuous and discontinuous 
Pareto fronts  

• May converge to sub-optimal 
solution if the population size 
and swarm parameters are not 
properly set  

• Not suitable for problems with 
constraints 

GDE3  • Effective for continuous 
problems  

• Robust in handling numerical 
difficulties  

• May not be as efficient in 
combinatorial or discrete 
problems 

SMS- 
EMOA  

• Directly optimizes the 
hypervolume metric  

• Ensures diversity of solutions  

• Computational complexity can 
grow quickly with the number 
of objectives  
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instance, optimized geometry configurations can lead to greater energy 
output, which directly correlates to increased commercial viability. 

4.4. Set-up of adaptive layout – geometry – economic model 

There are several design factors or characteristics that must be taken 
into account to determine the optimal geometry for any given WEC, 
including (i) the highest wave energy must be effectively captured 
throughout an appropriate frequency range, (ii) the effectiveness of the 
converter ought to be unaffected by the wave’s orientation, and (iii) 
slamming must be controlled and reduced if the converter has an 
extremely dynamic reaction. Considering the previously mentioned 
factors, the dynamic velocity response of a multi-axis WEC operating in 
an unconstrained system can be maximized, leading to optimal wave 
energy extraction. Additionally, when the structure vibrates near its 
resonance frequency, the multi-axis dynamic response can be substantial 
enough to warrant consideration of slamming. 

There must be an established objective function to evaluate how well 
each possible geometric arrangement performs. The ‘significant veloc-
ity,’ also known as the ‘double amplitude motion,’ (2s)s, is the given 
criterion, which initially introduced by Goggins and Finnegan [29]. The 
significant velocity is derived based on the energy spectrum similar to 
the way that the ‘significant wave height’ is obtained, using Eq. (11): 

(2s)s = 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫∞

0

Sss(f )df

√
√
√
√
√ (11)  

where Sss(f) is the dynamic velocity response. The proposed formula in 
Ref. [29] only focused on the heave motion of the structure and impose a 
constraint on the maximum RAO value to prevent slamming. Each 
structure is evaluated under different RAO values, and the optimal 
geometric configuration is determined for each constraint. To ensure the 
stability of the WEC PTO system, a maximum significant wave height of 
Hs = 3 m is suggested, where the WEC is not in operation. Stability is 
also addressed by carefully planning the mass distribution and reducing 
the meta-centric height to minimize pitch motion. Finally, the formu-
lation in Eq. (11) is modified regarding serviceability in multi-axis 
motions, namely surge, heave, and pitch. This objective, Eq. (11), 
aims to maximize the modified significant velocity for the input wave 
energy spectrum and optimize the geometry configuration. 

Various design parameters, including wave energy extraction and 
shape designs (cylindrical, triangular, quadrilateral, and octagonal), 
were considered for the optimization of each WEC device. A geometry 
database was created for the multi-axis WEC, incorporating different 
radii, heights, and draughts, and shapes. PyMesh [74] was used to 
generate device mesh, while Capytaine [52] facilitated hydrodynamic 
modeling using NEMOH. RAO and other hydrodynamic coefficients 
were calculated based on the device mesh and stored for subsequent 
optimization processes. Regarding the annual wave energy and eco-
nomic cost of the multi-axis WEC, a modification was performed on the 
economic model proposed by Giassi et al. [55] to minimize LCoE. The 

initial state of LCoE, expressed in Section 3.5, was modified to consider 
the total cost of the multi-axis WEC device and then minimize it. 
Therefore, the objective function of the economic process is as follows: 

fcost =minq(LCoEq) (12)  

where LCoEq is the levelized cost of energy calculated for each layout; 
and q is an index of layouts in the population. 

In addition to finding the optimum WEC geometry, LCoE, and the 
ideal optimization problem solution, the q-factor for each arrangement 
of layouts must be calculated regarding their maximum AEP in the 
domain. The formulations of optimal placement are given in Eqs. (13) 
and (14). Additionally, the q-factor was calculated regarding the optimal 
placement of WEC via Eq. (15): 

PAEP = argmax

(
∑N

i=1
Pi(Hm0, Tm02) Ji(Hm0,Tm02)

)

(xi, yi) (13)  

P̂AEP = argmaxx,yPAEP(xi, yi) (14)  

q= argmax
(
Parray

/
N ∗ Pindividual

)
(15) 

The optimum location and layout of the array were determined 
within the specified domain using the given equations. The q-factor was 
optimized for each device placement and array design to achieve the 
most constructive q values [22]. Simulations were conducted for various 
wave directions ranging from 0◦ to 60◦ with 15◦ increment allowing for 
the identification of the best layout design based on calculated q-factors. 
Hydrodynamic coefficients, including RAO, were computed considering 
different wave directions and array layouts with 15, 30, and 45 devices. 
The separation distance between devices in each array was constrained 
to 25, 50, and 75 m within the domain. The objectives defined in Eqs. 
(13)–(15) aimed to determine the optimal layout by optimizing the 
coordinates of WECs (xi, yi) to maximize power production and mini-
mize the LCoE value. 

WECs in the park are placed on grid nodes measuring 10 m by 10 m to 
ensure equal area distribution. Each substation has the same number of 
WECs, determined by three cutoff distances of 25, 50, and 75 m. Radi-
ation and diffraction effects are considered, and power production is 
calculated for annual sea states. Economic and hydrodynamic models 
are utilized, minimizing the LCoE through the cost function. The optimal 
layout is determined by selecting the solution with the lowest LCoE from 
the Pareto front. Consequently, the optimal layout design is determined 
by selecting the solution with the lowest LCoE from the Pareto front. 
Furthermore, the best layout is chosen by taking into account an array 
with i = 1, …, nb WECs and a specific number j = 1, …, nss of offshore 
stations. This means that each station has a certain number of nbc

j of 
WECs. Therefore, the cost of the WECs is determined by which of the nb 
devices in the entire array will be allocated to the jth station. Conse-
quently, the WECs of the array should be clustered in a way that mini-
mizes the sum of the total distances between the WECs and the station. 

Multiple initial points need to be tried to find the global minimum 

Fig. 11. Default layouts: (a) aligned, (b) staggered, and (c) arrow.  
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solution. In this study, 50 different randomly initialized centroids were 
used to simulate the clustering process iteratively. This approach allows 
for flexible allocation of elements to clusters without fixed numbers. The 
goal is to minimize the variance of WECs while maintaining the same 
total rated power for the park, even if individual stations have different 
power ratings. If each substation in the park had the same power rating, 
the park’s total rated power would be same, although the individual 
stations have various power ratings. 

On top of the objectives presented, optimization frameworks based 
on three EMnO algorithms, i.e., NSGA-III [75], R-NSGA-III [71], and 
MOEA/D [72], were implemented. The EMnO frameworks were 
executed using PyMOO [53] and DEAP [54], Python packages. All 
simulations were conducted using a PC with 12 CPU cores (Ryzen 9 
3900 × 3.80 GHz) and 64 GB RAM. The initial WEC layout is illustrated 
in Fig. 11, in which three pre-defined layouts namely aligned, staggered, 
and arrow were considered. Table 4 presented the selection logic and 
limitations of the three pre-defined layouts. Additionally, the procedure 
of performing optimization algorithms is presented in Fig. 12. According 
to the flowchart, the wave energy spectrum is imported as an input and 
then will be converted to the amplitude domain to process as an input for 
the NEMOH toolbox. In addition, a geometry database is created and 
added to the procedure of NEMOH that can calculate RAO, dynamic 

response, q-factor, and LCoE of arrays with respect to each geometry and 
pre-defined layout. In each scenario, the developed objective functions 
will be evaluated based on the EMnO algorithms, and if the proper size 
of arrays with maximum energy production is not satisfied, the next 
iteration will take place. The entire process will be repeated until the 
threshold values for each objective function are obtained. 

While this analysis utilizes advanced optimization algorithms, 
computational limits restrict the depth to which certain simulations 
could be run. For instance, a larger domain could provide a larger wave 
farm design but would significantly increase computational time and 
resources. In addition, this study relies on available data for wave pat-
terns, which is inherently historical. The ever-changing climatic condi-
tions could result in different future wave patterns that this model might 
not fully capture. 

5. Results and discussion 

In the optimization algorithm of geometry configuration, the two 
specified variables are: the geometry shape (i.e., cylindrical, triangular, 
quadrilateral, and octagonal) and dimension of the shapes in terms of 
radii, height, and draught, from which a geometry database was created. 
Additionally, each dimension varies between 1 and 35 m for radii and 
1–18 m for height and draught. The annual wave energy spectrum was 
utilized as input to calculate the RAO of each geometry and subse-
quently obtain the dynamic multi-axis velocity response spectra and 
modified ‘significant velocity’ (2S)s. After examining each shape by 
calculating the modified ‘significant velocity,’ the shape with the 
maximum modified ‘significant velocity’ can be determined as the op-
timum size. The optimum geometry configurations are recognized in 
Fig. 12, where the modified (2S)s for different radii, heights, and 
draughts in a cylindrical, triangular, quadrilateral, and octagonal shapes 
are plotted. Three different EMnO algorithms were employed for each 
shape and size to compare the results of geometry optimization. It 
should be noted that despite the restriction imposed on RAO in Goggins 
and Finnegan [29], this study neglected the RAO restriction due to the 
multi-axis motions assumption. 

According to Fig. 13, the optimum radii were found to be between 
26.3 and 32.4 m for the four considered shapes. NSGA-III achieved the 
highest values for cylindrical and octagonal shapes for different radii 
were at the highest value; however, the maximum radii values for 
triangular and quadrilateral shapes were obtained by MOEA/D. 
Regarding height, the maximum values were obtained in the range of 
13.4–17.7 m, in which cylindrical and octagonal shapes achieved the 
highest values via MOEA/D and R-NSGA-III, respectively. Lastly, the 

Table 4 
Selection logic and limitations of three pre-defined layouts.  

Layout Selection logic Limitations 

Aligned oSimple and most intuitive 
configuration 
oEnsuring each WEC is exposed 
to the wavefront uniformly 

oIn scenarios where waves have a 
dominant direction, aligned 
layout might not make the best 
use of wave interactions 
oMay lead to shadowing effect 

Staggered oCan take advantage of wave 
interactions and interference 
patterns 
oCan help capture energy from 
waves that might have been 
missed 
oAllow WECs to benefit from 
modified wave patterns created 
by their neighbors 

oMight suffer from complex 
interference patterns that can 
reduce the efficiency of individual 
WEC 
oRequires a more sophisticated 
positioning system to maintain 
staggered in real sea conditions 

Arrow oUseful in regions where wave 
directions are predominant and 
consistent 
oCan optimize the WEC 
positioning with respect to the 
directionality of wave energy 

oIts efficiency can significantly 
drop in regions with variable 
wave directions 
oWaves with directions not 
aligned with the arrow’s 
orientation result in underutilized 
layout for many WECs  

Fig. 12. Flowchart of layout – geometry – economic adaptive design based on EMnOs.  
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range of draught for multi-axis WEC was found to be 12.2–17.4 m, in 
which cylindrical and octagonal shapes were at their highest values 
related to their MOEA/D results. The findings of MOEA/D suggest that 
the quadrilateral geometry is appropriate up to a radius of 27 m. In 
comparison, the triangular geometry is appropriate for a radius range of 
24–28 m. Regarding height, it can also be concluded that the quadri-
lateral height determined by MOEA/D can be used as the optimum ge-
ometry. In addition, the triangular geometry reaches its maximum 
through the R-NSGA-III algorithm, which can be an alternative optimum 
draught for the triangular shape. In addition, the results show that the 
octagonal shape is optimal, and the cylindrical geometry is nearly op-
timum with respect to the optimal dimensions, independent of the RAO. 

Finally, by comparing the results of each shape and size variation 
with respect to three different EMnO algorithms, it can be deduced that 
the cylindrical shape with the derived values of 26.3, 15.2, and 17.2 m 
for radii, height, and draught and octagonal shape with 29, 13.6, and 
16.3 m for radii, height, and draught, respectively, are the optimal 
shapes and sizes for the multi-axis WEC to be deployed along the coast of 
Oman. The results of the EMnOs for the three main dimensions, i.e., 
radii, height, and draught, against the volume of the four considered 
shapes are shown in Fig. 14(a)-(d). By changing the obtained WEC 
radius, height, and draught for cylindrical shape, the absorbed power 
and volume of the device varied between 1.13 and 1.22 kW and 
168–262 m3, 1.31–1.42 kW and 252–288 m3, and 1.48–1.57 kW and 
163–218 m3, respectively, as can be seen in Fig. 14(a). It also can be 
observed that the absorbed power and volume regarding the variation in 
the optimum dimension for octagonal shape were 1.32–1.39 kW and 
150–300 m3, 1.28–1.33 kW and 284–304 m3, and 1.29–1.33 kW and 
105–254 m3, respectively. These results are not comparable to trian-
gular and quadrilateral geometries, which had lower AEPys, as observed 
from the Pareto front results of each dimension variation in each shape. 
By examining the optimization figures, it is clear that many possible 
configurations are not optimal, demonstrating the importance of ge-
ometry optimization for the WEC’s usability. 

It can be seen in Fig. 14(a)–(d) that increasing the dimensions 
resulted in more power to be extracted and decreased immersed volume. 
By comparing the results of these geometries with each other, it can be 
concluded that cylindrical and octagonal geometries are very effective 
for increasing the extracted power, which can be impressively enhanced 
by about 100 Watts. 

After obtaining the optimal geometry configuration, the design cost 
of a WEC must be optimized for deploying multiple WECs. Fig. 15 de-
picts the LCoE and NPV outcomes of the WEC layout (deployed in 
aligned, staggered, and arrow layouts at a particular place). For parks 
with up to 45 W ECs, the LCoE and NPV were estimated for various 
converter rated powers. The model was run for every sequence of con-
verter power rating and number of WECs. Devices established in the 
park with increasing WECs match the graphs’ significant increases/de-
creases. Unfavorable results were achieved for a rated power of 20 kW in 
waves at a 30◦ angle, while the smallest LCoE was acquired for WECs 
valued at 100 kW with waves coming from a 45◦ angle. 

By examining the rated power, it can be observed that converters 
with 100 kW rated power have the best condition with respect to the 
local wave reproducing and produces the lowest energy costs (or the 
most significant NPV). Comparatively, lower power ratings result in 
much less yearly energy output and higher energy costs. Considering the 
various wave directions, the WECs in the line of the waves coming in 
(waves with a 45◦ angle, black lines) drastically varied the results, with 
up to a 22 % difference respective to parks with 45 W ECs with a rated 
power of 100 kW. In contrast, the highest LCoE and lowest NPV were 
obtained for the WECs at shadowing placement, respectively. For 15 and 
more devices, the LCoE value gradually decreased in layouts without 
shadowing and increased for layouts with adverse interactions or higher 
electrical system costs. However, with more than 10 W ECs, the most 
significant energy cost reduction is possible (a 68 % decrease in LCoE 
from 1 to 10 W ECs). The value of including the hydrodynamic inter-
action is shown by contrasting these results with the blue line, wherein 
hydrodynamic interaction has been omitted. Specifically, results were 

Fig. 13. Modified (2s)s vs. different sizes of radii, height, and draught.  
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Fig. 14. AEPy (left) and Pareto front (right) against the volume of (a) cylindrical, (b) triangular, (c) quadrilateral, and (d) octagonal geometries.  
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Fig. 14. (continued). 
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Fig. 15. LCoE and NPV values vs. number of WECs for optimal cylindrical and octagonal shape with (a) NSGA-III, (b) R-NSGA-III, and (c) MOEA/D algorithms.  
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enhanced by positive interaction (LCoE decreased by 4–7 %), whereas 
the effect of shadowing increased LCoE by almost 62 %. Both the ideal 
and worst-case scenarios for orientation were modeled, and it is ex-
pected that a practical park will have an LCoE somewhere in the middle. 

These simulations prove the selection of a 100-kW power rating for 

the EMnO calculations. The EMnOs’ optimum layouts are shown in 
Figs. 16 and 17 for dividing the parks into aligned, staggered, and arrow 
arrays. While convergence was reached for results from 15 to 30 W ECs, 
it may still be a while until convergence of results for WECs parks is 
achieved due to the computational complexity of these simulations. 

Fig. 16. Layout design of cylindrical WEC with 15, 30, and 45 device.  

Fig. 17. Layout design of octagonal WEC with 15, 30, and 45 device.  
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Accordingly, it can be deduced that the best results were obtained for 45 
W ECs. The first, second, and third rows display the results for distances 
of 25, 50, and 75 m of interaction, respectively. 

Based on the initial layouts in Fig. 11 and mathematical formulation 
in Section 3, the optimized shape and size of multi-axis WECs in arrays of 
15, 30, and 45 buoys were obtained with three different EMnO algo-
rithms. Each algorithm searches for the optimal deployment of each 
WEC based on the wave energy produced in the domain. The three 
predefined arrays are clusters that only move towards the domain to be 
placed at the potential x and y coordinates with a distinct separation 
distance between each device. In addition, the optimal layouts are 
defined in terms of arrays with maximum energy production by 
comparing three EMnO algorithms and three different layout 

configurations. Figs. 16 and 17 display the outcomes of layout optimi-
zation, where the objective is to achieve the constructive q-factor. 
Compared to 30-buoy arrays, 45-buoy arrays have an optimized q-factor 
of 3.43 % greater on average. The q-factors grew in two distinct ways in 
the experiments. The first round of experiments focused on 30 buoys - 
this array is well-known for offering the absolute maximum in terms of 
energy output. Each algorithm will search for the optimal deployment of 
each WECs based on the produced wave energy in the domain. In fact, 
the three pre-defined arrays are clusters which only move towards the 
domain to be placed at the potential x and y coordinate with distinct 
separation distance between each device. Fig. 18 shows the resultant 
q-factors that are much larger than expected and buoys oscillating with 
an unrealistically large displacement. 

Fig. 18. Comparison of q-factor results from (a) NSGA-III, (b) R-NSGA-III, and (c) MOEA/D for each layout design in cylindrical and octagonal shapes.  
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The optimal configurations, shown in Figs. 16 and 17 include rows of 
WECs facing the incoming wave field, located far enough apart to pre-
vent hydrodynamic contact when the interaction distance is 50 m. These 
figures display the best layouts for three distinct configurations of cy-
lindrical and octagonal geometries, as well as the annual average power 
output of the devices. It is clear that the WECs are not affected by 

shadowing in the regions where the more extensive hydrodynamic 
interaction is calculated. The complete hydrodynamic coupling amongst 
all the devices was further calculated. Even if convergence has not been 
attained in parks with 45 W ECs, the WECs are clustered together to 
reduce expenditure and tend to line up in rows at 90◦ to the wave di-
rection. Accordingly, Fig. 19 illustrates the relationship between the 

Fig. 19. AEPy, LCoE, and NPV of (a) 15-, (b) 30-, and (c) 45-device layouts.  
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number of optimization iterations and AEPy, LCoE, and NPV. As antic-
ipated, the LCoE decreases as energy production and NPV rise with it-
erations. Additionally, the total computation for each optimization 
framework is presented in Table 5. 

The structural dynamic response could also be estimated using RAO, 
which decelerates when the PTO damping coefficient, b1, is enhanced. 
Therefore, determining the best value for the damping coefficient of the 
PTO mechanism is critical for maximizing the average absorbed power. 
The averaged wave energy spectrum off the coast of Oman was 
employed to determine the mean absorbed power for different settings 

of the PTO mechanism’s damping coefficient, as illustrated in Fig. 20. In 
each damping coefficient value, the mean absorbed power for each 
frequency element was added to obtain the overall mean absorbed 
power. Fig. 21 shows that 510 kN/m is the optimal value for the PTO 
mechanism’s damping coefficient, b1, at the overall maximum mean 
absorbed power. The ideal damping coefficient of the PTO mechanism 
was then used to determine the global mean absorbed power of a 
structural system with the best possible geometric shape off the coast of 
Oman. To specify the likelihood of the structure occurring off the coast 
of Oman, its absorbed power matrix was calculated, as shown in Figs. 22 
and 23. 

The hydrodynamic characteristics for the surge, heave, and pitch 
motion of the multi-axis WEC are shown in Fig. 24. These include the 
added mass A11, A33, A55, radiation damping coefficient B11, B33, B55, 
and wave excitation force, Fex1, Fex3, Fex5. The values are clearly greater 
for the optimum octagonal configuration than for the cylindrical one. 
The hydrodynamic characteristics for these three motions also reveal 
that the moment of added mass is quite underpredicted, while the 

Fig. 19. (continued). 

Fig. 20. RAO coefficient of octagonal shape for different PTO settings.  

Table 5 
Computation time of each optimization framework.  

Model No. Of cores Run time 

NSGA-III + NEMOH 12 ≈19.5 h 
R-NSGA-III + NEMOH 12 ≈17.5 h 
MOEA/D + NEMOH 12 ≈20.0 h  
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moment of wave excitation is hardly overpredicted. Excluding the cases 
of incident waves and irregular frequencies, the radiation damping co-
efficient findings are similar. 

Since NEMOH has well-predicted all hydrodynamic parameters, the 
predictions of RAOs of the multi-axis WEC are in good agreement as 
expected, as shown in Fig. 25. Except for the magnitudes at the reso-
nance phases for pitch motions, all RAO estimations are similar. Since 
surge and pitch are intimately integrated, the variations in pitch motion 
may explain the variations in surge RAOs. 

The limitations previously mentioned can have varying degrees of 
impact on the findings. Computational constraints might lead to less- 

than-optimal configurations, while the constraints posed by data avail-
ability might make the models less adaptable to changing future con-
ditions. Subsequently, algorithmic limitations could question the global 
optimality of the solutions found. Moreover, the results of this research 
have multifaceted implications. For industries, it means the potential for 
cost-effective and efficient wave energy solutions. Accordingly, coun-
tries with expansive coastlines might witness a paradigm shift in their 
energy portfolios, reducing emissions and concurrently advancing to-
wards their climate change commitments and specific sustainable 
development goals. 

Fig. 21. Variation of mean absorbed power for a range of values of the PTO damping coefficient.  

Fig. 22. Matrix showing the average power absorbed (W) by the optimal cylindrical shape from 2018 to 2019.  

Fig. 23. Matrix showing the average power (W) absorbed by the optimal octagonal shape from 2018 to 2019.  
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6. Conclusion 

This research proposes three EMnO Optimization frameworks for 
optimizing the layout, geometry, and economic cost of a multi-axis WEC. 
Six objective functions were developed, including maximizing absorbed 
power, minimizing LCoE, NPV, separation distance, and q-factor. 
Different geometries and dimensions were considered, and hydrody-
namic coefficients were obtained using NEMOH. The optimal geometry 
was then used for layout design with aligned, staggered, and arrow 
configurations containing 15 to 45 devices. 

The coast of Oman was used as a practical example for designing 
wave farms. Wave energy spectra from 2018 to 2019 were analyzed to 
determine the optimal geometry and layout of the wave farm. The 
optimal geometry was found to be octagonal and cylindrical shape with 
radius of 29 and 26.3 m, height of 13.6 and 15.2 m, and draft of 16.3 and 
17.2 m, respectively. The study emphasized the sensitivity of outcomes 
to various factors in the hydrodynamic model, with hydrodynamic 
interaction significantly impacting the wave farm design. Adverse in-
teractions and shadowing effects were found to reduce power generation 
and NPVs. The LCoE value was influenced by electrical system features. 
Optimization considering different design features and hydrodynamic 
interactions yielded the best wave farm designs, especially for larger 
parks with 45 devices. Additionally, increasing the number of WECs led 
to a decrease in the LCoE of the wave farms. In addition, the optimal 
damping coefficient of the PTO mechanism was determined to be b1 =

510 kN/m. The absorbed power matrix for the device at the site was 
obtained using a method similar to Babarit et al. [76]. The average 
absorbed power across parameters was estimated to be approximately 
392 kW. These findings have important implications for the improve-
ment and advancement of WEC design.  

• Optimized performance: This research was able to identify the key 
parameters and operational conditions that lead to optimal energy 
conversion efficiency. These findings can guide the design process, 
with engineers able to prioritize these factors to achieve better 
performance.  

• Cost-efficiency: Our study has shown how particular design choices 
can lead to cost-effective manufacturing and deployment of WECs. 
By focusing on these aspects, it will be possible to drive down the cost 
of wave energy, making it more competitive with other renewable 
energy sources.  

• Scalability: The results of our study can inform the design of scalable 
WEC systems. With the understanding of how individual converters 
interact in an array and the environmental factors influencing their 
performance, designers can better plan for the deployment of larger, 
more efficient wave farms. 

The WEC model was simplified to manage computational demands, 
potentially causing differences between simulated and actual results. 
The optimization was based on noisy wave data, prone to errors from 
outliers and inherent uncertainties. Improving data processing and using 
adaptive algorithms might refine results and better account for real- 
world conditions. This study provides foundational insights into multi- 
axis WEC optimization, but there are still avenues for advancement. 
Leveraging computational tools may yield more precise outcomes. 
Incorporating real-time wave data could enhance model adaptability in 
future research. Furthermore, investigating alternative optimization 
methods or combined models might offer better and more universally 
optimal results. Recognizing these constraints will further refine our 
grasp on WEC optimization. 

In summary, this WEC adaptive optimization carries a significant 

Fig. 24. Added mass, radiation damping coefficient, and wave excitation force of surge, heave, and pitch motions in optimal cylindrical and octagonal shapes.  

Fig. 25. RAO of the surge, heave, and pitch motions in optimal cylindrical and octagonal shapes.  
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global impact. It represents a step towards worldwide sustainability by 
tackling both environmental and economic challenges. As countries 
strive for their environmental milestones and industries pivot towards 
eco-friendly solutions, this research underscores the importance of 
refining wave energy designs. Moving forward, continued advance-
ments in this domain, coupled with supportive policies, could mark a 
transformative era for renewable energy, steering the world closer to its 
sustainability targets. 
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[45] Macadré L-M, McAuliffe F, Keysan O, Donovan M, Armstrong S, Murphy J, 
Lynch K. Optimal power aggregation methods for marine renewable energy 
converters; a combined economic and reliability approach. In: Proceedings of the 
11th European wave and tidal energy conference. (EWTEC)(Nantes); 2015. 

[46] Kotb ATM, Nawar MAA, Attai YA, Mohamed MH. Performance optimization of a 
modified Wells turbine for wave energy conversion. Ocean Eng 2023;280:114849. 
https://doi.org/10.1016/j.oceaneng.2023.114849. 

A. Shadmani et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.rser.2021.110932
https://doi.org/10.1016/j.rser.2021.110932
https://doi.org/10.1049/RPG2.12302
https://doi.org/10.1049/RPG2.12302
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref3
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref3
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref3
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref5
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref6
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref7
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref7
https://doi.org/10.1016/J.OCEANENG.2014.11.029
https://doi.org/10.1016/J.IJOME.2017.01.004
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref10
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref10
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref11
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref11
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref11
https://doi.org/10.1016/J.OCEANENG.2010.02.002
https://doi.org/10.1016/J.OCEANENG.2010.02.002
https://doi.org/10.1016/J.OCEANENG.2020.107765
https://doi.org/10.1016/J.ENERGY.2017.01.094
https://doi.org/10.1016/J.ENERGY.2017.01.094
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref15
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref15
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref15
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref16
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref16
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref16
https://doi.org/10.3390/EN6031344
https://doi.org/10.3390/EN6031344
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref18
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref18
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref18
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref19
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref19
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref19
https://doi.org/10.3389/FENRG.2020.00026/FULL
https://doi.org/10.3389/FENRG.2020.00026/FULL
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref21
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref21
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref21
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref22
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref22
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref23
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref23
https://doi.org/10.3390/EN10091262
https://doi.org/10.3390/EN10091262
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref25
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref25
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref25
https://doi.org/10.1016/j.apenergy.2023.121397
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref27
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref27
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref27
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref27
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref28
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref28
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref29
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref29
https://doi.org/10.1016/J.RENENE.2012.09.054
https://doi.org/10.1016/J.RENENE.2012.09.054
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref31
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref31
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref32
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref32
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref32
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref33
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref33
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref33
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref33
https://doi.org/10.1016/j.renene.2017.08.055
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref35
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref35
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref36
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref36
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref36
https://doi.org/10.1016/J.APENERGY.2020.115952
https://doi.org/10.1016/J.APENERGY.2020.115952
https://doi.org/10.1115/1.2957919/456353
https://doi.org/10.1115/1.2957919/456353
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref39
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref39
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref39
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref40
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref40
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref41
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref41
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref41
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref42
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref42
https://doi.org/10.1016/J.JCLEPRO.2020.121404
https://doi.org/10.1016/J.JCLEPRO.2020.121404
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref44
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref44
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref44
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref45
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref45
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref45
http://refhub.elsevier.com/S1364-0321(23)00778-5/sref45
https://doi.org/10.1016/j.oceaneng.2023.114849


Renewable and Sustainable Energy Reviews 189 (2024) 113920

23

[47] Saveca J, Sun Y, Wang Z. Machine learning and particle swarm inspired success 
history based adaptive multi-objective differential evolution for optimization of 
heaving buoy point absorber. Ocean Eng 2023;284:115189. 

[48] Lin W, Shanab BH, Lenderink C, Zuo L. Multi-objective optimization of the buoy 
shape of an ocean wave energy converter using neural network and genetic 
algorithm. 2nd Model. Estim. Control Conf. MECC 2022;55(37):145–50. https:// 
doi.org/10.1016/j.ifacol.2022.11.175. Jan. 2022. 

[49] Tournant P, Perret G, Smaoui H, Sergent P, Marin F. Shape parameters 
optimisation of a quayside heaving rectangular wave energy converter. Appl 
Energy 2023;343:121232. https://doi.org/10.1016/j.apenergy.2023.121232. 

[50] Garcia-Teruel A, Forehand DIM. Manufacturability considerations in design 
optimisation of wave energy converters. Renew Energy 2022;187:857–73. https:// 
doi.org/10.1016/j.renene.2021.12.145. 

[51] Jia H, Pei Z, Tang Z, Yang J. Modeling and analysis of an inertia wave energy 
converter and its optimal design. J Mar Sci Eng 2023;11(7). https://doi.org/ 
10.3390/jmse11071351. 

[52] Ancellin M, Dias F. Capytaine: a Python-based linear potential flow solver. J Open 
Source Softw 2019;4(36):1341. https://doi.org/10.21105/JOSS.01341. 

[53] Blank J, Deb K. Pymoo: multi-objective optimization in python. IEEE Access 2020; 
8:89497–509. 

[54] Fortin F-A, De Rainville F-M, Gardner M-AG, Parizeau M, Gagné C. DEAP: 
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