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ABSTRACT
Accurate estimation of shipping CO2 emissions is important for
developing regulations to combat the greenhouse effect. Many ship-
ping CO2 emissions models have been proposed in the past decades.
However, most of them are only validated for a few specific ships,
and there is a lack of data-driven validation and comparison of
these models on a large scale. To fill this gap, this study proposes a
general evaluation framework to quantitatively validate and com-
pare different emission models. This framework is based on data
integration of three types of data sources: ship technical details,
AIS trajectory, and weather. Along with emission models, these
data are fed into three carefully-designed modules that perform
analysis at both grid and trajectory level as well as use annually
aggregated fuel consumption ground truth. Extensive experiments
are conducted on one-month data from 1,571 ships passing Danish
waters to demonstrate the utility of the framework and insights into
the accuracy of five popular CO2 emission models are presented.
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• Information systems→ Data analytics;Mobile information
processing systems.

KEYWORDS
AIS, trajectories, emission, CO2

ACM Reference Format:
Song Wu, Kristian Torp, Mahmoud Sakr, and Esteban Zimányi. 2023. Evalu-
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1 INTRODUCTION
The Paris Agreement, a global collaborative effort to combat climate
change, sets long-term goals to limit global warming. An important
sector that is not regulated in the Paris Agreement is maritime
shipping. Maritime shipping fulfills about 90% of global trade1 and
is relatively CO2 friendly compared with other means of transport,
e.g., aircraft and truck [5]. Nevertheless, the study in [22] shows that
shipping CO2 emissions increased from 962 million tons in 2012 to
1,056 million tons in 2018. Fuel consumption also makes up a large
percentage (25%) of maritime shipping costs [5]. Improving ship
energy efficiency and reducing CO2 emissions is thus becoming an
urgent issue in the maritime domain.

Policies are being put in place for a greener shipping industry.
Among the initiatives are the Energy Efficiency Design Index (EEDI)
by the International Maritime Organization (IMO) and the EU’s
Monitoring, Reporting, and Verification (MRV) system. EEDI is a
CO2 efficiency measure that came into effect in 2013 and concerns
all newly-built ships. Through its four progressive phases, EEDI
ensures that ships are more and more energy-efficient. For example,
Phase 3 of EEDI requires a reduction of CO2 emissions by 30% for
ships built after 2025 [5]. Based on the reference formula for each
ship type [3], a ship will not be approved by authorities if it fails
to meet the EEDI requirements [5]. In 2018, the IMO adopted an
"Initial Strategy" aimed at halving shipping emissions by 2050 [17]
when compared with the year 2008. Introduced in 2017, the EU’s
MRV system demands that ships above 5,000 gross tonnage report
CO2 emissions data for their maritime transport activities in the
EU area [5]. A verified annual report for each ship is then released
on the MRV website2 for public use. For example, the MRV dataset
was used to study CO2 emissions from ferries in [18]. In this work,
the MRV dataset is used as quasi ground-truth to validate emission
results estimated by different models. Without causing confusion,
the ’comparison and validation’ of models will be simply referred
to as ’comparison’ hereafter. Recently, some routing services have
also been developed to help reduce shipping CO2 emissions. For

1https://www.oecd.org/ocean/topics/ocean-shipping/
2https://mrv.emsa.europa.eu/#public/emission-report
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example, the GUTTA-VISIR system3 has been deployed to compute
least-CO2 ferry routes in the Adriatic Sea [17] and bulk carrier
routes in the Pacific Ocean [16, 19].

One important issue that remains unaddressed is how to accu-
rately estimate a ship’s CO2 emissions [20, 21]. Fuel consumption
and CO2 emissions of a ship depend on multiple factors such as ship
size, sailing speed, fuel type, and weather conditions. Therefore,
many emission models have been proposed in the past decades,
and they take into account different factors. Two main limitations
exist for most of these models. Firstly, they are only validated on
a few specific ships, so their applicability to other ships is unclear.
Secondly, these models usually require access to ground truth fuel
consumption data, which is generally not open to the public and
cannot be obtained at a large scale.

More importantly, there is a lack of detailed experimental com-
parison of different CO2 emissions models in the literature. As
far as we are concerned, comparative analysis of CO2 emissions
models is only conducted in [20, 21]. However, both of them are
restricted to a small area around the Strait of Gibraltar. The study
in [20] assumes a ship’s speed to be constant in the study area, and
the study in [21] only considers one Ro-Pax ship (roll-on/roll-off
passenger ship). Therefore, a more detailed comparison in a larger
scope and on more ships is needed to better investigate different
CO2 emissions models.

To fill this gap, this study aims to provide a systematic evaluation
framework to compare different CO2 emission models. The main
contributions in this work are:
• A general evaluation framework based on data integration is
proposed to compare different CO2 emission models.

• Up to our knowledge, this is the first work to validate multiple
ship CO2 emission models that exist in the literature against a
ground-truth. We use the MRV dataset as quasi ground-truth for
many ships for this purpose.

• Extensive experiments are conducted using data from 1,571 ships
to show the utility of the framework.

2 RELATEDWORK
Since CO2 emissions are directly determined by fuel type and the
amount of fuel consumed [22], this section briefly reviews the
existing fuel consumption models in the literature.

The shipping CO2 emissions mainly come from three sources:
main engines, auxiliary engines, and boilers [22]. These onboard
machinery serve different purposes: main engines are used to propel
the ship forward, auxiliary engines are used to generate electrical
power, and boilers are used to produce heat. In terms of fuel types,
heavy fuel oil (HFO) is the dominant fuel (79%) in the shipping
industry [22], due to its competitive prices [5]. However, HFO
has a high sulphur content and is harmful for the environment.
Other cleaner fuel types exist, such as marine diesel oil (MDO) and
liquefied natural gas (LNG); but they only make up a small share in
the industry, compared with HFO [22].

The existing fuel consumption models fall into three categories
[4, 26, 29, 30]: white-box models (WBM), black-box models (BBM)
and grey-box models (GBM).

3https://www.gutta-visir.eu/

• Based on physics laws and hydrodynamics, the main idea of
WBMs is to estimate various types of resistances that a ship en-
counters during sailing. Then combined with estimated propul-
sion efficiency, these resistances are used to compute a ship’s
instantaneous power demand [8, 13, 23]. For example, the study
in [13] considers two types of resistances: total resistance in ideal
conditions and additional resistance caused by wind and wave.
Since a ship’s speed is widely believed to be the most important
factor for fuel consumption [29], many studies (e.g., [7, 11]) also
simplify the impact of resistance as a fixed coefficient. They thus
consider the fuel consumption rate to be proportional to the cubic
of a ship’s speed. The advantage of WBMs is that they can be ap-
plied at an early stage of ship design and all their parameters are
known a priori [29]. However, the accuracy of WBMs depends a
lot on the various assumptions [4, 29].

• Different from WBMs that are based on assumptions, BBMs are
data-driven and predict fuel consumption using statistical ap-
proaches and machine learning models [9, 27, 31]. For example,
the study in [31] uses a Gaussian process to predict fuel con-
sumption using seven variables, such as speed and draught. The
advantage of BBMs is that they usually achieve a higher accuracy
than WBMs, but they have high data requirements and ground
truth fuel consumption data are difficult to obtain at large scale
[29].

• GBM is a kind of model that combines the advantages of WBMs
and BBMs. It can be constructed in two ways [29]. The first way is
to use a BBM to fine-tune the parameters in aWBM [30], whereas
the second way is to integrate a WBM’s a priori knowledge into
a BBM [2]. However, developing GBMs is a non-trivial task, and
GBMs are not used as frequently as BBMs [4].
From the data perspective, three types of data sources are usu-

ally used in fuel consumption models: ship technical details, noon
reports, and Automatic Identification System (AIS) data.
• A ship’s fuel consumption depends on its technical information,
such as engine power, fuel type, and maximum speed. Most stud-
ies (e.g., [12, 22, 24]) have used a commercial data source called
IHS4 for ship technical information. However, it would be very
expensive to use a commercial ship database for sizeable fleets
[23]. Instead, one highlight of this study is the integration of
public technical information from multiple websites.

• Noon report data is used in many studies (e.g., [30–32]) as ground
truth fuel consumption data. As its name suggests, noon report
data is usually recorded by the crew every 24 hours at noon.
Although there is no standard format for noon report data [30],
typically the following data fields are included: date and time,
ship position, cargo weight, sea and weather conditions, and
daily fuel consumption of main and auxiliary engines. The main
limitation of this data source is its low frequency [9, 29]. Also its
quality may be subject to human errors [29]. Therefore, this data
source is not used in this study, and it is mentioned here for the
sake of completeness.

• AIS data. AIS is a mandatory tracking system in the maritime
domain for general ships above a certain size and all passenger
ships, irrespective of their size [10]. AIS data contains a ship’s
detailed movement history, due to its high reporting frequency

4https://ihsmarkit.com/products/ships-full-data-lake.html
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from 2 seconds to 3 minutes, depending on ship speed and rate
of turn [28]. So it is a suitable data source to create fine-grained
emission inventories [7, 24] and has been increasingly used in
recent studies [8, 22].

Although there are several review studies on ship fuel consump-
tion models in the literature [4, 26, 29], none of these studies are
data-driven, and they do not conduct a quantitative comparison
between different models. Therefore, this work aims to fill this gap
and provide a systematic evaluation framework to quantitatively
compare different models.

3 SYSTEM DESIGN
An overview of the proposed system is first presented, then each
of the required input data for the system is introduced.

3.1 System Overview
Fig. 1 shows an overview of the evaluation framework, which in-
cludes three layers: raw data layer, input layer, and analysis layer.
The arrows in Fig. 1 indicate the data flow.

The raw data layer contains three types of raw data: ship tech-
nical specifications, AIS data, and weather data. Ships differ in
many aspects, such as size, engine power, and design speed. These
factors impact the fuel consumption of a ship. The technical speci-
fications of ships are used in this framework to consider the differ-
ences among ships. Since different locations correspond to different
amounts of traffic, detailed ship movement data is necessary to
model spatio-temporal distributions of fuel consumption and CO2
emissions in a fine-grained level. AIS data is used for this purpose.
Lastly, the fuel consumption of ships is affected by the weather
conditions: harsh conditions often lead to higher fuel consumption.
Thus the inclusion of weather data allows for more accurate fuel
consumption estimations.

Using data integration, two datasets are created from the three
raw data sources: the vessel dataset contains the detailed technical
information of each ship, and the trajectory dataset contains the
movement history of each ship enriched with weather conditions.
Together with the CO2 emission models, these two datasets are fed
as input into the analysis modules introduced next.

The evaluation framework includes three analysis modules. The
grid-based analysis module analyses the spatio-temporal distribu-
tions of fuel consumption and CO2 emissions, which can be useful
for decision-makers to develop regulation policies. The trajectory-
based analysis module targets representative individual trajectories,
which is of interest to relevant practitioners such as ship owners.
The MRV-based validation module aims to cross-check the CO2
emission estimations with the MRV ground-truth dataset.

The framework in Fig. 1 is inspired by the EcoMark 2.0 frame-
work in [6], which investigated the utility of 11 vehicle fuel con-
sumption models for assigning eco-weights to road segments. How-
ever, there are several significant differences between our frame-
work and EcoMark 2.0: (1) there is no road network in the sea, (2)
weather data is not used in EcoMark 2.0, (3) height information
does not make much sense in the maritime domain, compared with
uphill/downhill road segments, and (4) there is a larger difference
in size/weight for ships than for vehicles.

Ship Technical Details AIS Trajectory Data Weather Data

Vessel Dataset Fuel Estimation
Models

Trajectories Enriched 
with Weather

Data Integration Data Integration

Grid-based CO₂
emission analysis

Trajectory-based CO₂
emission analysis

MRV-based
Validation

Legend data processing

Raw Data

Input

Analysis

Figure 1: Overview of the Evaluation Framework

3.2 Raw Data in the System
• Ship Technical Data. Fuel consumption models require technical
information of a ship to accurately estimate fuel consumption
and CO2 emissions. In this study, ship technical details are col-
lected from six public sources5 (Table 1): ① BalticShipping, ②

Bureau Veritas, ③ FleetMon, ④ MarineTraffic, ⑤ ShipAtlas, and
⑥ VesselTracker. Among the parameters, Tons Per Centimeter
(TPC) [1] is the required tons to lower a ship by one centime-
ter, and Deadweight (DWT ) represents the maximum carrying
capacity of a ship.

Table 1: Data sources of ship technical information

Notation Parameter Unit Sources
𝐿 length meters ④ ⑤

𝐵 beam meters ④ ⑤

𝐷 maximum draught meters ④ ⑤

DWT deadweight metric tons ④ ⑤

GT gross tonnage register tons ④

𝑃 maximum power kW ② ④ ⑤ ①

𝑆 maximum speed knots/hour ② ④ ⑥ ③

TPC tons per centimeter metric tons ⑤

RPM revolutions per minute r/min ② ④ ⑤

Year year built integer ④

• AISData. In this study, the following columns inAIS data are used:
the Maritime Mobile Service Identity (MMSI) number, the IMO
number, timestamp, longitude, latitude, and draught. Different
ships can be distinguished by their MMSI and IMO numbers, and
the ship’s speed can be computed using two consecutive AIS
messages.

• Weather Data. Three kinds of weather data are often considered
in the literature: (1) wind data including wind speed and wind di-
rection, (2) wave data including significant wave height and wave
direction, and (3) ocean current data including current speed and
current direction. Depending on the area of interest, weather data
can be obtained from several sources, such as Copernicus Marine

5These sources were accessed on Oct 2, 2022.
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Environment Monitoring Service (CMEMS) [15, 17] and National
Oceanic and Atmospheric Administration (NOAA). Although
some estimation models (e.g. [13]) use all of wind, wave and cur-
rent data, they are too complex for implementation. Therefore,
only wave data is used in this study for the moment.

4 MODEL ANALYSIS
This study covers five estimation models for CO2 emissions. The
main criterion for choosing these models is that they are not specific
to certain geospatial regions, e.g., certain port.

4.1 The Baseline
The main idea of this model is to assume that a certain amount of
CO2 are emitted per metric ton of freight per kilometer of transport,
so the model needs to estimate the weight of cargo carried by a ship.
In this study, the value of 3 grams of CO2 / (ton · km) is used, which
can be achieved by a modern ship [5]. Specifically, the following
formula is used to estimate CO2 emissions (in kg):

CO2_Baseline = Masscargo ∗ Distance ∗ 3

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the traveling distance (in kilometers) of a ship,
and𝑀𝑎𝑠𝑠𝑐𝑎𝑟𝑔𝑜 is the weight of cargo (in metric tons) carried by a
ship, which is estimated as:

Masscargo = DWT − (D − draughtAIS) ∗ TPC ∗ 100

Note that "100" is used to convert centimeter to meter.

4.2 The Gross Tonnage Based Approach
In [14], Carol et al. proposed a CO2 emission model based on a
ship’s gross tonnage and maximum speed. In this model, the daily
fuel consumption 𝐶 (in metric tons per day) of general cargo ships
at full power is calculated as:

𝐶 = 9.8197 + 0.00143 ∗ GT

The CO2 emissions are then estimated as:

CO2_GT = 𝐶 ∗ (𝑇 /24) ∗ 𝐹

where 𝑇 is the operational hours of a ship, and 𝐹 is the average
emission factor of CO2 (in kg CO2 / ton Fuel) and taken as a piece-
wise function of the operation mode:

𝐹 = 3173 ∗


1.0, cruising if 0.8 <

speedAIS
𝑆

≤ 1
0.48, maneuvering if 0.2 <

speedAIS
𝑆

≤ 0.8
0.03, hotelling if speedAIS

S ≤ 0.2

Note that 3,173 kg CO2 / ton Fuel is used in [14] as the maximum
emission factor during cruising mode.

4.3 The Speed-Cubic Approach
In [7], a CO2 emission model is proposed in which a ship’s instan-
taneous power is assumed to be proportional to the cubic of its
instantaneous speed. The CO2 emissions are estimated as:

CO2_Cubic = 𝑃 ∗ ( speedAIS
𝑆

)3 ∗𝑇 ∗ EF

where 𝑇 is the operational hours of a ship, and 𝐸𝐹 is the emission
factor (in gCO2/kWh) depending on the engine type and fuel type.

4.4 The IMO Approach
In the fourth GHG report by the IMO [22], the CO2 emissions
are based on the instantaneous speed and draught of a vessel and
its technical details. First, the demanded propulsive power when
sailing at a particular speed and draught is calculated as:

Pdemanded =
𝛿𝑤 · 𝑃 · ( draughtAIS

𝐷
)0.66 · ( speedAIS

𝑆
)3

𝜂𝑤 · 𝜂𝑓
where (1) 𝛿𝑤 is the speed-power correction factor for certain ship
types and sizes [22], (2) 𝜂𝑤 is the weather correction factor to rep-
resent additional power requirement caused by weather conditions,
and it is taken to be 0.909 for coastal ships and 0.867 for ocean-going
ships [22], (3) 𝜂𝑓 is the correction factor to indicate the impacts of
hull fouling, and taken as 0.917 [22]. Note that 𝛿𝑤 is set to 1 in later
experiments since the current study uses different data sources for
technical details.

Based on the demanded propulsive power, the CO2 emissions
are estimated as follows:

CO2_IMO = Pdemanded ∗ T ∗ SFC ∗ EF
where (1) 𝑇 is the operational hours of a ship, (2) 𝑆𝐹𝐶 is the hourly
specific fuel consumption (in gFuel/kWh), and depends on the en-
gine type, fuel type, engine load, and engine generations, (3) 𝐸𝐹
is the CO2 emission factor (in gCO2/gFuel) depending on the fuel
type used.

Although fuel consumption and emissions from the main engine
are assumed in [22] to be zero when the engine load is below 7%,
this assumption is not applied in this study.

4.5 The STEAM Approach
In [11], Jalkanen et al. proposed a model called STEAM to estimate
exhaust emissions of marine traffic. Different from the previous four
models, the STEAM model also considers the impact of weather
conditions, by using wave data to compute a speed penalty. Specifi-
cally, the angle between the wave direction and the ship is divided
into four ranges: below 30◦, between 30◦ and 60◦, between 60◦ and
150◦, and above 150◦. For each of four ranges, there is a different
formula to calculate the directional part (𝜇) of the speed penalty
[11]. The STEAM model estimates the CO2 emissions as:

CO2_STEAM = 𝑃 ∗ (
(1 + 𝜇 ∗ Δ𝑉

𝑉
) ∗ speedAIS

𝑆 +𝑉safety
)3 ∗𝑇 ∗ EF

where (1) 𝜇 ∗ Δ𝑉
𝑉

is the speed penalty based on the displacement
of a ship and wave data, and detailed formulas can be found in
[11], (2) Vsafety is a safety margin taken as 0.5 knots/hour, (3)
EF is the emission factor (in gCO2/kWh) depending on fuel type.
Note that the STEAM model assumes a fuel consumption of 200
gFuel/kWh for all engines and restricts the speed penalty to a
maximum of 50%. To evaluate the wave effect on CO2 emissions,
two versions of the STEAM model (with and without wave data)
are applied in this study, and they are referred to as STEAM and
STEAM Without Wave in the rest of this paper, respectively.

4.6 Summary
A summary of the input data for each model is shown in Table 2,
where ✓means that a parameter/variable is used in a model. Clearly,
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Table 2: Input data for each CO2 estimation model

Models TPC DWT D P S GT RPM Year Length Beam Significant Wave Height Wave Direction
CO2_Baseline ✓ ✓ ✓
CO2_GT ✓ ✓
CO2_SpeedCubic ✓ ✓ ✓

CO2_IMO ✓ ✓ ✓ ✓ ✓
CO2_STEAM ✓ ✓ ✓ ✓ ✓ ✓

maximum speed and maximum power are the most popular param-
eters, since they are needed by the majority of models.

5 EMPIRICAL STUDIES
This section conducts a comprehensive comparison of CO2 emission
models by applying the framework in Fig. 1 to the shipping traffic
around Danish waters. Firstly, the experimental setup is presented.
Then a detailed application of the analysis modules is given. Since
the area of study belongs to the Emission Control Area (ECA) in
the North Sea and the Baltic Sea [22], all ships are assumed to use
the marine diesel oil rather than the heavy fuel oil.

In terms of implementation: (1) The logic of emission models are
written in Java; (2) Python is used to write scripts to collect ship
technical details data; (3) All datasets are stored as CSV files; and
(4) The Tableau software is used for visualization of results.

5.1 Setup
5.1.1 AIS Data. Theoretically, the evaluation framework can be
used anywhere as long as the required data is available. To be more
focused in this study, we apply the framework to the shipping traffic
around Danish waters. Specifically, AIS data from May of 2022 is
downloaded from the website of Danish Maritime Authority6. The
following preprocessing steps are applied:
• Ship Type Filtering. As shown in the Fourth IMO Greenhouse
Gas Study [22], container ships and bulk carriers contribute
the largest proportion of international shipping CO2 emissions
among all ship types. So this study uses only AIS messages re-
ported by cargo ships. This includes containers ships and bulk
carriers as sub-categories.

• Spatial Filtering. The scope of area in this study was a rectangular
area with a longitude range of [5, 20] and a latitude range of [52,
60], so only AIS messages located in this area are retained.

• Time-based Segmentation. In the AIS data, the time gap between
two consecutive AIS messages sometimes can be several hours,
this may be caused by the low AIS coverage in some regions or
AIS switching-off by the crew. To facilitate later analysis, for each
vessel, its AIS messages are segmented when a time gap larger
than one hour is observed.

• Draught Correction. Draught information is important in several
estimation models, and it is manually entered into the AIS system
by the crew. However, this information is missing in about 2.3%
of the AIS messages. So for each 𝑎 of these AIS messages, we
first found its temporally-closest neighbor 𝑛 that has draught
information available, then the draught of 𝑎 is filled using 𝑛’s
draught.

6https://web.ais.dk/aisdata/

• Outlier Removal. To remove outliers, the AIS messages are dis-
carded that have a speed larger than 50 knots/hour [24, 25] w.r .t .
the previous AIS message.

• Draught-based Segmentation. In this step, consecutive AIS mes-
sages that have the same draught values are grouped together,
as needed by the Baseline and IMO models.
Therefore, the generated trajectories have two properties: (1) the

time gap between any two consecutive AIS messages in a trajectory
is less than one hour and (2) all AIS messages in a trajectory have
the same draught values.

Table 3: The number of AIS messages after each step

step # of AIS messages
raw AIS messages from cargo ships 63,352,466
spatial filtering 61,097,446
outlier removal 60,832,556
AIS messages from the final 1571 ships 42,039,748
removal of short or non-moving trajectories 41,024,724

Table 4: Statistics on the 8,369 trajectories

min. / avg. / max. length (km) 0.21 / 282.43 / 1,609.87
min. / avg. / max. duration (hours) 0.02 / 18.30 / 466.84
min. / avg. / max. number of AIS messages 10 / 4,982 / 148,690

5.1.2 Ship Technical Details. The trajectories after preprocessing
involves 2,130 different MMSI/IMO pairs, and each pair is identified
as a distinct ship in this study. The technical data for each ship was
collected from the six public sources as mentioned before. Note
that some key parameters can be found in multiple sources, such as
maximum power and maximum speed. So after a consistency check
between the sources, such parameters are determined as follows:
the maximum power 𝑃 is chosen in the order of Bureau Veritas,
MarineTraffic, ShipAtlas, and BalticShipping. The engine power
from Bureau Veritas is first checked and used when available. When
it is missing in Bureau Veritas, the engine power fromMarineTraffic
is checked, and so on so forth. In a similar manner, the parameters
L, B,D,DWT , S, and RPM are determined in their respective order,
as shown in the column Sources in Table 1.

Since this study focuses on CO2 emissions from main engines,
two simple filters are applied to select the trajectories of this anal-
ysis: (1) a trajectory should contains at least 10 AIS messages, (2)
the average speed of the whole trajectory should be larger than 1
knot/hour.
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In the end, 1,596 ships have all of their technical information
available. However, 25 of these ships contain only short or non-
moving trajectories. So experiments are conducted on 8,369 trajec-
tories from the remaining 1,571 ships to ensure a fair comparison
between the different CO2 emission models.

Table 3 shows the number of AIS messages retained after each
step. Overall, 64.8% of raw AIS data from cargo ships are used in the
experiments. Table 4 shows some statistics of the 8,369 trajectories,
and these trajectories differ a lot in terms of duration, length, and
the number of AIS records.

To illustrate, Fig. 2 depicts the results for the ship #209316000
(MMSI) before and after preprocessing. Blue points in Fig. 2a repre-
sents the AIS messages with missing draught values. So the draught
of each blue point is corrected based on its neighbor with closest
timestamp. There are 12 green points in Fig. 2a with a draught of
6.3 meters. However, they are invisible because they are located
in the port of Aarhus and overlap with other points. Because the
trajectory formed by these 12 green points is almost still, it is ex-
cluded from later analysis. The ship’s draught values are 10.1, 6.7
and 6.5 meters (Fig. 2b.) for the final 3 trajectories respectively.

5.1.3 Weather Data. The wave data required by the STEAMmodel
are obtained from two CMEMS products: (1) The Baltic Sea prod-
uct7 has a spatial resolution of one nautical mile and a temporal
resolution of one hour; (2) The North Sea product8 has a spatial
resolution of 3km (longitude) by 1.5 km (latitude) and a temporal
resolution of one hour.

In this study, the AIS data is enriched with wave data that has
the closest timestamp and geographical coordinates. The Baltic Sea
product is used when the longitude of an AIS position is larger than
10◦, otherwise the North Sea product is used.

5.2 Grid-based Emissions Analysis
One advantage of AIS data is that it enables the fine-grained model-
ing of spatiotemporal distribution of CO2 emissions. In this section,
the area of study is split into grids with a size of 0.05 ◦ by 0.05 ◦

(approximately 5 × 5 km) and the following analysis are conducted:

5.2.1 Comparison of absolute emissions by eachmodel. Fig. 3 shows
that the Baseline approach gives the lowest estimations among all
methods, whereas the GrossTonnage approach has the highest esti-
mations. The other four models have similar estimations. Notably,
the estimation by the GrossTonnage approach is almost 3 times of
that by the Baseline approach. The accuracy of these models w.r.t.
the MRV ground-truth will be presented later in Sec. 5.4.

Fig. 4 depicts the spatial distribution of CO2 emissions by each
model. Note that the four models SpeedCubic, IMO, STEAM With-
out Wave, and STEAM give similar results. Therefore, only the
result of the IMO model is shown for space reasons. The dotted
box in Fig. 4 indicates the area of study. Clearly, the majority of
CO2 emissions is concentrated along the main route for passing
the Danish waters.

5.2.2 Wave effects on CO2 emissions. The effect of waves on CO2
emissions can be observed by comparing the last two columns in
Fig. 3. Surprisingly, taking wave data into account only leads to an
7https://goo.by/FKzLj
8https://goo.by/vPwnP

Aarhus

raw draught values in AIS (in meters)
Null 6.3 6.5 6.7 10.1

(a) raw AIS data of the ship in May of 2022

Aarhus

Trajectory ID
1
2
3

(b) the generated three trajectories of the ship after preprocessing

Figure 2: AIS data from the ship #209316000 (MMSI) before
and after preprocessing
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Figure 3: Total CO2 emissions of the 1,571 ships by eachmodel

overall 1.98% increase in CO2 emissions. This is marginal compared
with the IMO approach [22], which assumes that weather has a 15%
impact for ocean-going ships and a 10% impact for coastal ships.
Nevertheless, this observation agrees with the finding in [11] that
reported the importance of waves to be around 2%.

It is interesting to know how the wave effect varies when the
significant wave height becomes larger. To this end, the STEAM
model under various wave conditions is applied by assuming that
the wave direction and significant wave height are the same every-
where in the area of study. The studied wave heights range from 0
to 10 meters, increased with one meter each time. Let 𝐸𝑟,ℎ be the
total emissions by the STEAM model under wave angle range 𝑟
and wave height ℎ, then the wave effect on CO2 emissions can be
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Figure 4: Spatial distribution of CO2 emissions by each model

evaluated as:

Wave Effect Ratio =
𝐸𝑟,ℎ

𝐸∗,0

where 𝐸∗,0 is the amount of emissions when the STEAM model
is applied without wave data. Fig. 5 shows that the wave effect
becomes larger when the wave height increases. A wave height of
10 meters can lead to an 81.47% increase in CO2 emissions when the
wave encounters the ship from the front end. Interestingly, when
the wave height is above 3 meters, the effect of waves from the
angle range (150, 180] becomes larger than that from the range (30,
60]. Such results are useful when the framework is applied to the
regions that have more harsh weather conditions.

5.2.3 Grid-level ranking of each model. Instead of the overall differ-
ence in Fig. 3, this step investigates the difference between models
at a grid level. Such analysis may reveal some spatial patterns. A
promising way is to compute the ranking of models in each spa-
tial grid based on their CO2 emissions. Fig. 6 shows the resulting
spatial ranking of each model, where "1" means highest emissions
and "6" means lowest emissions. For the Baseline approach, it ranks
6th in most grids, as expected (Fig. 3). However, its ranking is as
high as 2nd for some grids in the North Sea and in the southeast
of Sweden. For the GrossTonnage approach, it ranks 1st in most
grids, as expected (Fig. 3). Nonetheless, it has a low ranking of 5th
for some grids between Norway and Denmark, and for some grids
around the Swedish Gotland island and in the north of Poland. For
the SpeedCubic approach, it ranks 2nd in most grids, and ranks 3rd
in many other grids as well. For the remaining three approaches
from Figs. 6d to 6f, a clear pattern can be observed. Their ranking is
different from that in Fig. 3 for the grids connecting the North Sea
and the Baltic Sea through the Sound Belt passing Copenhagen. For
example, the IMO approach ranks 3rd in Fig. 3, whereas its ranking
decreases to 5th in Fig. 6 along the Sound Belt grids. In contrast, the
ranking for the STEAMWithout Wave approach and the STEAM
approach increases from 5th to 4th and from 4th to 3rd , respectively.
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Figure 5: The effect of wave angle and wave height on the
total CO2 emissions

5.3 Trajectory-based Emissions Analysis
This section investigates the CO2 emissions of representative tra-
jectories. Such analysis is important for ship owners to know the
performance of their fleets. To this end, we conduct a case study of
trips that transit between Skagen (the northernmost of Denmark)
and Bornholm (the easternmost of Denmark) via Copenhagen. In
addition, these trips should be performed by ships above a certain
size and do not stop too long in between. After some statistical
analysis, the trips of interest are selected using the following condi-
tions: (1) The deadweight of the corresponding ship is above 2,000
tons; (2) The length of the trip is below 600 kilometers; and (3) The
average speed for each hour of the day during the trip is above 5
knots/hour. As a result, 192 trips from 162 ships meet these condi-
tions, as shown in Fig. 7. Table 5 shows that the lengths of the 192
trips are close to each other. However, there is a large difference in
their passing speeds, which indicates diversity in the 192 trips.

Taking the IMO approach for example, an equivalent CO2 effi-
ciency can be computed for each trip 𝑖 by the following formula:

𝐸CO2,𝑖 =
CO2_IMO

Cargo𝑖 ∗ Length𝑖
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Figure 6: Spatial ranking distribution of each model based on their CO2 emissions

Figure 7: Routes of the 192 trips that pass Danish waters

Table 5: Statistic of the 192 trips that pass Danish waters

min. / avg. / max. length (km) 478.4 / 488.8 / 507.9
min. / avg. / max. duration (hours) 13.8 / 23.3 / 32.9
min. / avg. / max. passing speed (knots/hour) 8.0 / 11.7 / 19.0

where CO2_IMO is the total CO2 emissions (in grams) estimated by
the IMO approach for a trip 𝑖 , Cargo𝑖 is the weight of cargo carried
(in tons) in a trip 𝑖 , and Length𝑖 is the length (in km) of a trip 𝑖 .

Fig. 8 depicts the results. The horizontal axis represents the
deadweight (DWT) of the ship in a particular trip. The larger DWT
is, the larger a ship can be considered. The vertical axis represents
the average CO2 efficiency for the corresponding trip. Overall, there
is a downward trend in Fig. 8, meaning that larger ships tend to
emit less CO2 per unit of transport work.

Next, two trips of the same ship, trip#45 and trip#47 (the green
and red circles in Fig. 8) are examined. This ship has a DWT of
6,410 tons and a maximum speed of 19 knots/hour. Since s is fully
loaded at its DWT for the two trips, the cargo weight is the same for
them. Furthermore, the IMO approach assumes a constant impact by
weather conditions, thus speed becomes the only influencing factor
for the CO2 efficiency of the two trips. Table 6 gives a comparison of
the two trips. It shows that a 5.2% decrease in speed (w.r.t. maximum
speed) leads to a 8.7% increase in the CO2 efficiency. This finding
suggests that shipowners can probably improve the CO2 efficiency
of their fleet by speed optimization. In additional, s has a technical
efficiency of 15.13 gCO2/t·km based on the MRV dataset. This is
sufficiently close to the efficiency values in Table 6. The gap between
them is probably due to auxiliary engines, which are not in the
scope of this study.
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Figure 8: Average CO2 efficiency of the 192 trips

Table 6: Comparison of trip#45 and trip#47 by the same ship

trip#45 trip#47
length (km) 489.8 489.6
avg. passing speed (knots/hour) 13.17 14.15
CO2 emissions (kg) 36,372 39,798
CO2 efficiency (gCO2/t·km) 11.58 12.68

5.4 Validation using the MRV dataset
Fig. 3 shows that the 3 grams of CO2 / (ton · km) in the Baseline
approach is probably too optimistic, thus more reasonable values
should be used for each ship, e.g., based on ship length or dead-
weight. For this purpose, the MRV dataset is used in this study as a
quasi ground truth which contains annually aggregated emission
results for each included ship. At the time of writing, there are four
emissions reports available in the MRV website, corresponding to
each year from 2018 to 2021.

Based on the IMO number, 760 out of the 1,571 ships have match-
ing entries in the MRV dataset. The key column in the MRV dataset
is Technical Efficiency (in gCO2/t·nm). This column is expressed
as either EIV or EEDI of a ship in a reporting year. Since EIV is
a simplified version of EEDI [3], this study gives precedence to
EEDI. Namely, when both EIV and EEDI of a ship exist, EEDI will
be used for that ship. Furthermore, whichever metric is chosen, the
latest metric value is used. Last but not least, the EIV is multiplied
by the ratio between the emission factor for diesel oil (3.206) and
the emission factor for heavy fuel oil (3.114). This is because 3.114
(gCO2/gFuel) is used in the EIV formula, whereas marine diesel oil
is assumed in the area of study.

As a result, 172 ships (22.6%) use EEDI as their technical effi-
ciency, and EIV are used for the remaining 588 ships (77.4%). Fig. 9
shows the technical efficiency of these ships in decreasing order.
Clearly, the technical efficiency varies a lot from ship to ship. The
horizontal line (5.556 gCO2/t·nm) in Fig. 9 represents the Baseline
approach. Among the 760 ships, 567 (74.6%) are above the line and
thus less energy-efficient than suggested by the Baseline approach.

Using the MRV dataset, CO2 emissions for the 760 ships are
updated, and the result is shown as the last column in Fig. 10.
Interestingly, the updated result is highly consistent with the speed-
based models. Such consistency indicates that some stakeholders
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Figure 9: Technical efficiency of the 760 ships based on the
MRV dataset
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Figure 11: Ship-level emission ratio between the IMO and the
MRV-based approaches

such as government agencies can rely on these speed-based models
to monitor regional CO2 emissions. Then at an individual ship level,
consistency between these speed-based methods and the MRV-
based approach still exist. Taking the IMO approach as an example,
Fig. 11 depicts the emissions ratio between the IMO approach and
MRV-based approach, for each of the 760 ships. The horizontal axis
in Fig. 11 shows the MMSI numbers of these ships in decreasing
order of the corresponding ratio. The middle 80% of these ships
have their ratio values close to 1. Despite this, shipowners should
be cautious about the application of these speed-based models, be-
cause the consistency in Fig. 11 is not as strong as that in Fig. 10.
By comparing the first columns in Fig. 3 and Fig. 10, another note-
worthy point is that although the 760 ships make up only 48.4% of
the 1,571 ships, their emissions in Fig. 10 cover about 80.8% of that
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in Fig. 3. This is because the MRV scheme only regulates relatively
large ships above 5,000 gross tonnage [5].

5.5 Summary of the Results
The main findings from experiments include: (1) Among the five
models covered in this study, the three speed-based models return
similar results. (2) Overall, most of the CO2 emissions are located
along the main sea routes. (3) Large ships tend to be more CO2
efficient than small ships. (4) Emission results from the three speed-
based models are consistent with the MRV dataset, which is used as
quasi ground truth in this study. (5) The comparison of two similar
trips from the same ship suggests that a ship has the potential to
improve its CO2 efficiency through speed optimization.

6 CONCLUSION
In this work, we propose a general data-driven evaluation frame-
work to quantitatively compare different estimation models for
shipping CO2 emissions. The utility of this framework is demon-
strated through extensive experiments on a large dataset around
Danish waters. For future work, we plan to investigate more models
and conduct experiments on shipping traffic covering larger time
periods and geographical regions.
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