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Abstract. We present a method to calibrate and validate ob­
servational models that interrelate remotely sensed energy 
fluxes to geophysical variables of land and water surfaces. 
Coincident sets of remote sensing observation of visible and 
microwave radiations and geophysical data are assembled 
and subdivided into calibration (Cal) and validation (Val) 
data sets. Each Cal/Val pair is used to derive the coefficients 
(from the Cal set) and the accuracy (from the Val set) of the 
observation model. Combining the results from all Cal/Val 
pairs provides probability distributions of the model coeffi­
cients and model errors. The method is generic and demon­
strated using comprehensive matchup sets from two very dif­
ferent disciplines: soil moisture and water quality. The re­
sults demonstrate that the method provides robust model co­
efficients and quantitative measure of the model uncertainty. 
This approach can be adopted for the calibration/validation 
of satellite products of land and water surfaces, and the re­
sulting uncertainty can be used as input to data assimilation 
schemes.

1 Introduction

Observation models are widely used for estimating geophys­
ical variables of land and water surfaces from remote sens­
ing data. The simplest form is the empirical linear model, 
whereby coefficients are derived from regressing measured 
geophysical variables with observed radiation. In most cases, 
these empirical models have some physical meaning and are 
often used because of their simplicity. Examples of land re­
mote sensing applications are available from active/passive 
microwave remote sensing of soil moisture (e.g. Njoku et al., 
2002). Similarly, water quality applications make use of 
the Lambert-Beer law to model the spectral absorption of 
light by suspended and dissolved materials as a linear func­
tion of their concentrations (D’Sa and Miller, 2005: Robin­
son, 2004: Salama et al., 2004). Currently, such strate­
gies are proposed for NASA’s Soil Moisture Active Pas­
sive (SMAP) mission combined radar/radiometer soil mois­
ture product (Entekhabi et al., 2010), the Netherlands’ au­
tomated monitoring network (IN PLACE: Integrated Net­
work for Production and Loss Assessment in the Coastal 
Environment), and the NASA Moderate Resolution Imag­
ing Spectroradiometer (MODIS) mission ocean colour prod­
ucts (McClain et al., 2004). This type of model is developed
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from comprehensive sets of concurrent remote sensing ob­
servations and field measurements, hereafter referred to as 
matchups. Ideally, the validity of any model is tested against 
an independent data set. Therefore, the available matchups 
are often subdivided into independent sets used for deriva­
tion of the model coefficients (calibration) and for accuracy 
assessment (validation). Most studies subdivide matchups 
into so-called calibration/validation (Cal/Val) sets based on 
a statistical or regional resemblance (Devlin et al., 2008), 
but without a clear directive on its effect for model accu­
racy. This is most likely the case because there has been un­
til now no objective approach for subdividing Cal/Val sets. 
Many combinations of matchups can be used, specifically 
when using a large number of points. Each Cal/Val pair has 
the same probability of occurrence, but provides different re­
sults. As such, the selection procedure not only impacts the 
model’s accuracy, but also the accuracy assessment. On the 
other hand, the selection of Cal/Val pairs can also be thought 
of as a stochastic sampling from a known probability distri­
bution (e.g. Wang et al., 2005; Salama and Stein, 2009). Such 
stochastic treatment of matchups within the Cal/Val context 
has not yet been investigated in the field of Earth observa­
tion, but has the advantage of providing a quantitative uncer­
tainty measure for both the model coefficients and derived 
geophysical variables.

In this paper we follow a stochastic approach for selecting 
Cal/Val sets and demonstrate its use for quantifying uncer­
tainty. The proposed approach combines the bootstrapping 
method of Efron and Tibshirani (1993) with the Jackknife 
technique (which leaves out one, or more, observation) and 
adapts the sample size at each iteration. Bootstrapping and 
Jackknife methods are usually used to provide the standard 
error of the derived “plug in” estimates (Efron and Tibshi­
rani, 1993) and have been employed for validating observa­
tion models (e.g. Petus et al., 2010; Melin, 2010; Salama and 
Su, 2010). However, the combination of bootstrapping with­
out replacement with Jackknife sampling and changing the 
sample size at each iteration is novel and provides not only 
the accuracy of regressed estimates, but also the underlying 
probability distribution of regressed estimates and their er­
rors.

The developed method samples from a complete matchup 
set to populate many sets of Cal/Val pairs. Each pair is 
used to derive the model coefficients and their associated 
errors, from which the probability distributions of the cal­
ibration and validation result is determined. In this paper 
the method is demonstrated for two data sets: (i) L-band 
(1.6 GHz) backscatter (er°) -  soil moisture matchups col­
lected during the 2002 OPE3 (Optimizing Production Inputs 
for Economic and Environmental Enhancement) campaign 
(Joseph et al., 2010a,b), and (ii) matchups of chlorophyll a 
concentrations and derived absorption coefficients obtained 
from the NASA bio-Optical Marine Algorithm Data (NO­
MAD, version 2a.) (Werdell and Bailey, 2005).

2 Data sets 

2.1 Land application -  soil moisture

The 2002 OPE3 campaign focused on the active and pas­
sive microwave remote sensing of soil moisture throughout 
the corn growth cycle. Part of the field activities consisted 
of weekly C- (4.75 GHz) and L- (1.6 GHz) band er° mea­
surements with the NASA/George Washington University 
(GWU) truck-mounted scatterometer. Further in support of 
these remote sensing observations, an extensive ground sam­
pling was conducted that included soil moisture. Full details 
on the data sets collected during the field campaign can be 
found in Joseph et al. (2010a,b). Here, we only make use 
of the 75 matchups between the L-band HH polarized er° ob­
served from a 35° view angle and the measured soil moisture, 
hereafter referred to as the OPE3 matchups. The er° observa­
tions are corrected for vegetation effects through application 
of method described in Joseph et al. (2008), which results in 
the er° representative for a bare soil surface. Many studies 
(e.g. Ulaby et al., 1984; Champaign and Faivre, 1997; Njoku 
et al., 2002) have demonstrated the following linear relation­
ship between soil moisture and er° observed under the same 
land cover conditions:

sm = a a ° + b ,  (1)

where sm is the soil moisture content (m3 m-3 ) , a is the slope 
(m3 m-3 dB-1 ) representing the er° sensitivity to soil mois­
ture, and b is the offset (m3 m-3 ) accounting for the base­
line effects, such as surface roughness, topography, and land 
cover. Both the er° sensitivity to soil moisture and the base­
line effects depend on the sensing configuration (e.g. wave­
length, polarization, view angle) as well as the land surface 
(e.g. surface roughness, land cover, topography).

2.2 Water application -  chlorophyll a absorption

The NASA bio-Optical Marine Algorithm Data (NO­
MAD, version 2a.) set includes measurements of spectral 
remote-sensing reflectances, spectral marine absorption and 
backscattering coefficients, and concentrations of water con­
stituents (Werdell and Bailey, 2005). Here, we use only 
chlorophyll a (chi a) measurements derived from high per­
formance liquid chromatography (HPLC). The observed ra­
diance spectra and matching HPLC-derived chi a concen­
tration consist of 424 matches, hereafter referred to as the 
NOMAD matchups. The general practice is to derive the ab­
sorption coefficients from the observed radiance spectra us­
ing semi-analytical inversion models (e.g. Van Der Woerd 
and Pasterkamp, 2008; Maritorena et al., 2002). Lambert- 
Beer law is then employed to estimate the absorption per unit 
mass from derived absorption coefficients and measured con­
centrations.

The chi a absorption coefficients at the blue band (Ao =  
440 nm) are derived from the observed radiances using the
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F ig . 1. Determination coefficient. R2, between measured and observed values of (a) soil moisture and (b) chi a absorption coefficient. The 
solid line is the 1 : 1 reference line. Light-grey coloured points represent the optimal Cal/Val pairs.

cross entropy method as reported in Salama and Shen (2010). 
Following the Lambert-Beer law, the absorption coefficient 
of chi a is described as a linear function of the concentra­
tion (D’Sa and Miller, 2005, Eq. 10):

« ch i  f l U o )  =  « c h i f l ( ^ 0 ) C chl a +  5 (A-o) ( 2 )

where « ch i ö ( ^ o )  is the absorption coefficient of chi a  (m-1 ) 
at the wavelength Xo (nm); «*hifl(^o) is the specific absorp­
tion coefficient that describes the absorption per unit weight 
(m2 mg_1); C c h i a  is the concentration (m gm -3 ); 5 (A-o) is 
an offset related to sensor noise, retrieval error of flchia(^o). 
(m-1 ) and the ratio of accessory pigments that are produced 
in different conditions of growth (nutrients and irradiance), 
e.g. “xanthine” that acts as sun protection.

The two unknowns in Eq. (2) ' ^chl f l (A.0 ) and 5 ( L o ) ,  are es­
timated from regressing flchia(^o) versus Cchifl using linear- 
regression model. In practice, Eq. (2) could deviate from lin­
earity depending on the packaging effect, cell sizes, physiol­
ogy and species composition of the phytoplankton commu­
nity (Bricaud et al., 1995). For example, the effect of pack­
aging on the variability of achl f l (A.0 ) is smaller in open olig­
otropha oceans than in upwelling regions or coastal areas 
where larger phytoplankton cells are abundant. Hence, the 
deviation of Eq. (2) from linearity can then be understood 
based on the water body investigated. The linearity of Eq. (2) 
for the used data sets is justified in Sect. 4, Fig. lb.

3 Method

The method randomly subdivides the data into many sets (or 
Jackknife samples) of Cal/Val pairs. The Cal set is used to 
derive the coefficients of the observation model, whereas the 
Val set is employed to check the accuracy of the model. The 
results are probability distributions of model coefficients and 
their prediction uncertainties.

The Cal/Val sets are derived from the n available matchups 
following two rules: (i) both Cal and Val sets must contain at 
least 7 samples (km¡n =  7), and (ii) each sample is used once, 
either for calibration or for validation (i.e. sampling with­
out replacement). The minimum sample size, (km¡n =  7), is 
selected according to the method of Cohen et al. (2003), to 
achieve about 35 % error in the derived slope at 95 % of con­
fidence. This value, 35 %, corresponds to the desired level of 
accuracy for satellite-derived Chi a products (McClain et al., 
2006: Bailey and Werdell, 2006).

The number of Cal/Val pairs is computed as nr = n — 
2£m in+E Now, for each i =  [fcm¡n, n — £minL the method 
forms a Cal/Val pair by increasing/decreasing the number of 
data points in the sets (forming the Jackknife sample). The 
number of possible combinations, npc,-, for the /-th Cal/Val 
pair is

"',c' = 0 ‘) = HVrtT 0)
where n is the total number of data points, kj is the number 
of samples in the Cal or Val set during the /-th iteration. For 
data sets with n > 20 (holds for both the OPE3 and NOMAD 
matchups), the number of possible combinations (npc,-) is 
large (e.g. E9848 E9 for 75 over 7 in OPE3), and there­
fore npc,- is reduced to the number of used combinations, 
nue,-, by bootstrapping nue,- =  10 log npc,- combinations from 
npc,-. In principle, each combination nue,- has the same prob­
ability of occurrence: therefore, the uniform distribution is 
used to select nue,- unique combinations from npc,- (bootstrap 
method of Efron and Tibshirani, 1993). Each formed Cal/Val 
set is used for the calibration and the subsequent validation 
of the empirical model. The validation is always performed 
using type-II model (Bevington and Robinson, 2003), while 
the calibration depends on the model, e.g. for linear model 
we use the type-I regression. The accuracy of the empiri­
cal model is assessed using two statistical measures: (i) the
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mean absolute error between derived and measured values 
(MAE) and (ii) the determination coefficient (R 2). The al­
gorithm produces three probability distributions (PDs): two 
for the calibration coefficients, PDC, and one for the accu­
racy measure, PDV. The above method is implemented in the 
following model, called GeoCalVal:

1. Takeki  samples for the Cal set and n —k¡ for the Val set;

2. Compute npc; from Eq. 3 and nue; =  101ognpc; ;

3. Use the uniform distribution to generate nue; unique 
combinations of Cal sets and their complements for Val 
sets;

4. Compute model coefficients from the calibration set and 
store them in PDC;

5. Use the new model coefficient to estimate the geophys­
ical variables from the Val set;

6. Compute the uncertainty of step 5 and store them in 
PDV;

7. Increase by one and repeat steps 1 to 7.

4 Results and discussions 

4.1 Optimal Cal/Val pairs

The determination coefficients, R 2, of the Cal set are plotted 
against those of the Val set in Fig. 1 for all possible combina­
tions. The data point position with respect to the x-axis is an 
indication for the ability of the model to fit the matchups of 
the Cal set, whereas its position with respect to the y-axis rep­
resents the model’s performance in deriving the geophysical 
variables, here soil moisture and Chi a absorption coefficient 
(flchla (Vo)) • Obviously, both the Cal and Val R 2 depend on 
the number of data points, reaching their maxima when all 
data points are included, which suggests for the Cal sets that 
the used observation models in Eqs. (1) and (2) are indeed 
linear.

Both OPE3 and NOMAD matchups produce a narrow re­
gion of Cal/Val pairs, for which the calibration R 2 is similar 
to validation R 2, about 0.75-0.85 (light-grey coloured data 
points in Fig. 1). In other words, within these Cal/Val sub­
divisions the model validity and the accuracy assessment are 
balanced. This region defines the optimal setups for subdivid­
ing matchups into Cal/Val sets. The underlying mechanisms 
of the data points in this region are investigated further. We 
found that the optimal Cal/Val sets are obtained when the 
arithmetic mean, ß ,  and dispersion, er, of each set are equal 
to those of the original data set. As such, the optimal Cal/Val 
pair satisfies the following condition:

Table 1. Estimated parameters o f the best fit f-location-scale distri­
bution to model coefficients and MAE uncertainties. The degree of

Mai — Â val — Mata 5

fit is expressed in standard error.

OPE3 matchups

ß a V
slope [m3 m 3 dB 3] 34.0870 1.3729 2.7342
standard error 0.0160 0.0186 0.0882
intercept [m3 m - 3 ] -26 .5426 0.2137 2.7668
standard error 0.0025 0.0029 0.0887
MAE [m3 m - 3 ] 0.0244 0.0025 3.3380
standard error 3 E -0 5 3 E -0 5 0.1128

NOMAD matchups

ß a V
slope [m2 mg- 1 ] 0.0304 0.0013 1.9722
standard error 2 .6 E -6 3 E -6 0.0085
intercept [m- 1 ] 0.0195642 0.00128274 2.3505
standard error 2 .6E -06 3 E -0 6 0.0114
MAE [m gm - 3 ] 0.6043 0.0534 3.4957
standard error 0.0001 0.0001 0.02012

w here  the subscrip ts '‘c a l” , “v a l” and “d a ta ” are for the cali
bration, validation and original data sets, respectively.

Equation (4) and the equal R 2 for both Cal and Val sets 
(light-grey coloured points in Fig. 1) are the criteria that 
should be used to determine the sample size of the optimal 
Cal/Val set.

4.2 The underlying distribution

Figure 2 shows the derived probability distributions (PDs) 
of model coefficients, PDC, and the associated uncertainties, 
PDV, for the two matchup sets, OPE3 and NOMAD. The re­
sulting PDs of model coefficients have high kurtosis (acute 
peak around the mean) values and flat tails, i.e. more prone 
to outliers. Different values of kmi„ were tested (not shown), 
and the results show that all derived PDs from both data 
sets (OPE3 and NOMAD matchups) can be described by 
the i-location-scale probability distribution (the black lines 
in Fig. 2) of the form (Evans et al., 1993)

/  =
r(0 .5 u  +  0.5) 

o* Jvñ Y  (0.5 v)
1 +  V -

— (0.5V+0.5)

(5)

AND (4 )
^cal — ¿Nal — T ta ta ;

where ß , a  and v are the mean, standard deviation and shape 
factor (or the degree of freedom), respectively. The gamma 
function r  is equivalent to the factorial function n\ extended 
to non-integral arguments. The distribution in Eq. (5) means 
that the standard variâtes of the data points follow the Student 
t  distribution. The function in Eq. (5) is fitted to the distribu­
tions of derived model coefficients and MAEs by varying the 
parameters ß, a  and v, which are listed in Table 1 with their 
standard errors.
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Fig. 2. Derived probability distributions o f model coefficients (a, b, d, e) and associated uncertainties (c, f) for the OPE3 data (upper panels) 
and NOMAD matchups (lower panels). The solid lines are the fits by Eq. (5) with coefficients given in Table 1.

The reason for having flat tails in the PDs of Fig. 2 is due 
to the fact that the accuracy of model coefficients depends on 
the size of the Cal set. In other words, for a large Cal set we 
expect to have higher accuracy as most data points are used; 
however, this makes them also sensitive to outliers in the Val 
set, because most of the data points have been used to create 
the Cal set. For a linear observation model, the f-probability 
density function should, thus, be employed to describe the 
distributions PDC and PDV, regardless of the original distri­
bution of geophysical measurements or remote sensing ob­
servations. For example, the NOMAD matchups set has a 
log-normal distribution, while OPE3 is close to uniform dis­
tribution (not shown here) for measurements, residuals and 
observations. Yet, the distribution of derived coefficients fol­
lows, for both data sets, Eq. (5). This is basically a con­
firmation of previous statistical studies, for example Singh 
(1988) showed that the normality distribution is not always a 
valid assumption for linear models, and the f-distribution is 
broader and therefore better suited. In this regard, having the 
result of our sampling scheme reproducing the f-distribution 
is another validation of the correctness of the GeoCalVal. The 
proposed method reveals the shape of the underlying prob­
ability distribution without any a priori assumption on its 
parameters (e.g. degree of freedom). For non-linear models 
there is no straightforward theoretical approximation of the 
expected probability distribution. If we would follow the the­
ory, we would have no means to justify our assumption on the 
underlying probability distribution and its parameters. The 
only objective approach is by evaluating all possible combi­
nation sets as is proposed through the GeoCalVal method.

4.3 Effect of sample size

Fixing the number of sampling points wifi result in PD with 
lower kurtosis, i.e. the PD will be less peaked. That means 
adapting the sample size will increase the accuracy of the 
derived parameters (slope and intercept in this case), as the 
dispersion will also be reduced. The importance of adapt­
ing the size of the sample is related to the common practice 
in calibration and validation of Earth observation products. 
Here, we search for the optimal division (thus, sample size) 
of the Cal/Val sets, such that the Cal set produces EO-model 
coefficients that enable generating EO products (estimated 
from the Val set) with an accuracy satisfying the mission re­
quirements. Hence, one of the statistical questions addressed 
within our manuscript is what are the criteria to define the op­
timal sample size needed for calibrating observation models 
so that it produces EO products within the designed mission 
accuracy and within the accuracy of the calibration itself? 
For example, we can condition the iterative scheme in Geo­
CalVal to stop when the criteria defined in Sect. 4.1 are met 
(these are, Eq. 4 and coloured points in Fig. 1). This wifi 
however be at the cost of losing information on the proba­
bility distributions of regression coefficients, their errors and 
the shape of the underlying distributions. This information 
can only be derived if we change the sample size and study its 
effect on the accuracy of calibration and validation (as shown 
in Fig. 1). Thus, GeoCalVal makes use of the proposed sam­
pling scheme, because only through this approach we can, 
in an objective manner, identify the probability distributions 
of coefficients and associated uncertainties of observation
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models through optimal divisions of the data set into Cal and 
Val pairs.

4.4 Application of the GeoCalVal model

The detailed knowledge on the PDs of uncertainties and un­
certainty sources embedded within the remote sensed geo­
physical variable (shown in Fig. 2) can be used as input 
for data assimilation schemes (Reichle, 2008). On the other 
hand, these PDs can also be employed to derive the proba­
bility distribution of uncertainty within the remote sensing 
observations itself, i.e. one PD per observation. The relation­
ship between measurements and observations is described by 
a model of the form, Y =  ƒ  (4>,X), in which i> is the set 
of n model coefficients, i> =  [(pi, fa.--fa], X is the set of m 
geophysical measurements (with m > n) and Y is the cor­
responding remote sensing observations. Assuming that the 
fluctuations in the measured quantity, X, and derived model 
coefficients, ï>, are uncorrelated, we approximate the second 
moment using the truncated Taylor series expansion:

ay = wlal + J2wlial  ®
1 =  1

where w is the partial derivative of Y with respect to the mea­
surements X and each model coefficient, fa. The terms, a 2, 
are the corresponding variances. For the linear model Y = 
a X  X  + b, the uncertainty in Eq. (6) becomes ay =  a 2er2 +  
x 2er2 +cr£. The coefficient a and the uncertainties terms er2 
and are quantified from the derived probability distribu­
tions of model coefficients, PDC. Measurement uncertainty, 
er2, is either assumed (e.g. NOMAD matchups) or estimated 
from available measurements (e.g. OPE3). In the NOMAD 
data set, the concentrations of Chi a were estimated using 
high-performance liquid chromatography (HPLC) method. 
Many studies (Claustre et al., 2004; Hooker et al., 2005) 
found that the error in HPLC estimation of Chi a, on aver­
age, varies between 7 % and 25 %. On the other hand, each 
observation site in the OPE3 data set contains 21 soil mois­
ture measurements. The standard deviation of these measure­
ments, per observation, can be used as a proxy for ax. Esti­
mated values o í ax , a, aa and erb form the inputs to Eq. (6) to 
produce the PD, quantifying the uncertainty of each remote 
sensing observation. This results in a PD of uncertainty per 
data point that has ^ " r nuc; number of samples, i.e. num­
ber of all used combinations. It should, however, be noted 
that this uncertainty should not be confused with observa­
tion errors associated with remote sensing retrievals, which 
included also other components (e.g. model goodness-of-fit 
and inversion uncertainty).

5 Conclusions

In this paper we present the GeoCalVal model for an objec­
tive selection of calibration/validation data sets to assess the

performance of observation model for geophysical variables. 
GeoCalVal combines two traditional re sampling methods 
(bootstrapping and Jackknife) and adapts the sample size at 
each iteration. This combination of bootstrapping with Jack- 
knife sampling and changing the sample size at each test iter­
ation is novel and provides not only the accuracy of regressed 
estimates and associated errors but also their underlaying dis­
tributions. The GeoCalVal tests all probable combinations of 
CalA/al setup and considers the effect of changing the sample 
size on the accuracy of regressed estimates. The end results 
are probability distributions of model coefficients (calibra­
tion) and uncertainties in the estimates (validation).

GeoCalVal is applied to two matchups sets, which shows 
that

-  GeoCalVal provides an optimal setup for subdividing 
matchups into CalA/al sets;

-  the coefficients and associated uncertainties of linear 
observation models follow the f-location scale distribu­
tion, i.e. the distribution of their standard variate follows 
the Student t distribution:

-  the derived PDs provide complete information on the 
variations of model coefficients, their uncertainties and 
the accuracy of observations, which can be employed in 
time series analyses and data assimilation schemes;

-  the optimal CalA/al sets are obtained when the arith­
metic mean and dispersion of the Cal/Val sets are equal 
to those of the original data set;

-  the presented method is applicable to any data set and 
can be adjusted to any observation model regardless of 
the application area, e.g. water quality or surface hy­
drology.
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