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A B S T R A C T

Despite a lot of research about predictive maintenance for onshore and offshore windmill farms, nearly no
investigation has been performed to obtain the optimal sequence in which windmills are to be served in a
predefined time frame. The higher fuel costs and the increasing time pressure on maintenance jobs urge the
need for optimisation, so offshore windmills can be serviced at minimal costs and within a limited time frame.
To minimise distance travelled, fuel consumption and average tardiness of all maintenance tasks to be carried
out, a multi-objective, non-dominated sorting island model of genetic algorithms is used.

The following novel contributions are realised: (i) A multi-objective island model is used, where on each
island a different genetic algorithm is used to minimise a separate cost function per island. (ii) A set of non-
dominated maintenance sequences, shown as a Pareto plane, are computed and (iii) these optimal solutions
can be used by the planner to select the route to be followed by the CTV when travelling from windmill to
windmill during a maintenance sequence.

Tests on two of the islands have resulted in a relative improvement of around 65 to 70% on fuel
consumption and distance in relation to a random sequence, while the third island has generated a relative
gain of 69% in average weighed tardiness. The three islands combined have resulted in a set of Pareto optimal
sequences for offshore windmill maintenance.
1. Introduction

In recent times, a lot of investigative work has been carried out to
minimise maintenance costs [1,2], particularly to optimise the vessel
planning and usage for performing maintenance on offshore wind-
mill farms [3,4]. Knowledge about wave height, wind direction and
strength, as well as many other weather parameters is decisive in de-
termining whether a vessel can sail out and perform the planned main-
tenance. When a vessel is grounded during weather days, a standby fee
is to be paid, amounting half of the price for a full maintenance day,
except fuel consumption.

Companies managing offshore windmill farms, need to invest a
significant amount of their time and money in the maintenance of the
substations and windmills in these farms. Studies done by the Danish
wind industry association have shown that older and thus smaller local
wind turbines typically have annual maintenance costs around 3%
of the original turbine investment. Contemporary turbines are signif-
icantly larger, but do not need more service. They thus show lower
maintenance costs per kW installed power [5]. For newer machines,
the same association postulates that these costs vary between 1.5
and 2% per year of the original turbine investment. This corresponds
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with 14%–30% of total Offshore Wind Farm (OWF) project life cycle
expenditure [6]. Although investments have been made to lower OPEX
by using more sustainable materials, later investigations pointed out
that operation and maintenance (O&M) remain responsible for a big
part of the costs of the offshore windmill farm. The reduction in O&M
costs – typically around 20% to 25% of the total levelised cost of
electricity (LCOE) of contemporary wind power systems as shown in
the Guide to an Offshore Windfarm by of The Crown Estate and the
Offshore Renewable Energy Catapult – and improved reliability have
become major priorities in wind turbine maintenance strategies [4,7].
Taking into consideration the increasing importance of electric energy
generated by wind turbines throughout the last two decades, as well as
the influence of maintenance costs on the LCOE of the technology, this
study will aim for a reduction of the maintenance costs of wind farms.

Maintenance performed is mostly preventive and consists of elec-
trical and mechanical services on the substations, performed on a
monthly, quarterly, half-yearly and yearly basis. Furthermore, there are
yearly inspections and coating repairs, Health, Safety and Environment
(HSE) maintenance – with check-ups of safety material – and finally
summer campaigns, planned upfront. All these maintenance tasks need
vailable online 20 January 2023
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to be planned, considering the availability of the vessel and personnel,
the weather conditions, the wave height and sea currents [8]. The
complex planning – done in a non-automated manner on a daily basis
– is subject to changes throughout the day and demands a lot of
experience of planners and vessel captains. The goal of this paper is
to optimise the sequence of all windmills maintained, by focusing on
three parameters:

1. Minimisation of the distance travelled by the vessel when servic-
ing all windmills based on the travelling salesman problem,

2. Minimisation of the average tardiness of all the maintenance
tasks performed

3. Minimisation of the fuel consumption during maintenance travel.

2. Related work

This is the first paper to use a multi-objective island model with
GA to determine an optimal schedule for servicing offshore wind-
mills, according to the author’s knowledge. No research has been
found regarding the minimisation of the distance travelled and the fuel
consumed during a maintenance run, in combination with Tardiness
limitation. We applied the TSP on offshore windmill maintenance, in
order to minimise the distance travelled and the fuel consumed, and
extended it to a multi-objective problem in order to prioritise main-
tenance interventions. This resulted in non-dominated maintenance
routes that combine minimisation of distance and prioritisation of
maintenance interventions amongst these routes.

The island model can be used to run the same algorithm with
similar objective on different CPU’s in order to distribute calculation
capacity. Ma et al. run a traditional GA on each island where the
population is divided into sub populations per island. The GA are
separately executed on each island, and individuals then undergo inter-
island migrations [9]. Schuman et al. show in their work that parallel
genetic algorithms are a way to accelerate optimisation by exploiting
large-scale computational resources [10]. The use of various sub pop-
ulations can help to retain genetic diversity. Hence, each island can
possibly follow a different search trajectory through the search space.
Furthermore Lapa et al. discussed the use of genetic algorithms for
preventive maintenance to reduce the costs of repair, the downtime of
the asset and overall cost reduction for a Pressurised Water Reactor in
a Nuclear Power Plant. They have proven that the use of a GA leads
to preventive maintenance policies that show high reliability and low
costs [11].

Since then, extensive research has been done about the application
of this model using a different genetic algorithm on each island. A
general overview of this method application was given by Konak et al.
in their tutorial about multi-objective optimisation using genetic algo-
rithms. In their study, both solution methods to solve multi-objective
optimisation problems using GA are compared, being one single GA
with a complex, combined objective function and secondly Pareto solu-
tions from a multi-island, multi-objective GA method. They concluded
that for most multi-island model implementations, it is not vital to
find every Pareto optimal solution, but rather identify Pareto optimal
solutions across the range of interest for each objective function. Each
island works with a straight forward GA with a rather simple objective
function, while working with one GA on one island requires a complex
objective function to obtain good results [12]. Nyoman Gunantara
and Qingsong Ai discussed an island model with a different objective
function on each island, resulting in a Pareto plane of optimised so-
lutions, as one of the methods to solve multi-objective optimisation
problems [13], while Bejarano et al. applied the same method and
studied the possible clustering of Pareto solutions [14].

Ma et al. applied the multi-island, multi-objective GA method with
Pareto solutions to the optimisation of multifaceted maintenance strate-
gies for wind farms [15]. This paper offers a method to simultaneously
optimise three aspects of maintenance strategies for wind farms that
2

can be conflicting. These aspects are: the reliability thresholds that
announce when a component of the windmill needs maintenance, the
priority of maintenance jobs if there are more jobs than vacant main-
tenance teams, and the use of strategic maintenance. When compared
to this paper, there is a big difference. Hence, we optimise the route
and schedule when it is already determined that maintenance will
take place, while Ma et al. concentrate more on determining when
maintenance will be necessary and prioritising in case of intervention
overload. Additionally, researchers have studied routing and scheduling
optimisation by using an island model with Ant Colony Optimisa-
tion (ACO). Zhang proposed a duo-ACO to improve the use of the
maintenance vessels and workers, specifically the efficient scheduling
and routing of the maintenance fleet to reduce the operation and
maintenance cost [16]. In another paper the same author proposes a
multi-ACO, keeping in mind the conditions in which offshore wind
farms are operated [17]. Allal et al. more recently studied a multi-agent
based simulation–optimisation of maintenance routing in offshore wind
farms to optimise maintenance task routing. In their paper, another
ACO is used – instead of a GA – to optimise the routing [18]. We
opted to go for a multi-objective approach with Genetic Algorithms,
because compared to ACO, the GA is fast, easy to implement and cost
efficient in terms of computational resources. The ACO is more greedy
but gives better results, especially with large problems, which is not
the case in our research [19]. Finally, the study performed by Gölbasi
introduces a discrete-event simulation for maintenance planning. The
method proposes an algorithm that is capable of simultaneous evalua-
tion and comparison of multiple maintenance scenarios for an operating
system [20].

It has been the purpose of this paper to determine an optimal
routing for offshore windmill maintenance vessels in order to reduce
travel costs and downtime of the asset. Although some weather pa-
rameters have been directly or indirectly considered, like currents and
wind, further research is absolutely necessary to study the significant
influence of all weather conditions on offshore windmill maintenance
planning. As mentioned above, multi-objective island models with
GA have been extensively studied before, but never for routing and
scheduling optimisation of a predefined set of windmills to be main-
tained. The novelties of this paper can be described as follows: the use
of a multi-objective island model with genetic algorithms to minimise
distance, fuel consumption and average total tardiness. Therefore it
uses the calculation of a Pareto plane of non-dominated solutions.
This then results in a collection of optimal maintenance sequences.
Minimisation of distance travelled has been studied in several area’s,
both by using a genetic algorithm and known solvers [21–23]. Also the
minimisation of average tardiness in a flow shop problem has been sub-
ject to vast research [24–26]. However, applying it to offshore windmill
maintenance and combining both in an island model to find an optimal
maintenance sequence – for minimal distance, fuel consumption and
average tardiness – was not investigated before. The parameters of the
genetic algorithm used, e.g. mutation and crossover rate, are optimised
in order to calculate the best results as quick as possible, based on tests
carried out for this paper.

3. Method

3.1. Problem formulation

As described above, high maintenance costs are still a huge problem
when operating offshore wind farms. The distance covered and fuel
consumed by the vessel should thus be minimised. On the other hand,
an optimal time schedule needs to be determined to optimise labour
time and prioritise jobs. The latter decreases labour cost and down time.
Therefore the problem is how to schedule the preventive maintenance
tasks for a set of windmills so that the cost, the delays, and the
emissions are minimised.
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Fig. 1. Multi objective island model.
Reducing the amount of fuel used by a maintenance vessel can easily
be done by solving the TSP and taking into account currents and wind
direction. In addition distance and travel time are minimised. However,
introducing maintenance scheduling to reduce average tardiness can
lead to service sequences requiring high travel time and fuel consump-
tion. This paper offers solutions that fulfil all three objectives in the best
possible way, meaning a Pareto plane of non-dominated maintenance
routes.

Fig. 1 shows a flow graph of the multi-objective island model,
where a genetic algorithm is run on three different islands, each with
a different cost function. On the first island, a GA is used to solve the
NP-hard travelling salesman problem (TSP), applied to the maintenance
of windmills at sea. Solving the TSP by using a genetic algorithm is a
heuristic optimisation method, minimising the distance travelled [21,
27]. The TSP can also be resolved by applying other heuristic methods,
like e.g. the Ant Colony Optimisation [28], and by solvers such as
the one developed by OR tools [22]. The use of a GA has important
advantages over other methods. The algorithm can find solutions to
problems that are nearly impossible to solve using traditional methods.
Furthermore, it is less probable that it gets stuck in local minima.
Finally, it often finds better solutions than traditional methods.

In this particular case, the problem can be defined as finding the
shortest possible route for the maintenance vessel that visits each wind-
mill exactly once and returns to the dock at the end. The second island
uses a different genetic algorithm to optimise the average tardiness of
the maintenance sequence. This can be described as an m-machine, no-
wait flow shop scheduling problem, [24] in which the windmills are
seen as machines and one maintenance job immediately follows the
previous one. Finally the third island uses a similar algorithm as island
one to reduce the fuel consumed.

The objective of the first island is thus reducing the distance trav-
elled between the dock and the different windmills needing mainte-
nance. On the second island, a genetic algorithm is used to define
the optimal route in such a way that the average tardiness of the
maintenance jobs is minimised. The third and final objective is obtained
3

by using a similar GA as for the TSP, with extra constrains to search
for the route with minimal fuel consumption (Fig. 1). All three genetic
algorithms are run on a different island, resulting in separate main-
tenance sequences, each minimising a predefined objective: distance,
average tardiness and fuel consumption. Fig. 2 then shows schemati-
cally how the solutions of each island are fed to the GA’s of the other
two islands, resulting in a set of three-dimensional coordinates. The
latter are finally used to calculate and plot a plane of Pareto solutions.
These contain the non-dominated solutions, corresponding to the ideal
maintenance sequences. A solution is called Pareto optimal, if none of
the objective functions can be improved without degrading the other
objective values. Each of the sequences on this plane, can be seen as
a best solution to the problems formulated. The importance of each
objective can be incorporated by using a weight factor. However, in
this case, each objective is considered to be equally important.

In this paper, the assumption is made that the planning of the
windmill maintenance for a day is determined and not subject to any
changes. The weather conditions and wave height are suitable for
landings at the windmills. These assumptions are made for this paper
in order to make a route planning and maintenance schedule for a
day during which on sea maintenance is feasible. If these thresholds
are not met, the vessel cannot sail and maintenance is simply not
possible. Although this will also lead to additional costs for standby
vessels, there is no need to optimise the route or fuel consumption of a
vessel that will not be able to leave the dock. Other weather parameters
like wind speed and weather induced parameters, like the sea currents
are taken into consideration when calculating and minimising the fuel
consumption of the vessel. Hence, carried by the wind and by the
current, a vessel will consume lesser fuel than when both are opposite
to the sailing direction. More about the influence of these parameters
will be discussed in paragraph 4.3. Additionally, all the permits of work
(POW) are approved plus the vessel and personnel are available for the
whole day.

Finally, we assume that windmills at several farms can be serviced

in one day and that the maintenance time and due time are known for
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Fig. 2. Pareto coordinates calculation.

each job. In real operating circumstances, there always needs to be a
vessel present in a farm when repairmen are working on a substation
or windmill in this park. This implies that a crew transport vessel
(CTV) can only be used to operate in one farm at the time, except
if there is a hotel ship nearby. In order to obtain more significant
results, tests are carried out with windmills belonging to separate
windmill parks, since distances between the turbines in the same park
are very small. Translating the above made assumptions, the following
parameters, conditions, decision variables and objectives are defined
and categorised.

3.2. Parameters

Input parameters.

𝑛, number of maintenance jobs, number of windmills to be ser-
viced
𝑊 = (𝑤1, 𝑤2,… , 𝑤𝑘), set of windmills
𝑀 = (𝑚1, 𝑚2,… , 𝑚𝑛), set of maintenance jobs
𝑃𝑚
𝑤 , processing time of maintenance job m on windmill w

𝐷𝑚
𝑤, due time of maintenance job m on windmill w

𝑖𝑦𝑥, distance between two windmills or between windmill and dock
𝐸𝑣, fuel consumption per vessel (= 𝑒𝑣 * transfer time)
𝑒𝑣, fuel cost per unit time of the vessel
𝑎𝑣, average fuel consumption per kilometre of the vessel v
𝑗𝑦𝑥, fuel consumption change due to currents between two wind-
mills or between windmill and starting point
𝑘𝑞𝑗 , fuel consumption change due to wind between two windmills
or between windmill and starting point
𝑣, cruising speed of the vessel, considered a constant
𝑤(𝑚), weight of the maintenance job m
𝐶𝑚, completion time of maintenance job m
𝑥𝑛, x-coordinate windmill n in radians
𝑦𝑛, y-coordinate windmill n in radians
𝑅, earth radius (=6373 km)
𝑊 , weight of vessel v
4

𝑣

Landing and sailing conditions.

ℎ𝑤, wave height at windmill w, considered acceptable
𝑙𝑤, landing window at windmill w, considered open
𝑑𝑤, direction of wind at windmill w, considered acceptable for
landing
𝑓𝑤, speed of wind at windmill w, considered acceptable for
landing

Availability .

𝑎𝑣, availability of vessel v (boolean), considered available
𝑏𝑜, availability of worker o (boolean), considered available
𝑧𝑚, availability of work permit for maintenance job m (boolean),
considered available
𝑔𝑚, spare parts availability for maintenance jobs m (boolean),
considered available
ℎ𝑚, interference with production planning (boolean), considered
non-existent

Decision variables.

𝑀𝑆 , a sequence of maintenance jobs
𝐶𝐷, Total distance
𝐶𝐸 , Total vessel fuel cost
𝐶𝐴, Average Tardiness

Objectives.

Min(𝐶𝐷, 𝐶𝐸 , 𝐶𝐴)

3.3. Island model solution

In artificial intelligence (AI) and computing, a genetic algorithm
(GA) is defined as a meta-heuristic search method that belongs to
the group of evolutionary algorithms [10,29]. It is used for finding
optimised solutions to search problems based on the theory of evolu-
tionary biology and natural selection. Genetic algorithms are perfect
for searching through large and complex data sets in order to find
decent solutions to complex issues as they are particularly capable of
solving (un)constrained optimisation issues. A schematic overview of
how the GA works, is shown in Fig. 3. It shows that starting from an
initial population, and by applying crossover and mutation, solutions
are searched that minimise a predefined cost function until the stop
criterion is reached. The logical structure of the used genetic algorithm,
can be written as follows [23]:

Start Generate a random population of n suitable solutions for
the TSP.
Fitness Evaluate the fitness function of each individual in the

selected population. The Fitness is defined as the unit fraction of
the route.
New population Create a new population by repeating the next

4 steps until the new population is complete.

Selection Select two parents from the population.
Crossover Cross over the parents to form new children

(offspring), with a crossover operator. The latter combines
the genetic information of two parents to generate new
offspring.
Mutation Mutate the new offspring (mutation probabil-

ity). This implies a small random change in the chromo-
some, to get a new solution in order to avoid local minima.
Accepting Place the new children in a new population.

Replace Use the newly generated population for a further
execution of the algorithm.
Test If the end condition is met, stop, and return the best
solution in the current population.
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Loop Go back to the Fitness step.

Island models genetic algorithms can be divided in two major
classes. In the first class, the same GA is run on several parallel
islands to avoid local minima. The initial population is divided in sub-
populations each fed to another island and migration of solutions is
possible via a predefined migration criterion [9]. The second class
contains islands models in which a different GA is run on each of the
islands. Each island is looking for solutions to minimise separate cost
functions and the results obtained are handed to the cost functions of
the other islands. The case studied in this paper, exists of a model with
three islands, and every test result of one island is fed to the other
two, resulting in coordinates with three dimensions, being distance,
tardiness and fuel cost. All coordinates are finally offered to a Pareto
algorithm in order to calculate the plane of non-dominated solutions,
containing sequences of windmills that are Pareto optimal. The next
paragraphs will discuss every single island and coupled test results
separately, to conclude with the calculation and visualisation of the
Pareto optimal maintenance sequences.

4. Results

4.1. Island one — TSP

On the first island, the cost function to be minimised is the distance
travelled. Fig. 3 shows that the trajectory miles covered in a main-
tenance sequence – the order in which the wind turbines are visited
– is the sum of the distance from the dock to the first windmill, the
distance between the different wind turbines to be serviced and finally
the distance from the last windmill back to the dock. The blue arrows
represent a random sequence, the red is an optimal solution after the
algorithm is run. This is a variant of the NP hard travelling salesman
problem. In the TSP, a n × n distance matrix I = (𝑖𝑦𝑥) is calculated. The
algorithm then looks for a cyclic permutation p of the set 1,2, …, n that
minimises the function:

𝑐(𝑝) =
𝑛
∑

𝑖=1
𝑐𝑖𝑝(𝑖) (1)

The value c(p) is called the length of the permutation p. The items
in p are usually called nodes, in this paper windmills, and we will only
focus on the symmetric TSP, where 𝑖𝑦𝑥 = 𝑖𝑥𝑦 for all windmills [30]. When
calculating the minimal fuel consumption (see subsection Island Three
— Fuel Consumption), the distance matrix will still be symmetrical.
However, the fuel consumption travelling from windmill 𝑥 to wind-
mill 𝑦 can differ from the amount used when sailing in the opposite
direction, due to currents and wind direction.

Tests are carried out with the following GA parameters: a population
size of 100, a mutation rate of 0.01, a crossover rate of 1 and 500
iterations as stop criterion of the algorithm. These parameters were
chosen based on a grid search in the parameter space and have proven
to be optimal, since modification of the parameters did not lead to
significantly better results. A higher number of iterations led to a higher
amount of calculation time, while the distance calculated remained
almost the same. Simultaneously, we carried out tests with the OR tools
TSP solver as can be found on [22]. This way of solving the TSP is called
constraint optimisation or constraint programming (CP). CP is based on
finding a feasible solution rather than identifying an optimal solution.
It concentrates on the constraints and variables, less on the objective
function, if there even is one. The goal may simply be to narrow down a
significantly large set of possible solutions to a more controllable subset
by adding constraints to the problem.

As discussed earlier, all tests are carried out with a group of 26
windmills divided over three farms in order to get significant gain
in distance reduction, since distances between turbines in the same
farm are too small. To calculate these distances travelled between two
windmills, or between the dock and a windmill, we apply the following
5

Table 1
GA Results for all 3 islands.

Island Mean rand Mean final Furthest 1st Rel. gain

Distance (km) 4450,98 1333,86 1385,74 70%
Tardiness (min) 2319,65 1475,16 2077,23 64%
Fuel Consumption ( 𝑙

𝑡𝑜𝑛
) 731,29 227,16 231,58 69%

Table 2
Statistical Results for all 3 islands.

Parameter Result (km) Tardiness (min) FC ( 𝑙
𝑡𝑜𝑛

)

Mean 1333,87 1475,16 227,16
Standard Deviation 2,6554 93,53 1,2093
Confidence level (0,975) 1,1638 40,99 0,5300
Confidence level (0,95) 0,9797 34,51 0,4462
Confidence level (0,9) 0,7660 26,98 0,3488

Table 3
GA vs OR-Tools.

Method Result (km) Mean Rand (km) Rel gain (%)

GA 1333,87 4450,98 70
OR Tools 1433 4450,98 68

formulas for distance calculations between sphere coordinates, after
converting the coordinates to radians, see parameters in section 2.2 [10,
31]:

𝑑1 = | sin2(
𝑑𝑥
2
) + cos(𝑥1) ⋅ cos(𝑥2) ⋅ sin

2(
𝑑𝑦
2
)| (2)

𝑑2 = 2 ⋅ arcsin
√

𝑑1 ⋅ 𝑅 (3)

𝑑𝑥 = 𝑥2 − 𝑥1 (4)

𝑑𝑦 = 𝑦2 − 𝑦1 (5)

The algorithms found in literature to solve the TSP are working with
Euclidean distances [23]. Our tests have been carried out with distances
calculated with above equations. Our algorithm calculates the route
travelled for every wind turbine maintenance sequence in the initial
population and then determines the fitness function, computed as the
inverse of the total route distance. From the ranked routes – according
to the best fitness result – an elite population is selected and completed
by mutation and crossover to a full population. This is done for every
iteration until the predefined number of iterations is reached and then
the route with the best fitness result is proposed as a final solution (see
Fig. 1).

Table 1 list the result of twenty tests, presenting a relative gain in
distance – from random to best – of around 70% when running the GA
with the above indicated parameters. Also the furthest first option is
added to the table, in which the vessel first sails to the furthest windmill
to avoid return issues when the weather changes.

Table 2 shows the statistical parameters and their values after
running the algorithm for 20 times. These results show a significant
gain in route distance after only 500 iterations and a calculation time
of a little less than 23 s on a MacBook Pro from 2021 with the new
Apple M1 chip and 8Mb RAM. Nor the augmentation of the number of
iterations, nor a higher mutation rate or lower crossover rate lead to
an important improvement of the results and thus all further tests were
carried out with the indicated parameters.

Finally, Table 3 shows the results of the OR tools solver on the same
set of windmills. Every run of the solver results in the same optimal
distance travelled. We can conclude that, compared to the random
value (Mean Rand), the relative gain is more or less the same. However,
when comparing the final result (Result) of both methods, there is a
difference of a little under 10% in favour of the Genetic Algorithm.

The results show clustering around the different windmill farms.
Since distances between windmills in the same farm are rather small
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Fig. 3. Maintenance sequences: Random and Optimal.
(less than 1 kilometre), while travel routes between windmill farms are
much longer (up to 600 km), it is obvious that a vessel will first address
all windmills in one farm and then move to the other. As a second
conclusion we can conclude that running the GA over and over again
will not lead to large differences in the outcome, due to the clustering.
Hence, the sequence followed within a farm can vary without resulting
in significant changes in distance, but the overall distance is mainly
determined by the order in which the farms are addressed.

4.2. Island two — average tardiness

If we should chose to minimise the total makespan of the main-
tenance sequence, this can be seen as single machine system with
n jobs subject to sequence dependent setup times. Immediately the
analogy is shown to solving the TSP. However we opt to use this
island to minimise the total average tardiness, which takes into account
due times by which maintenance jobs need to be handled and weight
factors. These factors prioritise certain maintenance jobs, making the
problem more complex and the analogy with the TSP less likely.

The genetic algorithm ran on the second island in the model,
minimises the average tardiness of a maintenance sequence. Each of
the n maintenance jobs (numbered 1, . . . ,n) is to be processed without
interruption on a sequence of windmills that can handle no more than
one job at a time. Therefore, we make a link between maintenance
jobs and windmills, on which jobs need to be carried out in sequence
(analogy with a sequence of jobs on one machine: one cannot start
before the previous one has finished) [25,26] This assumption is made
to counter for the fact that we visit windmills in different windmill
farms. In other words, we keep the vessel at the location until the job
is done.

To calculate the average tardiness of a sequence of maintenance
jobs, we assume that the maintenance job m (m = 1, . . . ,n) becomes
available for processing at time zero. This job requires an uninterrupted
positive processing time 𝑃𝑤

𝑚 , uses a positive weight w(m) and has a
due date 𝐷𝑚 by which it should ideally be finished (see parameters
in section 2.2). For a given processing order of the jobs, the earliest
completion time 𝐶𝑚 is defined as the sum of the completion times of
all jobs prior to job m. For example, 𝐶2 is the sum of production times of
jobs 0, 1 en 2. The tardiness (T) of a job m, the total weighed tardiness
(TWT) of all jobs up to n included and the average tardiness (AT) are
computed as:

𝑇 (𝑚) = max(𝐶 −𝐷 , 0) (6)
6

𝑚 𝑚
𝑇𝑊 𝑇 =
𝑛
∑

𝑚=1
𝑤(𝑚)𝑇 (𝑚) (7)

𝐴𝑇 = 𝑇𝑊 𝑇
𝑛

(8)

Table 1 shows that the algorithm again results in a high gain of
tardiness reduction of the job sequence – up to 64% from random to
best – when it is executed with the following parameters: a population
size of 30, a mutation rate of 0.1, a crossover rate of 0,9 and 2000
iterations as stop criterion of the algorithm (see Fig. 2). As for the TSP
problem, tests have been done with other values of these parameters
– e.g. a lower mutation rate of 0.01, a higher mutation rate of 0.5, a
higher crossover rate of 0.99 or a lower crossover rate between 0.5 and
0.8 – and again the ones above have proven to be optimal.

For the TSP problem, we detected a clustering of the windmills
visited, meaning that the optimal route is going from one windmill
farm to another. In every farm, the sequence of the windmills changes
the distance travelled only in a minimal way. This explains that the
optimal route is only slightly different in all tests. The results of the
Tardiness algorithm show much more diversity in sequence than the
ones resulting from the first and third island. Hence, the total tardiness
is solely dependent on due dates, completion times and weight fac-
tors. Since windmills close together in distance can have a completely
different weight factor and a significant divergence in tardiness, the
minimisation can lead to vessels travelling from farm to farm in order
to attain all time objectives.

4.3. Island three — fuel consumption

The genetic algorithm used to minimise the fuel consumption is in
many ways similar to the one used on the first island to solve the TSP
of section 3.1. As tests with this algorithm have proven in the TSP, the
parameters to obtain the best results are: a population size of 100, a
mutation rate of 0.01, a crossover rate of 1 and 500 iterations as stop
criterion of the algorithm (see Fig. 1). While on the TSP island, the
attitude and longitude of the dock and wind turbines are the only input
parameters, there are extra factors that have an important influence
on the fuel consumption of the CTV, used to move technicians from
one windmill to another. First, the sea-currents need to be taken into
account. These currents vary in speed and direction over time, but to
make calculations feasible, the assumption is made that the current
parameters are constant for the trajectory between windmills and the
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dock [32]. Secondly, the wind at sea will play an important role. Again
for the purposes of this paper, we consider the wind direction and speed
to be the same over the whole region and the time-frame in which all
maintenance is carried out [33].

Calculations for this paper have been done with wind blowing to the
east at such a speed that they change the fuel consumption by 10%.
In the formula, the fuel consumption (FC) is multiplied by 0.9 when
the vessel is travelling from west to east and multiplied by 1.1 when
sailing in the opposite direction. Currents are presumed to move in the
same directions as the wind and for the purpose of this paper, running
at 5 kilometres per hour. Hence, the fuel usage for a vessel travelling
from one windmill to another with wind and current in favour, over a
distance 𝑥 is (see parameters section 2.2):

𝐹𝐶 =
0, 9 ⋅ 𝑥 ⋅𝑊𝑣 ⋅ 𝑎𝑣 ⋅ (

𝑣
𝑣+5 )

1000
(9)

For a vessel moving in the opposite direction over a distance x, the
fuel consumption is calculated as follows:

𝐹𝐶 =
1, 1 ⋅ 𝑥 ⋅𝑊𝑣 ⋅ 𝑎𝑣 ⋅ (

𝑣
𝑣−5 )

1000
(10)

Tables 1 and 2 list the results for this island, which are similar to
the ones found on island one, with a large gain in fuel consumption
reduction (round 69% on average). The algorithm used is comparable
to that of the TSP and thus – because of the grouping of the windmills
and the small distances between turbines in one farm – the optimal
sequences are clustered around these farms. The total final consump-
tion for all tests is comparable and adjacent to the minimum. As to
be expected, the maintenance sequences are interchangeable with the
ones that resulted from the GA on island one. To conclude, we also
calculated the fuel consumption linked to the maintenance sequence
obtained in paragraph 3.1 by using the OR tools solver. The result
differs only 1% from the optimal obtained by using a GA, but again
the GA gives the better absolute value.

As for the first island, the same conclusions about windmill cluster-
ing can be made. To reduce fuel consumption, a vessel will first address
all windmills in one farm, before moving to the next farm. The fuel
consumption is only significantly influenced by the sequence in which
the farms are addressed and the direction of wind and current on the
route between the farms.

4.4. The Pareto plane

To calculate the Pareto plane with non-dominated solutions, tests
were run on the three separate islands and each result was then offered
to the other islands. An example to demonstrate: the GA on the first
island resulted in a maintenance sequence with minimal travelling dis-
tance. For this windmill sequence, the corresponding fuel consumption
and average tardiness are calculated by using the calculation formulas
in the other algorithms. By carrying out twenty test runs on each island,
a total of 60 three-dimensional coordinates are created, corresponding
with 60 maintenance sequences. Fig. 4 shows the Pareto plane.

As shown in the diagram above, the plane of non-dominated solu-
tions contains coordinates that are far apart in one of the dimensions,
values varying from an average tardiness of around 1400 to 2500 min
and of distance from 1300 to 6300 km. In other words, when the
distance travelled and the fuel consumption is minimal, the average
tardiness is relatively high (almost double the value) in comparison to
the minimal values resulting from the second island. The second group
of solutions is on the opposite side of the spectrum, i.e. sequences with
minimal tardiness, but relatively high distances and fuel consumption.
Table 4 shows the values related to the coordinates of the points that
form the Pareto plane.

Our research has led to a group of Pareto optimal maintenance
sequences as a result of the multi-objective island model. Nevertheless
it has proven to be very difficult to find a maintenance sequence that is
7

Fig. 4. Pareto plane for WM maintenance sequences using a multi-objective island
model.

Table 4
Pareto points of the multi-objective island model.

Coordinates FC Distance Tardiness
– (l/ton) (km) (min)

1 227.45 1336.38 2545.92
2 1075.89 6331.68 1577.08
3 1333.52 7843.39 1576.92
4 227.11 1339.70 2442.15
5 227.59 1340.84 2439.19
6 228.73 1346.87 2377.85
7 1065.9 6288.18 1594.77
8 230.75 1379.38 2336.35

optimal for all three cost functions, since due dates of maintenance jobs
are not at all correlated with proximity of the consequent windmills.
For example, the first and third most important maintenance jobs to be
carried out can be far away from the dock while the second most im-
portant is nearby, resulting in a distance to be covered twice as the one
calculated when the optimal distance route is followed. Tests resulted
in paths that either have a low average tardiness and a high distance
and fuel consumption, or have a low distance and fuel consumption,
but a high average tardiness. When determining the optimal sequence,
the planner thus has to decide which parameter is most important when
making the choice. From the 60 maintenance sequences, a list of 8 non-
dominated solutions are calculated and proposed to the planner. Four
of the solutions offer a path with a relative gain in distance and fuel
consumption of 60 to 70%, while the 3 remaining offer a relative gain
in average tardiness of around 70%. None of the tests resulted in a path
with low values for the cost functions on all three islands.

5. Conclusions

The increasing number of windmills, both onshore and offshore, and
the continuously increasing fuel costs resulted in rising maintenance
costs for wind turbine operators. With a multi-objective island model,
we managed to find non-dominated sequences in which the mainte-
nance of several windmills can be carried out in such a way that the
distance travelled, the fuel consumed and the tardiness of the jobs are
optimal. It is then the task of the planner to choose a sequence that is
part of the non-dominated solutions.
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Looking at each island separately, we can list the results of the key
performance indicators of each island as follows:

1. On island one, the use of a genetic algorithm for maintenance
scheduling has led to a reduction of 70% of the total distance to
be travelled, compared to that of a random sequence.

2. On island two, the result obtained for the minimisation of the
average tardiness of a maintenance sequence is 64% less than
the random value.

3. Island 3 shows similar results as Island one, meaning a cutback
of 69% of the fuel needed for a random maintenance sequence.

The results obtained can be further discussed and compared with
he outcome of a genetic algorithm with time constraints. The latter
oes not require a three-island model for multi-objective optimisation,
ut has a more complex objective function, due to time constraints. In
uture work, we will further dive into the maintenance planning, then
aking into account multiple vessels (vehicle routing problem) to fulfil
igid time constraints.
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