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A B S T R A C T   

Detection and prevention of fish food fraud are of ever-increasing importance, prompting the need for rapid, 
high-throughput fish speciation techniques. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has 
quickly established itself as a powerful technique for the instant in situ analysis of foodstuffs. In the current study, 
a total of 1736 samples (2015–2021) - comprising 17 different commercially valuable fish species - were ana-
lysed using iKnife-REIMS, followed by classification with various multivariate and machine learning strategies. 
The results demonstrated that multivariate models, i.e. PCA-LDA and (O)PLS-DA, delivered accuracies from 92.5 
to 100.0%, while RF and SVM-based classification generated accuracies from 88.7 to 96.3%. Real-time recog-
nition on a separate test set of 432 samples (2022) generated correct speciation between 89.6 and 99.5% for the 
multivariate models, while the ML models underperformed (22.3–95.1%), in particular for the white fish species. 
As such, we propose a real-time validated modelling strategy using directly amenable PCA-LDA for rapid 
industry-proof large-scale fish speciation.   

1. Introduction 

Worldwide, there is an increased demand for fish, which is being met 
by expanding traditional capture fisheries and overfishing, as well as by 
switching to aquaculture (FAO, 2020). Overfishing has contributed 
significantly to the global collapse of marine fisheries, although there 
are also other influencing factors, such as natural predation and climate 
change (Lima, Canales, Wiff, & Montero, 2020). The drop in stock 
biomass, increased demand for fish in general, and certain fish species 

specifically create conditions for a number of different illegal activities 
to take place, including illegal fishing activities, substitution and mis-
labelling frauds (Fox et al., 2018). Illegal, unreported and unregulated 
(IUU) fisheries are believed to be responsible for approximately 26 
million tonnes of fish caught each year (FAO, 2020). IUU fisheries un-
dermine the efforts taken by governments and conservationists to pro-
tect endangered species and return fisheries to sustainable levels. 
Mislabelling and substitution moreover threaten food integrity, con-
sumer trust and public health (Fox et al., 2018). Therefore, to be able to 
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counteract fraudulent activities, post-harvest and production species 
identification is required to expose the illegal capture and sale of pro-
tected and endangered species, as well as substitution or mislabelling of 
inferior, lower-value (e.g. more widely available) fish species as higher- 
value species. For this purpose, accurate and precise as well as high- 
throughput fish speciation methodologies are required to meet the 
need of the fisheries sector. 

The currently available techniques for industrial fish speciation are 
varied, ranging from inexpensive rapid testing techniques such as 
enzyme-linked immunosorbent assays (ELISA), costly and time- 
consuming molecular biology techniques such as polymerase chain re-
action (PCR) and genome sequencing that can be used to accurately 
determine species and breed, to proteomics and metabolomics ap-
proaches making use of mass spectrometry (Cutarelli et al., 2014; Lasch 
et al., 2019; Rasmussen & Morrissey, 2008; Ruethers et al., 2020; Stahl 
& Schröder, 2017). Mass spectrometry-based approaches have the spe-
cific advantage of being able to simultaneously assess freshness, speci-
ation, pre-catch conditions, fishing period and gear, fish size, physiology 
and metabolism, geographic and/or farming origin, etc. in both fresh 
and processed fish. This is a distinct advantage compared to several 
existing as well as rapidly emerging techniques including e.g. element 
profiling approaches (limited to geographic origin) (Anderson, Hobbie, 
& Smith, 2010; Varrà et al., 2021), and artificial imaging strategies 
(limited to uncut fish, based on e.g. neural networks) (Navotas et al., 
2018). 

The amount of information provided by an analysis is typically 
proportional to the time taken to run that analysis, with reliability 
similarly dependent on the time required per analysis. ELISA is fast but 
demonstrates higher error rates that can frequently reach 40 %, often 
due to cross-reactivity in closely related species. PCR, MALDI (Matrix- 
Assisted Laser Desorption/Ionization) and LC-MS (Liquid Chromatog-
raphy coupled to Mass Spectrometry) methods, on the other hand, 
produce more in-depth information and/or have very low error rates, 
yet entail time and/or cost per-sample penalties (Black et al., 2017; 
Trotta et al., 2005). Interestingly, Ambient Ionisation Mass Spectrom-
etry (AIMS) is a relatively recent development, which enables the 
analysis of unprocessed or minimally processed food samples (Birse 
et al., 2021). The ion sources developed for ambient mass spectrometry 
are typically mounted to the same models of mass spectrometers used in 
conventional LC-MS analysis, meaning the techniques can provide rich 
results with very low error rates, but without the time- and cost-related 
drawbacks of conventional MS (Black, Chevallier, & Elliott, 2016). 
Rapid Evaporative Ionisation Mass Spectrometry (REIMS), a specific 
type of AIMS, was developed to make use of the analyte-rich smoke 
aspirated from electrosurgical knives used in surgery to assist in rapidly 
differentiating cancerous from healthy tissue (Schäfer et al., 2009). 
More specifically, the technique works by generating mass spectra of the 
lipids released from the cell wall across one or more mass ranges, 
generating a metabolic fingerprint. The fingerprint of a tissue sample is 
then compared to reference samples of known provenance or authen-
ticity, such as a specific species or a production system (Birse et al., 
2021; Black et al., 2019). This process can be completed in seconds, in 
the case of REIMS’ original cancer surgery application, this speed allows 
the surgical team to quickly diagnose and more easily remove cancerous 
tissue during surgery (Phelps et al., 2018). For food testing, the tech-
nique was first applied in the aftermath of the horsemeat scandal that 
swept across Britain and Europe in 2011 and this speed could be used to 
enable significant numbers of samples to be tested, ensuring represen-
tative sampling (Balog et al., 2016; Birse et al., 2022). Samples of 
mammalian tissue, most typically commercially available meat and fish 
fillets are cut using the same type of electrosurgical knife, after which 
the analyte-rich smoke is aspirated into a time-of-flight mass spec-
trometer. Chemometric modelling is then used to rapidly assess the 
fingerprint of the sample being analysed, comparing it against the li-
brary spectral data of authentic samples to enable classification (Ross 
et al., 2020). 

The aim of the current work was to develop an industry-compliant 
pipeline that could enable real-time fish species prediction within mi-
nutes (Fig. 1). A total of 1736 fish fillets were included in the training 
and validation set over a period of seven years, while 432 fish fillets 
received at the end of that period were used to externally test the ob-
tained models and assess the speed of the developed pipeline in light of 
future at-line implementation. For chemometric modelling, conven-
tional multivariate LDA and (O)PLS-DA approaches were compared to 
the use of advanced machine learning (ML) algorithms. 

REIMS data has traditionally made use of PCA-LDA modelling, and 
less frequently, (O)PLS-DA modelling (Gredell et al., 2019). These 
techniques make use of a fixed series of statistical analysis on data to 
discern patterns within the spectral data based on underlying class data. 
Multivariate algorithms are essentially dumb and have no capability to 
adapt to the data in order to improve classification performance. As a 
result, they tend to perform best with datasets which start with larger 
differences. Machine learning techniques are considered intelligent as 
they have the potential to adapt the underlying mathematic algorithms 
to achieve best classification performance as more data is used to train 
the system. This makes ML better suited to highly similar data with few 
discrete differences (Gredell et al., 2019; Morellos et al., 2016). 

Machine learning can additionally remove the requirement for data 
pre-processing, potentially enabling faster analysis results, as such 
potentially benefitting the overall efficacy of a REIMS-based fish speci-
ation workflow. We hypothesize that multivariate and/or machine 
learning-based classification of REIMS spectra can be used for directly 
amenable rapid industry-proof large-scale fish speciation monitoring. 

2. Material and methods 

2.1. Chemicals 

Leucine-enkephalin was obtained from Waters (Millford, MA, USA) 
and 2-propanol (LC-MS grade) was supplied by Honeywell Riedel-de 
Haën (Seelze, Germany). Ultra-pure deionised water (18.2 MΩ/cm) 
was obtained from a Millipore Milli-Q system (Billerica, MA, USA). 

2.2. Samples 

Authentic fish samples (comprising fillets, tails and unspecified tis-
sue) were received from several trusted suppliers (Tesco, Matis Iceland, 
unknown sources) and stored at − 20 ◦C upon arrival. In total, there were 
17 different fish species, with 11 white and 6 pink fish species 
(Table S1). Samples were sourced from both producers and wholesale 
vendors in the United Kingdom, Ireland, Norway, United States and 
Iceland over a seven-year time period (2015–2022), to ensure neither 
geographical origin nor dates of harvest or sampling would unduly in-
fluence the resulting modelling. For the validation set, Icelandic salmon 
was included in addition to other fish from Table S1. Samples were 
defrosted for approximately 2 h at room temperature prior to analysis 
and then stored at 4 ◦C ± 2 ◦C awaiting analysis, having been stored for 
48 to 72 h at − 20 ◦C upon delivery. An attempt was made to analyse 
frozen samples directly, but since iKnife-REIMS analysis requires con-
ductivity of the sample, it proved necessary to thaw the samples 
immediately before analysis. 

2.3. REIMS data acquisition 

Samples were analysed using a Waters G2-XS QToF instrument 
(Waters, Wilmslow, UK) fitted with a Waters REIMS ion source (Waters, 
Wilmslow, UK). The REIMS system was operated with the following 
parameters: negative ionisation mode, cone voltage of 60 V, heater bias 
of 40 V and a collision cell voltage of 15 V. Data acquisition was per-
formed in sensitivity mode with continuum data acquisition, over a mass 
range of 100–1,200 m/z, with a scan speed of 2 scans per second. 
Leucine-enkephalin (0.1 ng/µL) in 2-propanol was infused into the 
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REIMS source at 0.2 mL/min by means of a Waters Acquity I-Class BSM 
(Waters, Milford, MA, USA) to enable accurate mass correction, whilst 
the presence of 2-propanol additionally assists ionisation. For priming, 
non-reoccurring external quality control (QC) samples were analysed 
prior to the analysis of the actual samples but excluded from further data 
analysis. 

The electrosurgical knife was supplied by Erbe (Erbe Elektromedizin 
GmbH, Tuebingen, Germany) and connected to the instrument by means 
of medical grade Tygon 15 mm ID tubing (Saint-Gobain, Solon, OH, 
USA). The knife was powered by an Erbe VIO50C electrosurgical 
generator set to 40 W in dry-cut mode. Samples were ‘burned’ four times 
using the knife across a representative area of the tissue sample. Each 
burn lasted approximately 1 s, with each burn evenly separated from the 
last. 

2.4. Chemometric multivariate modelling using PCA-LDA and (O)PLS-DA 

REIMS data were acquired using MassLynx v4.2 (SCN 966 & SCN 
1010) (Waters, Wilmslow, UK). Data were mass corrected using leucine- 
enkephalin (554.2615 Da) as a reference ion, followed by background 
subtraction and total ion count (TIC) normalisation (where each analyte 
is divided by the TIC for each sample, to reduce sample to sample in-
tensity variation) using the default MassLynx pre-processing algorithms 
in Abstract Model Builder (AMX) v0.9.2092.0 (Waters Research Centre, 
Budapest, Hungary). Spectral binning was performed at 0.1 Da. PCA 
models were generated using AMX, R (version 3.4.3, Vienna, Austria) 
(Table S2) and SIMCA 17.0 (Sartorius Stedim Biotech, Umea, Sweden) to 
evaluate instrument stability during sample analysis, identify potential 
outliers and visualize inherent variation within the dataset prior to su-
pervised analysis (Abdi, 2010). Data were randomized and split into a 
training and validation set (75/25). Supervised models for “all fish”, 
“white fish” and “pink fish” were generated using AMX for PCA-LDA and 
SIMCA for PLS-DA and OPLS-DA models, for which data matrices 
generated in and exported from AMX were used. Specifically, sample 
matrices were imported into SIMCA using univariate (UV) or Pareto 
scaling. The obtained PCA-LDA and (O)PLS-DA models from the training 
set were cross-validated (CV) using a fivefold approach (with a standard 
deviation of 5 Ω). 

2.5. Chemometric machine learning-based modelling using RF and SVM 

Both R (version 3.4.3, Vienna, Austria) and Python (version 3.7.4, 
Fredericksburg, VA) languages were used for data handling and statis-
tical analyses. Data were processed in a virtual computer environment 
with OS Linux (Ubuntu, v16.04 LTS or v20.04 LTS, Linux) using Oracle 
VM VirtualBox (version 6.1, Oracle). A comprehensive list of program-
ming languages and packages used is presented in Table S2. Waters raw 
folders were converted using proprietary software while pre-processing 
(burn selection, noise removal) was performed using an in-house 
developed R-based pipeline. Empty (badly acquired) raw files were 
omitted during this stage. Because of the large number (and size) of data 
files, all features with an m/z value between 100 and 1,200 Da detected 

in a 10 % weighted randomized sample of the total data (2015–2021) 
were included in the feature intensity matrix and only the highest burn 
was retained per REIMS sample spectrum. No spectral binning was 
performed. Noise removal was based on the distribution of peak in-
tensities (95 % quantile peaks were retained). 

Prior to multivariate statistical analysis using random forest (RF) and 
support vector machine (SVM) algorithms, TIC correction over the MS 
spectra was performed, and impact of TIC correction (versus no 
correction) on model predictivities was assessed. Data were randomized 
and split into a training and validation set (75/25). After splitting, 
standard scaling (standardizing features by removing the mean and 
scaling to unit variance) of the data was performed by default. Since no 
prior research on the best scaling method for this type of data has been 
published, standard scaling was applied because it is a very commonly 
used scaling technique that differs little from Pareto scaling (van den 
Berg et al., 2006). With the training set, ML hyperparameter optimiza-
tion was performed using fivefold cross-validation, of which applied 
parameters are listed in Table S3. The remaining part of the training set 
was used to optimize the hyperparameters based on the accuracy score. 
At this point, the chosen hyperparameters were fixed and used to predict 
fish species for the withheld validation set. Variable feature importance 
rankings were computed from the built-in feature importance (using gini 
impurity) and correlation coefficients features, for RF and (linear kernel) 
SVM respectively. 

3. Results and discussion 

The optimal strategy for the direct sample and data analysis using 
REIMS depends on the specific classification problem and as such, 
optimisation of the latter classification strategy per application is of 
utmost importance (Gredell et al., 2019). Here, five chemometric 
modelling approaches were compared in the scope of industry-proof fish 
speciation, for which maximal accuracy, scalability and real-time anal-
ysis were the main prerequisites. 

3.1. Speciation accuracy using PCA-LDA and (O)PLS-DA 

3.1.1. Unsupervised cluster analysis using PCA 
PCA modelling demonstrated that PC1, PC2 and PC3 accounted for 

66.3 % of the total variability of the REIMS fingerprints (features) with 
the highest predictive information (Q2 (cum) = 0.825, with R2 (cum) =
0.840) achieved from the first 10 PCs (Figure S1). Moreover, an un-
derlying separation between most fish species, particularly between 
those classified as white and pink (Table S1) could be observed (Fig. 2). 

Separation was less obvious though between those species that are 
phylogenetically closely related (such as cod and coley) and/or can be 
attributed to comparable taste and flavour attributes (salmon and trout) 
(Black et al., 2017; Carrera et al., 1999). PCA results also suggest that 
separation is being driven by discrete differences in chemical profiles of 
fish species rather than being built on background noise or other factors 
such as age and storage of samples, bearing in mind that samples were 
acquired, and analyses run over a time course of seven years, which is to 

Fig. 1. Workflow for direct prediction of raw REIMS spectra towards industry-proof accurate large-scale fish speciation.  
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the best of our knowledge unprecedented for any food-related AIMS 
application (Ross et al., 2020). Therefore, we conclude that the instru-
mental stability is sufficient from an industrial perspective for large- 
scale fish speciation. 

3.1.2. Chemometric modelling using PCA-LDA and (O)PLS-DA 
The use of TIC correction (versus no correction) for improvement of 

model predictivities was assessed and retained because of superior 
classification accuracy, especially in the all-fish model, which comprised 
the highest data variability (Table S4). Prior to PCA-LDA modelling, 
Pareto scaling was performed by default. Prior to (O)PLS-DA modelling, 
Pareto scaling provided superior performance to UV scaling when 
assessing R2(Y) and R2(X) values for model fit and Q2(Y) for model 
predictivity (Table S5). 

Except for the all-fish OPLS-DA model, very good to excellent PCA- 
LDA and (O)-PLS-DA models were obtained with valid R2X, R2Y, Q2 

(>0.5), CV-ANOVA p-value (p < 0.05) and good permutation testing (n 
= 100) (Table S6), while accuracies for the latter models ranged be-
tween 92.5 and 100.0 % (Table 1). The reported results show the vali-
dation parameters of models built using the validation fish batch, 
ensuring model validity based on untrained data, rendering reliable 

Q2(Y) and accuracy. Detailed confusion matrices are provided in Sup-
plementary Tables S7-S15. 

On average, the pink fish models demonstrated better accuracy 
compared to the general all-fish model. Overall, PLS-DA modelling 
outperformed (O)PLS-DA models, while PCA-LDA generated similar or 
slightly higher models as compared to PLS-DA as reflected by both the 
accuracies as well as model validation parameters R2Y and Q2Y, which 
measure goodness-of-fit and predictive ability, respectively. In the 
model’s score plots (Figures S2-S7) significant separation between 
different classes (species) of fish and very tight clustering within classes 
(species), could be observed as well. This further provides confidence 
that the modelling behaviour is an accurate reflection of the ability of 
these models to correctly predict fish species when challenged with new 
samples not represented within the models. 

The approach of splitting both samples and models into two groups 
(i.e. white and pink fish) is both easily done visually and highly relevant 
from an industrial perspective. Moreover, this can have performance 
benefits – by keeping model size smaller, the time taken to process 
models when adding new samples or replacing older samples is reduced. 
From a practical point of view, circumstances, where the use of an all- 
fish model would potentially be required, are relatively limited, 
although this would indeed be of added value for the assessment of 
minced fish products, to determine whether a product that is described 
as containing only one type of fish has been bulked out with other 
species, like e.g. minced salmon being bulked with coley (Piredda et al., 
2022). The performance of the all-fish model is very high, with classi-
fication rates of 97.0 % to 97.9 % which should enable the detection of 
bulk adulteration products. To be economically viable, adulteration 
needs to take place at high percentages but in previous work, REIMS was 
established as a powerful tool to detect adulteration in minced products 
(Black et al., 2019; Kosek et al., 2019). This level of performance is 
substantially ahead of current detection technologies such as ELISA and 
DNA barcoding (Pollack, Kawalek, Williams-Hill, & Hellberg, 2018; 
Ruethers et al., 2020). 

3.2. Chemometric modelling using RF and SVM 

Prior to ML-based modelling, the number of acquired REIMS features 
were maximized over the whole data-acquisition period (2015–2022). 
As such 3602 m/z peaks were defined as important features to be 
implemented in the models. TIC was retained due to superior 

Fig. 2. PCA score plot for all fish samples analysed in the full training and validation data batch (n = 1736) from 2015 to 2021. Diamonds: white fish; circles: pink 
fish. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Validation results for PCA-LDA and (O)PLS-DA modelling of all-fish (n = 433), 
white fish (n = 319) and pink fish (n = 125), as obtained from the validation 
batches.  

Model Model 
Type 

Number of 
samples 

Number of 
passes 

Number of 
fails 

Accuracy 

All-fish PCA- 
LDA 

433 426 10  97.7 % 

OPLS- 
DA 

433 420 13  97.0 % 

PLS-DA 433 424 9  97.9 % 
White 

Fish 
PCA- 
LDA 

319 303 16  95.0 % 

OLPS- 
DA 

319 295 24  92.5 % 

PLS-DA 319 301 18  94.4 % 
Pink 

Fish 
PCA- 
LDA 

125 125 0  100.0 % 

OPLS- 
DA 

125 124 1  99.2 % 

PLS-DA 125 125 0  100.0 %  
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classification accuracy (Table S4). Modelling results and obtained ac-
curacies are presented in Table 2. Hyperparameter optimization pa-
rameters of RF and SVM algorithms (including different kernels) are 
given in Table S3 and detailed confusion matrices are provided in 
Supplementary Tables S16-S21. 

For the RF models, four hyperparameters were optimized (Table S3), 
where 250 trees were selected from the possible maximum of 500 trees 
per RF for the ‘all-fish’ model. The individual decision trees were large, 
125 layers deep, with a minimum of 3 samples at the leaf node. The 
selected hyperparameters per model are summarized in Table S22. For 
the assessed SVM kernels (Table S3), a linear SVM was the best fit 
throughout as opposed to Gredell et al. (Gredell et al., 2019), where the 
polynomial kernel outperformed the linear kernel in case the SVM was 
selected as the best classifier for analysis, providing evidence for their 
statement that any optimal strategy for REIMS data depends on the 
classification problem. The SVM C and Gamma were 0.1 and 0.1, 
respectively, for the all-fish model. The selected hyperparameters per 
model are summarized in Table S23. 

SVM consistently outperformed RF, with a 3.4 % increase on 
average. Though fewer misclassification errors occurred in the SVM 
models, the fish species for which the most confusion existed, were the 
same. Especially for cod, for which samples were gathered from multiple 
providers, and analysis was performed using different tissues (i.e., tail or 
neck) and multiple data-acquisition methods (Section 2.2), both false 
positive and false negative errors were observed (Tables S16-S20). The 
three different salmon batches, labelled according to their origin 
(Alaska, Norway, Scotland) also proved relatively challenging as 
misclassification was observed in the ‘all-fish’ as well as in the ‘pink fish’ 
models. Since no confusion with any of the other fish species was noted, 
there was no added value in lowering the number of fish species in the 
models (Tables S16-S18 and S21). Models from both ML algorithms 
correctly identified monkfish, salmon, sea bass, trout, tuna and mack-
erel. This can be explained by their unique mass spectral fingerprints (e. 
g., tuna), but also by the inherently lower variability during sampling 
and/or data acquisition in one batch (e.g., mackerel) (Fig. 3). While the 
SVM models were successful in hake and herring recognition, both in the 
all-fish and white fish models (Tables S19, S20); the identification of 
these species proved less straightforward in the all-fish versus white fish 
model using RF (Tables S16, S17). 

3.3. Outlook on real-time industry-proof analysis 

3.3.1. Real-time performance of multivariate models with a new sample test 
batch 

The multivariate models described above demonstrated to strongly 
capture fish speciation over an extensive period of time (i.e. over 7 years 
of data collection), despite the use of different acquisition settings 
throughout the years (Section 2.2). This proves that by including enough 
data points, REIMS can overcome inter-batch variability using appro-
priate multivariate statistics. Adding new timepoints or data is expected 
to be less straightforward, but what is truly needed to move towards 
industrial implementation (as opposed to creating models from com-
plete datasets). Therefore, a new external test batch of samples was 
analysed in 2022 and the raw files from this dataset (n = 444) were used 

to directly in real-time predict fish species using the models build with 
the original dataset covering 1736 samples (training and validation 
data). Analysing new fish species like e.g. Islandic salmon leads to 
automatic misclassification since this species was not included in the 
training data. Therefore, correct classification was defined as a predic-
tion of either unknown salmon or salmon from Alaska, Norway or 
Scotland. The PCA-LDA models for all-fish, white fish, and pink fish 
enabled to predict fish species in real-time with a very high accuracy of 
95.0 % for the all-fish and 99.5 % for the pink fish (Table 3, detailed 
confusion matrices are provided in Supplementary Tables S24-S26). No 
direct prediction was however possible with (O)PLS-DA, since the model 
building can only be executed as a secondary step following pre- 
processing with AMX. For the ML models, obtained accuracies for the 
new batch appeared to be relatively low, as summarized in Table 3 
(detailed confusion matrices are provided in Tables S27-S32). In the all- 
and white fish models, most misclassification occurred when other fish 
species (e.g., haddock) were labelled as cod (Table S27 and Table S28). 
Cod samples, however, were always predicted correctly, although they 
did comprise the largest variance in provider, sampling time and 
instrumental settings. Mislabelling of trout as cod in the all-fish model 
may however be solved by using the pink fish-specific model. The pink 
fish models were able to correctly predict fish species with accuracies of 
95.1 % and 94.6 % for RF and SVM, respectively (Table 3). 

The underperformance of RF and SVM models compared to PCA-LDA 
was independent of the processing pipeline software used. When PCA- 
LDA is applied as a classification algorithm in the ML data processing 
pipeline following the same strategy described in Section 2.5, higher 
real-time prediction results are obtained compared to RF and SVM for 
the model for all fish species (Table S33). This implies that the REIMS 
fingerprints contain linear combinations of features that characterize 
each fish species, making LDA models better suited to this particular 
classification problem. We hypothesize that advanced ML algorithms 
will be better able to understand added layers of complexity, such as e.g. 
predicting the presence or absence of contaminants in heterogeneous 
food matrices, rather than a direct classification of species within one 
type of food (fish). Indeed, RF is said to excel at predicting nonlinear 
relationships between input characteristics and the target variable 
(Bengio, 2009). The accuracy of the models can be improved by adding 
linear combinations of features to the RF and SVM models after a data 
reduction step that excludes the least significant features (calculated as 
described in Section 2.5). 

3.3.2. Software for real-time fish speciation 
The classic REIMS data processing pipeline (Fig. 1) provides 

considerable flexibility in analysis capabilities and indeed, as demon-
strated here, PCA-LDA models generated within AMX can be used 
directly with the AMX recognition function to provide real-time recog-
nition (45 s/sample). AMX is a powerful software, but its major 
advantage is its lack of flexibility toward custom pre-processing and 
splitting train-test data, making the manual creation of new models 
cumbersome. However, once a model is in place, its application in real- 
time runs smoothly. The inherent combination of AMX’s REIMS-specific 
data pre-processing (incl. lock mass) and model building capabilities is 
therefore at present the closest thing to an industry-proof REIMS data 
analysis pipeline. 

Alternatively, the data from AMX can be exported and used to build 
PLS-DA, OPLS-DA or additional models using third-party software; i.e. 
by importing the matrices from AMX into e.g. SIMCA 17. With SIMCA 
real-time analysis is however not feasible since the data needs to be 
imported and analysed per batch, but it does offer a variety of different 
data analysis options that are most relevant for metabolomics studies, 
including e.g. the ability to generate Variable Influence on Projections 
(VIP) and S-line plots. The latter two outputs can be used to identify the 
mass bins that contribute most (or least) to the separation of different 
classes. 

The data processing pipeline using ML algorithms provided fast, 

Table 2 
Validation results of RF and SVM modelling of all-fish (n = 434), white fish (n =
319) and pink fish (n = 125), as obtained from the validation batches.  

Model Model 
Type 

Number of 
samples 

Number of 
passes 

Number of 
fails 

Accuracy 

All-fish RF 434 384 50  93.6 % 
SVM 434 418 16  96.3 % 

White 
Fish 

RF 319 283 36  88.7 % 
SVM 319 302 17  94.7 % 

Pink 
Fish 

RF 125 115 10  92.0 % 
SVM 125 117 8  93.6 %  
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Fig. 3. REIMS mass spectrum per fish species, with molecular class annotation.  
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instantaneous prediction of newly unlabelled samples (150 s/sample), 
including all sequential steps (file conversion, pre-processing, splitting 
train-test data, data transformation). Like AMX, real-time classification 
with these more advanced ML techniques relies on training previously 
labelled data but can be rolled out more efficiently by including all data 
processing steps. Unfortunately, the underlying REIMS fish data did not 
currently allow for sufficiently accurate predictions to move this pipe-
line to industrial-scale application. 

3.4. Underlying molecular features of fish speciation prediction models 

REIMS fingerprints obtained from fish tissue are hypothesized to 
consist of variable fatty acid (100–500 m/z range) and glycer-
ophospholipid (500–900 m/z range) profiles (Fig. 3) in line with pre-
vious findings, where it was observed that the REIMS spectral data of 
five commercially popular white fish species were indeed dominated by 
intact phospholipids and fatty acids (Black et al., 2017). 

The top 10 most important features (defined as m/z values) for each 
supervised ML model are shown in Supplementary Tables S34-S39. 
Using AMX and SIMCA, further annotation of the phospholipids – I.e. at 
the class (e.g. phosphatidylethanolamine) or individual molecular level - 
is not straightforward, because the features that are most important in 
fish separation represent mass bins rather than single m/z values. For the 
ML models, it is possible to include the variable feature importance at 
the m/z value level, but this information is still insufficient to annotate 
the lipid (sub)class or species at the molecular level. The annotation of 
molecules is best achieved using additional HRMS(/MS) experiments. 
However, this was beyond the scope of the present work. 

3.5. Scalability 

Sample analysis using iKnife-REIMS can be performed in less than a 
minute, rendering the analysis itself to be industry-compliant. An 
important downside to large-scale application of the classic REIMS data 
processing pipeline using AMX however, is that data analysis and 
modelling performance significantly deteriorates when modelling many 
hundreds to several thousands of samples. The models generated for this 
study took many hours to build and adding or relabelling just one sample 
required complete recalculation of each model. In addition, cross- 
validation of the training set using the fivefold cross-validation 
approach can take several days to complete. Nevertheless, once 
models are generated and saved, there is no need for frequent updates. 
From a company perspective, these could be performed overnight or 
during weekends, when production stagnates. In addition, such software 
and hardware-dependent limitations could be easily overcome by 
increasing computing power, with the result that models could be 
recalculated with much less effort and more speed (minutes instead of 
days). The ML-based data processing pipeline does not have this issue of 

scalability at the current order of magnitude (1000 s samples); i.e. 
models were created in a few minutes, including hyperparameter opti-
mization, which is highly advantageous for large-scale fish speciation. 
Automatization of the data processing pipeline would benefit both 
scalability and real-time classification functionality. 

4. Conclusion 

The results of this study demonstrate the potential of iKnife-REIMS as 
an accurate metabolomic fingerprinting tool for fast one-step real-time 
fish speciation through AMX PCA-LDA modelling. PCA-LDA out-
performed (O)PLS-DA, SVM and RF for fish speciation considering the 
need for high accuracy, scalability, and real-time functionality. PCA- 
LDA using AMX allows for rapidly analyse of unprocessed fish samples 
with lower error rates compared to ELISA and with less time- and cost- 
related drawbacks compared to PCR, MALDI and LC-MS. The technology 
and industry-compliant data processing pipeline can be implemented to 
aid in combating fish food fraud but is moreover expected to also be able 
to help safeguard food safety, quality, and integrity in other high- 
throughput food production chains. Minor software and hardware op-
timisations are recommended to reduce the time required to (re)build 
models, as well as make this step automated. 
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