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Abstract: Macroalgal growth and yield are key to sustainable aquaculture. Although light and water
turbulence are two important factors that affect algal productivity, research on their interaction is
limited. Therefore, in this study, we investigated the effects of different wavelengths of light and
the presence or absence of water turbulence on the growth of the green macroalga Ulva australis.
Water turbulence was found to enhance the growth of U. australis irrespective of photosynthetic
performance, but only in blue light cultures. The quantum dose of blue light required to induce 50%
growth promotion was 1.02 mol m−2, which is comparable to the reported values for cryptochrome-
mediated effects in other macroalgae. The combined effect of blue light and water turbulence
led to the accumulation of photosynthesis-related proteins that support plastid differentiation and
facilitate efficient photosynthesis and growth. Our findings thus highlight the potential of harnessing
blue light and water turbulence to maximise macroalgal cultivation for sustainable and profitable
algal aquaculture.
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1. Introduction

Marine macroalgae or seaweeds have diverse uses, including in food, animal feed,
fertilisers, and as raw materials for cosmetics and biofuels [1,2]. Aquaculture of seaweeds
is an emerging industry that offers a sustainable solution to alleviate food scarcity as well
as related environmental issues [1–3]. Consequently, identifying the optimal growth condi-
tions for seaweed is critical to increasing yields and promoting the sustainable production
of seaweed-based products across multiple industries [2,4].

Seaweed growth and productivity are influenced by environmental conditions, includ-
ing light, nutrient availability, salinity, and temperature. Of these, light is of paramount
importance because it plays a pivotal role as an energy source and information carrier.
Non-optimal illumination conditions, such as insufficient or excessive light, can adversely
affect the ecology and profits of seaweed farms [5,6]. Moreover, the spectral composition
of light regulates various aspects of algal biology, such as the production of photosyn-
thetic pigments, gene expression mediated by photoreceptor signalling pathways, and
developmental changes in the algal lifecycle [7–9].

The crucial role of blue light in marine macroalgal morphogenesis and photosynthesis
is well documented [10]. Blue light influences algal metabolism and development, thereby
promoting photosynthetic capacity, which improves algal survival and facilitates spore ger-
mination in brown algae [11–13]. In Saccharina, Laminaria, and Undaria, blue light stimulates
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growth and affects gametophyte production [8,14–17]. Furthermore, blue light facilitates
the recovery of UV-B-irradiated spores and thallus disks of Ulva australis; additionally, it
stimulates germination and photosynthesis [18]. According to these findings, the growth of
Ulva lactuca and U. australis may be stimulated by exposure to blue light [7,18]. Investigat-
ing the effects of blue light on the growth and development of marine macroalgae, such
as U. australis, has thus contributed to the research on optimising seaweed aquaculture
practices [9].

Water turbulence is another crucial factor affecting seaweed growth and develop-
ment [19–22]. It plays a vital role in the transport of inorganic carbon and nutrients
essential for algal survival and growth [23]. Turbulence enhances nutrient uptake and
growth by reducing the diffusion boundary layer along the algal surface [24,25]. In com-
parison to low-turbulence water environments, moderate water turbulence promotes the
growth and productivity of macrophytes [24,26]. During turbulent conditions, the growth
rate of various kelp species was found to depend on the trade-off between tissue strength
and blade growth rate [27–29]. Furthermore, the sensitivity of different seaweed species to
water turbulence affects their development in different ways [30]. For instance, Laminaria
digitata exhibited a reduced thallus growth rate at both low and high water velocities,
whereas Laminaria hyperborea was not directly affected by turbulence [31].

However, the effect of water turbulence on growth is influenced by other factors,
such as light intensity and nutrient concentration [32–35]. Although the effects of water
turbulence on the growth of commercially important algal species have been extensively
investigated, the results have been inconsistent. This could be attributed to the effects
of water turbulence being obscured or influenced by additional environmental factors.
Therefore, understanding the effects of water turbulence on algae and optimising water
velocity in algal aquaculture settings can improve the growth and productivity of target
algal species and, consequently, the seaweed farming industry’s sustainability.

Among many seaweeds, several characteristics of Ulva spp., such as rapid growth
rate, high productivity, and nutrient-rich composition, render it an excellent candidate for
aquaculture [36]. Furthermore, it is well known that Ulva spp. can function as effective
bioremediation agents by absorbing excess nutrients and pollutants from wastewater and
coastal areas, thus contributing to the restoration of water quality [37].

U. australis, previously known as Ulva pertusa, is an ecologically and economically
significant widely distributed macroalga. This macroalga forms ‘green tides’ in coastal
areas of Asia and the Mediterranean and its sensitivity to pollutants makes it a model
species for water quality assessment [18,38–44]. U. australis is also a valuable food source
in many Asian countries [45] and exhibits algicidal and therapeutic properties attributed to
its bioactive compounds [46–48]. Thus, investigating the factors that influence the growth
of U. australis may be important for its sustainable development and the conservation of
coastal ecosystems. Although the effects of blue light on U. australis growth have been
studied [18], the individual effects of water turbulence and the combined effects of blue
light and water turbulence on this species remain unexplored. Therefore, understanding
the effects of blue light and water turbulence on the growth and development of U. australis
can unlock its full potential in the food, feed, and biotechnology industries, among others,
while minimising its ecological footprint.

This study aimed to examine the effects of water turbulence and various wavelengths
of light on the growth and physiology of U. australis. Accordingly, U. australis was cultivated
under white, blue, green, or red light conditions, both with and without water turbulence
(aeration) and its growth, photosynthetic capacity, and biochemical composition were
evaluated for each treatment. Furthermore, growth was modelled as a function of the
quantum dose to determine the light intensity required for eliciting a 50% growth response.
Proteins that accumulated under growth-promoting conditions were identified.
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2. Results
2.1. Growth and Cell Number

Disks collected from U. australis thalli were cultured under white, blue, green, or red
light illumination, with or without water turbulence generated by aeration. Significantly
higher growth rates were observed under turbulent conditions illuminated with white and
blue light (193.16 and 214.85 mm2, respectively) than those illuminated with green and red
light (128.42 and 126.49 mm2, respectively; Figure 1a). No statistically significant difference
in growth rates was observed among the light treatments under static conditions.
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wavelength, otherwise maintaining the same fluence rate. The growth of the disks cul-
tured under white light devoid of the blue waveband was only half that of the disks cul-
tured under white light (Figure 1b). 

Under aerated conditions, U. australis cell density was significantly higher when 
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grown under other wavelengths (16.42 cells/2500 μm2 for green light and 15.94 cells/2500 
μm2 for red light; Figure 2a). 

Figure 1. Effects of wavelength and water turbulence on Ulva australis growth. Disk size (mm2) under
white, blue, green, or red light (a) and white light or white light depleted of blue wavelengths by
filtering (b). Data are presented as the mean ± 95% confidence intervals (n = 3, at least five Ulva
austaralis plants per replicate). Different letters indicate differences at p < 0.05. W, white light; B, blue
light; G, green light; R, red light; W–B, white light with blue wavelength filtered out; WL, wavelength;
WT, water turbulence; *** p < 0.001.

The growth of U. australis was compared under white light with or without the blue
wavelength, otherwise maintaining the same fluence rate. The growth of the disks cultured
under white light devoid of the blue waveband was only half that of the disks cultured
under white light (Figure 1b).

Under aerated conditions, U. australis cell density was significantly higher when grown
under white and blue light (18.78 and 19.19 cells/2500 µm2, respectively) than when grown
under other wavelengths (16.42 cells/2500 µm2 for green light and 15.94 cells/2500 µm2

for red light; Figure 2a).
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Figure 2. Density of U. australis cells per unit area as a function of exposure to different light
wavelengths and water turbulence. White, blue, green, or red light (a) and white light or white light
with blue wavelengths filtered out (b). Data represent mean ± 95% confidence intervals (n = 3, at
least five Ulva austaralis plants per replicate). Different letters indicate differences at p < 0.05. W, white
light; B, blue light; G, green light; R, red light; and W–B, white light with blue wavelength filtered
out. WL, wavelength; WT, water turbulence; * p < 0.05; ** p < 0.01; and *** p < 0.001.

However, no significant differences were observed in cell number among light wave-
lengths under static conditions (15.08, 15.53, 14.72, and 14.53 cells/2500 µm2 for white,
blue, green, and red light, respectively; Figure 2a). U. australis cell density was lower in
the absence of blue light (13 and 12.83 cells/2500 µm2 for aerated and static conditions,
respectively; Figure 2b) than under full white light for both aerated and static conditions.

2.2. Photosynthetic Pigment Contents

The photosynthetic pigment contents of U. australis under each experimental condition
are shown in Figures 3 and 4.

Regardless of aeration, green light yielded the highest pigment concentrations in U.
australis disks compared with other lights (chlorophyll a (Chl a): 1.09 and 1.06 mg per mg
fresh weight (mg·mgFW−1), Chl b: 1.18 and 1.06 mg·mgFW−1 in aerated and static cul-
tures, respectively, and carotenoids: 0.47 mg·mgFW−1 in both aerated and static cul-
tures). The lowest pigment concentrations were observed under blue light (Chl a: 0.55
and 0.60 mg·mgFW−1, Chl b: 0.40 and 0.14 mg·mgFW−1, and carotenoids: 0.29 and
0.39 mg·mgFW−1) in aerated and static cultures; Figure 3).

The photosynthetic pigment contents were comparable under full white light and
white light devoid of the blue wavelength and in both the aerated and static culture
conditions (Figure 4).
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Figure 3. Effects of different light wavelengths and water turbulence on pigment contents. All data
are expressed in mg per mg fresh weight (mg·mgFW−1). W, white light; B, blue light; G, green light;
and R, red light. WL, wavelength; WT, water turbulence; ns, not significant; * p < 0.05; ** p < 0.01;
and *** p < 0.001. Data represent mean ± 95% confidence intervals (n = 3, at least five Ulva austaralis
plants per replicate). Different letters indicate differences at p < 0.05.
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Figure 4. Effects of blue light and water turbulence on photosynthetic pigment concentrations in
U. australis. All data are expressed in mg·mgFW−1. W, white light and W–B, white light with blue
wavelength filtered out. WL, wavelength; WT, water turbulence; ns, not significant; * p < 0.05;
** p < 0.01; and *** p < 0.001. Data are presented as the mean ± 95% confidence intervals (n = 3, at
least five Ulva austaralis plants per replicate). Different letters indicate differences at p < 0.05.

2.3. Chl a Fluorescence

Figures 5–7 present the maximum quantum yield (Fv/Fm), relative maximum electron
transport rate (rETRmax), and the non-photochemical quenching (NPQ) values estimated
for U. australis grown under different wavelengths of light and turbulence conditions.
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Fv/Fm values for U. australis grown under white, blue, green, or red light (a) and white light or
white light with blue wavelengths filtered out (b). Data are presented as the mean ± 95% confidence
intervals (n = 3, at least five Ulva austaralis plants per replicate). Different letters indicate differences
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light with blue wavelengths filtered out (b). Data are presented as the mean ± 95% confidence
intervals (n = 3, at least five Ulva austaralis plants per replicate). Different letters indicate differences
at p < 0.05. W, white light; B, blue light; G, green light; R, red light; and W–B, white light with
blue wavelength filtered out. WL, wavelength; WT, water turbulence; ns, not significant; * p < 0.05;
** p < 0.01; and *** p < 0.001.
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Figure 7. Effects of light and water turbulence on non-photochemical quenching (NPQ). NPQ values
for U. australis grown under white, blue, green, or red light (a) and white light or white light with
blue wavelengths filtered out (b). Data are presented as the mean ± 95% confidence intervals (n = 3,
at least five Ulva austaralis plants per replicate). Different letters indicate differences at p < 0.05. W,
white light; B, blue light; G, green light; R, red light; and W–B, white light with blue wavelength
filtered out. WL, wavelength; WT, water turbulence; * p < 0.05; and *** p < 0.001.

The Fv/Fm values were higher upon exposure to white (0.74) and blue light (0.72) than
upon exposure to green (0.67) or red light (0.68) under aerated conditions (Figure 5). Under
static conditions, the Fv/Fm values varied significantly among the different wavelengths
(0.68, 0.61, 0.55, and 0.47 for white, blue, green, and red light, respectively; p < 0.05).

The rETRmax was highest under blue light (33.75) and lowest under green light (18.74);
however, it presented an intermediate value under red light (29.19; Figure 6). Blue light
induced a higher NPQ value than that induced by other wavelengths under both aerated
and static conditions (0.48 and 0.51, respectively; Figure 7).

2.4. Correlation between Growth, Photosynthetic Efficiency, and Photosynthetic Pigment Content
of U. australis under Different Light Wavelengths

Pearson’s correlation analysis of the growth, photosynthetic efficiency, and photosyn-
thetic pigment content of U. australis under various light conditions revealed no relation-
ship between growth (disk size or number of cells) and photosynthetic efficiency (Fv/Fm,
rETRmax, or NPQ) under aerated or static culture conditions (Figure 8).

Under aerated conditions, the disk size exhibited a strong positive correlation with
cell number. A strong positive correlation between Fv/Fm (a measure of light-harvesting
capacity) and NPQ (a mechanism for dissipating excess energy) was detected, whereas
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rETRmax (a measure of electron transport efficiency) was negatively correlated with Chl a
(a pigment that absorbs light) content.
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conditions. (a,b) Pearson’s correlation coefficients for growth rate, photosynthetic efficiency, and
photosynthetic pigment contents under different wavelengths (white, blue, green, red, and white
light with blue wavelengths filtered out) and (a) aerated or (b) static conditions. Only indicators
showing statistical significance at the 5% level are shown in coloured squares. The colour of the
square indicates the strength of the correlation. The coloured bar to the left indicates the scale
of the correlation coefficients. The numbers in boxes are the correlation coefficients. Disk size,
in mm2; cell no., number of cells·2500 µm−2; Fv/Fm, maximum quantum yield; rETRmax, relative
maximum electron transport rate; NPQ, non-photochemical quenching; Chl a, chlorophyll a content
(mg·mgFW−1); Chl b, chlorophyll b content (mg·mgFW−1); and carotenoids, carotenoid content
(mg·mgFW−1).

2.5. Relative Efficiency of Blue Light Quanta

The distribution of the spectra emitted from full white and blue light sources is
depicted in Figure 9. The effective photon density of the blue light source was 2.17 times
greater than that of the white light source.

Plants 2024, 13, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 8. Pearson’s correlation analysis of various parameters in U. australis as a function of growth 
conditions. (a,b) Pearson’s correlation coefficients for growth rate, photosynthetic efficiency, and 
photosynthetic pigment contents under different wavelengths (white, blue, green, red, and white 
light with blue wavelengths filtered out) and (a) aerated or (b) static conditions. Only indicators 
showing statistical significance at the 5% level are shown in coloured squares. The colour of the 
square indicates the strength of the correlation. The coloured bar to the left indicates the scale of the 
correlation coefficients. The numbers in boxes are the correlation coefficients. Disk size, in mm2; cell 
no., number of cells·2500 μm−2; Fv/Fm, maximum quantum yield; rETRmax, relative maximum elec-
tron transport rate; NPQ, non-photochemical quenching; Chl a, chlorophyll a content (mg·mgFW−1); 
Chl b, chlorophyll b content (mg·mgFW−1); and carotenoids, carotenoid content (mg·mgFW−1). 

Under aerated conditions, the disk size exhibited a strong positive correlation with 
cell number. A strong positive correlation between Fv/Fm (a measure of light-harvesting 
capacity) and NPQ (a mechanism for dissipating excess energy) was detected, whereas 
rETRmax (a measure of electron transport efficiency) was negatively correlated with Chl a 
(a pigment that absorbs light) content. 

2.5. Relative Efficiency of Blue Light Quanta 
The distribution of the spectra emitted from full white and blue light sources is de-

picted in Figure 9. The effective photon density of the blue light source was 2.17 times 
greater than that of the white light source. 

 
Figure 9. Comparative analysis of white and blue light spectra and blue photon absorption in U.
australis. (a) Spectra of white and blue light and absorption spectral curve. (b) Effective number of
blue photons (blue-filled) for the white and blue light sources.



Plants 2024, 13, 266 10 of 21

Figure 10 illustrates the relationship between total blue quanta and disk size cul-
tured under white and blue light of varying intensities. The regression equation fitted to
non-saturating values estimated a 50% response at a quantum dose of 1.02 mol m−2 for
blue light.
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Figure 10. Disk size of U. australis as a function of total blue quanta from blue and white light.
Cultures were irradiated for 96 h with blue light (20 to 100 µmol photons m−2s−1) or white light
(20 and 100 µmol photons m−2s−1) over a 12 h light/dark photoperiod. The regression line is
expressed by y = 11.557x + 95.639 (r2 = 0.951).

2.6. Changes in the U. australis Proteome under Static or Turbulent Conditions and Blue
Light Illumination

The proteomic changes underlying the various growth kinetics observed during vari-
ous culture conditions were evaluated by performing a proteomic analysis of differentially
abundant proteins after two-dimensional sodium dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS-PAGE). Four of the ninety-four protein spots increased in abundance
under blue light and aerobic culture conditions (Figure 11, Table 1).
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Figure 11. Comparative two-dimensional gel electrophoresis (2DE) of U. australis proteins under
(a) static and (b) aerated conditions with blue light illumination. The first dimension comprised a
24 cm nonlinear immobilised pH gradient (IPG) of pH 4–10 and isoelectric focusing. The second
dimension comprised a 20 × 24 cm 10–16% sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis (SDS-PAGE). Proteins were detected by Coomassie Brilliant Blue staining. The nonlinear
pH range of the first-dimension IPG strip is indicated at the bottom of the gel, with acidic pH values
on the left. The relative molecular mass (Mr scale) was used to estimate the molecular weights of
the separated proteins. The red squares indicate protein spots with higher abundance under aerated
conditions compared with static conditions.
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Table 1. Protein spots identified by matrix-assisted laser desorption/ionisation (MALDI)-time-of-
flight (TOF)/TOF analysis of Ulva australis disks grown under blue light and aerated conditions.

Spot Number Molecular
Weight (kDa) Protein Name Gene Symbol Description

3601 37.2 30S ribosomal protein
S9, chloroplast rps9 Housekeeping gene/reference gene

4103 13.4
Ribulose bisphosphate

carboxylase small
subunit

RbcS
An enzyme that converts CO2 into

organic compounds via the
Calvin–Benson–Bassham cycle

5201 17.5 Trehalose-6-phosphate
synthase TPS

Synthesises a signalling molecule
that regulates plant metabolism and

development; central to the
regulation of carbohydrate

metabolism

3404 24.2
Oxygen-evolving
enhancer protein

(Fragment)
OEE1

Optimises the Mn cluster and
protects the D1 protein of the

reaction centre from oxygen radicals

Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF)/TOF analy-
sis revealed a ribosomal housekeeping protein localised within the chloroplast (spot no.
3601). In addition, three other proteins (spot nos. 3404, 4103, and 5201) that function in pho-
tosynthetic metabolism were identified (Figure 12). Spots 3404, 4103, and 5201 correspond
to extrinsic oxygen-evolving enhancer protein 1 (OEE1), ribulose biphosphate carboxylase
small subunit (RbcS), and trehalose-6-phosphate synthase (TPS), respectively.
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3. Discussion
3.1. Growth and Cell Number

Significant differences were observed in the growth of U. australis disks exposed to
various light wavelengths under aerated conditions. Both white and blue light yielded
higher growth rates than green and red light. Notably, under static conditions, there were
no significant differences in growth rates among the various light treatments. These results
highlight the significant role of aeration and turbulence in conjunction with specific light
wavelengths for promoting U. australis growth.

The role of blue light was further investigated by culturing U. australis under white
light with or without the blue waveband. We found that the growth of U. australis disks
was considerably reduced when cultured under white light devoid of its blue waveband
compared with when grown under full white light. The smaller size of the disks in the
absence of the blue waveband provides compelling evidence of the significant influence
of blue light in promoting U. australis growth. These findings emphasise the interactive
effects of blue light and water turbulence in fostering U. australis growth.

Previous studies have reported similar growth responses to blue light among different
Ulva spp. Le et al. [49] demonstrated that U. australis exhibited superior growth under
aerated conditions when exposed to blue light than upon exposure to red light. Gong
et al. [7] reported higher growth rates in U. lactuca under aerated culture conditions with
blue-light-emitting diode (LED) illumination than those under fluorescent light. These
studies, in conjunction with our findings, highlight the positive effect of blue light on the
growth of Ulva spp.

The cell density evaluation revealed intriguing patterns in response to different light
conditions. Under aerated conditions, white and blue light yielded significantly higher cell
densities compared with green and red light. Conversely, under static conditions, there
were no significant differences in the number of U. australis cells cultured under different
wavelengths of light. The absence of the blue waveband resulted in a lower cell density
than that under full white light under both aerated and static conditions.

Thallus growth in U. australis is intricately influenced by the interplay between cell
division and growth [50]. Our observations suggest that the larger disk sizes observed
under white and blue light with aeration may have primarily resulted from active cell
division rather than cell elongation. Although the existing reports on the effects of blue
light on cell division in algae are inconsistent, the findings from this study support the
role of blue light in stimulating cell division in Ulva spp. Kuwano et al. [51] demonstrated
that blue light illumination provided the most effective conditions for opening the G1
gate during cell division in U. compressa. Our findings on U. australis align with the
aforementioned observations, offering additional evidence of the involvement of blue
light in stimulating cell division in Ulva spp. However, the related molecular mechanisms
require further investigation.

3.2. Photosynthetic Pigment Contents

Pigment accumulation patterns in U. australis exhibited intriguing characteristics un-
der various light conditions. The lowest pigment concentrations were observed under
blue light exposure. The photosynthetic pigment contents were comparable under aerated
and static culture conditions for both full white light and white light devoid of the blue
component. These results correspond with the behaviour of terrestrial plants under blue
light, exhibiting sun-type traits, a lower chlorophyll content, and reduced thylakoid struc-
tures [52]. Therefore, blue light in conjunction with aeration may elicit a sun-type response
in U. australis, potentially representing an adaptive energy-saving strategy for the high
light intensity conditions in the intertidal zone, where U. australis thrives.

Notably, U. australis exhibited a remarkable capacity to accumulate pigments under
green light as opposed to other light wavelengths, although green algae exhibit poor light
absorption and photosynthesis efficiency in this particular range of the light spectrum
compared with under other spectra [53]. It is noteworthy that even green LEDs contain
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some blue wavelengths, and this inclusion of blue wavelengths in green light may have
unexpected effects on pigment levels. This phenomenon could potentially be associated
with a green-light-induced shade-avoidance response, akin to that observed in terrestrial
plants. Notably, unshaded plants exposed to additional green light exhibit growth patterns
similar to plants grown in shade. U. australis probably perceives this green light signal
and responds by enhancing pigment production, thereby optimising light capture for
photosynthesis. In line with these observations, an increase in thylakoid structure and
photosynthetic pigment contents in response to blue-green light has been reported in other
green algae and marine microalgae [54,55]. This green light response is mediated by a
signalling pathway that does not rely on currently known photoreceptors [56].

Furthermore, chlorophyll levels in U. australis were increased under red light, consis-
tent with previous research findings on U. rigida, where red- and far-red-light-absorbing
photoreceptors, such as phytochromes, were implicated in the induction of chlorophyll
biosynthesis [57].

Green light considerably stimulated carotenoid biosynthesis in U. australis. Carotenoids
play vital roles in light harvesting and protection against photooxidative damage in pho-
tosynthetic organisms [58,59]. Carotenoid production is precisely regulated by various
signals, including light [60,61]. The elevated carotenoid levels in U. australis exposed to
green light in the current study may be attributed to increased chlorophyll production as
part of a shade-like response. The simultaneous increase in carotenoid and chlorophyll
levels under green light exposure suggests an adaptive response aimed at enhancing light
capture under perceived shade conditions.

Previous studies on microalgae have reported similar light-mediated regulation of
carotenoid biosynthesis and wavelength-dependent translation of carotenoid-related pro-
teins. For instance, blue light promotes the accumulation of specific carotenoids in certain
green algal species [59]. However, the underlying mechanisms at the transcription factor
level and the species–specific effects of specific light spectra on carotenoids remain poorly
understood and present exciting avenues for future research.

3.3. Chl a Fluorescence

Efficient photosynthesis is essential for the growth and survival of photosynthetic
organisms. Our experiments revealed interesting patterns in the photosynthetic perfor-
mance of U. australis under various light conditions. Higher Fv/Fm values were observed
in the aerated cultures under white and blue light than under green and red light. This is
consistent with previous findings demonstrating a higher quantum yield of photosystem II
(PSII) under blue light in various photosynthetic organisms [17,62,63]. The enhanced Fv/Fm
values observed in U. australis may be attributed to the efficient absorption of blue light by
PSII. Moreover, the significant variation in Fv/Fm values between light wavelengths under
static conditions suggests that U. australis has dynamic regulatory mechanisms to optimise
its photosynthetic efficiency based on the available light resources.

U. australis displayed significantly higher photosynthetic capacity (rETRmax) and light-
harvesting efficiency (Fv/Fm) under blue light than under other wavelengths. This suggests
that under blue light conditions, U. australis has evolved unique adaptations and an optimal
balance of PSII and PSI. Individual Chl a molecules with low mutual shading may con-
tribute to the improved light-harvesting capacity and overall photosynthetic performance
observed under blue light [62]. These findings emphasise that efficient utilisation of blue
light for electron transport ultimately results in higher rates of photosynthesis and growth
in U. australis.

NPQ serves as a vital photoprotective strategy to dissipate excess photon energy
as heat and prevent photooxidative damage to chloroplasts. Irrespective of aeration, U.
australis exhibited higher NPQ levels under blue light than under other wavelengths
in the present study. The increased light harvesting and subsequent electron transport
associated with blue light exposure may have resulted in hydrogen atom accumulation
in the thylakoid lumen, a steep pH gradient between the chloroplast stroma and the
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lumen, and the dissipation of excess energy as heat. The higher NPQ levels in U. australis
suggest that blue-light-induced heat dissipation possibly serves as an important regulatory
mechanism to maintain effective photosynthetic performance even under excessive light.

3.4. Correlation between the Growth, Photosynthetic Efficiency, and Photosynthetic Pigment
Contents of U. australis under Different Light Wavelengths

In both the aerated and static cultures, there was no significant correlation between
growth parameters (disk size or cell number) and photosynthetic efficiency (Fv/Fm, rETRmax,
or NPQ). This suggests that factors beyond photosynthesis influence the growth of U. aus-
tralis. Understanding the intricate relationship between growth, photosynthetic efficiency,
and photosynthetic pigment content is fundamental for unravelling the mechanisms that
drive the productivity and performance of photosynthetic organisms. Lüning [64] empha-
sised that the multifaceted nature of algal growth is simultaneously determined by nutrient
availability, CO2 levels, and light-dependent non-photosynthetic processes. Nevertheless,
the unanticipated results obtained in our study indicate that the observed growth stimula-
tion induced by blue light in U. australis may involve additional morphogenetic responses.

Under aerated conditions, a strong positive correlation between disk size and cell
number was observed, indicating that the larger disk size observed under the combined
influence of blue light and water turbulence was primarily a consequence of increased
cell division. These findings elucidate the pivotal role played by blue light and water
turbulence in promoting cell proliferation and overall growth in U. australis.

The strong positive correlation between Fv/Fm (a measure of light-harvesting capacity)
and NPQ (a mechanism for dissipating excess energy) observed in this study suggests
that greater energy transfer to the reaction centre activates the xanthophyll cycle, thereby
enhancing photoprotection. Thus, the positive correlation between Fv/Fm and NPQ under-
scores the concerted regulation of these processes to optimise light utilisation and safeguard
against photooxidative damage.

Additionally, a negative correlation was observed between rETRmax and the Chl a
level, which suggests that the excessive accumulation of light-harvesting pigments, such as
Chl a, may exacerbate self-shading effects, ultimately diminishing the electron transport
efficiency. Notably, this effect was most pronounced in U. australis cultivated under green
light, where the highest chlorophyll concentrations paired with the lowest rETRmax values
were observed. These results emphasise the importance of maintaining an optimal balance
between light absorption and electron transport efficiency for maximising photosynthetic
performance in U. australis.

3.5. Relative Efficiency of Blue Light

A substantial difference in the spectral distribution of light emitted from full white and
blue light sources was observed, indicating that the blue light source has a considerably
higher quantum number than the full white light source even when subjected to equivalent
photon irradiance. This highlights the remarkable efficiency of blue light in delivering
photons to U. australis.

The correlation analysis between total blue quanta and disk size under varying inten-
sities of white and blue light revealed that a blue quantum dose of 1.02 mol m−2 elicited a
50% growth response. Similar blue light responses have been previously observed in U.
australis [18] as well as in brown algae [12,15,65–68].

Although a detailed investigation of the action spectrum for the response to blue
light was performed, the observed quantum requirements for a 50% growth response
aligned with previous findings (Table 2), further supporting the potential involvement of
cryptochrome in U. australis growth. Cryptochromes are ubiquitous in brown algae and U.
australis, where they mediate blue light responses [18,69]. In U. australis, a cryptochrome
has been proposed to participate in the reactivation of spore germination following UV-B
exposure [18].
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Table 2. Quantum requirements for a 50% response of photomorphogenic measures in marine algae.

Species
Quantum

Requirement
(mol·m−2)

Response Reference

Alaria esculenta 1.9 Photoreactivation Han and Kain [12]

Laminaria hyperborea 2.5 Photoreactivation Han and Kain [65]
2.1 Egg formation Dring and Lüning [66]

Laminaria saccharina 1.95 Egg release Lüning and Dring [15]
1.2 Photoreactivation Han and Kain [12]

Macrocystis pyrifera 2.6 Egg formation Lüning and Neushul [67]

Scytosiphon lomentaria 2.25 2D 1 growth Dring and Lüning [68]
1.97 Hair formation Dring and Lüning [68]

Ulva australis 1.02 Growth This study
1 2D, two-dimensional.

3.6. Changes in the U. australis Proteome with or without Aeration under Blue Light

The upregulated expression of a housekeeping protein (spot no. 3601) indicated that
the observed changes in protein abundance were not solely limited to photosynthetic
metabolism. Additionally, OEE1, RbcS, and the thermal processing unit (TPS), which are
intrinsic to photosynthetic processes, were detected.

The protection of the D1 protein from oxygen radical damage and the optimisation
of Mn cluster function during photosynthetic oxygen evolution are both dependent on
OEE1 [70]. Photosynthesis and photorespiration are significantly influenced by ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO), which is essential for CO2 conversion
to organic compounds [71]. TPS modulates plant metabolism and growth through sugar
signalling [72], and elevated TPS levels promote growth and gene expression [72,73]. TPS
also regulates starch metabolism and end-product accumulation in terrestrial plants [74–76].

Thus, the identification of these proteins related to photosynthetic metabolism and
sugar signalling indicates that U. australis has evolved distinct mechanisms to optimise
photosynthetic efficiency and coordinate metabolic processes for enhanced growth under
blue light and aerated conditions. Nevertheless, further investigations are needed to
unravel the precise roles of these proteins and their interactions in U. australis.

4. Materials and Methods
4.1. Laboratory Culture of U. australis

U. australis samples were collected from the Gijang-gun region, Busan, on the southern
coast of the Republic of Korea (35◦17′59′′ N, 129◦15′35′′ E). Samples were transported to
the laboratory and immediately stored at 15 ◦C in artificial seawater in a 250 L aquarium
equipped with an air pump.

Prior to the experiment, at least seven adult U. australis thalli of similar sizes (total
length of approximately 15 cm) were selected. Algal disks (Ø 12 mm) were cut from the
centre of each U. australis thallus and transferred to a 500 mL glass container filled with
450 mL of artificial seawater [41]. The algal disks were stored at 15 ± 1 ◦C under 20–30 µmol
photons m–2s–1 of fluorescent light (FL20SS; Philips, Eindhoven, The Netherlands) with a
12 h light/dark photoperiod for 24 h under aerated conditions prior to light treatment.

4.2. Experimental Treatments

LED panels (with white, blue, green, or red LEDs; 340 × 500 × 10 mm; Daewon,
Bucheon, Republic of Korea) were used as light sources. The emission spectrum of each
light source was measured using a spectroradiometer (Avaspec-ULS2048; Avantes, Apel-
doorn, Gelderland, The Netherlands). Figure 13 depicts the emission spectra for white
(400–700 nm), blue (emission peak at 460 nm), green (emission peak at 525 nm), and red
light (emission peak at 660 nm) and the emission spectrum for white light depleted of
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blue light, which was accomplished using a broadband filter (015; LEE Filters, Andover,
UK). Photon irradiance was measured using a quantum sensor (LI-1400; LI-COR, Lin-
coln, NE, USA) to ensure that all light treatments had the same irradiance (100–110 µmol
photons m−2s−1).
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For the experimental treatments, 12 U. australis disks were placed in 250 mL Erlen-
meyer flasks (n = 3 replicates per condition), each containing 200 mL of Ott’s medium [77],
for aerated and static cultures. The flasks were illuminated with white, blue, green, or
red light at 100–110 µmol photons m–2s–1 under a 12 h light/dark photoperiod for 4 days,
with the culture temperature maintained at 15 ± 1 ◦C. The water turbulence produced
by aeration caused gentle algal movement, and the Ott’s medium was changed every
2 days. After 4 days, the disks were harvested for morphological, photosynthetic, and
biochemical evaluation.

4.3. Measuring Growth and Cell Number

The growth of the U. australis disks was measured using an image analyser (Moticam
2.0; Ted Pella, Redding, CA, USA). The number of cells in a given area (2500 µm2) was
counted by examining the surface view of U. australis disks under a microscope (Axioskop
2 Plus; Zeiss, Jena, Germany).

4.4. Estimating Pigment Content

The photosynthetic pigment contents of the U. australis disks were determined using a
spectrophotometer (S-3100 PDA UV-Vis; Scinco, Seoul, Republic of Korea). Pigments
were extracted from the disks in 1 mL methanol (≥99.9%; CAS No. 67-56-1; Sigma-
Aldrich, St. Louis, MO, USA) for 24 h at 4 ◦C in the dark. The absorbance values of
the methanolic extracts were measured at 666, 653, and 470 nm using a spectrophotometer
to estimate the Chl a, Chl b, and carotenoid pigments, and Equations (1)–(3), as described
by Lichtenthaler [78], were used for calculating their contents:

Chl a content = 15.65 × A666 − 7.34 × A653 (1)

Chl b content = 27.05 × A653 − 11.21 × A666; (2)

Carotenoid content = (1000A470 − 2.86 × Chl a − 129.2 × Chl b)/245 (3)

where A represents the absorbance values at the respective wavelengths. In Equation (3), Chl
a and Chl b represent the respective pigment contents obtained using Equations (1) and (2).

4.5. Measuring Chl a Fluorescence

Chl a fluorescence, an indicator of light-dependent photosynthetic responses in PSII [18],
was measured using a pulse-amplitude-modulation imaging fluorometer (Walz, Effeltrich,
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Germany). After 4 days of growth under the experimental treatments described previously,
the U. australis disks were placed in 24-multi-well plates (30024, SPL, Pocheon, Republic of
Korea) and dark-adapted for 15 min. The samples were then irradiated with LED pulses
(0.15 µmol photons m−2s−1) to determine the initial fluorescence yield (Fo). The maximum
fluorescence yield (Fm) was determined by irradiating with a saturating pulse of approx-
imately 5000 µmol photons m−2s−1 emitted by a built-in halogen lamp. The maximum
photosynthetic quantum yield (Fv/Fm) was calculated as (Fm − Fo)/Fm.

The electron transport rates were determined from rapid light curves, which provide
an estimate of the saturation properties of electron transport and the overall photosynthetic
performance of photosynthetic organisms [79]. Curves were derived using actinic light
pulses of 10 s duration with a stepwise increase from 0 to 531 µmol photons m−2s−1. The
hyperbolic tangent equation shown in Equation (4) was used to determine rETRmax, as
described by Platt et al. [80]:

rETRmax = (1 − exp[−α × I/Pt]) × exp(−β × I/Pt), (4)

where α denotes the electron transfer rate under light-limited conditions, Pt represents a
theoretical parameter, and β is the inhibition coefficient.

NPQ was estimated as NPQ = (Fm − F′m)/F′m [81], where F′m is the maximum
fluorescence yield under light-adapted conditions.

4.6. Relative Effectiveness of the Blue Quantum

To compare the relative effectiveness of the blue quanta emitted by white and blue
light, the spectral energy output from 400 to 700 nm (white) and 400 to 500 nm (blue) was
converted into quanta [65]. The quanta of 1 nm wavelength bands were expressed as a ratio
relative to the total sum. The resulting curves were multiplied by the absorbance spectral
curves of U. australis at the corresponding wavelengths, and the areas under the curves
were subsequently compared.

4.7. Protein Extraction from U. australis Disks

Twelve U. australis disks grown under turbulent or static conditions in the presence
of blue light were harvested and homogenised in liquid nitrogen using a motor-driven
homogeniser (PowerGen 125, Fisher Scientific, Hampton, NH, USA). Homogenates were
lysed in 10 volumes of lysis solution consisting of 7 M urea, 2 M thiourea, 4% (w/v)
3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS), 1% (w/v) dithio-
threitol (DTT), 2% (v/v) pharmalyte, and 1 mM benzamidine. Proteins were extracted
by shaking the lysate for 1 h at 25 ◦C, followed by centrifugation at 15,616× g for 1 h at
25 ◦C. The supernatant was subjected to two-dimensional electrophoresis, and the protein
concentration was quantified using the Bradford colorimetric assay [82].

4.8. Two-Dimensional Electrophoresis and Image Acquisition

Protein extracts (400 µg) were separated in the first dimension by isoelectric focus-
ing using an immobilised pH gradient dry strip (24 cm, pH 4–10, Genomine DryStrip;
Genomine, Pohang, Republic of Korea) and equilibrated with a rehydration solution
(comprising 7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 1% (w/v) DTT, and 1% (v/v) phar-
malyte) for 12–16 h, followed by 2D SDS-PAGE (20 × 24 cm). Proteins were detected using
Coomassie Brilliant Blue staining. Image analysis and quantification of protein spots were
performed using PDQuest software version 8.0 (Bio-Rad Laboratories, Hercules, CA, USA).
The amount of protein in each spot was normalised to the total intensity of valid spots.

4.9. Protein Identification by MALDI-TOF/TOF

For protein identification and peptide mass fingerprinting (PMF), protein spots were
excised and digested with trypsin (Promega, Madison, WI, USA), mixed with α-cyano-
4-hydroxycinnamic acid in 50% (v/v) acetonitrile + 0.1% (v/v) trifluoroacetic acid, and
subjected to MALDI-TOF/TOF (Autoflex maX; Bruker, Bremen, Germany) with LIFT™
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ion optics. The mass list of PMF was analysed using Mascot (version 2.1, Matrix Science,
London, UK) to search for matching proteins in the National Centre for Biotechnology
Information Non-Redundant database using the following parameters: trypsin as the
cleaving enzyme, maximum failed cleavage, iodoacetamide as the full modification of
cysteine, oxidation of methionine as the partial modification, monoisotopic masses, and
mass tolerance of 0.1–0.2 Da.

4.10. Statistical Analysis

Differences between treatments were determined using ordinary two-way analysis
of variance with a randomised complete block design (no repeated measures), followed
by a post hoc least significant difference test. Results are presented as mean with 95%
confidence intervals (shown as error bars where relevant). Correlations between growth and
physiological parameters were assessed using Pearson’s correlation coefficient calculated
with the ggplot2 package [83] in R (version 4.0.5; R Foundation for Statistical Computing,
Vienna, Austria). For all tests, p < 0.05 was considered statistically significant.

5. Conclusions

In summary, the results of this study indicate that blue-light-induced growth enhance-
ment in the presence of water turbulence resulted from active cell division rather than
photosynthetic efficiency, implying that blue-light-mediated growth promotion may be a
photomorphogenic response likely involving the blue light photoreceptor cryptochromes.
In particular, three proteins related to photosynthetic metabolism and sugar signalling
were activated.

The growth-promoting effect of blue light on U. australis in the presence of water
turbulence can be attributed to the absorption of blue light quanta (e.g., 1.02 mol m−2)
by cryptochromes. This light-induced molecular response may lead to developmental
changes, such as growth, which improves the ability of the alga to respond to water turbu-
lence. The precise mechanism of this cryptochrome signal transduction pathway and its
effects on water turbulence sensitivity remain unknown and require further investigation.
Furthermore, several proteins in U. australis that accumulate upon exposure to a combi-
nation of blue light and water turbulence were identified. These proteins were related to
chloroplast function, implying that more photosynthesis-related proteins become available
for plastid differentiation under these culture conditions, potentially facilitating efficient
photosynthesis and contributing to the enhanced growth of U. australis.

These insights have important practical implications for optimising the growth and
productivity of this valuable marine organism. Investigating the nature of the blue light
effect, unravelling the underlying molecular mechanisms, and assessing the broader appli-
cability of these findings will advance our understanding of Ulva cultivation and contribute
to the sustainable growth of the aquaculture industry. Future studies should consider the
use of non-targeted metabolomics to characterise metabolite accumulation differences and
elucidate the regulatory mechanisms underlying the growth-promoting effects of blue light
and water turbulence in U. australis.
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