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Abstract: Chronic copper (Cu) bioavailability models have been successfully implemented in European risk assessment
frameworks and compliance evaluations. However, they were developed almost two decades ago, which calls for an update.
In the study, we present updated chronic Cu bioavailability models for invertebrates and algae. They consider recent
ecotoxicity data sets and use the more recent speciation model Windermere Humic Aqueous Model (WHAM) VII and an
optimized model structure (i.e., a generalized bioavailability model [gBAM]). Contrary to the classic biotic ligand model, a
gBAM models the effect of pH on Cu2+ toxicity via a log‐linear relationship parametrized through the pH slope SpH. The
recalibrated SpH parameters are −0.208 for invertebrates (Daphnia magna, two clones) and −0.975 for algae (Raphidocelis
subcapitata and Chlorella vulgaris). The updated models predict 80% to 100% of the observed effect levels for eight different
species within a factor of 2. The only exception was one of the two data sets considering subchronic 7‐day mortality to
Hyalella azteca: the prediction performance of the updated invertebrate model at pH≥ 8.3 was poor because the effect of
pH on Cu2+ toxicity appeared to be dependent on the pH itself (with a steeper pH slope compared with the updated
invertebrate model at pH≥ 8.1). The prediction performance of the updated Cu bioavailability models was similar to or
better than that of the models used for regulatory application in Europe until now, with one exception (i.e., H. azteca).
Together with the recently published fish bioavailability model, the models developed in the present study constitute a
complete, updated, and consistent bioavailability model set. Overall, the updated chronic Cu bioavailability model set is
robust and can be used in regulatory applications. The updated bioavailability model set is currently used under the
European Union Registration, Evaluation, Authorisation, and Restriction of Chemicals framework regulation to guide the safe
use of Cu. Environ Toxicol Chem 2024;43:450–467. © 2023 The Authors. Environmental Toxicology and Chemistry published
by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
It is well known that chronic copper (Cu) toxicity to aquatic

organisms is dependent on the physicochemistry of the surface
water. Dissolved organic carbon (DOC), pH, water hardness, and

sodium (Na) have been identified as the main toxicity modifying
factors for Cu (e.g., Brix et al., 2021; Crémazy et al., 2017; De
Schamphelaere & Janssen, 2004, 2006; Nys et al., 2020; Van
Regenmortel et al., 2015). During recent years, bioavailability
models, such as biotic ligand models (BLMs), have increasingly
been used to account for the influence of water chemistry vari-
ables in the evaluation of ecological risks of Cu in surface waters.
The use of metal bioavailability models to account for bioavail-
ability effects is supported under different European legislation,
that is the Registration, Evaluation, Authorisation, and Restriction
of Chemicals‐framework (REACH; European Chemicals
Agency, 2008), the Water Framework Directive (WFD; EU
Water Directors, 2018, 2021), and recently also under the Plant
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Protection Product Regulation (PPPR; European Food Safety
Authority [EFSA] Plant Protection Regulation‐Panel, 2021). Cu
bioavailability models were initially implemented to derive pre-
dicted no effect concentrations (PNECs) in the risk assessments
performed in the European Union under the former Existing
Substances Regulation (Cu Voluntary Risk Assessment Report [Cu
VRAR]; European Copper Institute, 2008) and more recently also
under the REACH directive (European Copper Institute, 2022). In
addition, Cu bioavailability models have also been integrated in
the European Union WFD to derive Environmental Quality
Standards (EQS) because Cu is a river basin‐specific pollutant in
several member states (EU Water Directors, 2021). User‐friendly
tools for compliance assessment that rely on Cu bioavailability
models are also available (e.g., Peters et al., 2020).

Bioavailability models typically include three components to
predict site‐specific toxicity: a speciation component, a com-
petition component, and a sensitivity component. The speci-
ation component models the complexation of Cu2+ with organic
and inorganic ligands because it is assumed that Cu toxicity is
primarily related to the activity of the free Cu2+ ion, although a
few other Cu2+ species have been suggested to be bioavailable
and contribute to Cu toxicity (e.g., CuOH+ and CuCO3; De
Schamphelaere & Janssen, 2004). The competition component
incorporates the effects of H+ and other cations, such as Na+,
Ca2+, and Mg2+, on the uptake of Cu2+ into the organism. These
effects include—but are not limited to—competition between
Cu2+ and cations for uptake at the theoretical Cu–biotic ligand
site. Finally, the sensitivity component relates the uptake of the
free Cu2+ ion to the organism's sensitivity. The implementation
of bioavailability models into risk assessment procedures re-
quires that, after calibration of the model on the species‐specific
sensitivity, its performance needs to be investigated for model
species using independent data, preferably tested in natural
waters (European Chemicals Agency, 2008). In addition, so‐
called “spot‐checking” with nonmodel species also needs to be
performed to evaluate the generalization of bioavailability ef-
fects within trophic levels (European Chemicals Agency, 2008;
EFSA, 2021; EU Water Directors, 2021; hereafter referred to as
cross‐species validation).

The first chronic Cu bioavailability models were developed
two decades ago and were accepted by the European Union and
European Union Member States as described in the
Voluntary Risk Assessment of copper and copper compounds
(European Copper Institute, 2008). That model set included three
different freshwaters models, which are hereafter referred to as
the original chronic Cu bioavailability models: (1) a model for
algae, developed based on Raphidocelis subcapitata and
Chlorella vulgaris (De Schamphelaere & Janssen, 2006), (2) a
model for invertebrates, developed based on Daphnia magna
(De Schamphelaere & Janssen, 2004), and (3) a model for fish,
developed by validating an acute D. magnamodel using data for
P. promelas and O. mykiss (De Schamphelaere & Janssen, 2008;
Table 1). The original chronic Cu bioavailability models for in-
vertebrates and fish were developed in line with the conventional
acute BLM, initially developed by Di Toro et al. (2001). In the
original chronic Cu bioavailability models for invertebrates and
fish, the effect of pH is modeled via a linear relation between H+

and the effective concentration expressed as free Me2+ (para-
metrized via the biotic ligand stability constant, KHBL) and the
incorporation of biotic ligand binding constants for Cu2+ and
other relevant Cu species that were assumed to be bioavailable
(De Schamphelaere & Janssen, 2004). The bioavailability model
for algae demanded a log‐linear relationship between Cu2+

toxicity and pH (De Schamphelaere & Janssen, 2006; European
Copper Institute, 2008). The applicability of the original chronic
Cu bioavailability models toward nonmodel species (i.e., cross‐
species validation) was also demonstrated (De Schamphelaere
et al., 2006; European Copper Institute, 2008).

Since the development of the original chronic Cu bioavail-
ability model set, new freshwater chronic toxicity data sets
describing bioavailability effects have become available (e.g.,
Antunes et al., 2012; Crémazy et al., 2017; Van Regenmortel
et al., 2015). In addition, new approaches to bioavailability
modeling have been developed. For example, a chronic Cu fish
BLM‐type model has been developed based on a novel toxicity
data set for O. mykiss (Crémazy et al., 2017). A Cu multiple
linear regression (MLR) bioavailability model has been pro-
posed for environmental threshold derivation in the United
States (Brix et al., 2021; Mebane, 2023). This model relates
dissolved Cu toxicity directly to the toxicity modifying factors
(i.e., DOC, hardness, and pH), and therefore does not explicitly
consider Cu speciation. Cu generalized bioavailability models
(gBAMs) were also developed to describe chronic Cu toxicity to
invertebrates (Van Regenmortel et al., 2015) and fish (Nys
et al., 2020). The gBAM incorporates the effect of pH on metal
toxicity as a log‐linear relation between pH and the effective
concentration expressed as free metal cation ( +xEC Me2 ). While
traditional BLMs only consider the competitive effect of H+ at
the biotic ligand site, the log‐linear model structure allows
gBAMs to consider other factors (e.g., physiological factors)
that determine the effect of pH on free metal cation (Me2+)
toxicity. In general, the gBAM structure describes the effect of
pH on Cu toxicity more accurately compared with the original
Cu BLMs (Nys et al., 2020; Van Regenmortel et al., 2015).
Generalized bioavailability models are increasingly used in
European risk assessment frameworks for different metals, for
example nickel (Ni, all trophic levels; Peters et al., 2023) and
lead (Pb, algae and fish; Van Sprang et al., 2016).

Geochemical equilibrium speciation modeling of metals,
including Cu, in the presence of DOC has also advanced over
the past two decades. The Windermere Humic Aqueous Model
(WHAM) V is the speciation model underlying all models used
in the original chronic Cu bioavailability model set (Table 1).
The use of WHAM VII has, over the past decade, gained
increased acceptance in the scientific community (Lofts &
Tipping, 2011; Tipping et al., 2011). The WHAM VII is the most
recent version of the WHAM and incorporates the improved
Humic Ion‐binding Model VII (Tipping et al., 2011).

Given the progress related to aquatic toxicity data, speci-
ation modeling, and bioavailability model formulations, there is
a clear need to update the chronic Cu bioavailability models
used in European Risk Assessment Frameworks. Overall, our
work aims to update the effects assessment of Cu for the
freshwater compartment for use in European risk assessment
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approaches by (1) incorporating the most recent ecotoxicity
data, (2) optimizing the bioavailability model structure, and (3)
adopting the most state‐of‐the‐art speciation model. This
manuscript describes the update of the chronic Cu algae and
invertebrate bioavailability models. The gBAM structure was
preferred over other possible model structures because it
predicts the effect of pH on Cu toxicity more accurately com-
pared with a traditional BLM (Nys et al., 2020; Van Regenmortel
et al., 2015) or an MLR model (Brix et al., 2021). The update
was done in three steps. First, Cu bioavailability models for
algae and invertebrates were recalibrated in WHAM VII.
Second, the models were validated with independent data for
model species. Finally, the models were subjected to a ‘spot‐
check’ evaluation of the performance for nonmodel species
(i.e., cross‐species validation). Where possible, the perform-
ance of the updated models was compared with the prediction
performance of the corresponding original chronic Cu bio-
availability models. The updated algae and invertebrate
models described in the present study, together with the re-
cent chronic fish bioavailability model (Nys et al., 2020), con-
stitute a complete state‐of‐the‐art validated chronic Cu
bioavailability model set covering the three taxa which are the
focus of environmental risk assessments.

MATERIALS AND METHODS
For simplicity, in the remainder of this article, the term

“updated Cu (bioavailability) model” has been used to refer to
a gBAM‐type model combined with WHAM VII speciation
calculations.

The data used for the development and validation of the
updated Cu bioavailability models (also referred to as the “up-
dated models”) were those originally used to develop and val-
idate the original chronic Cu bioavailability model set (De
Schamphelaere & Janssen, 2004, 2006, 2008, European Copper
Institute, 2008; Van Regenmortel et al., 2015), complemented
with more recent bioavailability studies. Only chronic bioavail-
ability studies that considered at least two test media with dif-
ferent physicochemistry were retained, with a few exceptions
(e.g., mollusc data). Data sets considering only the effects of
dissolved organic matter (DOM), while keeping all other phys-
icochemistry parameters constant, were only considered in the
Supporting Information because these bioavailability studies do
not allow the validation of the competition component of the
bioavailability model. A description of the toxicity data used for
model calibration and validation and a nonexhaustive overview
of excluded data sets is given in Supporting Information, S1. The
entire physicochemistry for all bioavailability data sets used for
development and validation of the updated models is also
provided in Supporting Information, S2.

It should be noted that the scientific name of the green
algae Pseudokirchneriella subcapitata has recently been up-
dated to Raphidocelis subcapitata. In the present study, the
most recent name is used to refer to this species (i.e., R. sub-
capitata), while in nearly all referenced studies the former name
has been used.

General structure of the Cu generalized
bioavailability models

All gBAMs integrate the effect of pH on Me2+ toxicity as a
log‐linear effect between pH and ( +xlog EC ; expressed asMe2

SpH). This log‐linear pH effect is superimposed on the tradi-
tional linear effects of the remaining competitive ions at the Cu
biotic ligand site, although only when competing cations are of
importance for describing Cu toxicity to the considered taxon.
The general structure of a Cu gBAM for taxon y is given by
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In Equation (1), +xEC yCu pred,gBAM,2 is the x% effective con-
centration of Cu2+, expressed as free ion activity (mol/L)
predicted by the gBAM of taxon y, QxgBAM,y is the intrinsic
sensitivity of taxon y under this gBAM, SpH,gBAM,y is the slope
of the log‐linear effect of pH on Cu2+ toxicity of the chronic
Cu gBAM for taxon y (unitless), pHi is the pH of test water i,
KCatZBL,gBAM,y is the biotic ligand binding constant (in L/mol)
in the chronic Cu gBAM for taxon y of cation z, and (Catn+z)i is
the activity (mol/L) of competitive cation z in test water i.
The competition effects of the cations Ca2+, Mg2+, and Na+

are included in the fish and invertebrate models, but not in
the algae model (Table 1).

Speciation assumptions
All speciation calculations were performed using the WHAM

VII developed by the Centre of Ecology and Hydrology (CEH;
Tipping et al., 2011). The pH buffers 3‐(N‐morpholino)
propanesulfonic acid and 2‐(N‐morpholino)ethanesulfonic acid
were added to the default solute database (pKa of 7.2 and 6.2,
respectively; Kandegedara & Rorabacher, 1999). Default sta-
bility constants for inorganic ligand–Cu complexation were
adapted to those reported by the National Institute for
Standards and Technology (NIST; see Supporting Information,
Table S3.1). The default metal–DOM complexation parameters
in WHAM VII were used. For modeling the complexation ca-
pacity of DOM from natural origin (e.g., field waters), we as-
sumed that 65% of the DOM is reactive and behaves as
isolated fulvic acid (FA; 65% active FA). Assumptions of 65%
active FA have been shown to typically result in reasonable
predictions of metal speciation in natural waters (Ahmed
et al., 2014; Tipping, 2002). In addition, it was assumed that
DOM contains 50% carbon on a weight basis (Ritchie &
Perdue, 2003). Accordingly, the measured DOC concentration
(mg/L) was multiplied by 1.3 to obtain the FA concentration
(mg/L) to be used as the input for speciation calculations.
Furthermore, it was assumed that activities of the metal cation
Fe3+ are controlled by colloidal Fe(OH)3 precipitates using the
default equation and solubility product embedded in WHAM
VII (Lofts & Tipping, 2008). The solute and phase databases
used for speciation modeling in WHAM VII are available in
Supporting Information, S3.
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A comparison between the speciation assumption used in the
present study (i.e., for WHAM VII speciation calculations) and
those used for the original chronic Cu bioavailability models is
given in Supporting Information, S3. Van Regenmortel (2017)
showed that switching speciation software version of WHAM
(from version V to VII) had little effect on model predictions for
Cu and Zn bioavailability models.

Development of the updated Cu bioavailability
models

The pH slope (SpH; Equation 1) of the invertebrate and algae
bioavailability models was specifically calibrated on effect
concentrations expressed as free Cu2+ activities calculated
using WHAM VII ( +xEC Cu2 ). The SpH was estimated as the slope
of the linear regression between observed log ( +xEC Cu2 ) and
pH. The SpH was derived based on the average of the slope of
the relationship between pH and EC10 and between pH and
EC50 for each taxon. This is in line with how the original algae
gBAM was developed (De Schamphelaere & Janssen, 2006,
European Copper Institute, 2008). However, Van Regenmortel
et al. (2015) only considered the EC50 level for deriving the SpH
parameter of the WHAM V‐based invertebrate gBAM. For the
update of the invertebrate bioavailability model, the SpH pa-
rameter was calibrated on the toxicity data of two different
D. magna clones (ARO and K6) tested in synthetic solutions at
two pH levels (pH 6.5 and 8.4, four experiments in total; taken
from Van Regenmortel et al., 2015). The use of the univariate
pH series allows for derivation of an SpH without possible
confounding effects of other physicochemical factors.

In the updated invertebrate bioavailability model, the KNaBL,
KMgBL, and KCaBL parameters were kept at the same values as in
the model developed by Van Regenmortel et al. (2015),
that is log KNaBL,invertebrate gBAM equal to 2.67 (based on De
Schamphelaere & Janssen, 2004) and log KMgBL,invertebrate gBAM

and KCaBL,invertebrate gBAM equal to 3.53 (derived by Van
Regenmortel et al., 2015; see Table 1). As such, it was assumed
that the switch to a new speciation model only affects the pH
slope, and that the cationic biotic ligand constants are not
impacted.

Validation of the updated models for model
species and nonmodel species

In the validation, the predictive performance of the updated
models is evaluated by comparing the observed dissolved Cu
toxicity to the predicted dissolved Cu toxicity. Three types of
validations were defined in the present study: autovalidation,
independent validation, and cross‐species validation. An auto-
validation is the evaluation of the predictive performance of the
model for the data set on which the updated models has been
developed, which is an assessment of how well the model is
calibrated. An independent validation is the evaluation of the
predictive performance of the model for an independent data
set, that is, a data set that has not been used to calibrate the
updated models. The independent validation data set includes

both synthetic and natural waters. Both the autovalidation and
the independent validation only consider species on which the
model has been originally developed, that is, model species
(D. magna for the invertebrate model and R. subcapitata and
C. vulgaris for the algae model). A cross‐species extrapolation
evaluates the prediction performance of the bioavailability model
for nonmodel species (i.e., species that have not been used to
calibrate the model parameters). The updated invertebrate bio-
availability model was used to evaluate prediction performance
for all invertebrates, while the updated algae bioavailability
model was used for all algae and higher plants. An overview of
the data sets that were used for each type of validation is given in
Supporting Information, Tables S1.1, S1.2, and S1.3.

The actual bioavailability modeling in the validation process
of the updated models consisted of a four‐step process
(Figure 1). The validation process starts with the calculation of
speciation in test media using WHAM VII (Step 1). In Step 2, the
intrinsic sensitivity of the updated model for taxon y is derived
using the following equation, which is derived by rearranging
Equation (1):
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where n is the number of waters considered to calibrate the
intrinsic sensitivity. The intrinsic sensitivity parameter is specific
for each species. In addition, the intrinsic sensitivity parameter
is calibrated for each effect level, Ecx or no observable effect
concentration (NOEC), and for each endpoint separately, be-
cause the Cu sensitivity of a species may differ between end-
points. Furthermore, the sensitivity was also calibrated
separately for different clones of one species because metal
sensitivity can also differ extensively between clones (Messiaen
et al., 2013). Although the model can be specifically calibrated
for differences in sensitivity, it is assumed that bioavailability
relations (e.g., the SpH or the KCaBL value) are similar for different
expressions of sensitivity (e.g., different effect levels, different
clones, related species). In Step 3, Cu toxicity, expressed as free
Cu2+ activity, is predicted using the updated Cu bioavailability
model (Equation 1) with the intrinsic sensitivity calibrated in
Step 2. In Step 4, the predicted free Cu2+ toxicity activity is
translated back to dissolved Cu toxicity using WHAM VII.

Traditionally, bioavailability model predictions have been
considered to be sufficiently accurate if the majority of the
effect concentrations were predicted within twofold error (e.g.,
Di Toro et al., 2001; Garman et al., 2020). In addition, based on
the recommendations of Garman et al. (2020), the evaluation of
the prediction performance of the bioavailability models also
considered the evaluation of prediction bias relative to the
considered toxicity modifying factors in the models. In practice,
for data sets that evaluate the effect of toxicity modifying fac-
tors in a univariate test series, this is done by evaluating the
prediction performance of the observed bioavailability trends.
For data sets for which physicochemistry parameters have not
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been univariately evaluated, model prediction bias (expressed
as predicted/observed Ecxdiss) as a function of toxicity mod-
ifying factors parameters was further evaluated using the
Spearman rank correlation test. Correlations were plotted using
the ggpubr package in R. For the evaluation of model pre-
diction bias, preference was given to EC50s (if available) be-
cause these are generally estimated with a higher level of
precision compared with EC10s (i.e., associated with smaller
confidence intervals).

Where possible, the prediction performance of the updated
Cu bioavailability models was also compared with that of the
original chronic Cu bioavailability model set. This assessment
was based on comparing prediction error statistics (mean,

median, percentage predicted within twofold error) and
cumulative probability plots (Garman et al., 2020).

RESULTS
Calibration and independent validation
of the invertebrate model

For the updated invertebrate bioavailability model, the re-
calibrated SpH parameter represents the average of the log‐linear
effect of pH on free Cu2+ toxicity ( +EC50Cu2 and +EC10Cu2 ) for the
ARO and K6 clones (see Figure 2). The slopes of the two clones
and the two considered effect concentrations ranged between
−0.049 (ARO clone, +EC50Cu2 ) and −0.392 (K6 clone, +EC50Cu2 ).

FIGURE 1: Overview of the process used for validating the updated copper (Cu) bioavailability models. The actual bioavailability modeling for the
validation process of the updated Cu bioavailability models consists of a four‐step process. In Step 1, the Windermere Humic Aqueous Model
(WHAM) VII speciation software is used to calculate free Cu2+ activity for the validation data set, and depending on the model Mg2+, Na+, and Ca2+

activities are also calculated. In Step 2, the intrinsic sensitivity (Qx) is calibrated for the data set under consideration based on WHAM VII calculated
speciation generated in Step 1 using Equation 2. In Step 3, Cu toxicity, expressed as free Cu2+ activity, is predicted using the updated Cu
bioavailability model (Equation 1) with the intrinsic sensitivity calibrated in Step 2. In Step 4, the predicted free Cu2+ toxicity activity is translated
back to dissolved Cu toxicity using the geochemical speciation software WHAM VII. The observed dissolved Cu toxicity can then be compared with
the dissolved Cu toxicity predicted with the updated Cu bioavailability model. EC= effect concentration; gBAM= generalized bioavailability model.

FIGURE 2: Model development: free Cu2+ activity (expressed as log10, log [mol/L]) at the 21‐day 50% effect concentration (EC50, left panel) and at
the 21‐day 10% effect concentration (EC10, right panel) as a function of pH for Daphnia magna. Symbols represent the K6 clone (triangles) and ARO
clone (circles). Free Cu2+ activity was calculated using Windermere Humic Aqueous Model (WHAM) VII. Toxicity data was generated by Van
Regenmortel et al. (2015). Toxicity for both clones was investigated in natural water at pH 6.4 and 8.4, while keeping all other physicochemistry
parameters constant. Error bars denote standard errors on effect concentrations. Linear regression lines and equations are given for both clones.
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The recalibrated SpH parameter of the updated model is
−0.208± 0.089 (average of four slopes± standard error). An
overview of the parameters of the updated chronic Cu in-
vertebrate bioavailability model is given in Table 1. When using
these parameters, it was observed that the updated model for
invertebrates predicted the data used for their development (i.e.,
autovalidation) with reasonable accuracy (Supporting In-
formation, S4). The median factor prediction error for the de-
velopment data sets ranged between 1.1 (ARO clone,
EC50Cudiss) and 1.2 (K6 clone, EC50Cudiss).

Three data sets were available for the independent validation
of the updated invertebrate bioavailability model (all considering
D. magna data; De Schamphelaere & Janssen, 2004; Heijerick
et al., 2002; Villavicencio et al., 2011). These include data for two
clones obtained both in natural waters (n= 30) as well as in re-
constituted waters amended with DOM of natural origin (n= 54).
None of the waters in the independent validation set have been
used for the calibration of any of the bioavailability parameters
(either SpH or the KCat,BL parameters) in the invertebrate bio-
availability model. For the independent validation, clone‐specific
intrinsic sensitivities were used to account for possible differ-
ences in clone sensitivity. Intrinsic Cu2+ sensitivities (Qx) for the
data sets used for the independent validation of the invertebrate
bioavailability model are listed in Supporting Information,
Table S5.1. Depending on the selected effect threshold and on
the clone, the updated Cu invertebrate bioavailability model
predicted the observed effects within twofold error for 82% to
87% of the data points (Table 2 and Figure 3, and Supporting
Information, Figure S5.1). Median prediction errors for all waters
ranged between 1.2 and 1.5, depending on the clone and the
selected effect threshold (Supporting Information, Table S5.2).
For natural waters, median prediction errors ranged between 1.3
and 1.8. Overall, predictions of the updated Cu invertebrate bi-
oavailability model for the independent model validation set
were deemed very good. Some limited bias was observed in the
predictions for one of both clones (K6‐clone; Supporting In-
formation, Figures S5.3 and S5.4): the residual variation was
significantly correlated with DOC (p= 0.004) and Na (p< 0.001;
mainly driven by high sodium concentrations corresponding to
brackish waters).

In general, the performance of the updated invertebrate bi-
oavailability model was more accurate compared with the pre-
diction performance of the original bioavailability model when
the same data were considered, despite the lower number of
parameters in the updated model (see Supporting Information,
Table S7.2 and Figures S7.1a and S7b). Prediction performance
was especially improved at low pH (i.e., Skarsjön water with
pH= 5.5; Supporting Information, Table S7.3). When compared
with the model by Van Regenmortel et al. (2015), the updated
invertebrate bioavailability model was only slightly less accurate
(Supporting Information, Table S7.2 and Figure S7.1).

Cross‐species validation of the updated Cu
bioavailability model for invertebrates

Chronic or subchronic bioavailability data sets are available
for three nonmodel invertebrate species, Brachionus calyciflorus,

Ceriodaphnia dubia, and Hyalella Azteca, from four studies
(Supporting Information, Table S1.3; Borgmann et al., 2005; De
Schamphelaere et al., 2006; Deaver & Rodgers, 1996; Schwartz
& Vigneault, 2006). Intrinsic Cu2+ sensitivities (Qx) for the dif-
ferent data sets are listed in Supporting Information, Table S8.1.
Figure 4 shows the predictive performance of the updated Cu
invertebrate bioavailability model for nonmodel invertebrate
species. Overall, Cu toxicity to B. calyciflorus and C. dubia is
accurately predicted, with median prediction errors ranging
between 1.1 (B. calyciflorus) and 1.2 (C. dubia; Supporting In-
formation, Table S8.2). For H. azteca, the prediction perform-
ance was dependent on the considered data set. The 10‐day
mortality reported by Deaver & Rodgers (1996) was accurately
predicted with the updated Cu invertebrate bioavailability
model, with median prediction error on median lethal concen-
tration (LC50) equal to 1.2‐fold (circles in Figure 4), while 7‐day
mortality in the data set of Borgmann et al. (2005) was rather
poorly predicted (median prediction error on LC50 = 2.2; stripes
in Figure 4). The poor prediction performance in the data set of
Borgmann et al. (2005) was mainly related to the high pH
(pH≥ 8.1) waters, for which toxicity was consistently under-
estimated. When the intrinsic sensitivity was calibrated solely on
the test media with pH≤ 7.7, Cu toxicity in test media with
pH≤ 7.7 was accurately predicted, while Cu toxicity in test
media with pH≥ 8.1 was underestimated (Supporting In-
formation, Figure S8.1 and Table S8.3).

Overall, the updated invertebrate bioavailability model pre-
dicted the univariate trends of pH and DOC on Cu toxicity to B.
calyciflorus (Supporting Information, Figure S8.2) and those of
pH, Ca (although not at >250mg Ca/L), Na, and Mg on Cu
toxicity to C. dubia (Supporting Information, Figure S8.3) rea-
sonably well.

For the natural water data set with C. dubia (Schwartz &
Vignault 2006), the prediction bias of the updated invertebrate
bioavailability model was overall limited and not significantly
correlated to the evaluated physicochemistry parameters
(p> 0.05; Supporting Information, Figure S8.4). For H. azteca,
there was a clear difference in prediction bias depending on the
data set. In the data set of Deaver & Rodgers (1996), the pre-
diction bias was very limited and again not significantly corre-
lated with physicochemistry (p> 0.05; Supporting Information,
Figure S8.5). For the data set of Borgmann et al. (2005), the
residual variation in model predictions is considerably larger
(Supporting Information, Figure S8.6). The prediction bias is
mainly related to pH (p< 0.001), with toxicity at high pH (i.e.,
pH≥ 8.3) being consistently underestimated with on average a
fivefold difference between observed and predicted toxicity.

In addition to the above described chronic and subchronic
data sets, the prediction performance of the updated Cu in-
vertebrate bioavailability model for two molluscs was evaluated
based on acute toxicity. Overall, Cu toxicity to early life stages of
Lampsilis siliqouidea (96‐h mortality; data of Wang et al., 2009)
and Hyridella depressa (48‐h valve movement; data of Markich
et al., 2003) is relatively well predicted, with median prediction
errors ranging between 1.2 (48‐h EC50, H. depressa) and 1.3 (48‐
h EC10, H. depressa and 96‐h LC50, L. siliquoidea; Supporting
Information, Figure S8.7 and Table S8.4).
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Chronic or subchronic data sets of B. calyciflorus, H. azteca,
and two acute mollusc data sets have previously been used to
validate the original chronic Cu bioavailability models. When
comparing model predictions of the original invertebrate
model (European Copper Institute, 2008) with those of the
updated model, model predictions of the updated Cu in-
vertebrate bioavailability model tended to be similar compared
with the predictions of the corresponding original chronic Cu
bioavailability model (see Supporting Information, Table S7.1),
even though the updated model has two parameters less than
the original model. The only exception was for the H. azteca
data set of Borgmann et al. (2005), for which Cu toxicity was

predicted with a significantly higher accuracy using the original
chronic Cu invertebrate bioavailability model compared with
the updated Cu invertebrate bioavailability model, that is 93%
and 43% of the datapoints predicted within twofold error, re-
spectively (Supporting Information, Figure S7.3).

Calibration and independent validation of the
algae model

The slopes of the log‐linear relationship between pH and
+xEC Cu2 for the two species and the two considered effect

concentrations were relatively similar and ranged between

FIGURE 3: Independent validation: prediction capacity of the updated chronic copper (Cu) invertebrate bioavailability model for predicting 21‐day
toxicity to Daphnia magna expressed as 50% effect concentration (EC50, left panel) and 10% effect concentrations (EC10, right panel). The updated
chronic Cu invertebrate bioavailability model is a generalized bioavailability model (Equation 1) that is combined with Windermere Humic Aqueous
Model (WHAM) VII. Circles represent data points for the ARO clone and triangles represent data points of the K6 clone. Open symbols represent
toxicity obtained in test media isolated from natural freshwaters, filled datapoints indicate toxicity obtained in synthetic test water amended with
natural organic matter. The dashed lines represent a difference of a factor 2 between predicted and observed toxicity. The solid lines represent a
perfect fit between observed and predicted data.

FIGURE 4: Cross‐species validation: prediction capacity of the updated chronic copper (Cu) invertebrate bioavailability model for predicting (sub‐)
chronic toxicity to nonmodel invertebrates. Copper toxicity is expressed as x% effect concentration (ECx) or no observable effect concentration. The
dashed lines represent a difference of a factor 2 between predicted and observed toxicity. The solid line represents a perfect fit between observed
and predicted data.
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−0.905 (R. subcapitata, +EC10Cu2 ) and −1.012 (C. vulgaris,
+EC50Cu2 ; Figure 5). The recalibrated SpH,algae gBAM was equal

to −0.975 ± 0.024 (average of four slopes± standard error).
An overview of the parameters of the updated chronic Cu
algae bioavailability model is given in Table 1. When using
these parameters, it was observed that the updated model for
algae predicted the data used for their development (i.e.,
autovalidation) with reasonable accuracy (Supporting In-
formation, S4). The median prediction error for the develop-
ment data sets ranged between 1.2‐fold (C. vulgaris
EC50Cudiss) and 1.4‐fold (C. vulgaris EC10Cudiss and R. sub-
capitata EC10Cudiss and EC50Cudiss; Supporting Information,
Table S4.4).

For the independent validation of the updated algae bi-
oavailability model one data set is available. Heijerick et al.
(2002) reported on Cu toxicity to R. subcapitata in a series of
natural waters using biomass yield as endpoint. For the in-
dependent validation of the updated algae bioavailability
model, a data set‐specific intrinsic sensitivity was used to
account for possible differences in sensitivity between end-
points (growth rate vs. biomass yield; Supporting In-
formation, Table S6.1). The updated Cu algae bioavailability
model predicted the EC10Cudiss and EC50Cudiss of R. sub-
capitata for 89% and 100% of the datapoints within twofold
error (Figure 6 and Table 2), with median prediction errors
ranging between 1.3 (EC50Cudiss) and 1.6 (EC10Cudiss; Sup-
porting Information, Table S6.2). No bias in the predictions
could be identified: the residual variation in the predictions of
the updated Cu algae bioavailability model did not show a
significant correlation with any of the physicochemistry pa-
rameters (p > 0.05; Supporting Information, Figure S6.1).

The performance of the updated algae bioavailability
model was similar compared with the prediction performance
of the original chronic Cu algae model when the same effect
level was considered. Both models predicted 90% of the
NOECs within twofold error, with an average prediction error
of 1.4‐fold (see Supporting Information, Table S7.1 and
Figures S7.6 and S7.7).

Cross‐species validation of the updated
Cu bioavailability model for algae

Independent chronic bioavailability data sets are available
for three nonmodel algae or plant species: Chlamydomonas
reinhardtii (De Schamphelaere & Janssen, 2006), Chlorella sp.
(Wilde et al., 2006), and Lemna minor (Antunes et al., 2012;
see Supporting Information, Table S1.4). Intrinsic Cu2+ sen-
sitivities (Qx) for the different data sets are listed in Sup-
porting Information, Table S8.1. Figure 7 shows the

FIGURE 5: Model update: free Cu2+ activity (expressed as log10, log [mol/L]) at the 72‐h 50% effect concentration (EC50, left panel) and the 72‐h
10% effect concentration (EC10, right panel) as a function of pH for Raphidocelis subcapitata (diamonds) and Chlorella vulgaris (crosses). Free Cu2+

activity was calculated using Windermere Humic Aqueous Model VII. Toxicity data were generated by De Schamphelaere & Janssen (2006). Linear
regression lines and equations are given for both species.

FIGURE 6: Independent validation: prediction capacity of the updated
chronic copper (Cu) algae bioavailability model for predicting 72‐h
toxicity to Raphidocelis subcapitata (biomass yield endpoint, data of
Heijerick et al. [2002]) as 10% and 50% effect concentration (EC10
[open circles] and EC50 [filled circles], respectively) and no observable
effect concentrations (filled triangles). The updated chronic Cu algae
bioavailability model is a generalized bioavailability model (Equation 1)
that is combined with Windermere Humic Aqueous Model VII. The
dashed lines represent a difference of a factor 2 between predicted
and observed toxicity. The solid line represents a perfect fit between
observed and predicted data.
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predictive performance of the updated Cu algae bioavail-
ability model for nonmodel algae species. Overall, Cu toxicity
to nonmodel algae and plant species was relatively well
predicted, with median prediction errors ranging between
1.2 (72‐h Cu toxicity to C. reinhardtii and 7‐day EC50, L.
minor‐frond count) and 1.8 (48‐h Cu toxicity to Chlorella sp.;
Supporting Information, Table S8.5). In addition, 80% to
100% of the toxicity datapoints were predicted within twofold
error (Table 2), depending on the species and endpoint. The
updated algae bioavailability model predicted the observed
trend of increasing dissolved Cu toxicity with increasing pH
for C. reinhardtii almost perfectly (Supporting Information,
Figure S8.8, left panel). The predicted trend of increasing Cu
toxicity with increasing pH for the Chlorella sp. data set was
also reflected in the observed toxicity data. However, the
observed trend for Chlorella sp. seemed to be steeper than
predicted by the updated algae bioavailability model (Sup-
porting Information, Figure S8.8, right panel). The latter im-
plicates that a higher SpH might be optimal for this species.
The corresponding SpH for this species would be −1.463
(Supporting Information, Figure S8.10). For L. minor, the re-
sidual variation in model predictions is overall limited (Sup-
porting Information, Figure S8.9). A small prediction bias was
tentatively observed related to pH, although this was not
statistically significant (p = 0.14).

The toxicity data sets of C. reinhardtii have previously
been used to validate the original chronic Cu algae bio-
availability model. When comparing model predictions of the
original chronic Cu algae model with those of the updated
algae model, model predictions of the updated Cu algae
bioavailability model tended to be similar compared with
the predictions of the corresponding original chronic Cu

bioavailability model (see Supporting Information, Table S7.1
and Figure S7.6).

DISCUSSION
Update of the Cu bioavailability models—
Speciation and competition component

In the present study, we updated the existing chronic Cu
bioavailability models for invertebrates and algae used in
European risk assessment frameworks and EQS derivation
based on the most recent available science. This update con-
sisted of (1) a recalibration of the bioavailability models using
the state‐of‐the‐art speciation model (WHAM VII; Tipping
et al., 2011) and (2) a revision of the invertebrate bioavailability
model structure (i.e., gBAM‐model structure; Van Regenmortel
et al., 2015).

The use of the WHAM VII (updated models) versus WHAM V
(original models) for modeling Cu2+ in the speciation compo-
nent of the bioavailability model includes a switch to the Humic
Ion‐binding Model VII. Model VII replaces the previous versions
of the Humic Ion‐binding Model (Models V and VI). Compared
with Model V, Model VII takes better account of binding site
heterogeneity and allows a better description of metal binding
at higher pH compared with older versions (Tipping et al., 2011).
The model computes metal interactions with natural organic
matter based on binding to strong acid (carboxylate) and weak
acid (phenolic) functionalities, including multidentate binding,
and uses an additional term to account for the presence of
particularly strong multidentate sites, which likely involve amino
and/or thio‐based functional groups. WHAM VII has been shown
to be able to reproduce field measurements of free metal ion
concentrations relatively accurately for several metals, such as

FIGURE 7: Cross‐species validation: prediction capacity of the updated chronic copper (Cu) algae bioavailability model for predicting (sub‐)chronic
toxicity to nonmodel algae and plants. Copper toxicity is expressed as x% effect concentration (ECx) or no observable effect concentration. The
dashed lines represent a difference of a factor 2 between predicted and observed toxicity. The solid line represents a perfect fit between observed
and predicted data.
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Cu, at concentrations relevant for metal toxicity (Ahmed
et al., 2013, 2014; Lofts & Tipping, 2011). In addition to the
change in speciation model, assumptions of the speciation
component of the Cu bioavailability models were modified in
terms of percentage active FA in DOM (% active FA), inclusion of
competition between Fe3+ and Cu2+ for binding to DOM
(based on Lofts & Tipping, 2011), and small updates in NIST
stability constants for CuOH and CuCO3 (see Supporting In-
formation, Table S2.1). Within the speciation component, the
percentage of active FA has been set to 65% based on, for
example, Ahmed et al. (2014). These authors showed that this
assumption resulted in reasonable predictions of Cu2+ speci-
ation in polluted and unpolluted natural waters. However, it
should be noted that the percentage of active FA is typically
dependent on the DOM source of the receiving water (see e.g.,
De Schamphelaere et al., 2003). Techniques to measure or ap-
proximate the percentage of active FA certainly exist (e.g.,
Ahmed et al., 2014; De Schamphelaere et al., 2003), and De
Schamphelaere & Janssen (2006), for example, have im-
plemented source‐specific percentages of active FA in their
speciation component underlying the original chronic Cu in-
vertebrate bioavailability model. It is expected that this adap-
tation may improve model fits. Indeed, De Schamphelaere &
Janssen (2006) noted that when the source‐specific the per-
centage of active FA was used, bioavailability model predictions
improved compared with when a default percentage of active
FA was used (i.e., 50% active FA), especially in the low‐
concentration range. However, measurements of active FA
percentages or surrogates thereof, such as UV absorbance, are
not routinely implemented in compliance evaluation programs
in Europe. As such, a pragmatic choice was made to apply the
65% active FA assumption for all DOM sources across the data
sets considered in the present study.

In the present study, the competition component of the
chronic Cu invertebrate and algae bioavailability models have
been updated to a WHAM VII‐based gBAM structure. For this
update, the SpH parameter, expressing the effect of pH on
log (Cu2+) toxicity, was recalibrated using the same data sets
as used for calibration of the SpH parameter in the original
models, but using WHAM VII as speciation model instead of
WHAM V. Recalibrated SpH values were equal to −0.208 for
D. magna and −0.975 for algae (based on toxicity data for
two species: R. subcapitata and C. vulgaris). These values are
lower than their WHAM V counterparts, that is −1.354 for
algae (De Schamphelaere & Janssen, 2006) and −0.650 for
D. magna (Van Regenmortel et al., 2015). These lower SpH
values most likely are the result of the different approach of
modeling of metal binding to DOM at higher pH in WHAM
VII. Especially at high pH a large difference in modeled free
Cu2+ activity was noted between our calculations executed in
WHAM VII and the WHAM V‐based calculations of Van Re-
genmortel et al. (2015). Overall, at high pH, WHAM VII pre-
dicts lower complexation of Cu on the DOC binding sites
compared with WHAM V. As such, a higher free Cu2+ activity
at EC50 in the D. magna univariate pH series is predicted
at high pH in WHAM VII (i.e., almost one order of magnitude
higher free Cu2+ activity in WHAM VII compared with

WHAM V; Supporting Information, Figure S3.1), which is also
reflected in the lower SpH value.

Recently, Nys et al. (2020) also updated the Cu fish bio-
availability model to a WHAM VII‐based gBAM structure
model. The recalibrated SpH for juvenile rainbow trout in the
model developed by these authors was equal to −0.445
(Table 1). Overall, this range in SpH for the different trophic
levels shows that effect of pH on log (Cu2+) toxicity is stronger
for algae/plants compared with animal species. However, the
SpH can also differ between species (Supporting Information,
Figure S8.10) and endpoints (Supporting Information,
Figure S8.11), and even between clones (as visualized for the
K6 clone and ARO clone of Daphnia magna in Figure 1). For
example, the SpH for different algae and plants variates be-
tween −0.965 (C. reinhardtii) and −1.471 (Chlorella sp.; Sup-
porting Information, Figure S8.10).

Due to its log‐linear model structure, a gBAM may in a
nonmechanistically manner account for other factors (e.g.,
physiological factors) that determine the effect of pH on bivalent
metal cation (Me2+) toxicity besides the competitive effect of H+

at the biotic ligand site. These additional mechanisms can in-
clude the contribution of Cu complexes (e.g., CuOH+ and
CuCO3) to Cu toxicity (Erickson et al., 1996; Grosell et al., 2004),
the effect of pH on membrane permeability (Lavoie et al., 2012)
and/or differences between bulk pH and the pH of the micro-
environment surrounding the Cu uptake sites (e.g., Playle &
Wood, 1989; Tao et al., 2002). By using a gBAM‐type model,
fewer model parameters are typically needed compared with
the classic linear BLM. For instance, three parameters, that is
KHBL, KCuOHBL, and KCuCO3BL, of the original chronic Cu in-
vertebrate BLM of De Schamphelaere & Janssen (2004) were
replaced by one single parameter, SpH, in the updated model for
this species. Similarly, Nys et al. (2020) also reported that the
gBAM‐type model greatly reduced the complexity of the Cu fish
bioavailability model compared with previous BLM‐type models
(fish models of Crémazy et al., 2017; De Schamphelaere &
Janssen, 2008).

One could question the general applicability of the updated
invertebrate model given that the SpH parameter of the model
was derived on only two datapoints per clone (four datapoints
in total) and the large difference in derived SpH slope observed
between both D. magna clones. As such, the effect of pH on
free Cu2+ toxicity to D. magna across both clones was further
evaluated by considering all available toxicity data obtained in
synthetic test media (Figure 8). When a broader set of data-
points is considered, the corresponding pH slopes (SpH) for
both clones ranged between −0.131 (ARO clone, 24 data
points, pH 6.3–8.5) and −0.380 (K6 clone, 40 data points, pH
6.1–8.44). Overall, this analysis shows again the difference in
pH slope between both clones. Averaged over both clones the
SpH is equal to −0.256, which is close to SpH of the updated Cu
invertebrate model (SpH=−0.208).

While the original chronic Cu invertebrate model did
not consider the competition effects of Ca and Mg, the updated
chronic Cu invertebrate model includes biotic ligand binding
constants for both Ca and Mg. The consideration of hardness
competition effects in the updated invertebrate model followed
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Van Regenmortel et al. (2015), who considered the hardness
competition effect for D. magna previously observed by Ro-
driguez & Arbildua (2012). Van Regenmortel et al. (2015) re-
ported that incorporating a hardness competition effect in their
gBAM‐type model improved model predictions at low hardness
compared with alternative gBAM model types without Ca and
Mg competition effects.

In the updated Cu invertebrate bioavailability model, the
values of the cationic biotic ligand binding constants (i.e.,
KNaBL, KMgBL, and KCaBL) were retained from the existing
chronic Cu bioavailability model for invertebrates (i.e., the
gBAM‐model from Van Regenmortel et al., 2015). As such, it
was assumed that the switch to a new speciation model only
affects the pH slope and that the cationic biotic ligand con-
stants are not impacted. The validity of this assumption was
assessed by fitting the KNaBL, KCaBL, and KMgBL parameters si-
multaneously with the SpH parameter. This was done using a
Markov Chain Monte Carlo (MCMC) algorithm on WHAM VII‐
based speciation, which was applied on all synthetic test media
in the D. magna data set (see methodology in Supporting In-
formation, S9). In addition, clonal differences (K6 clone vs. ARO
clone) in cationic biotic ligand binding constant estimates and
in Cu sensitivity were evaluated by implementing separate
parameter optimalization runs for both clones. Overall, the
optimal parameter estimates resulting from the MCMC run
were relatively close to the values retained in the updated in-
vertebrate model, that is, a maximum 1.3‐fold difference in
parameter values was observed (Supporting Information,
Table S9.1). Overall, there was limited difference between both
clones in MCMC optimal parameter estimates, that is, max-
imum 1.2‐fold difference in MCMC‐optimized biotic ligand
binding constants. In conclusion, the assumption taken for the

development of the updated chronic Cu invertebrate bio-
availability model that the KNaBL, KMgBL, and KCaBL parameters
are not influenced to a large extent by the switch of speciation
software version is valid. In addition, it suggests that cationic
competition effects for Ca, Mg, and Na are in reasonable
agreement between different clones of D. magna. The optimal
SpH parameter for both clones resulting from the MCMC fitting
(−0.219 for K6 and −0.203 for ARO) was also very close to the
one of the updated chronic Cu invertebrate bioavailability
model (−0.208). Overall, this confirms the robustness of the
updated invertebrate model.

Overall, there is nonnegligible variability in the slope (SpH) of
the log‐linear relationship between pH and Cu2+ toxicity be-
tween different species, even when these species are relatively
closely related, for example, for green algae the SpH ranges
between −0.965 and −1.471, or even for clones of the same
species (although these appeared to be more similar when a
broader data set was considered). This variation in pH slopes
may in future updates of the Cu bioavailability models be ad-
dressed with a probabilistic approach of sampling SpH values
for uninvestigated species from a statistical distribution fitted to
reported SpH values for other species, compared with the cur-
rent approach that selects a single fixed slope for an entire
trophic level. Additional work may also consider optimizing the
model structure that accounts for the competition effects of
Ca2+, Mg2+, and Na+, for instance by also expressing these too
as log‐linear effects rather than the current approach, which
considers these as linear competition effects resulting from the
assumption of competition by all these cations with copper for
a single biotic ligand site.

Validation for model species and nonmodel
species

The present study showed that the updated chronic Cu in-
vertebrate and algae bioavailability model predicted the ob-
served toxicity from independent data sets (i.e., data sets not
used for model development) accurately, and for model spe-
cies as well as for most nonmodel species. A bioavailability
model is generally considered sufficiently accurate if the ma-
jority of ECxMediss of an independent data set are predicted
within twofold error (Di Toro et al., 2001; Garman et al., 2020).
This twofold error range reflects the expected random variation
in toxicity test results. In total, data for eight species originating
from 11 different (sub‐)chronic studies were considered in the
independent validation (model species D. magna and R. sub-
capitata) and the cross‐species validation (nonmodel species
B. calyciflorus, C. dubia, H. azteca, Chlorella sp., C. reinhardtii,
and L. minor) of the updated model for algae and in-
vertebrates. Across all data sets, dissolved Cu toxicity was
predicted within twofold error for at least 80% of the consid-
ered datapoints (Table 2), with one exception (i.e., the 7‐day
mortality H. azteca; data set of Borgmann et al., 2005).

Other considerations in bioavailability model performance
evaluations, such as model prediction bias in relation to phys-
icochemistry parameters, have recently received increasing

FIGURE 8: Free Cu2+ ion activity at the 21‐day 50% effect concen-
tration (EC50) as a function of pH for the K6 (triangles) and ARO (circles)
Daphnia magna clones. Only toxicity data obtained in synthetic test
media have been included. The asterisks indicate that activities have
been corrected for sodium, calcium, and magnesium effects (Van
Regenmortel 2017). Chronic toxicity data originated from De Scham-
phelaere & Janssen (2004), Heijerick et al. (2002), Villavicencio et al.
(2011), and Rodriguez & Arbildua (2012).
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attention (Garman et al., 2020). The updated models demon-
strate no or limited prediction bias when applied to 10 data
sets covering eight species. The exception is H. azteca, for
which a clear bias toward pH was observed in one of both data
sets (Borgmann et al., 2005, see next paragraph). Based on
this evidence, it is concluded that the updated chronic Cu in-
vertebrate bioavailability model can be extrapolated to
other cladocerans (based on C. dubia) and rotifers (based on
B. calyciflorus), while the updated Cu algae bioavailability
model can be extrapolated to algae (based on Chlorella sp.
[tropical isolate] and C. reinhardtii) and higher plants (based on
L. minor).

For amphipods (H. azteca), the analysis of the applicability
of the updated invertebrate bioavailability model to predict Cu
toxicity to amphipods was ambiguous. For one data set
(Deaver & Rodgers, 1996), the updated invertebrate bioavail-
ability model resulted in good predictions of Cu toxicity, that is,
all LC50s were predicted within twofold error. However, this
data set is accompanied by some uncertainties because the
physicochemistry was estimated based on pH, hardness, and
alkalinity and DOC was estimated based on default assump-
tions. On the other hand, for the data set of Borgmann et al.
(2005), which is more extensive and is based on measured
physicochemistry, considerable bias in model predictions was
observed. This bias was mainly related to pH. At pH≤ 7.7,
toxicity tended to be overestimated by the updated in-
vertebrate bioavailability model (i.e., relative prediction error
<1.0), while at pH≥ 8.1 toxicity tended to be underestimated
up to fivefold. However, recalibrating the model on only those
test media with pH≤ 7.7 resulted in accurate predictions for all
test media with pH≤ 7.7, while at pH≥ 8.1 toxicity remained
underestimated (Supporting Information, Figure S8.1). Overall,
this shows that the updated chronic invertebrate model can be
used for predicting Cu toxicity to H. azteca with reasonable
accuracy up to pH 7.7. The pH‐related bias in model pre-
dictions can be explained by the fact that the observed pH
slope in the H. azteca data set of Borgmann et al. (2005) is
steeper (i.e., SpH=−1.117, considering all pH levels) compared
with that of the updated invertebrate bioavailability model (i.e.,
SpH=−0.205; Supporting Information, Figure S8.11). However,
the data also suggests that the relationship between pH and
Cu2+ toxicity may not be log‐linear. When fitting a log‐linear
relationship, the SpH is much steeper at pH above 8.1 (SpH=
−1.671) compared with that at pH below 8.0 (SpH=−0.442). A
similar dependency of the SpH parameter on the considered pH
level has previously been reported for Ni2+ toxicity for five
different aquatic organisms (Nys et al., 2016). This pH de-
pendency of the SpH has been integrated in the chronic Ni
bioavailability models for algae and invertebrates (both gBAM‐
type models) via a two‐step normalization procedure, where
different pH slopes are applied dependent on the considered
pH level in the target water (Nys et al., 2016; Peters
et al., 2023). A similar procedure could be considered for
predicting Cu toxicity to H. azteca. Borgmann et al. (2005) have
already explored other options for bioavailability modeling for
this data set because they observed that toxicity was not
consistent with a single‐binding‐site BLM. As such, they

developed a two‐binding‐site model, with separate coefficients
for the effects of Ca2+ and Na+ at low and high pH. Borgmann
et al. (2005) showed that this more complex two‐binding‐site
model could indeed accurately predict 7‐day Cu toxicity to H.
Azteca, although this may not be surprising given the higher
number of model parameters. Recently, Mebane (2023) also
investigated the data set of Borgmann et al. (2005) for the
evaluation of the predictive performance of a Cu MLR model.
Mebane (2023) reported that the H. azteca data set was un-
usable to evaluate bioavailability model performance, which
the author related to uncertainties in DOC values resulting from
the static, nonrenewal exposures with food addition. Borgmann
et al. (2005) reported that DOC concentrations during the ex-
posure increased from ≦0.2 mg/L in the artificial test media and
1.1mg/L for tap waters prior to test initiation to 0.4 to 2.8mg/L
(with an average of 1.7mg/L) depending on the test treatment.
Mebane (2023) noted that these uncertainties could lead in a
factor 10‐difference in predictions in some conditions (notably
low alkalinity). Given the above discussion, there is a clear need
to further investigate bioavailability relations for H. azteca.
Moreover, because presently only subchronic (i.e., 7 or 10 days)
bioavailability data sets are available for H. azteca, it is rec-
ommended to evaluate these bioavailability relationships
during chronic exposures, that is, 14 or 28 days as defined in
the International Organization for Standardization (ISO) pro-
tocol (ISO, 2013) or even 42 days as recently proposed (Ivey
et al., 2016). In addition, it would also be useful to evaluate the
cross‐species extrapolation of the updated chronic Cu model
to a broader set of invertebrate species, and to evaluate the
variation of the dependency of Cu toxicity in relation to toxicity‐
modifying factors across species.

For molluscs, a data set is available evaluating the effect of
DOC on chronic 28‐day Cu toxicity to Villosa iris (Wang
et al., 2011). This data set only allows evaluation of the speci-
ation component of the updated invertebrate bioavailability
model for molluscs, and does not allow evaluation of the
competition component because all other toxicity‐modifying
factors for Cu (i.e., pH, Ca, Mg, and/or Na) were kept constant.
Overall, the effect of DOC on chronic Cu toxicity to V. iris could
be predicted, although only when uncertainties related to
measurement of low DOC concentrations were accounted for
(see Supporting Information, Figure S10.3). Given the shortage
of chronic true bioavailability data sets (i.e., considering other
parameters than DOC) for molluscs, two data sets reporting on
short‐term Cu toxicity with sensitive life stages (i.e., juvenile
L. siliquoidea, 96‐h mortality; Wang et al., 2009) and for relative
sensitive endpoints (48‐h valve movement for H. depressa;
Markich et al., 2003) were considered. The updated Cu in-
vertebrate bioavailability model predicted short‐term Cu tox-
icity on survival of L. siliquoidea juveniles and on valve
movement of H. depressa for at least 83% of the data points
within twofold error (Table 2). Although these mollusc data
represent short‐term test duration, the sensitivity of these
species' life stages and endpoints are within the range of
chronic Cu sensitivity of the six mollusc species for which data is
available in the most recent chronic Cu freshwater database
used for PNEC derivation under REACH (European Copper
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Institute, 2022). When normalized to the most sensitive ecor-
egion, Swedish Lake (pH 6.7, DOC 3.8mg/L, hardness 28mg
CaCO3/L), the acute LC50 of L. siliquoidea (22.2 µg Cu/L)
falls within the range of normalized chronic EC10 or NOECs
for molluscs that are used for PNEC derivation normalized to
the same conditions (i.e., ranging between 5.8 µg Cu/L
[Vilosa iris, growth] and 38.6 µg Cu/L [Lymnaea stagnalis,
reproduction]; Supporting Information, Table S1.4). For
H. depressa, the normalized 48 h EC10 is only threefold higher
(i.e., 104.9 µg Cu/L) when compared with the range of chronic
EC10s for molluscs normalized to the same conditions. Overall,
the comparison of normalized acute versus chronic sensitivity
for molluscs is in line with Wang et al. (2007), who reported that
the acute to chronic ratio for L. siliqouidea is relatively small
(i.e., 4) for Cu. Therefore, the available data suggests that the
updated chronic Cu invertebrate bioavailability model can be
extrapolated to predict chronic toxicity to molluscs, although
there remains some uncertainty. The relationship between
water chemistry and Cu toxicity may vary depending on the
exposure period, as evidenced by the different model param-
eters for D. magna in the acute BLM (De Schamphelaere &
Janssen, 2002) and chronic BLM (De Schamphelaere &
Janssen, 2004). Additional experimental evidence on the effect
of varying water chemistry on chronic Cu toxicity to molluscs
would give a definitive conclusion on the applicability of the
updated chronic Cu invertebrate bioavailability model for
molluscs during prolonged exposures.

For those data sets that have previously been used to vali-
date the original models, we compared model predictions of
the original chronic Cu models with those of the updated
models (see Supporting Information, Table S7.1). The updated
Cu invertebrate model is more accurate for D. magna. This is
because the updated model recognizes the differences in the
effect of pH on Cu2+ toxicity across laboratories and clones of
D. magna, while the original model considered only one
clone (K6 clone). For most other species (i.e., B. calyciflorus,
L. siliquoidea, H. depressa, R. subcapitata, and C. reinhardtii),
predictions by the updated models were very similar compared
with the predictions of the corresponding original model, in
spite of the lower number of model parameters in the updated
invertebrate model. The only exception is the data set of
H. azteca of Borgmann et al. (2005), which was predicted with a
significantly higher accuracy using the original chronic Cu in-
vertebrate model compared with the updated invertebrate
model. The latter may suggest that the BLM structure of the
original invertebrate Cu bioavailability model is able to capture
the bioavailability relationships more accurately in this data set
compared with the current updated invertebrate bioavailability
model. Alternatively, a gBAM‐type model with a higher pH
slope (i.e., SpH) and/or separate pH slopes dependent on the
considered pH could also have the potential to predict toxicity
to H. azteca more accurately compared with the updated in-
vertebrate bioavailability model (as discussed above).

Because bioavailability models are calibrated and validated
within a defined range of physicochemistry conditions, the
application of these models within these ranges ensures the
reliability of regulatory assessments (European Chemicals

Agency, 2008; EU Water Directors, 2021). Application of bio-
availability models outside these ranges increases uncertainty
regarding bioavailability relationships. The application range of
a bioavailability model can be defined as the combined phys-
icochemistry range over which a bioavailability model has been
calibrated or validated (EU Water Directors, 2021). The appli-
cation ranges of the updated models for invertebrates and
algae are largely similar to those of the original models
(Table 1). Considering the application ranges of the three
models in the updated bioavailability model set, it can be
concluded that the combined application range of the updated
model set is between a pH of 5.5 and 8.6, between Ca con-
centrations of 2.4 and 124mg/L, between Mg concentrations of
1.0 and 33mg/L, and between Na concentrations of 2.5 and
47.6mg/L. The pH range is broader than the application range
of the original chronic Cu bioavailability model set, while the
Ca range is relatively similar (pH 6.0–8.5, Ca 3.1–129mg/L).

To be able to use the updated models to predict Cu sen-
sitivity in local freshwaters, the most critical input parameters
for the model equations are pH, DOC, Ca Mg, and Na. In
addition, the associated speciation calculations require a more
extensive set of input parameters and also need to consider K,
Cl, SO4, alkalinity, and temperature. Bioavailability models are
typically data‐hungry in terms of the needed physicochemistry
data, while not all these parameters are routinely measured in
monitoring frameworks. However, it has previously been sug-
gested that for Mg, Na, Cl, SO4, and alkalinity, if measurements
are not available, estimates from standard regression, log‐
linear relationships between these parameters and Ca in
European waters can be used, for instance those that have
been published by Peters et al. (2011). However, it should be
noted that using estimates rather than measurements adds
uncertainties to bioavailability model calculations.

Relevance of the updated Cu bioavailability
model set for risk assessment in Europe

The updated models developed in this manuscript, together
with the recently published chronic Cu fish bioavailability
model (Nys et al., 2020), constitute a complete, consistent, and
updated Cu bioavailability model set. It uses the most recent
version of the WHAM VII, and all models are of the gBAM type,
which has an improved estimation of the effect of pH on Cu
toxicity compared with the classic BLM‐type model (Nys
et al., 2020; Van Regenmortel et al., 2015). The gBAM structure
has the advantage that it avoids the need to consider the po-
tential toxicity of CuOH and CuCO3, thereby reducing the
number of model parameters without losing predictive power.
In addition, the independent validation and cross‐species val-
idation of the updated bioavailability models considered a
more extensive data set compared with those used for the
original chronic Cu bioavailability model set, both recognizing
additional data sets (e.g., Antunes et al., 2012; Schwartz &
Vigneault, 2006; Villavicencio et al., 2011; Wilde et al., 2006) as
well as additional effect levels more relevant in current risk
assessment applications (e.g., the preference of EC10 over
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NOEC). This has resulted in larger bioavailability model appli-
cation ranges compared with those of the original chronic Cu
bioavailability model set.

The three updated chronic Cu bioavailability models cover
the three trophic levels (i.e., invertebrates, vertebrates, and
algae) that are required for the use of bioavailability models in
environmental threshold derivations in Europe (European
Chemicals Agency, 2008; EU Water Directors, 2018, 2021).
Evidence of cross‐species applicability is a prerequisite for the
use of bioavailability models for metals in risk assessment
frameworks under REACH or the PPPR (European Chemicals
Agency [2008] and EFSA [2021], respectively) or EQS settings
under the WFD (EU Water Directors, 2018, 2021). In the
present study, we demonstrated the cross‐species application
of the updated models to nonmodel cladocerans, rotifers,
algae, and plants (Table 2). Recently, Nys et al. (2020) proved
that the updated chronic Cu fish bioavailability model devel-
oped based on juvenile rainbow trout (O. mykiss) can be ex-
trapolated to other life stages of the same species as well of
other fish species (i.e., P. promelas). For a few taxonomic
groups there remains some uncertainty related to the cross‐
species applicability of the updated chronic Cu invertebrate
bioavailability model. This is the case for amphipods because
the model prediction performance differed between the two
included subchronic H. azteca data sets. Overall, the evidence
suggests that up to a pH of 7.7 the updated Cu invertebrate
bioavailability model can be used to predict Cu toxicity to
H. azteca with reasonable accuracy. For molluscs, there is evi-
dence of the applicability of the bioavailability models based
on acute Cu toxicity for sensitive species and endpoints, al-
though evidence from truly chronic data sets is lacking. The
only taxonomic group represented in the Cu toxicity database
(European Copper Institute, 2022) for which the applicability of
the updated invertebrate bioavailability model was not eval-
uated are the insects. Overall, there are limited studies on
chronic metal toxicity to insects (Brix et al., 2011), and to our
knowledge there are no studies investigating bioavailability
effects on chronic Cu toxicity for this taxonomic group. How-
ever, as in the Cu‐VRAR, cross‐species applicability of the up-
dated bioavailability models toward insects is assumed to be
most likely. Whether the sensitivity of insects to copper is im-
portant for evaluating environmental threshold levels is unclear
based on present reports. Brix et al. (2011) reported that
chronic toxicity measured in laboratory experiments with in-
sects is generally higher than the European Union 5% haz-
ardous concentration. However, in field studies that consider
prolonged exposure some insect taxa appear to be more
sensitive than reflected in typical laboratory experiments (Brix
et al., 2011). Recent research using insect community stream
mesocosms has also suggested that during prolonged ex-
posure, the sensitivity of insect species may vary highly. In
addition, the present study identified mayfly species as among
the most sensitive species in the species sensitivity distribution
(Mebane et al., 2020).

Given the above discussed considerations, but also ac-
knowledging the remaining data gaps, the updated model set
can be considered as more robust than the original

bioavailability model set for implementation of Cu bioavail-
ability in regulatory assessments. To underpin the safe use of
Cu, the updated bioavailability model set (although including
some minor differences in SpH slopes) was therefore used by
the REACH Copper Consortium in 2022 to update the Cu
PNEC under the European Union REACH regulation (European
Copper Institute, 2022).

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
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