
1. Introduction
Antarctic sea ice is a crucial component of the climate system. In contrast to the continued decline of Arctic sea 
ice, Antarctic sea ice extent (SIE) has experienced an overall increase from 1979 to 2015, followed by a subsequent 
dramatic decline and high interannual variability (Eayrs et al., 2021; Parkinson, 2019). In recent years, consecu-
tive record summer minima (e.g., Liu et al., 2023; Parkinson & DiGirolamo, 2021; Raphael & Handcock, 2022; 
Turner et al., 2022) further complicate the puzzle of Antarctic sea ice change (Turner & Comiso, 2017).

One of the main challenges in explaining the Antarctic sea ice variability lies in the fact that the state-of-the-art 
climate models, such as Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) models, 
have large discrepancies and biases in simulating the historical sea ice mean states (Roach et  al.,  2020; Shu 
et al., 2020; Turner et al., 2013) and trends. The IPCC's sixth assessment report shows less confidence in Antarc-
tic sea ice projections for the next few decades (Arias et al., 2021). These large model-observational mismatches 
prevent using climate models to confirm the hypotheses of mechanisms behind the Antarctic sea ice trends and 
variability (Blanchard-Wrigglesworth et al., 2021). Therefore, there is a need to diagnose and clarify the sources 
of biases in climate models and to provide detailed information on what to optimize in the next generation climate 
model sea-ice components.

Locally, sea ice evolves due to freezing, melting, transport, and deformation (Holland & Kwok, 2012). These 
processes synthesize air-ice-ocean interactions and have been reliably observed in the Southern Ocean (Holland 
& Kimura, 2016). This permits the Antarctic sea ice concentration (SIC) budget analysis. Over the last decade, 
the SIC budget diagnostics has become a tool to complement the traditional SIE and sea ice area (SIA) metrics 
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(Notz, 2014, 2015) when evaluating sea ice in climate models (e.g., Lecomte et al., 2016; Uotila et al., 2014), 
and in sea ice-ocean models (Nie et al., 2022, 2023). The SIC budget diagnostics have been used to attribute sea 
ice changes in the Southern Ocean to explain successive Antarctic summer SIE minima in recent years (Wang 
et al., 2022, 2023). To better understand the modeled sea ice physics, the CMIP6 Sea-Ice Model Intercomparison 
Project encouraged using sea ice budget diagnostics (Notz et al., 2016).

Holmes et  al.  (2019) comprehensively analyzed SIC budgets for CMIP5 models that simulated near-realistic 
SIAs and found that the ACCESS climate models reproduced the observed sea ice well. However, the CMIP6 
SIC budgets have not yet been calculated and analyzed. Furthermore, in addition to the coupled climate model 
experiments, the Ocean Model Intercomparison Project (OMIP) experiments (Griffies et al., 2016) are included 
in the CMIP6 archive. The OMIP Phase 1 (OMIP1) and Phase 2 (OMIP2) experiments use the ice-ocean model 
exactly as in the historical CMIP experiments but are driven by Coordinated Ocean-ice Reference Experiments 
(CORE-II) forcing (Large & Yeager,  2009) and Japanese 55-year Reanalysis (JRA55-do) forcing (Tsujino 
et al., 2018), respectively.

Due to the reasons mentioned, we address the following research questions by evaluating the CMIP SIC budg-
ets: (a) Is the Southern Ocean SIC budget in CMIP6 closer to observations compared to CMIP5? (b) What are 
the differences between the OMIP SIC budgets and the CMIP SIC budgets? What are the limitations of OMIP 
models? (c) What are the most beneficial directions to improve the sea ice simulation in the next generation of 
climate models?

2. Data and Methods
2.1.  Data

Daily ice velocities obtained from the National Oceanic and Atmospheric Administration/National Snow 
and Ice Data Center (NOAA/NSIDC) Polar Pathfinder Daily 25 km EASE-Grid Version 4 product (Tschudi 
et  al.,  2019), and daily SICs obtained from the National Oceanic and Atmospheric Administration/National 
Snow and Ice Data Center (NOAA/NSIDC) Climate Data Record of Passive Microwave SIC, version 4 (CDR) 
(Meier et al., 2021) were used to calculate the observed SIC budget. Three daily SIC observational products 
were used to estimate the observational uncertainty (see Text S1 in Supporting Information S1). Due to the 
large snow thickness uncertainty, estimating the satellite-based sea ice thickness (SIT) is still a huge challenge. 
Here, SIT observations were derived from the Ice, Cloud and land Elevation Satellite (ICESat) by using an 
improved one-layer method (Xu et al., 2021), which has an uncertainty of 0.32 and 0.37 m in winter and spring, 
respectively.

Daily SIC based on CMIP5 historical experiments (RCP4.5 scenario experiments were used after 2006), CMIP6 
historical experiments, and OMIP1 and OMIP2 experiments were used to calculate a monthly SIA climatology. 
In total, 24 CMIP5 and 22 CMIP6 models from 17 institutes, listed in Table S1 of Supporting Information S1, 
were included in this study, as they have both the daily SIC and the daily ice velocity available for the SIC budget 
diagnostics. Only the first ensemble member of each model was used for the analysis, as there are only minor 
SIC budget differences between the ensemble members of a single model (Holmes et al., 2019). The analysis was 
conducted for 1991–2009, dictated by the overlap between the OSI SAF ice velocity data (Text S1 in Supporting 
Information S1) and the OMIP1 output.

Monthly mean 10-m wind, sea level pressure (SLP), long-wave radiative flux, short-wave radiative flux, and 
sensible and latent heat fluxes from European Center for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis (ERA5) (Hersbach et al., 2023), JRA55-do reanalysis and CORE-II reanalysis were used for the interpretation 
of the results.

The data used for calculating SIA were computed in the original grid of each data set. The other data, includ-
ing model output and atmospheric reanalyses, were linearly interpolated to a 60 km polar stereographic grid 
using Climate Data Operator (CDO) (Schulzweida, 2022) version 2.0.4. In addition, the first-order conservative 
remapping method of CDO was used to interpolate from the unstructured grids of the AWI-CM-1-1-MR and 
AWI-ESM-1-1-LR CMIP6 models.
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2.2.  Sea Ice Concentration Budget

Following the ice mass conservation law, the SIC (expressed as A) budget equation for the integration in period 
t1 to t2 can be written as:

𝑡𝑡2

∫
𝑡𝑡1

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = −

𝑡𝑡2

∫
𝑡𝑡1

𝒖𝒖 ⋅ ∇𝐴𝐴𝐴𝐴𝐴𝐴 −

𝑡𝑡2

∫
𝑡𝑡1

𝐴𝐴∇ ⋅ 𝒖𝒖𝑑𝑑𝑑𝑑 +

𝑡𝑡2

∫
𝑡𝑡1

(𝑓𝑓 − 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑 (1)

where u is the ice drift vector, f and r represent thermodynamic (freezing and melting) and redistribution (ridging 
and rafting) processes, respectively. Equation 1 decomposes the total local SIC change (denoted as dadt) into 
advection (first term on the right, denoted as adv), divergence (second term on the right, denoted as div) and 
the residual term (the rightmost term, denoted as res), which synthesizes the thermodynamic and redistribution 
processes. The calculation of the seasonal SIC budget follows the same approach as Holland and Kimura (2016) 
and the detailed calculation steps are given in Text S2 of Supporting Information S1.

2.3.  Comprehensive Metrics for Evaluating Model Skills

We used the Distance between Indices of Simulation and Observation (DISO) metric (Hu et al., 2022) to evaluate 
the model performance. DISO is a newly proposed synthetic metric that combines multiple statistical metrics, 
thus reducing the risk of misleading conclusions. More details of the DISO metric can be found in Hu et al. (2019) 
and Zhou et al. (2021). In our study, it was calculated according to the following steps:

Step 1.  For each model, compute four statistical metrics against the observations for each season and geograph-
ical sector surrounding Antarctica (Text S3 in Supporting Information S1). These metrics include: (a) 
mean absolute error (MAE), (b) root-mean-square error (RMSE), (c) correlation coefficient (CC), and (d) 
error of the area integral of SIC budget component as a proportion of the total SIC change (AIPE). The 
AIPE is defined as:

AIPE𝑋𝑋 =

∫
𝜎𝜎∈Ω

𝑋𝑋𝑀𝑀𝑑𝑑𝑑𝑑

∫
𝜎𝜎∈Ω

dadt𝑀𝑀𝑑𝑑𝑑𝑑
−

∫
𝜎𝜎∈Ω

𝑋𝑋𝑂𝑂𝑑𝑑𝑑𝑑

∫
𝜎𝜎∈Ω

dadt𝑂𝑂𝑑𝑑𝑑𝑑
, (2)

where X represents ice budget component, Ω is the sectoral area of the Southern Ocean (south of 50°S). 
The subscripts M and O represent the model and observations, respectively. Thus, by definition, the 
AIPEdadt of the model is 0.

Step 2.  Normalize the four metrics to be between 0 and 1, for example:

NMAE𝑖𝑖 =
MAE𝑖𝑖 − min(MAE)

max(MAE) − min(MAE)
, (3)

where i = 0,1,⋯,m, and m is the total number of models. The other three metrics were normalized accord-
ingly and denoted as NRMSE, NCC, and NAIPE.

Step 3.  Constructing the DISO metric based on the Euclidean distance of normalized sub-metrics obtained in 
the step 2:

DISO𝑖𝑖 =

√

NMAE2
𝑖𝑖
+ NRMSE2

𝑖𝑖
+ (NCC𝑖𝑖 − 1)

2
+

(
√

NAIPE𝑖𝑖

)2

, (4)

The NAIPE metric was squared to approximate a normal distribution and thus better differentiate the 
models (not shown).
Model-observed DISO metrics were separately calculated for each SIC budget component to obtain 
DISOdadt, DISOadv, DISOdiv, and DISOres metrics for model intercomparison. Notably, these DISO metrics 
are comparable across the geographical sectors and between the seasons, but not between the DISO metrics 
(e.g., DISOdadt and DISOadv).
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3. Results and Discussions
3.1.  Sea Ice Area

Figure 1 shows monthly climatological SIA differences between models and observations. The difference is set to 0 if 
it lies within the observational uncertainty (see Figure S1 in Supporting Information S1), but if a model overestimates 
(underestimates) SIA, the difference is from the upper (lower) bound of the observational uncertainty. Typically, 
climate models underestimate SIA (Roach et al., 2020). The OMIP models all reproduce near-realistic monthly SIA, 
OMIP2 usually being closer to observed than OMIP1. Following Holmes et al. (2019), a group of best-performing 
models with small monthly SIA biases was identified. This group included 13 CMIP5 models, 7 CMIP6 models, and 
all OMIP1 and OMIP2 models. These models were then selected for the following SIC budget analysis.

3.2.  Sea Ice Concentration Budget Evaluation

The analysis focuses on the winter (June to August) and spring (September to November) SIC budgets due to 
the following reasons: (a) SIE in winter and spring is larger than in autumn (March to May), permitting a better 
comparison of performance across all sectors, (b) dynamic and thermodynamic sea ice processes are both impor-
tant in winter and spring compared to summer (December to February) when the thermodynamics dominate, and 
(c) some other key sea ice variables, such as SIT, have more observations available in winter and spring.

The comparison of DISO metrics between CMIP5, CMIP6, OMIP1 and OMIP2 is illustrated in Figure 2. It can 
be seen that the average CMIP6 DISO is better (lower) than the CMIP5 one, for all SIC budget components and 

Figure 1.  Monthly sea ice area differences between models and observations averaged from 1991 to 2009. Positive (blue) values indicate positive model biases. Models 
are ranked by the mean absolute error (MAE) of the 12 months; those above the black dashed line have an MAE less than 2 × 10 6km 2 are considered to be in the 
best-performing model group.
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in both winter and spring. Also, the OMIP2 DISOs indicate improvements in sea ice processes from OMIP1. A 
further comparison of the four models that participated in both OMIP1 and OMIP2 (as marked in Figure 2) shows 
that the JRA55-do atmospheric forcing improves the sea ice dynamics (advection and divergence) and thermo-
dynamics. This finding is consistent with Lin et al. (2023). It is worth noting that these results robustly hold for 
SIC budget comparisons against different observational data (see Text S4 and Figure S2 in Supporting Informa-
tion S1), and Kimura et al. (2013) ice velocity observations in 2003–2009 would give comparable results (not 

Figure 2.  DISO metrics between the best performing models, as shown in Figure 1, and observations for each sea ice concentration budget component in (a–d) winter 
and (e–h) spring. Error bars denote one standard deviation. The four models that participated in all the CMIP6 historical, OMIP1 and OMIP2 experiments are marked 
with colored symbols. DISO is a dimensionless metric, with lower values indicating closer to observed data.



Geophysical Research Letters

NIE ET AL.

10.1029/2023GL105265

6 of 10

shown). Additionally, the better performance of CMIP6 compared to CMIP5, and OMIP2 compared to OMIP1 
occurs in all geographical sectors (see Figure S3 in Supporting Information S1).

In addition, the DISO metrics of the four models that participated in both OMIP1 and OMIP2 highlight that the 
ice-ocean models driven by atmospheric reanalyses have more realistic sea ice advection than the fully coupled 
CMIP models. However, the OMIP sea ice divergence is not as realistic as in the CMIP models. Considering the 
assimilation of observations into atmospheric reanalyses, this result is somewhat surprising and possibly due to 
atmospheric reanalysis biases.

The best models in terms of average DISO metrics and per MIP are CMCC-CM (CMIP5), AWI-CM-1-1-MR 
(CMIP6), CESM2 (OMIP1) and NorESM2-LM (OMIP2). Of these, due to small RMSE and mean absolute error 
of dadt and adv, and higher CORRs of adv term, NorESM2-LM has the closest SIC budget compared to obser-
vations (Figures S4 and S5 in Supporting Information S1). AWI-CM-1-1-MR is the next one and has the most 
realistic AIPEres, implying reasonable thermodynamics.

3.3.  Comparison of CMIP6 Historical and OMIP Experiments

The previous section showed that the same CMIP6 model, when driven by prescribed atmospheric forcing (i.e., 
following the OMIP protocol), does not necessarily have a better SIA than its fully coupled version. Figure 3 
presents the corresponding SIC budget differences of CMCC-CM2-SR5, allowing us to evaluate the model 
dynamics and thermodynamics performance separately.

The adv component is well reproduced and transports sea ice to the marginal ice zone as observed (Figures 3b1–
b4). In the OMIP experiments, div is clearly unrealistic and dominated by convergence in contrast to the observa-
tions, which are dominated by divergence (Figure 3c1–c4). The JRA55-do results in a slightly better simulation 
compared to CORE-II. Related to the excessive convergence, the modeled res is also unrealistic (Figure 3d1–d4) 
negative values broadly occurring across the Southern Ocean, which in reality occur only in narrow Antarctic 
coastal zones (Holland & Kimura, 2016; Uotila et al., 2014). These characteristics are also present in other OMIP 
models (Figure S6 in Supporting Information S1).

The mean SLP, ice drift (Figure 3e1–e4), and heat flux (Figure 3f1–f4) were analyzed to elucidate the SIC budget 
results. It shows that the OMIP SLPs have the same spatial characteristics as the ERA5 SLP (Figure 3e). The 
CMIP historical SLP has a negative bias, but the locations of the low-pressure centers are in good agreement with 
ERA5. The modeled ice velocity is directed along the SLP isobars, which differs from the observed velocity that 
has a northward cross isobar component. This could be the direct cause of excessive convergence in the model, 
where the inner ice pack encounters too much compression and ridging. Without compression, sea ice drifts 
freely, and its northward velocity component correlates positively with the SIT (Leppäranta, 2011, chapter 6.1.1). 
Therefore, too thin SIT is the most plausible reason for the modeled ice drift direction along the isobars and the 
resulting excessive convergence (Figures 3g1–g4).

On the other hand, even though using JRA55-do instead of CORE-II slightly decreases the ice convergence and 
ridging, the inner ice pack growth in spring remains too small (Figure S7d3 and S7d4 in Supporting Informa-
tion S1). This may be related to the surface heat flux bias in the model (Figure S7f3 and S7f4 in Supporting 
Information S1), inhibiting the sea ice formation in OMIP. In the CMIP historical experiments, the winter warm 
bias extends the sea ice melt to higher than observed latitudes, thus limiting their SIA (Figure 3f2).

Although the models have warm biases in winter and spring, their causes are different. The positive sensible and 
latent heat flux anomalies in winter mainly bring excess heat to the ice edge (Figure S8 in Supporting Informa-
tion S1). In contrast, in spring, all surface heat flux components fluxes contribute to the excess warmth in the 
inner ice pack (Figure S9 in Supporting Information S1).

In summary, at least for the CMCC-CM2-SR5 model, JRA55-do results in a more realistic surface heat balance 
and SIA than CORE-II. However, due to its too thin SIT, its sea ice dynamics are not more realistic than its fully 
coupled version, despite the more reasonable atmospheric reanalysis-based SLP.

3.4.  Connection Between Ice Thickness and Divergence

The relationship between SIT and divergence of the best-performing models is shown in Figure 4. As div always 
leads to dynamical sea ice decrease in both winter and spring, the area-integrated div contributes negatively/
positively to the area-integrated dadt in winter/spring due to the overall formation/melting of sea ice, because dadt 
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Figure 3.  A comparison of the winter (the upper four rows) sea ice concentration budget components, (e1–e4) sea level pressure (SLP) overlaid with the ice drift 
vectors, (f1) net heat flux, (f2–f4) departures from (f1), and (g1–g4) sea ice thickness (SIT) of the (a1–g1) observations and the CMCC-CM2-SR5 (a2–g2) historical 
(a3–g3) OMIP1 and (a4–g4) OMIP2 experiments. All subplots are averaged over the winter of 1991–2009, except for (g1), the SIT averaged from May and June 
2004–2006. (e1–e4) SLP from ERA5, historical experiment, CORE-II and JRA55-do. (f1) ERA5 net heat flux, (f2–f4) historical experiment, CORE-II and JRA55-do 
minus (f1). The net heat flux is negative when the surface loses heat to the atmosphere. The ridging areas are enclosed by cyan curves (d1–d4).
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is positive in winter but negative in spring. Models having the opposite sign than the observed div have insuffi-
cient divergence (or excessive convergence), which usually relates to too thin sea ice (Figure 4). After excluding 
FGOALS-g2 in CMIP5 and CMCC-CM2-HR4 in CMIP6 with large positive SIT biases (SIT larger than 8 m in 
many regions) as outliers, the winter and spring correlation coefficients between sea ice volume and div become 
−0.59 and 0.58, respectively, with p-values less than 0.001. The corresponding correlations remain significant,
with p-values less than 0.05, even when including the two outlying models.

Notably, the strong relationship between sea ice volume and div is consistent with Nie et al. (2022), who found 
that the Climate Forecast System Reanalysis (NCEP CFSR) had quite thick sea ice related to excessive diver-
gence. Figure 4 results support their hypothesis of positive feedback between SIT and divergence.

4. Conclusions
The SIC budgets of CMIP5 and CMIP6 models with the most realistic SIAs were compared to the observa-
tional SIC budget using a comprehensive statistical metric. The results revealed encouraging improvements in 
all CMIP6 SIC budget components compared to CMIP5, although some limitations remain; for example, the 
inner pack ice divergence and formation in spring are deficient. The JRA55-do atmospheric forcing reduces the 
air-sea sensible heat flux compared to the fully coupled model, which greatly improves the SIA simulations, 
but also results in excessive sea ice convergence. This is related to too thin modeled sea ice leading to too slow 
northward drift, hindering the sea ice transport to lower latitudes. Excessive convergence also promotes ridging. 
In the best-performing CMIP5, CMIP6, OMIP1, and OMIP2 models, the correlation between the convergence 
(or analogously divergence) and SIT was high.

A positive feedback mechanism may exist between SIT and divergence. Negative SIT biases result in insuffi-
cient divergence, which in turn inhibits the formation of open water in the inner ice pack and new ice formation 
in winter. This reduced ice formation limits the sea ice volume, including the average SIT. As this feedback 
mechanism can amplify sea ice velocity and thickness biases, the improvement of modeled SIT and ice drift is 
emphasized. For example, Sun and Eisenman (2021) simulated the Antarctic SIE expansion during 1979–2015 
consistent with the observations by replacing the modeled sea ice velocities with observed ones.

Accurately evaluating the SIC budget in the climate models is crucial for at least two reasons. First, compar-
ing the SIC budget components with observations can determine the relative contributions of dynamics and 
thermodynamics on model biases (e.g., Uotila et  al.,  2014). Second, freezing, melting, and sea ice transport 
plays a crucial role in regulating the freshwater transport and salinity distribution in the Southern Ocean, thus 
profoundly influencing the global ocean circulation and ice sheet melt (e.g., Abernathey et al., 2016; Haumann 
et al., 2016). The progress from CMIP5 to CMIP6 regarding sea ice is encouraging, yet the feedback between SIT 
and divergence requires further research.

Figure 4.  The area integral of div as a proportion of total sea ice change versus total sea ice volume for (a) winter and (b) 
spring. The blue dashed lines are linear regressions for all models, and the CCs and p-values are marked in blue. The solid 
black line is the regression after removing the two models with significantly unrealistic sea ice thickness patterns (marked by 
the black boxes). The gray horizontal line is the percentage contribution of the observed div, the models fall in the gray-filled 
region are overestimating sea ice divergence.
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nicus Marine Service (2017). The OSI-455 ice drift observations are available at OSI SAF (2022).
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