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A B S T R A C T   

Fisheries have a crucial contribution, with animal protein supply and economic income, to the subsistence and 
blue economy of several human societies of the Atlantic Ocean, the second largest water body in the planet. 
However, an accurate distribution of commercial fish across the Atlantic and through the water column is still 
unknown. The wide use of Species Distribution Models (SDMs) for marine fish mapping generally faces two 
shortcomings: (i) ignoring the vertical dimension of the ocean; and (ii) ignoring the ecological niche theory in the 
model fitting. Our aim is to develop 3D habitat models of the main commercial fishes across the Atlantic Ocean, 
accounting for 67 % of the total biomass catches, to provide an enhanced spatial representation of the envi-
ronmental niche of the fish species. In particular, here we (1) explore the macroecological patterns testing if 
latitudinal-vertical distribution of main commercial fish species follows the isothermal distribution across the 
Atlantic ocean; (2) apply a novel 3D modelling approach incorporating depth dimension into the environmental 
data and based exclusively on public species occurrence data; (3) use Shape-Constrained Generalized Additive 
Models (SC-GAMs) to build SDMs in accordance with the ecological niche theory (GAM-NICHE model), avoiding 
potential model overfitting and hence allowing automatic model selection; and (4) estimate potential fish catch 
biomass in the 3D space based on the species probability of occurrence. Our results indicated that latitudinal- 
vertical distribution follows the prevailing isothermal distribution in the ocean, confirming that an accurate 
representation of stock distributions needs 3D modelling and incorporate explicitly depth dimension into the 
environmental data. The species response curves to 3D environmental gradients for the 30 main commercial fish 
species of the Atlantic yielded very good model accuracy performance (78–98 %). The developed 3D models of 
fish occurrence probability have the capability to be improved with the updates of new data for data-poor 
species, and to be projected under climate change scenarios. The obtained 3D maps conform useful and new 
knowledge that may help policy makers to balance the need for environmental protection with sustainable 
marine resource exploitation of the Atlantic Ocean.   

1. Introduction 

The Atlantic Ocean, the second largest water body in the planet, 
covers all the oceanic ecosystems, from oligotrophic subtropical gyres to 
eastern boundary upwellings and subpolar waters in both hemispheres 
(Longhurst, 2007), and provides essential ecosystems services (Mag-
alhães Filho et al., 2022), from highly biodiverse ecosystems such as 
coral reefs and mangroves to very productive and highly exploited North 
Sea and European shelves (Emeis et al., 2015). Atlantic fisheries have a 
crucial contribution, with animal protein supply and economic income, 

to the subsistence and blue economy of several human societies (FAO 
2022). Currently, there is a pressing need of sustainably managing 
marine resources and preserving associated biodiversity due to the 
complex array of threats derived from anthropogenic activities (e.g., 
overfishing, pollution, ocean acidification, deoxygenation, invasive 
species) (Halpern et al., 2019). Climate change is putting an extra 
pressure to marine resources and traditional fisheries management. 
Climate change can modify the species abundance and distribution 
(Cooley et al., 2022; Pecl et al., 2017; Dell’Apa et al., 2023), and global 
ensemble projections have revealed trophic amplification of ocean 
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animal biomass declines with climate change (Lotze et al., 2019; 
Thompson et al., 2023; Tittensor et al., 2021). Assessing the relationship 
between fisheries and the marine environment, including species and 
habitat, emerge as key to reduce uncertainty on current fisheries (Pauly 
and Zeller, 2016; Worm et al., 2006) and future stocks under climate 
change scenarios (du Pontavice et al., 2023; Erauskin-Extramiana et al., 
2023; Gaines et al., 2018; Payne et al., 2021; Predragovic et al., 2023). 

Marine ecosystems cannot be accurately understood without 
regarding the vertical domain of the ocean (Sayre et al., 2017). For 
instance, thermal patterns in the Atlantic ocean involve very particular 
features such as the gradient in surface temperature of 10 ◦C that could 
extend 2000 km in latitude in open ocean (Aiken et al., 2000) and 
100 km in continental shelves (Morey and O’Brien, 2002), whilst typi-
cally extends 200 m in the vertical, due to markedly stratified waters and 
associated thermocline. Nevertheless, deep basins of the whole ocean 
are filled by cold and sub-polar water masses without marked horizontal 
gradients, due to thermohaline circulation. These physical patterns 
shape species biogeography. One interesting pattern known since Dar-
win times, but seldom tested, is the “equatorial submergence” (Close 
et al., 2006) which establishes that the latitudinal-vertical distribution 
of some marine species follows the isothermal distribution in the ocean, 
from deep and intermediate waters at low latitudes towards shallow 
layers at mid-high latitudes (Trubovitz et al., 2020). As a response to 
temperature-respiration constraints driving the species thermal niche 
(Pauly et al., 1998), individuals of a species can be found at different 
depth ranges depending on the latitude. In some cold-water affinity 
species, transequatorial migration through deep layers maintain both 
sub-polar Atlantic populations connected (Møller et al., 2003), while in 
other species, tropical waters have disconnected populations promoting 
allopatric speciation (termed anti-tropical species) (Ludt, 2021). 

Species distribution models (SDMs) are widely used as a tool for 
understanding species spatial ecology (Guisan et al., 2013; Robinson 
et al., 2017). They link species occurrence or abundance with environ-
mental features of the location, via statistical modelling (Elith and 
Leathwick, 2009). SDMs for commercial fishes have been developed to 
capture the spatiotemporal patterns and project distribution shifts under 
climate change (Bruge et al., 2016; Erauskin-Extramiana et al., 2019; 
Erauskin-Extramiana et al., 2020; Erauskin-Extramiana et al., 2019; 
Hobday, 2010; Maynou et al., 2020; Schickele et al., 2021). However, 
these approaches usually do not address the water column explicitly. 
Surface environmental variables are usually paired with deep-water 
occurrence records despite the disparity of environmental conditions 
at the surface and at depth (Duffy and Chown, 2017), which is a 
consequence of data limitation related to species occurrences that are 
not always vertically informed (in most of cases) or/and the availability 
of depth-specific environmental data. Ignoring depth in SDMs could lead 
to misleading outcomes. Therefore, some authors have proposed to 
include proxies of the real 3D seascape with e.g., water column physical 
features (Brodie et al., 2018), and use a 2.5D approach with multiple 2D 
layers to approximate 3D systems (Duffy and Chown, 2017). Taking 
advantage of the rising biological and environmental available data 
resources, new efforts should try to fully implement 3D SDMs (Bentlage 
et al., 2013; Schwing, 2023). 

Another general problem of the most widely-applied species 
modelling techniques is that species response curves are fit statistically 
without any assumption or restriction, which sometimes do not respect 
the ecological niche theory (Hutchinson, 1957). According to ecological 
niche theory, species distributions should provide unimodal relation-
ships with respect to environmental gradients (Hutchinson, 1957). Key 
stages of the life cycle (feeding, growth, and reproduction) are deter-
mined by the physiological range of tolerance of the species and are 
affected by unfavourable environmental conditions, resulting in lower 
presence of the species (Austin and Heyligers, 1989; Helaouët and 
Beaugrand, 2009). In this context, it has been claimed that species dis-
tribution models need a stronger theoretical background (Elith and 
Leathwick, 2009). Excessively flexible SDM algorithms and 

parametrizations such as machine learning can lead to overfitted models 
where resulting patterns can be spurious and affected by noise, and 
predictions based on such models can be biased and unreliable (Burn-
ham and Anderson, 2002). SDMs should therefore consider theoretical 
background such as the ecological niche theory and pursue the unim-
odality of the response curve with respect to environmental gradients 
(Citores et al., 2020). 

The overall aim of this work is to improve the understanding of the 
fish macroecological patterns and develop 3D habitat models of the 
main commercial fish caught in the Atlantic Ocean. We first explore the 
macroecological patterns testing if latitudinal-vertical distribution of 
commercial fish species follows the isothermal distribution across the 
Atlantic Ocean. Then, based exclusively on public species occurrence 
data, we apply a novel 3D modelling approach incorporating depth 
dimension into the environmental data. In particular, to build SDMs in 
accordance with the ecological niche theory (Hutchinson, 1957), we use 
Shape-Constrained Generalized Additive Models (SC-GAMs) (Pya and 
Wood, 2015) that impose unimodality of the response curve with respect 
to environmental gradients (Citores et al., 2020) which in turn avoids 
potentially model overfitting and hence allows automatic model selec-
tion and fitting. Finally, we estimate potential catch biomass in the 
3-dimensional space based on the modelled species probability of 
occurrence. Our results may provide valuable information to support 
fisheries managers and policy makers to balance the need for environ-
mental protection with sustainable marine resource exploitation in the 
Atlantic Ocean. 

2. Material and methods 

The novel 3D modelling approach incorporating water column data 
followed five main steps (Fig. 1): 1) selection of main commercial fish 
species and compilation of 3D occurrence data; 2) selection and set up of 
3D environmental data; 3) building and cross-validation of species dis-
tribution 3D models under the ecological niche theory (see https:// 
gam-niche.azti.es/ developed by Valle et al. (Valle et al., 2023) for 
detailed methodology); 4) prediction of suitable habitat along the water 
column; and 5) estimation of potential catch biomass within the 
3-dimensional space. All analysis were conducted using R (R Core Team 
2023). 

2.1. Study area 

The Atlantic Ocean is the second largest water body and has the 
largest drainage area in the planet, including semi-enclosed areas such 
as the Baltic and the Mediterranean Sea (Longhurst, 2007). The largest 
ocean-scale oceanographic features in this ocean are wind-driven cur-
rents and the Atlantic Meridional Overturning Circulation, which is the 
ocean conveyor that distributes heat and energy and regulates the 
climate. These currents are directly linked and controlled by basin-scale 
forcing and dynamics at inter-annual to decadal timescales (Biastoch 
et al., 2021). Main Atlantic oceanographic gyres shape the wide variety 
of productivity areas, from low-productive subtropical areas to 
high-productive subpolar areas (Longhurst, 2007). Overall, the large 
differences in seafloor depth (shelves, slopes, abyssal plains), coastline 
topography, plankton productivity, coastal vs oceanic areas, and tem-
perature gradient offer diverse environments to the large variety of fish 
species living in the Atlantic (Castilho et al., 2013; Ormond et al., 1997). 

We established our study area selecting the Food and Agriculture 
Organization (FAO) areas that correspond to the Atlantic Ocean (21, 27, 
31, 34, 37, 41, 47, 48), excluding Black Sea subarea (37.4) (Fig. 2). 

2.2. Fish catches data 

We ranked main commercial fish species for the Atlantic Ocean in 
terms of catches (tons/year), based on spatially allocated catch sourced 
from Global fisheries landings (V4) database (Watson, 2020), in order to 
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select those species to be modelled, and in addition, we included 5 
species of tunas regarding their economic interest. Watson (Watson, 
2020) database brings a high spatial resolution (cell 30 × 30′) and an 
accurate taxonomy of species of marine origin, comprising and inte-
grating several sources; furthermore, catches came from industrial and 
non-industrial fleets, also including illegal and unreported catches. We 
extracted the yearly catches for the period 2010–2015 and the associ-
ated taxa information from the cells falling within our study area. 
Subsequently, yearly catches from all cells were summed up and mean 
catches over 2010–2015 period were calculated and ranked only 
including fish species. 

2.3. Species occurrences data 

We retrieved species occurrence data for the selected 25 commercial 
fish and the 5 tuna species (30 species in total) from global public da-
tabases. To do so, we first, validated species scientific name from our 

species list using “rfishbase” R package (Boettiger et al., 2012). Avail-
able occurrence data with associated information (depth and date of 
collection) were retrieved from global open-access datasets Ocean 
Biodiversity Information System (OBIS 29 July 2022) and Global 
Biodiversity Information Facility (http://www.gbif.org) from 1980 to 
July 2022 using online queries via the R packages “robis” (Provoost, 
2023) and “rgbif” (Chamberlain et al., 2023). Subsequently, we removed 
duplicated records based on associated coordinates and date of collec-
tion and we discarded records with missing sampling depth information. 
To avoid outliers, occurrences deeper than 1000 m were also removed 
due to their scarce presence. Additionally, we also removed records that 
were flagged as outliers in geographic space according to the distance 
method (minimum absolute distance = 1000 km) using the R package 
“CoordinateCleaner” (Zizka et al., 2019). By applying this method, we 
identified and removed out records if the minimum distance to the next 
record of the species was larger than 1000 km. Public data repositories 
often present geographic outliers due to erroneous coordinates, for 

Fig. 1. Flow chart showing the novel 3D modelling approach applied to main Atlantic commercial fish.  
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example due to data entry errors or imprecise geo-references, thus 
applying this standardized procedure to avoid outliers in the geographic 
space is highly recommended. See dataset key details of the records we 
kept in the derived dataset (GBIF, 2024). 

Finally, we created a 3D grid within the study area of 1/4◦ resolution 
(692 × 666 cells) and with 47 standard depth levels from the surface to a 
maximum depth of 1000 m, to match the environmental grid (see Sec-
tion 2.4) with same spatial resolution and depth levels used at World 
Ocean Atlas, WOA 2018 (Locarnini et al., 2018) and then aggregated the 
occurrences keeping only one record when several occurrences fell in 
the same grid cell. Depths values associated with each standard level in 
our 3D grid are distributed as follows: they increase every 5 m until 
100 m depth, then they increase every 25 m until 500 m depth, and after 
500 m depth the values increase every 50 m. Thus the 47 depth levels 
values of our 3D grid are (in meters): 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 
50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 
275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 
750, 800, 850, 900, 950, 1000. 

2.4. Environmental data 

We selected a set of potential environmental drivers aiming to cap-
ture the basic niche of the species, with a particular focus on the vertical 
patterns. Two types of environmental data were collated (Table 1): 
three-dimensional variables (3D), which were depth-specific; and two- 
dimensional (2D), that were transformed into three-dimensional (see 
below). 

Three-dimensional variables consisted of (1) temperature, (2) 
salinity, (3) dissolved oxygen, (4) nitrate, and (5) Net Primary Produc-
tion (NPP). Selected environmental variables are known to capture the 

main ecological niche of the fish species in terms of thermal and 
ecophysiological boundaries (salinity and oxygen), and are proxies of 
indirect food availability (i.e., NPP and nitrate as limiting nutrient for 
phytoplankton growth) and of the trophic status of the ecosystem, 
oligotrophic vs productive waters (NPP) (Arrizabalaga et al., 2015; 
Kesner-Reyes et al., 2020). The World Ocean Atlas 2018 (WOA, https:// 
www.ncei.noaa.gov/access/world-ocean-atlas-2018/) was the main 
data source of depth-specific variables, specifically we used “Objectively 
analyzed climatologies” which consisted of interpolated mean fields for 
oceanographic variables at standard depths (Locarnini et al., 2018). For 
temperature and salinity variables, we downloaded the data at 1/4◦

resolution and selected the 1981–2010 decadal period, whilst for dis-
solved oxygen and nitrate, data were available at 1◦ for 1900 to 2020. 
All variables presented 102 vertical standard depth levels, from surface 
to 5500 m depth, and were downloaded in netcdf format. NPP data were 
downloaded from the Global Ocean biogeochemistry hindcast, an ocean 
product available at Marine Copernicus (https://resources.marine.cop 
ernicus.eu/products) for the time period 1993–2010 at 1/4◦ and on 75 
vertical levels. Depth levels in NPP variable were not equally distributed 
as depth levels from our 3D grid, thus we needed to apply a linear 
interpolation of NPP values across depth levels to match the standard 
depths. Then NPP values were transformed to logarithmic scale as fol-
lows: log (NPP + 1). 

Two-dimensional variables included: (6) seabed depth and (7) Mixed 
Layer Depth (MLD). Seabed depth is a proxy of fish habitat preference 
(neritic vs oceanic species), while MLD is a proxy of thermal water 
stratification (Arrizabalaga et al., 2015; Kesner-Reyes et al., 2020). 
Seabed depth was extracted from NOAA server (Amante and Eakins, 
2009) using getNOAA.bathy function from “marmap” R package (Pante 
and Simon-Bouhet, 2013); and MLD data was downloaded in netcdf 

Fig. 2. Selected study area based on FAO areas.  

Table 1 
Summary of the environmental variables, type of data, initial horizontal resolution, period of the climatology and source.   

Variable Type of 
data 

Initial Horizontal 
Resolution 

Period Source 

1 Temperature ( ◦C) 3D 0.25◦ 1981–2010 World Ocean Atlas 2018 (Locarnini et al., 2018) 
2 Salinity (unitless) 3D 0.25◦ 1981–2010 World Ocean Atlas 2018 (Zweng et al., 2018) 
3 Dissolved Oxygen (µmol/kg) 3D 1◦ 1900–2020 World Ocean Atlas 2018 (Garcia et al., 2018) 
4 Nitrate (µmol/kg) 3D 1◦ 1900–2020 World Ocean Atlas 2018 (Garcia et al., 2018) 
5 Net Primary production (mg/m3/ 

day) 
3D 0.25◦ 1993–2010 Marine Copernicus. GLOBAL_MULTIYEAR_BGC_001_029 

6 Mixed Layer Depth (m) 2D 0.25 1981–2010 World Ocean Atlas 2018 (Boyer et al., 2018) 
7 Seabed depth (m) 2D 0.25◦ – NOAA- ETOPO1 (“marmap” R package) (Pante and Simon-Bouhet, 

2013)  
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format from WOA for 1981–2010 decadal period and integrated objec-
tively analysed mean fields for ocean mixed layer thickness at same 
standard depth levels as WOA oceanographic variables. To transform the 
2D variables into 3D, we first created a data frame using the 3D grid as a 
template with 47 depth levels. Seabed depth was converted to 
depth-specific relative distance to seabed variable by subtracting the 
meters at which each depth level is located (Depth value) to the seabed 
depth value at each cell ( Eq. (1)). NA (not available or missing value) 
was assigned to those cells with depth values higher than seabed depth. 

Relative distance to seabedDepth level (m)

= Seabed depth value (m) − Depth value Depth level(m) (1) 

Following a similar procedure, MLD variable data was converted to 
depth-specific relative distance to MLD variable by subtracting the meters 
at which each depth level is located (Depth value) to the MLD value at 
each cell (Eq. (2)). 

Relative Position to MLDDepth level (m) = MLD (m)

− Depth value Depth level(m) (2) 

Occurrences above MLD will present positive values of this variable 
indicating preference to the mixed zone where warmer, lower density 
and mixed upper waters are found; whilst occurrences below MLD will 
present negative values of relative distance to MLD indicating prefer-
ence to colder and denser deeper waters. 

All variables were resampled to match the same horizontal resolution 
as the 3D grid (1/4◦ resolution (692 × 666 cells)) using R package 
“raster” (resample) with a bilinear method (Hijmans, 2022). Resample is 
applied to transfer values between non-matching raster objects. Here we 
applied the bilinear method for resampling, which is one of the most 
common resampling techniques and calculates values of a grid using the 
four nearest neighbouring cells, the bilinear interpolation assigns the 
output cell value by taking the weighted average. 

Prior to model building, we calculated variance inflation factors 
(VIF) to test collinearity between environmental variables for each 
depth level (water column layers sets) and excluded those variables with 
VIF values above 5 (Zuur et al., 2009). Finally, values of the selected 
environmental variables along the depth range from 0 to 1000 m were 
extracted to species presence locations using extract function from 
“raster” R package (Hijmans, 2022). The method used to extract values 
from the environmental raster brick was “simple” method, so the value 
returned was the value of the cell where the point fell. This allowed us to 
generate our occurrence dataset comprising location of the occurrence 
(longitude, latitude, and depth values) and the value of each environ-
mental variable (sea temperature, salinity, nitrate, net primary pro-
duction, relative position to mixed layer depth and relative position to 
seabed). 

2.5. Exploring macroecological patterns: vertical-latitudinal distribution 

We explored the macroecological patterns testing if latitudinal- 
vertical distribution of main commercial fish species follows the 
isothermal distribution in the ocean. This hypothesis testing contributes 
also to empirically confirm the importance of considering explicitly the 
3D aspect on the modelling approach for improving model realism 
(Levins, 1966). To address this, we employed two complementary 
methods. 

In the first method, we fitted linear models for Northern and 
Southern hemisphere subsets of the occurrence points (> 50 occur-
rences) of each of the selected species and modelled depth as a function 
of the latitude where species occurs. These linear models allowed us to 
test our hypothesis, i.e., species tend to occur in upper layers of the 
water column poleward and hence at deeper layers towards the equator. 
Thus, according to our hypothesis, we expect positive slope in linear 
models along the latitudinal gradient for Northern hemisphere species, 
and negative slope for species occurrences at the Southern hemisphere. 

For each species i, depth was modelled as a linear function of latitude 
as follows Eq. (3): 

Di,j = αi + βi Lati,j + εi,j (3)  

where Di,j and Lati,j denote the depth and the latitude of occurrence j for 
species i. For each species αi and βi are the model parameters and εi,j 

follows a normal distribution with mean 0 and variance σ2
i . 

In the second method, we considered non-linear response and all 
species simultaneously because isothermal distribution in the ocean is 
not linear with respect to latitude and presents a slight inverted pattern 
in tropical waters, i.e. shallower poleward but with a secondary mini-
mum close to equator (Palmer et al., 2019; Stewart, 2008). In particular, 
we tested the hypothesis in the overall community using a Generalized 
Additive Mixed Model (GAMM) (Zuur et al., 2009; Wood, 2017), where 
depth was modelled as a smooth function of the fixed effect of latitude 
where species occur, and species were considered a random effect. Our 
hypothesis will be supported if the fitted curve with GAMMs follows the 
latitudinal isothermal patterns. GAMMs were fitted, assuming Gaussian 
error distribution, using bam function from “mgcv” R package (Wood, 
2011), which allows fitting GAM models to very large data sets. 

In this second approach, the following model was fitted to all species 
simultaneously Eq. (4): 

Di,j = αi + βi s
(
Lati,j

)
+ εi,j (4)  

where 

αi ∼ Normal
(
0, σ2

α
)

2.6. Species distribution 3D models 

2.6.1. Shape-Constrained generalized additive models 
According to ecological niche theory, species response curves are 

unimodal with respect to environmental gradients (Hutchinson, 1957). 
While a variety of statistical methods have been developed for species 
distribution modelling, a general problem with most of these habitat 
modelling approaches is that the estimated response curves can display 
biologically implausible shapes which do not respect ecological niche 
theory. This is because species response curves are fit statistically with 
any assumption or restriction, which sometimes do not respect the 
ecological niche theory. To better understand species response to envi-
ronmental changes, SDMs should consider theoretical background such 
as the ecological niche theory (Elith and Leathwick, 2009) and pursue 
the unimodality of the response curves with respect to environmental 
gradients (Citores et al., 2020). Shape-Constrained Generalized Additive 
Models (SC-GAMs) have been pointed to be an effective alternative to 
fitting nonsymmetric parametric response curves, while retaining the 
unimodality constraint, required by ecological niche theory, for direct 
variables and limiting factors (Citores et al., 2020). Thus, here we 
selected SC-GAMs to build the 3D distribution models of the main 
commercial fish species of the Atlantic Ocean. SC-GAMs (Pya and Wood, 
2015) allow incorporating monotonicity and concavity 
shape-constraints in the component functions of the environmental 
predictors of the GAMs (Wood, 2017) and avoid overfitting. A 
single-species and 2D approach of the SC-GAMs is available as 
open-access in the GAM-NICHE tutorial at: https://gam-niche.azti.es/ 
(Valle et al., 2023). 

Since this type of models with binomial distribution need absences, 
we randomly generated (Barbet-Massin et al., 2012) an overall set of 
500,000 pseudo-absence points through our 3D grid which covers the 
whole Atlantic Ocean. We selected this number of pseudo-absence 
points as a balance between having enough data, available cells in the 
grid, and computational limitations. Generated pseudo-absences points 
were then aggregated keeping only one record when several points fell 
in the same grid cell, and values of each of the environmental variables 
were extracted to pseudo-absence points using extract function and 
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simple method from “raster” R package (Hijmans, 2022) as we done to 
generate the occurrence dataset. For each species, we selected from the 
overall set of pseudo-absences an equal number of pseudo-absences to 
the number of occurrences (prevalence = 0.5) (Liu et al., 2005), 
avoiding pseudo-absences where species presences have been recorded. 

We built the SC-GAMs using the R package “scam” (version 1.2–12) 
(Pya, 2021), and we selected binomial distribution and logit link to 
model species presence and absence. Following Citores et al. (Citores 
et al., 2020), we fixed the smoothing parameter (with the argument sp) 
to 10− 5 and controlled the smoothness with a fixed number of knots in 
the construction of the model (k = 8). Node equal to 8 was selected after 
some trials to balance high vs low smoothing fitting, since it was 
considered a good compromise between complexity and model fit. 

2.6.2. Model selection and cross-validation 
To automatize the model selection, we created a function that 

generated a subset of models with different combinations of environ-
mental variables (only including smooths with p-value < 0.05) and 
performed a forward model selection based on AIC (Akaike Information 
Criterion) (Sakamoto et al., 1986). The model selection process was 
stopped when the AIC improvement was lower than 2, following the rule 
of thumb according to which models with an AIC difference less than 2 
are considered to have substantial support (Burnham and Anderson, 
2002). The selected final models, or best models, were those constructed 
by adding significant variables one by one that lead to a reduction of the 
AIC higher than 2. 

We used “SDMTools” R package (VanDerWal et al., 2019) for model 
evaluation and validation. As model performance, we have used the 
explained deviance, 1 - (residual deviance)/(null deviance), which is the 
equivalent to R2 in least-squares models (Guisan and Zimmermann, 
2000). We validated the models based on the cross-validation resam-
pling procedure, which uses independent datasets for model building 
and model validation (Burnham and Anderson, 2002). The comparison 
between the accuracy of the model (that using all observations to build 
the model) and that of cross-validated permits the detection of model 
overfitting, which highly reduce the use of such models for extrapola-
tion. The accuracy of the model has been evaluated using Area Under the 
Receiver Operating Characteristic—ROC—curve (AUC; (Fielding and 
Bell, 1997; Lobo et al., 2008)) and accuracy indices derived from the 
confusion matrix (VanDerWal et al., 2019) To this end, first, the 
modelled probability of species presence was converted to either pres-
ence or absence using probability thresholds. Threshold value for 
presence-absence classification for each model was obtained using 
optim.thresh function that estimates optimal threshold values given 
different accuracy measures. Following Jiménez-Valverde and Lobo 
(Jiménez-Valverde and Lobo, 2007), we selected sensitivity–specificity 
sum maximiser criteria for conversion of probability of species presence 
to either presence or absence. After selecting the thresholds, we vali-
dated the presence-pseudo-absence models via cross-validation method 
(Burnham and Anderson, 2003), with 5-fold equally sized sub-datasets 
(Hijmans, 2012) using kfold function from “dismo” R package (Hijmans, 
2023). The data sets were divided into 5 groups or folds and each group 
was used iteratively to validate the model fitted to the remaining data (i. 
e., 80 % of randomly selected observations were used to fit the model 
and the remaining 20 % observations were used for validation). We 
computed five measures of accuracy for each k random subset and then 
averaged the results: 1) AUC, 2) omission rates (false predicted pres-
ences), 3) sensitivity (true predicted presences), 4) specificity (true 
predicted absences), and 5) proportion correctly identified. 

Additionally, we explored how sensitive these measures were to the 
extent of the study region. To do so, we first generated Repeatable 
Training Regions for each species as a wrapper around each species 
occurrences. We used the function marineBackground from “voluModel” 
package (Owens, 2023) which generates background sampling regions 
by fitting an alpha hull polygon around an occurrence point dataset. 
Specifically, we applied the function without suppling the buff 

argument, thus our Training Regions were calculated by taking the mean 
between the 10th and 90th percentile of horizontal distances between 
occurrence points. Once we defined the species-specific training regions, 
we converted each of them into a 3D grid following the same method we 
applied to the pseudo-absences generated over the entire Atlantic 
Ocean, and then we randomly generated pseudo-absences points 
through the species-specific 3D grids. As we did for the original 
pseudo-absences set, we aggregated the points to the grid cells, we 
removed NA values, and we selected an equal number of 
pseudo-absences to the number of occurrences for each species avoiding 
pseudo-absences where species presences have been recorded. Having 
generated the species-specific training datasets for each species, we 
followed two different approaches to explore the influence of the extend 
of the study area in our models results. In the first approach we 
compared the resulting values of accuracy measures and the response 
curves, for the models built with pseudo-absence selected from 
species-specific training regions and the models built using 
pseudo-absence selected from the entire Atlantic. In the second 
approach we analysed how well were the models built using 
pseudo-absence selected from the entire Atlantic, predicting over the 
species-specific presence-pseudoabsence datasets. 

2.6.3. Spatial prediction of 3D suitable habitat and catch distribution 
To be able to extrapolate the models spatially, we first generated 47 

water column layers sets, one for each depth standard level from surface 
up to 1000 m, and then we estimated the probability of occurrence for 
each water column level using the predict function from “scam” R 
package (Pya, 2021). Biogeographic processes such as dispersal limita-
tion among others (Ludt, 2021) constrain the region used by the species, 
thus there can be suitable areas that are not occupied because species 
cannot disperse. Here we decided to mask the spatial predictions for 
each water column layer by the native distribution of the species to 
avoid including those areas. Native distribution was assigned to each 
species based on the occurrence points used in the models and the 
catches distribution from Watson (Watson, 2020). We divided the 
Atlantic Ocean into west and east creating a transect following the 
Mid-Atlantic ridge, whereas north and south divisions were based on 
latitude (>0 north, <0 south) (Fig. 3). A species was considered to be 
native of one of the divisions (north, south, east, west, north-east, 
north-west, south-east or south-west) if occurrences and catches found 
at that division were > 1% of the total occurrences. The species were 

Fig. 3. Atlantic Ocean divisions defined to assign native distribution to 
modelled species. NW: North-West, NE: North-East, SW: South-West, SE: 
South-East. 
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assigned to be pan-Atlantic if they were present (> 1 % of the total oc-
currences) in all defined divisions. The threshold of 1 % was selected to 
prevent including occurrences data with geographic errors. 

Spatial predictions were also vertically masked considering only the 
predictions until the maximum depth value according to the occurrence 
points (0.99 percentile). Probabilities were then summed up (and scaled 
to 0–1 range) along the water column and the latitude to get the final 3D 
cumulative probabilities maps. In order to get a proxy of the predictions 
confidence, we computed Multivariate Environmental Similarity Sur-
faces (MESS) analysis over all depth layers from each species using the 
observations datasets used to build the models following Elith et al. 
(Elith et al., 2010). Computing MESS analysis we got an index repre-
senting how similar a point in space was to a reference set of points, with 
respect to the set of predictors variables used to build the models. 
Resulting MESS maps were reclassified keeping only positive values and 
summed up through the water column (until the depth corresponding to 
0.99 quantile depth) as done for the probability maps. As a result, we got 
one map for each species showing the summed up number of areas 
where no extrapolation is happening, these are areas where the model 
can be projected (i.e., the environment is well-represented by the set of 
conditions used to calibrate the model). Finally, to generate the poten-
tial catch biomass predictions, we estimated the total occurrence prob-
ability by summing up the probability of occurrence of all suitable cells 
above the threshold. This total occurrence probability was used to 
distribute the overall biomass catches of the given species across the 3D 
potential species habitat suitability as follows Eq. (5): 

CatchesCell =
Occurrence probability Cell x Species catches (tons⋅year− 1)

Total occurrence probability
(5) 

Once we obtained the value of catches per cell, we summed it up 
along the water column. Resulting maps were used to represent species 
potential catch biomass into the 3D space. 

3. Results 

3.1. Fish species selection and occurrence across the water column 

We selected the main 25 commercial species according to the catch 
amount for period 2010–2015. The 13 first selected commercial fish 
species summed up the 90 % of the total catches with reference to the 30 
species, being the Atlantic herring (Clupea harengus), the Atlantic cod 
(Gadus morhua), the Atlantic mackerel (Scomber scombrus), the capelin 
(Mallotus villosus), and the blue whiting (Micromesistius poutassou) the 
most captured species in terms of biomass (Table 2). Among the tuna 
species, Skipjack tuna (Katsuwonus pelamis) was the species with docu-
mented higher mean biomass catches along 2010–2015 period 
(Table 2). Overall, the 30 species account for the 67 % of the total fish 
biomass catches. 

The overall number of aggregated occurrences ranged from 504 
(Molva molva) to 28,475 (Xiphias gladius) (Table 3). Widely distributed 
species such as tunas show the highest number of occurrences followed 
by top captured species (Table 3). Native distribution of modelled spe-
cies was mainly assigned to north division of the Atlantic Ocean (12 out 
of 30 species, 40 %), followed by north-east and pan-Atlantic (8 species 
for each, 27 %) and east Atlantic Ocean (2 species out of 30, 6 %) 
(Table 3). 

We found three main groups of fish according to depth data associ-
ated to occurrences retrieved from the global open-access datasets 
(Table 3 and Fig. 4). The first group includes shallow water species 
(maximum depth value less than 300 m); the second group is for species 
reaching maximum depths below 300 m with mean depths between 75 
and 170 m; and the third group has species reaching 1000 m deep with 
mean depths deeper than 200 m. 

3.2. Macroecological patterns for main commercial fish species 

Results from the fitted linear models to test if latitudinal-vertical 
distribution of main commercial fish species follows the general 
pattern of isothermal distribution in the ocean, showed significant 
response (p < 0.001) for 48.48 % of the cases that followed the pattern 
and 18.18 % of the cases that followed opposite pattern; whilst not 
significant responses (p < 0.001) were found for 21.21 % of the cases 
that followed the expected pattern, and 12.12 % that presented the 
opposite pattern (Supplementary Figures 1 & 2 in Supplementary Ma-
terial 1). These results support our hypothesis, indicating that most of 
the analysed species tend to occur in the upper ocean layers poleward. 

Resulting GAMM fitted using data from the overall communities 
from the northern hemisphere allowed us to relate the depth at which 

Table 2 
List of selected 30 species for modelling. Catches refer to the mean biomass over 
2010–2015 period in the Atlantic Ocean.  

Selected 
groups  

Common 
name 

Scientific name Catch 
(tons/ 
year) 

% of 
catches 

Commercial 
species 

1 Atlantic 
herring 

Clupea harengus 2303,212 23.44 

2 Atlantic cod Gadus morhua 1516,384 15.43 
3 Atlantic 

mackerel 
Scomber scombrus 1223,354 12.45 

4 Capelin Mallotus villosus 936,920 9.54 
5 Blue whiting Micromesistius 

poutassou 
851,248 8.66 

6 Haddock Melanogrammus 
aeglefinus 

466,179 4.74 

7 European 
sprat 

Sprattus sprattus 399,989 4.07 

8 Saithe Pollachius virens 431,277 4.39 
9 European 

anchovy 
Engraulis 
encrasicolus 

249,791 2.54 

10 Atlantic 
horse 
mackerel 

Trachurus 
trachurus 

117,176 1.19 

11 European 
hake 

Merluccius 
merluccius 

104,306 1.06 

12 Greenland 
halibut 

Reinhardtius 
hippoglossoides 

101,513 1.03 

13 European 
plaice 

Pleuronectes 
platessa 

86,837 0.88 

14 Norway 
pout 

Trisopterus 
esmarkii 

60,517 0.62 

15 Deepwater 
redfish 

Sebastes mentella 56,008 0.57 

16 Ling Molva molva 49,577 0.50 
17 Swordfish Xiphias gladius 42,352 0.43 
18 Whiting Merlangius 

merlangus 
35,551 0.36 

19 Largehead 
hairtail 

Trichiurus 
lepturus 

36,624 0.37 

20 Common 
sole 

Solea solea 27,366 0.28 

21 Flounder Platichthys flesus 18,031 0.18 
22 John dory Zeus faber 17,389 0.18 
23 Angler Lophius 

piscatorius 
14,657 0.15 

24 Common 
dolphinfish 

Coryphaena 
hippurus 

13,332 0.14 

25 European 
conger 

Conger conger 11,364 0.12 

Tuna species 26 Skipjack 
tuna 

Katsuwonus 
pelamis 

387,407 3.94 

27 Yellowfin 
tuna 

Thunnus 
albacares 

144,013 1.47 

28 Bigeye tuna Thunnus obesus 64,919 0.66 
29 Albacore Thunnus alalunga 49,415 0.50 
30 Atlantic 

bluefin tuna 
Thunnus thynnus 9084 0.09 

Total    9825,792 100.00  
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species occur as a function of latitude (deviance explained = 14 %, p <
0.0001) (Fig. 5; Supplementary Figures 3 & 4 in Supplementary Material 
1) and confirmed that commercial fish species at northern hemisphere 
followed a similar pattern of isothermal distribution of the ocean. 

3.3. 3D species distribution modelling incorporating water column data 

According to the correlation assessment between environmental 
variables performed to each water column layer set using VIF, dissolved 
oxygen variable was highly correlated to temperature (Supplementary 
Figure 1 in Supplementary Material 2) and was removed from the 
environmental variables. SC-GAM models were built using the other 6 
environmental variables (see the corresponding statistics for all vari-
ables within the occurrence points and pseudo-absence points in 

Supplementary Table 1). SC-GAM models performed well according to 
the explained deviance (ranging from 0.39 to 0.93, with mean = 0.75) 
and R-squared (0.44–0.96, mean = 0.80) (Table 4) (see also Supple-
mentary Figure 2 in Supplementary Material 2). Relative distance to 
seabed was included in 27 of the 30 models and was the variable 
explaining most of the variation in 18 cases. Temperature and salinity 
were included in 24 out of 30 models, being temperature, the variable 
explaining most of the variation in 6 cases and salinity in 1 case. Tem-
perature response curves fitted with SC-GAMs showed the large varia-
tion in optimal and width thermal niche across commercial fishes 
(Fig. 6). Partial response curves for the different environmental vari-
ables from species occurrence probability models also showed a large 
variation in the optimal ranges (see Supplementary Figures from 3 to 7 
in Supplementary Material 2). Relative distance to MLD was included in 
20 out of the 30 models and explained most of the variation in 5 cases. 
NPP and Nitrate were included in 17 and 14 models, respectively, and 
were not within the most explaining variables in any case. 

Tuna species were those species presenting the lowest explained 
deviance (Table 4) and the lowest values in the accuracy measurements, 
except for omission errors where the models presented the highest 
values (Table 5). In addition to the 5 tuna species there are also 2 species 
(Xiphias gladius and Coryphaena hippurus) which are widely distributed 
species (native range = Pan-Atlantic) that also presented low explained 
deviance and low accuracy measurements values (Table 4 & Table 5). 

All models showed good predictive powers with mean values of all 
accuracy indices (AUC, sensitivity, specificity, and proportion of pres-
ences and absences correctly identified) above 90 % (Table 5). All 
models mean omission rate was 0.05. 

Results from the additional exploration that was carried out to assess 
how sensitive were the models results to the extent of the study region 
showed that, although resulting AUC values obtained for the models 
built using species-specific training regions were lower to the models 
built using the pseudo-absence selected from the entire Atlantic, the 
performance of the models built using species-specific training regions 
was consistent with that from the models built using pseudo-absences 
selected from the entire Atlantic. AUC values for the species-specific 
training regions models ranged from 0.71 to 0.98 whilst those for the 
models built using pseudo-absences selected from the entire Atlantic 
ranged from 0.78 to 0.98 (Supplementary Table 1 in Supplementary 
Material 3). Similar differences were found in the rest of measures: 
Omission error (underprediction, false predicted presences), Sensitivity 
(proportion of correctly predicted presence records) and Specificity 
(proportion of correctly predicted absences) and Prop. Correct (pro-
portion correctly identified) measures (Supplementary Table 1 in Sup-
plementary Material 3). While comparing the response curves of the 
models, we found that overall, curves were keeping the similar shapes 
and when changes occurred, those occurred specially at the lowest and 
largest values of the covariables, due to the influence of the range of 
values where the pseuso-absences were created (Supplementary Fig-
ures 1 to 4 in Supplementary Material 3). In some cases, the response 
curves were basically the same (e.g. Engraulis encrasicolus response curve 
of the variable relative distance to seabed), whereas in some other cases 
the response curves shapes were different (e.g. Merluccius merluccius 
response curve of the variable relative position to mixed layer depth). 
Finally, when assessing how well were the models built using pseudo- 
absence selected from the entire Atlantic, predicting over the species- 
specific presence-pseudoabsence datasets, we found an accurate pre-
diction (Supplementary Table 2 in Supplementary Material 3). 

Based on the fitted models, we predicted species occurrence proba-
bility along the water column for the 30 main commercial fish species of 
the Atlantic Ocean. Resulting probability 3D maps are freely available 
for download (see Data Availability section). Several models predicted 
high probability of occurrence in areas where the species are not 
currently present because their native distribution corresponds only to 
one hemisphere or to the east of west of the Atlantic Ocean. Thus, 
masking the predictions to native distribution of the species allowed 

Table 3 
Number of occurrences, depth values (mean, maximum, and 99% quantile), and 
assigned native distribution of the main commercial fish from the Atlantic 
Ocean.  

Scientific name n 
occurrences 

Mean 
depth 

Max 
depth 

99% 
quantile 
depth 

Atlantic 
division 

Molva molva 504 123.79 500 423.5 north 
Engraulis 

encrasicolus 
525 65.92 225 200 east 

Trichiurus lepturus 571 155.75 750 650 pan- 
Atlantic 

Conger conger 596 169.61 850 700 north- 
east 

Solea solea 615 47.72 225 171.5 north- 
east 

Platichthys flesus 647 43.32 450 125 north- 
east 

Zeus faber 846 107.49 450 350 east 
Micromesistius 

poutassou 
917 216 1000 700 north 

Lophius piscatorius 1209 139.9 750 600 north- 
east 

Trisopterus 
esmarkii 

1236 92.2 425 225 north- 
east 

Sprattus sprattus 1239 56.33 225 150 north- 
east 

Merluccius 
merluccius 

1255 141.69 750 623 north- 
east 

Pleuronectes 
platessa 

1640 58.75 250 175 north 

Pollachius virens 1705 104.28 600 400 north 
Merlangius 

merlangus 
1887 67.4 275 200 north 

Katsuwonus 
pelamis 

1913 144.02 1000 950 pan- 
Atlantic 

Sebastes mentella 2123 339.83 1000 900 north 
Mallotus villosus 2618 142.54 1000 650 north 
Reinhardtius 

hippoglossoides 
2679 342.23 1000 950 north 

Melanogrammus 
aeglefinus 

3274 91.17 650 350 north 

Trachurus 
trachurus 

3418 125.33 750 400 north- 
east 

Thunnus thynnus 4125 98.65 1000 850 pan- 
Atlantic 

Scomber scombrus 4782 125.47 600 275 north 
Clupea harengus 6443 75.7 550 325 north 
Gadus morhua 6705 122.43 900 550 north 
Thunnus alalunga 9201 100.68 1000 750 pan- 

Atlantic 
Thunnus obesus 15,345 102.43 1000 800 pan- 

Atlantic 
Coryphaena 

hippurus 
17,077 91.54 1000 300 pan- 

Atlantic 
Thunnus albacares 22,251 121.27 1000 900 pan- 

Atlantic 
Xiphias gladius 28,475 113.83 1000 850 pan- 

Atlantic  
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avoiding unrealistic estimation of catches and applying threshold level 
to filter the predictions allowed obtaining more accurate estimations. 
The 3D cumulative probability maps are shown for E. encrasicolus and 
T. alalunga as illustration examples (Fig. 7, Fig. 8 and conceptual ver-
sions in semi-3D in Supplementary Figures 38 & 39 in Supplementary 
Material 2), but are available for all species together with the cumulative 
positive MESS maps in the Supplementary Material 2 (Supplementary 
Figures from 8 to 37). The SC-GAM model for European anchovy was 
fitted including temperature and relative distance to seabed variables. 
The model explained 0.87 of the deviance (Table 4) and an AUC of 0.97 
(Table 5). Cumulative occurrence probability 3D map (Fig. 7) showed 
high occurrence probability in the Northeast Atlantic region at shallow 
depths. 

The SC-GAM model for albocore was fitted including all variables. 

This tuna species occurs in tropical and temperate waters of all oceans 
including the Mediterranean Sea. The model had a low predictive power 
in comparison to models from other species with a more restricted dis-
tribution range, it explained 0.4 of the deviance (Table 4) and presented 
an AUC of 0.78 (Table 5). The cummulative probability 3D map (Fig. 8) 
showed widespread occurrence probabilty for the species between 60◦N 
to 60◦S latitudes, indicating that species required environmental con-
ditions are almost found elsewhere in that area of the Atlantic ocean. 

Resulting map of cumulative potential biomass catches along the 
water column for the Atlantic Ocean, are shown for the 25 main com-
mercial species and for the 5 tuna species (Fig. 9). Individual maps for 
each species are freely available for download (see Data Availability 
section). Total potential catch biomass for the 30 species, summed up 
9825,698 tons/year, with maximum values in the North Sea and the 

Fig. 4. Distribution of the species occurrences from the along the depth gradient from 0 to 1000 m. Lower and upper box boundaries are 25th and 75th percentiles, 
the line inside the box represents the mean and the lower and upper error whiskers are the 10th and 90th percentiles, respectively. The filled circles represent data 
falling outside 10th and 90th percentiles. Boxplots are coloured in greyscale based on the three main fish groups according to depth. 

Fig. 5. Mean ocean temperature profile along the latitudinal gradient with overlapped species occurrence points for the overall fish community from the Atlantic 
Northern hemisphere and the fitted GAMM curve (in red) of depth as a function of latitude with species as a random effect. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Norwegian Sea. Both coastal areas, eastern and western, were found to 
be most productive in comparison with open ocean. 

4. Discussion 

4.1. Macroecological patterns: vertical-latitudinal distribution 

The distribution of most of the commercial fish species studied here 
follows the general latitudinal-vertical pattern of isothermal distribution 

in the ocean, i.e., species occur at shallower layers at mid to high lati-
tudes, whilst they shift towards deeper and intermediate waters at lower 
latitudes, except for an inverted pattern close to equator. Thus, our re-
sults confirmed the expected hypothesis of “equatorial submergence” 
(Close et al., 2006), showing that Atlantic commercial fish species avoid 
the warmer surface waters towards the equator by diving down to 
deeper waters and tend to occur in shallower layers when moving 
poleward (Reygondeau et al., 2012; Trubovitz et al., 2020). The equa-
torial submergence phenomenon was known since Charles Darwin, who 

Table 4 
Explained deviance (ED) and R-squared (r.sq) values for the model built for each species. Chi squares values for each variable included in the model (those variables 
with higher chi square values are explaining most of the variation). temp: temperature; sal: salinity, nit: nitrate, dist: relative distance to seabed; MLD: Relative Position 
to Mixed Layer Depth; and NPP: Net Primary Production.  

Scientific name ED r.sq temp sal nit dist MLD NPP 

Clupea harengus 0.78 0.83 748.58 209.12 118.14 1206.09 – 16.23 
Conger conger 0.83 0.88 13.68 15.13 – 125.13 – – 
Coryphaena hippurus 0.52 0.58 1313.70 71.53 41.33 2364.27 2479.75 758.61 
Engraulis encrasicolus 0.87 0.91 25.65 – – 20.23 – – 
Gadus morhua 0.8 0.85 110.24 200.54 278.70 216.11 445.08 – 
Katsuwonus pelamis 0.62 0.7 195.99 40.62 – 561.86 194.15 28.22 
Lophius piscatorius 0.93 0.95 32.05 35.50 – 26.31 9.71 – 
Mallotus villosus 0.76 0.82 – 38.77 50.48 208.71 65.10 45.35 
Melanogrammus aeglefinus 0.83 0.88 127.56 40.69 201.76 13.57 111.14 29.48 
Merlangius merlangus 0.81 0.85 173.17 20.12 – – 73.11 – 
Merluccius merluccius 0.88 0.91 112.52 7.33 16.72 43.49 19.05 – 
Micromesistius poutassou 0.83 0.87 17.62 24.65 – 174.68 – 20.07 
Molva molva 0.77 0.83 – 30.53 – 42.90 – – 
Platichthys flesus 0.9 0.93 – – – 51.63 – – 
Pleuronectes platessa 0.83 0.88 156.12 24.19 – – 34.62 – 
Pollachius virens 0.85 0.89 19.30 12.13 – 186.99 – – 
Reinhardtius hippoglossoides 0.84 0.88 – 45.85 25.49 222.95 69.95 13.87 
Scomber scombrus 0.79 0.85 946.04 – – 1012.24 247.87 195.12 
Sebastes mentella 0.9 0.94 62.52 13.99 – 96.07 60.92 46.76 
Solea solea 0.85 0.89 – – 8.13 38.77 – – 
Sprattus sprattus 0.93 0.96 17.14 30.36 – 45.29 – – 
Thunnus alalunga 0.4 0.44 377.97 22.68 376.75 603.56 1662.39 544.62 
Thunnus albacares 0.5 0.57 2505.31 105.71 141.22 3687.56 3136.95 1103.01 
Thunnus obesus 0.39 0.44 598.45 16.42 642.43 1123.29 1790.40 585.58 
Thunnus thynnus 0.53 0.59 270.15 45.93 111.84 1004.24 471.42 27.45 
Trachurus trachurus 0.84 0.88 259.75 – 69.96 599.46 191.76 59.21 
Trichiurus lepturus 0.87 0.92 26.89 11.08 – 99.81 37.79 – 
Trisopterus esmarkii 0.75 0.81 – 17.71 – 94.85 – 33.19 
Xiphias gladius 0.41 0.46 1293.15 185.54 738.53 2867.94 3673.79 1204.49 
Zeus faber 0.66 0.7 133.64 – – – 67.61 63.18 
All models mean 0.75 0.80       
All models SD 0.16 0.16        

Fig. 6. Partial response curves for sea temperature from species occurrence probability models. Each line corresponds to different Atlantic commercial fish species, 
E. encrasicolus and T. alalunga are highlighted in colours. 
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described how the Arctic fishes disappear in the seas of Japan and of 
northern China and reappear on the coast of Tasmania, southern New 
Zealand and the Antarctic islands (Pauly, 2004). The occurrence of this 
phenomenon can be extended to any type of marine animals (Close 
et al., 2006; Ekman, 1967), as found in radiolarians for instance (Tru-
bovitz et al., 2020). This macroecological pattern is probably a response 
related to temperature-respiration constraints shaping the species ther-
mal niche (Close et al., 2006; Pauly et al., 1998). Equatorial submer-
gence is caused by the same physiological constraints that also 
determine the latitudinal range of species (Close et al., 2006), and 
therefore its shift due to global warming are expected to vary accord-
ingly. This has relevant implications since those species that cannot 
track optimal temperatures on a global scale might undergo local 
extinction where local environmental thresholds are exceeded (Trubo-
vitz et al., 2020). As fish latitudinal-vertical distribution follows the 
prevailing isothermal distribution in the ocean, an accurate represen-
tation of species distributions requires 3D modelling with incorporation 
of explicit depth dimension into the environmental data. 

4.2. Species distribution 3D models: contributions and limits 

Species distribution models at the marine realm have been widely 
used as a tool for understanding species spatial ecology (Robinson et al., 
2017), but scarcely addressed the water column explicitly. In compari-
son with SDMs for terrestrial organisms, the three-dimensional habitat 
of pelagic organisms implies consideration of depth information (Dam-
bach and Rödder, 2011). Ignoring depth in SDMs leaves out crucial in-
formation and could lead to misleading outcomes (Bentlage et al., 
2013). Some studies use ocean depth as a covariate in the model as an 
attempt to account for the third dimension and other use simplified 
at-depth variables (e.g. surface temperature and bottom temperature) to 
represent marine environments (Duffy and Chown, 2017), however final 
prediction is always a 2D representation. Several authors have already 
highlighted the particular relevance and challenge of the 
three-dimensionality in modelling marine environments (Dambach and 
Rödder, 2011; Duffy and Chown, 2017; Robinson et al., 2011). In fact, a 
recent comprehensive review of ecological niche models and SDMs in 
marine environments concluded that the additions of a third dimension 
has yet to be incorporated (Melo-Merino et al., 2020). This is a conse-
quence of data limitation related to species occurrences that are not 
always vertically informed (e.g., fisheries-derived information) or/and 
the availability of depth-specific environmental data (e.g., environ-
mental predictors). Dambach and Rödder (Dambach and Rödder, 2011) 
proposed novel techniques for addressing specific needs in a 3D context 
and some authors have attempted to consider the three-dimensionality 
of the marine environment, Bentlage et al. (2013) decomposed 3-dimen-
sional structure of marine environmental into a single, continuous 2D 
grid that replicated global oceans multiple times allowing to evaluate all 
the ecological information contained in distinct depth layers at the same 
time. Duffy and Chown (Duffy and Chown, 2017) used multiple 2D 
layers to approximate the 3-dimension as proposed by Dambach and 
Rödder (Dambach and Rödder, 2011). Recently, Pérez-Costas et al. 
(Pérez-Costas et al., 2019) developed a modelling procedure called 
NOO3D available in the ModestR software, which can be used to esti-
mate the 3D distribution of species using 3D occurrence samples and 3D 
environmental datasets. 

Taking advantage of the rising available data resources, here we 
adapted the methodology from Duffy and Chown (Duffy and Chown, 
2017) to estimate the species habitat suitability along the water column. 
Similarly to us, Owens and Rahbek, (2023) have also developed a way 
forward to model species distribution into the 3 dimensional space by 
generating species distribution models based on environmental data 
extracted at the depths where individuals were observed, and calibrated 
with three-dimensional sampling of pseudo-absences. The novelty of our 
approach is that based on the modelled species probability of occurrence 
along the water column, we estimate the potential catch biomass for the 
Atlantic Ocean from surface to 1000 m depth. Resulting maps showed 
that most of the potential catch biomass for 25 main non-tuna com-
mercial species is mainly accumulated at the northern hemisphere, 
while potential tuna catches mainly occur at tropical and subtropical 
regions. However, due to the limitations of the input data used to model 
species distribution (see below) results should not be over-interpreted in 
a certain area and species. 

Our models were based exclusively on public species occurrence data 
retrieved from the global repositories GBIF and OBIS. These public data 
repositories usually present geographic biases, such as inaccurate geo-
location and spatial autocorrelation among occurrence points, as well as 
species misidentifications (Melo-Merino et al., 2020). In addition, many 
occurrence records held in these repositories lack associated depth data 
and must, therefore, be excluded from 3D analyses (Duffy and Chown, 
2017). Our approach included a data cleaning procedure to address 
these issues which removes outliers from the geographic space and 
validates species names before including the occurrence points of each 
species data set. Through this data cleaning procedure, those records 
lacking the depth information were removed as recommended by Duffy 

Table 5 
Mean accuracy measures for the SC-GAM models built for each species: mean 
AUC, mean omission, mean sensitivity, mean specificity, and mean proportion 
correctly identified.  

Scientific name mean 
AUC 

mean 
Omission 

mean 
Sensitivity 

mean 
Specificity 

mean 
Prop 
Correct 

Clupea harengus 0.95 0.03 0.97 0.93 0.95 
Conger conger 0.96 0.04 0.96 0.96 0.96 
Coryphaena 

hippurus 
0.86 0.14 0.86 0.85 0.86 

Engraulis 
encrasicolus 

0.97 0.01 0.99 0.94 0.97 

Gadus morhua 0.96 0.03 0.97 0.94 0.96 
Katsuwonus 

pelamis 
0.91 0.07 0.93 0.88 0.91 

Lophius 
piscatorius 

0.98 0.01 0.99 0.98 0.98 

Mallotus villosus 0.94 0.01 0.99 0.9 0.94 
Melanogrammus 

aeglefinus 
0.96 0.02 0.98 0.95 0.96 

Merlangius 
merlangus 

0.95 0.04 0.96 0.94 0.95 

Merluccius 
merluccius 

0.97 0.02 0.98 0.97 0.97 

Micromesistius 
poutassou 

0.96 0.03 0.97 0.95 0.96 

Molva molva 0.95 0.06 0.94 0.96 0.95 
Platichthys flesus 0.97 0.02 0.98 0.96 0.97 
Pleuronectes 

platessa 
0.96 0.03 0.97 0.96 0.96 

Pollachius virens 0.97 0.03 0.97 0.96 0.97 
Reinhardtius 

hippoglossoides 
0.97 0.03 0.97 0.97 0.97 

Scomber scombrus 0.95 0.02 0.98 0.91 0.95 
Sebastes mentella 0.97 0.02 0.98 0.96 0.97 
Solea solea 0.97 0.01 0.99 0.94 0.97 
Sprattus sprattus 0.98 0 1 0.96 0.98 
Thunnus alalunga 0.78 0.03 0.97 0.6 0.78 
Thunnus 

albacares 
0.86 0.11 0.89 0.82 0.86 

Thunnus obesus 0.8 0.14 0.86 0.73 0.8 
Thunnus thynnus 0.86 0.13 0.87 0.84 0.86 
Trachurus 

trachurus 
0.97 0.02 0.98 0.95 0.97 

Trichiurus 
lepturus 

0.97 0.03 0.97 0.97 0.97 

Trisopterus 
esmarkii 

0.94 0.03 0.97 0.92 0.94 

Xiphias gladius 0.8 0.18 0.82 0.78 0.8 
Zeus faber 0.9 0.08 0.92 0.87 0.9 
All models mean 0.93 0.05 0.95 0.91 0.93 
All models SD 0.06 0.05 0.05 0.08 0.06  
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and Chown (Duffy and Chown, 2017). Any improvement in the quantity 
and quality of information of these databases, especially regarding the 
depth dimension, would directly lead to better and more reliable 3D 
models. Published occurrence datasets also lack occurrence data in some 
regions (Gaiji et al., 2013), this might imply an incomplete character-
ization of the niche when building models based on this type of data and 
might cause inaccuracies in the spatial predictions in particular areas. 
This is the case of Sprattus sprattus, where South Mediterranean areas are 
not being predicted as suitable (Supplementary Figure 14 in Supple-
mentary Material 2). A large proportion of the occurrence data we 
retrieved from the global repositories was fishery-dependent in 
conjunction with a smaller proportion of fishery-independent data. 
Although fishery dependent data are inherently biased, they can still be 

useful to supplement other data sources, if the SDMs account properly 
for preferential sampling and other potential bias sources (Karp et al., 
2023). 

We developed here a methodological approach to generate 3D fish 
distribution based exclusively on public species occurrence data and 
environmental correlates that conform with ecological niche theory, 
using shape-constrained GAMs. Fitted SC-GAMs resulted in a good bal-
ance between goodness of fit and agreement with ecological niche the-
ory. Models were selected and fitted automatically through our model 
selection function. Automatic selection of models was found to be very 
advantageous when modelling Multiple species, however, influence of 
the conditions fitted for variable selection (p-value and AIC criterion) 
should be considered according to research aims. Within the 30 

Fig. 7. 3D cumulative probability map for European anchovy (Engraulis encrasicolus), A) summed up probabilities along the water column and B) summed up 
probabilities through the latitudinal gradient. 

Fig. 8. 3D cumulative probability map for Albacore (Thunnus alalunga), A) summed up probabilities along the water column and B) summed up probabilities through 
the latitudinal gradient. 
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modelled species we found that spatial predictions for Solea solea 
(Supplementary Figure 27 in Supplementary Material 2) and Platichthys 
flesus (Supplementary Figure 28 in Supplementary Material 2) were 
overestimating suitability to the northernmost region of the Northeast 
Atlantic Ocean. This could be related to the fact that the final model for 
these species did not include sea temperature as predictor variable. As 
mentioned above, results from our study were useful to reach our goal of 
getting an overall view of potential catch biomass based on the proba-
bility of occurrence modelled M. species but should not be over- 
interpreted in a certain area and species. 

The developed 3D models of fish occurrence probability have the 
capability to be improved with the updates of new data for data-poor 
species, and to be projected under climate change scenarios. Theoret-
ical background such as the ecological niche theory (Hutchinson, 1957) 
taken into account here avoids overfitting-derived artifacts in climate 
change projections. The use of SDMs in marine environment is 

increasing (Melo-Merino et al., 2020) because of its relatively easiness to 
build and apply; however, SDM methods should be improved to over-
come some common limitations. One limitation we encountered here 
was the need of presence and absence data to fit SC-GAMs with depth 
distribution. We addressed the lack of real absence data randomly 
generating pseudo-absence points through the 3D grid. Although se-
lection of pseudo-absences points was species-specific in number (we 
selected an equal number of pseudo-absences to the number of occur-
rences), we did not make the selection spatially specific and therefore 
the extent of the study area was the entire Atlantic Ocean for all the 
species. The influence of the extent of the study area have been found to 
strongly affect the results of SDMs (Acevedo et al., 2012; Barve et al., 
2011; Lobo et al., 2008). Different approaches have been proposed for 
delimiting the geographical background in species distribution model-
ling, such as marine training regions (Owens and Rahbek 2022) or trend 
surface analysis (TSA) (Acevedo et al., 2012). By restricting the extent 

Fig. 9. Modelled potential biomass catches (tons/year) per surface unit (0.25◦ latitude x 0.25◦ longitude) summing up catches along the water column for A) 25 main 
commercial species, and B) 5 Tuna species. 
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using a geographical criterion, model performance in the core area of 
the species distribution can be significantly improved (Acevedo et al., 
2012). However, when predicting to areas that have environmental 
values that are beyond those found in the training region, prediction 
uncertainty increases (Elith et al., 2010). Here we kept the extent of the 
geographical background to the entire Atlantic Ocean according to our 
goal, nevertheless, we calculated multivariate environmental similarity 
surfaces to get a proxy of predictions’ confidence and masked our pre-
dictions considering that there are biogeographic processes such as 
dispersal limitation among others (Ludt, 2021) that constrain the region 
used by the species. As pointed out by Lobo et al. (2008), AUC values 
might be affected by the extent of the study area. Here we found lower 
AUC values for the models built using species-specific training regions, 
however the additional exploration we carried out to assess how sensi-
tive were the models results to the extent of the study region did not 
show substantial differences across settings (dataset built using 
pseudo-absences selected from the entire Atlantic vs dataset built 
selecting pseudo-absence from species-specific training regions) and 
predictions were found to be consistent. In addition, our models 
explained deviance for tuna species (ranging from 0.39 to 0.62) is 
comparable to that found by Erauskin-Extramiana et al., (2019) (ranging 
from 0.35 to 0.62). 

It must be taken into account that in this case study we did not 
include any consideration regarding the fishing activity, such as the gear 
employed, the effort or the fleet characteristics. Another limitation of 
our work is the use of climatological 3D fields of the ocean, i.e., not 
considering the temporal variability scales of the ocean into the SDM. 
This might be taken into account in further steps for migrating species, i. 
e., with different seasonal foraging or spawning habitat. Limitations that 
our approach have not addressed are the population dynamics, dispersal 
movements, multi-habitat use of species, and explicit species in-
teractions. Interspecific interactions, for instance, can strongly affect the 
biogeography of species beyond local extents (Hui, 2016; Tikhonov 
et al., 2020). Some tools such as joint SDMs have recently been devel-
oped to combine both climatic and species interactions (Hui, 2016; 
Tikhonov et al., 2020). 

4.3. Perspectives 

Our approach could be applied to other areas, different target spe-
cies, future scenarios, and help identifying the most fish productive 
areas. This information could be also useful to support policy makers to 
balance the need for environmental protection with sustainable marine 
resource exploitation (i.e., spatial prioritization, design of marine pro-
tected areas, and marine spatial planning). Using the resulting habitat 
suitability maps biodiversity assessments and global change impact as-
sessments could be performed. Furthermore, species models could be 
projected under climate change scenarios to help reducing the uncer-
tainty of the climatic impacts on fisheries (e.g., Erauskin-Extramiana 
et al. (Erauskin-Extramiana et al., 2019)). A better understanding of 
the 3D distribution of the commercial species can help to resolve con-
flicts when new human activities are planned (Coccoli et al., 2018; 
Queirós et al., 2021). This 3D models can also help to adapt fisheries to 
climate change and maybe an opportunity for the industry to mitigate 
climate change by reducing emissions (Granado et al., 2021). Climate 
change is affecting species distribution and biodiversity patterns (Bau-
dron et al., 2020; Chust et al., 2022; Erauskin-Extramiana et al., 2020), 
and it is expected to continue in the future (Erauskin-Extramiana et al., 
2023; Fernandes et al., 2020). Furthermore, climate-adaptation objec-
tives in fisheries management are largely missing (Bryndum-Buchholz 
et al., 2021). Industry can adapt to these changes by using operational 
species distribution forecasting tools which are starting to emerge 
(Honarmand Ebrahimi et al., 2021; Rubio et al., 2021). These opera-
tional forecasting tools may also be used to identify avoidance zones, e. 
g. to reduce bycatch (Howell et al., 2008). Another potential use is to 
support the optimization of fishing operations to reduce their fuel 

consumption (reduce operational costs) and the consequent reduction in 
emissions (climate change mitigation) (Basurko et al., 2022; Bell et al., 
2017; Parker et al., 2018). 

5. Concluding remarks 

The accurate distribution of main commercial fish over the Atlantic 
and through the water column is still unknown. Here, we explored fish 
macroecological patterns and concluded that latitudinal-vertical distri-
bution follows the prevailing isothermal distribution in the ocean, 
confirming that a reliable representation of distributions needs 3D 
modelling and explicit incorporation of depth dimension into the envi-
ronmental data. Thus, we developed a methodological approach to 
model 3D species distribution based exclusively on public species 
occurrence data and environmental correlates that conform with 
ecological niche theory, using shape-constrained GAMs. The ecological 
models are, in this way, selected and fitted automatically. The species 
response curves to 3D environmental gradients (sea water temperature, 
salinity, nitrate, net primary productivity, distance to seafloor, and 
relative distance to mixed layer depth) for the 30 main commercial 
species of the Atlantic yielded very good model accuracy performance 
(78–98 %). The developed 3D models of fish occurrence probability 
have the capability to be improved with the updates of new data for 
data-poor species, and to be projected under climate change scenarios. 
The obtained 3D maps of estimated fish distribution conform useful and 
new knowledge that may help policy makers to balance the need for 
environmental protection with sustainable marine resource exploitation 
of the Atlantic Ocean. 
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Scharfe, M., Thomas, H., Weisse, R., Zorita, E., 2015. The North Sea — A shelf sea in 
the Anthropocene. Journal of Marine Systems 141, 18–33. 

Erauskin-Extramiana, M., Alvarez, P., Arrizabalaga, H., Ibaibarriaga, L., Uriarte, A., 
Cotano, U., Santos, M., Ferrer, L., Cabré, A., Irigoien, X., Chust, G., 2019a. Historical 
trends and future distribution of anchovy spawning in the Bay of Biscay. Deep Sea 
Research Part II: Topical Studies in Oceanography 159, 169–182. 

Erauskin-Extramiana, M., Arrizabalaga, H., Cabré, A., Coelho, R., Rosa, D., 
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Pérez-Costas, E., Guisande, C., Vilas, L.G., Roselló, E.G., Heine, J., Dacosta, J.G., Lobo, J. 
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