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Migratory behaviour in young individuals is probably
developed by using a complex suite of resources, from
molecular information to social learning. Comparing the
migration of adults and juveniles provides insights into the
possible contribution of those developmental factors to
the ontogeny of migration. We show that, like adults, juve-
nile Icelandic Whimbrel Numenius phaeopus islandicus fly
non-stop to West Africa, but on average depart later, fol-
low less straight paths and stop more after reaching land,
resulting in slower travel speeds. We argue how the varia-
tion in departure dates, the geographical location of Ice-
land and the annual migration routine of this population
make it a good model to study the ontogeny of migration.
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Migration is a syndrome of complex behaviours that
involves periods of fuelling and migratory movements
(Alerstam & Lindstr€om 1990, Piersma et al. 2005) and
can vary in multiple aspects both within and among
individuals. One particularly relevant trait underlying
such variation and operating at both levels is age, with
juveniles often migrating at different times than adults
(e.g. Neto et al. 2008, Patchett et al. 2022, Verhoeven
et al. 2022) and also in some cases following different
routes (e.g. Handel & Gill 2010, Mellone et al. 2013,
Crysler et al. 2015) and wintering at different destina-
tions (e.g. Cristol et al. 1999, Nebel et al. 2002, Lok
et al. 2011). While differential migration of inexperi-
enced juveniles and experienced adults may be evident,
understanding how migratory behaviour develops with
age remains a knowledge frontier in the study of bird
migration (Flack et al. 2022, Loonstra et al. 2023).

The ontogeny of migration is likely to be the result
of interactions across various internal and external devel-
opmental resources, including molecular information
and social and experiential learning (Oyama et al. 2001).
In cases where juveniles start their migraton after their
family members and many other experienced adults in
the population (Vega et al. 2016, Verhoeven
et al. 2022), the use of social and experiential informa-
tion appears more problematic than for juveniles that
migrate in family groups, together with adults. In the
latter case, it is easy to envisage how they could learn
the migration route, suitable stopover sites and destina-
tion locations (Rotics et al. 2016, Abrahms et al. 2021).
Juvenile migratory behaviour can even be unequally
linked to a progenitors’ behaviour (M�endez et al. 2021,
Byholm et al. 2022). Therefore, there is probably a
range of developmental resources contributing to the
ontogeny of migration across, and possibly within,
species.

Recent findings suggest that in the course of life into
adulthood, individuals refine their migratory behaviour
(Thorup et al. 2003, Mueller et al. 2013, Sergio
et al. 2014, Rotics et al. 2016, Vansteelant et al. 2017,
Campioni et al. 2020, Verhoeven et al. 2022, Wynn
et al. 2022). However, the size of available electronic
tracking devices has limited the pool of possible species
to track (Bridge et al. 2011) and therefore current
knowledge mostly stems from studies on large-bodied
species that migrate socially, in family groups or large
flocks, possibly biasing current knowledge towards cer-
tain life-histories (but see Crysler et al. 2015, Evens
et al. 2017, Patchett et al. 2022). Studies across a variety
of taxa, encompassing species or populations with vary-
ing life-histories, are fundamental for a wider under-
standing of the ontogeny of migration (Flack
et al. 2022).

Tracking individuals throughout their lives into adult-
hood, where the first and the subsequent migrations are
recorded, allows direct observation of how individual
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migratory behaviour changes and develops, providing
invaluable insight into the ontogeny of migration. How-
ever, obtaining such datasets has rarely been achieved
(Abrahms et al. 2021), possibly due to high juvenile
mortality and dispersal (Paradis et al. 1998, Oppel
et al. 2015, Sergio et al. 2019, Verhoeven et al. 2022),
which can considerably reduce numbers of individuals
sampled continuously up to adulthood, and by techno-
logical limitations due to early failure of tracking devices
(C. Carneiro pers. obs.). An alternative approach is to
track different age-classes in the same population, allow-
ing informative analysis among age-groups (Hake
et al. 2003, Campioni et al. 2020). This approach
reduces the issue of sample thinning among older
individuals.

Although tracking technology has advanced rapidly
and has resulted in a boom of detailed studies on adult
migration, much less progress has been made for juve-
niles. This is the case for Whimbrel Numenius phaeopus,
whose adult migrations have been tracked worldwide
(e.g. Alves et al. 2016, Johnson et al. 2016, Li
et al. 2020, Ruthrauff et al. 2021) but where informa-
tion on juvenile migration is much scarcer, although
observations prior their first migratory departure
(Gunnarsson 2006) and of migratory flocks along the
route (Skeel & Mallory 2020, Hines et al. 2023) suggest
that many juveniles depart later than adults. For the Ice-
landic population N. p. islandicus, it is now well known
that during post-breeding migration, adults virtually
always make direct flights to the wintering sites (mostly
located in West Africa; Carneiro et al. 2019a, 2023),
departing starting from the second half of July until
nearly the end of August (Carneiro et al. 2019b, 2023).
During pre-breeding migration, adults move from the
wintering to the breeding grounds between April and
May, and make either a direct flight to Iceland (i.e. the
same route as in autumn) or two flights with a stopover
(usually in Ireland or the UK; Carneiro et al. 2019b).
However, migration routes and phenology remain
unknown for the juvenile stage, including the first
migration.

Here, we (1) determine the migration phenology,
routes and travel speed of juvenile Icelandic Whimbrels
on their first migration, as well as their wintering region,
and (2) compare these metrics with those of adults that
have been published previously (Carneiro et al. 2019b,
2023).

We predict that juveniles depart on average later
than adults, given that Whimbrels are observed in Ice-
land until early October (Gunnarsson 2006, eBird 2021),
i.e. more than 1 month after the latest tracked adult has
departed (Carneiro et al. 2023). Based on the relatively
high number of Whimbrel records in Scotland and Ire-
land during August and September (BTO/RSPB/Bird-
Watch Ireland/SOC/WOS 2023), and knowing that
adults almost always fly non-stop to the wintering

grounds, we predict that juveniles may stop on their first
autumn migration in this region, therefore following a
different route than that of adults. Due to such stopover
and route differences, we also expect that juveniles will
travel at slower speeds than adults and show more tortu-
ous tracks. By migrating later, juveniles may also settle
at distinct wintering sites from adults.

METHODS

After monitoring Whimbrel broods throughout their
development, we caught and tagged juveniles when they
became able to fly at least 10 m (under ringing licence
number 365 issued by the Icelandic Institute of Natural
History). In total, we tagged 13 juveniles in South Ice-
land: 11 at 63°43'1.2"N, 20°6'46.8"W (six in 2021 and
five in 2022), one at 63°55'51.6"N, 21°10'8.4"W (in
2021), and one at 63°46'19.2"N, 20°20'6"W (in 2022).
To track their movements, we used two models of GPS/
GSM devices manufactured by Hunan Global Messenger
Technology Co., Ltd: HQBG0804 (mass: 4.5 g; n = 4
devices in 2021) and HQBG1206 (mass: 6 g; n = 3 and
6 devices in 2021 and 2022, respectively). These were
modified by adding a layer of neoprene (ca. 3.5 mm
thick) to make the solar panel protrude above the
feathers’ surface, to increase battery recharging ability
and to cushion the devices’ hard surface on the birds’
back. The devices were attached using a leg-loop harness
using ultra high molecular weight polyethylene
(UHMW) straps, and the average mass (� se) added to
the individuals (i.e. the mass of tag plus neoprene, straps,
etc.) was 5.8 � 0.1 and 8.2 � 0. 1 g for HQBG0804
and HQBG1206 models, respectively. This represented
2.0 � 0.1 and 2.7 � 0.1% of the juveniles body mass at
tagging age, and less than 2% of the breeding adult body
mass in this population (mean � se = 437.1 � 4.6 g;
Carneiro et al. 2023). Both models were programmed to
collect a fix every 6 h, with geographical coordinates,
timestamp (UTC) and associated accuracy (ranging from
5 to 2000 m). Data were transmitted via the GSM net-
work. All geographical coordinates used in the analysis
were accurate up to 10 m.

Departure date was determined as day of the last fix
in Iceland. We assumed the wintering site to be location
of the first fix at the lowest latitude site where individ-
uals settled. We used the R package ‘bcpa’ (Gur-
arie 2022) to help identify these sites and associated
arrival dates by running a behavioural changepoint anal-
ysis to find breakpoints of latitude along the tracking
period. We then used these breakpoints to inspect each
track visually and determine the arrival date as the day
of the first fix at that site. Travel duration was defined as
the period between departure date and arrival date, and
migration distance was calculated as the cumulative dis-
tance of consecutive fixes between departure and arrival.
We used these two metrics to calculate travel speed
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(i.e. migration distance divided by travel duration). The
straightness of migration routes was calculated using the
R package ‘amt’ (Signer et al. 2019). This metric is the
Euclidian distance between the departure and wintering
locations, divided by the total length of the movement.

To compare the migratory behaviour of juveniles
with that of adults, we collated adult migration data
from Carneiro et al. (2019b) and added arrival and
departure dates from Carneiro et al. (2023). In brief,
adult data were collected with geolocators between
2012 and 2018, from which two fixes per day were
determined, and timings of departure and arrival were
further refined using temperature, conductivity and wet
contacts data collected at 4-h intervals (Battley & Con-
klin 2017). The wintering site for adults was determined
as the average location across all the winter fixes. For
further details see the methods in Carneiro
et al. (2019b). The data provided by the devices used to
track adults (geolocators) and juveniles (GPS) differ, and
therefore may influence the metrics obtained, as geolo-
cators can have considerable associated spatial uncer-
tainty, much higher than the GPS devices (Phillips
et al. 2004, Fudickar et al. 2012). The smaller longitudi-
nal than latitudinal uncertainty associated with geoloca-
tor data (Phillips et al. 2004, Fudickar et al. 2012)
means that our estimates of straightness may be less
influenced than the wintering latitude. Regarding travel
timings, data recorded by the two types of devices are
comparable (every 4 h for geolocators and every 6 h
for GPS).

We tested for differences in migration metrics
between juveniles and adults using the appropriate Stu-
dent’s t-test or Mann–Whitney test with the R package
‘ggstatsplot’ (Patil 2021), after testing the data for nor-
mality and homogeneity of variance. Because the two
age groups were tracked in distinct periods, we could
not account for year effects, as these would be con-
founded with age effects. To investigate whether struc-
tural annual differences exist that could impair our
comparison between ages, we tested for potential annual
differences in adult departure dates, but we did not find
differences (v2Kruskal-Wallis (6) = 10.49, P = 0.11; see
SOM Fig. S1), and hence the comparisons between age
groups should reflect age differences.

Unless otherwise noted, means are followed by stan-
dard error. Significant statistical differences were consid-
ered for an alpha level of 0.05.

RESULTS

We gathered full first migration data from 11 juvenile
Whimbrels, of the 13 tagged. We did not receive data
from one individual outside of Iceland, but it may have
departed and never reached a location with GSM cover-
age. The tag on another bird failed to record fixes
around the departure date (due to low battery levels),

so we decided to exclude it from the analysis. This indi-
vidual’s first fix after departure was close to the Madeira
archipelago (Portugal), on 2 September 2021. It then
landed on Madeira Island and no data were received
after 16 September 2021. Of the remaining 11 birds, six
tags provided data for an average of 185 days before
stopping (range: 71–378 days), whereas five (deployed
in July 2022) were still working by July 2023 (see SOM
Table S1 for details on tag longevity).

Juveniles departed between 4 August and 2 Septem-
ber (mean = 22 August � 8 days, n = 11), significantly
later than adults (tStudent (86) = �6.95, P < 0.001;
Fig. 1b), although departure dates partially overlapped
with those of adults (adults range from 24 July to 21
August; mean = 7 August � 7 days, n = 77). Similarly,
juveniles arrived at the wintering sites later than adults
(WMann-Whitney = 44.5, P < 0.001; Fig. 1c), between 11
August and 14 October (mean = 3
September � 16 days), whereas adults arrived between
28 July and 26 August (mean = 21 August � 7 days).

Juvenile migration routes were less straight than those of
adults (juveniles: mean straightness = 0.86 � 0.18; adults:
mean straightness = 0.96 � 0.00; WMann-Whitney = 315.0,
P < 0.001; Fig. 1f), nevertheless following an overall
N–S direction towards West Africa over the Atlantic
Ocean, where they tended to make stops along the Afri-
can coast before reaching the wintering sites (Fig. 1b).
Such behaviour, not detected in adults (Carneiro
et al. 2019b), inevitably increased juvenile travel duration
and consequently resulted in a significantly lower travel
speed (juveniles: mean = 35.3 � 3.4 km/h, n = 11;
adults: mean = 53.5 � 0.8, n = 30; tStudent (86) = 7.39,
P < 0.001, Fig. 1d).

Juveniles’ wintering sites were on average further
north (mean = 12°18'0" � 0°18'0"N, n = 11) than
those of adults (mean = 10�36'0" � 0°24'0"N, n = 29;
WMann-Whitney = 38.0, P < 0.001). However, there was a
complete overlap of wintering latitudes (juveniles’ range:
11°0'0"–13°54'0"N; adults’ range: 5°54'0"–24°18'0"N;
Fig. 1f).

DISCUSSION

This study contributes to the growing field of ontogeny
of migration (Flack et al. 2022). Our results show that,
similar to adults, juvenile Icelandic Whimbrels migrate
non-stop to West Africa during their first migration,
while departing on average later, exhibiting less straight
routes with more frequent stopovers, and slower travel
speeds.

The observed differences in departure date between
the age-classes is not uncommon among birds (New-
ton 2008), including waders (e.g. Gunnarsson 2006,
Verhoeven et al. 2022). Later timings by juveniles were
also detected in a recent study where age ratios of Hud-
sonian Whimbrels N. p. hudsonicus were calculated at
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stopover sites in the West Atlantic Flyway (Hines
et al. 2023). Hines et al. (2023) observed an overlap in
timings between juveniles and adults at stopover sites,
similar to what we observed in the departure dates, with
a few early juveniles departing during the same period
as late adults. This raises a relevant contrast between
early and late departing juveniles: whereas early juve-
niles may be able to join departing Whimbrel flocks
with experienced adults and culturally inherit the

migration route, late departing juveniles may lack this
opportunity. Nonetheless, we cannot rule out the possi-
bility of other information cues that may be gathered by
late juveniles in the weeks preceding departure, includ-
ing heterospecific ones, such as observing departing
flocks and learning the direction of departure
(Piersma 2022).

All tracked juvenile Whimbrels undertook a non-stop
flight to West Africa, following a comparable route to

Figure 1. (a,b) Migration routes of adult (n = 76) and juvenile Whimbrels (n = 11), respectively; the larger filled circles with a white
outline represent the wintering sites. Blue circles in (b) represent the juvenile stopover locations (defined by fixes with zero ground
speed). (c–g) Boxplots summarizing adult and juvenile migratory parameters: day of the year of autumn departure (c) and arrival
dates (d), mean travel speed (e), winter site latitude (f) and straightness of route (g; higher values = straighter route). Boxes show
the median and 25% and 75% quartiles, whiskers extend up to 1.5 times the interquartile range from the median and points beyond
that are individually marked in black. Individual data points overlap the box plots. Sample size is shown above each boxplot. Adult
data were collated from Carneiro et al. (2019b, 2023). Photos by T�omas G. Gunnarsson ((a), adult) and Triin Kaasiku ((b), juvenile).
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adults. This finding contrasts with our initial prediction
based upon observations in the western UK and Ireland
during autumn migration, where Whimbrels are often
recorded between August and September. It is therefore
possible that those records belong to individuals of the
nominate subspecies, breeding in north-east Europe
(Delany et al. 2009); however, our sample of juveniles is
limited and some may stop in that region. It is also pos-
sible that individuals that stop originate from other
regions in Iceland, although early tracking of adult birds
from north-west Iceland indicates non-stop flights to
West Africa (n = 3 individuals, C. Carneiro pers. obs.),
similarly to those reported here.

Compared with adults, juveniles showed less straight
autumn migration routes, which could have been shaped
by different wind conditions experienced en route (Van-
steelant et al. 2017). Although tracking device differ-
ences may have an influence (see Methods), differences
in straightness also result from juveniles tending to stop
at several sites along the West African coast before set-
tling at their wintering site, in contrast to adults. Such
behaviour resembles what was observed in Eleonora’s
Falcon Falco eleonorae, where juveniles showed similar
migration routes to adults only until they reached the
Sahel region, presumably because there they could meet
favourable foraging conditions and needed to restore
energy reserves (Mellone et al. 2013). Juveniles may
have lower flight efficiency than adults (Rotics
et al. 2016), which could explain why they need to stop
more frequently or sooner than adults. If juveniles sim-
ply fly in a flock with adults until the wintering site,
then early juveniles would be more likely to achieve
higher travel speeds (i.e. similar to those of adults), but
we found no trend of mean travel speed in relation to
departure date among juveniles (linear regression:
R2 = 0.027, F(1,9) = 0.025, P = 0.63). Although not con-
clusive, this suggests that juvenile Whimbrel may be
limited in their ability to reach the wintering site in a
single flight, contrary to adults. Furthermore, hopping
along the West African coast may allow na€ıve and unin-
formed juveniles to explore and sample potential winter-
ing sites before settling, while possibly following other
individuals (Whimbrels or other waders) southwards.

Our tracked juvenile Whimbrels settled on wintering
sites that were on average at higher latitudes than those
of adults, even though all juvenile wintering sites were
within the range of wintering sites of adults, and most
were located close to the Guinea-Bissau region, where
wintering conditions are known to be favourable for
Whimbrels (Carneiro et al. 2021). These differences
may also be partially explained by the different spatial
accuracy of the tracking devices used on juveniles and
adults (see Methods). Nonetheless, as wintering loca-
tions are known to vary between age groups in other
species (Nebel et al. 2002, Lok et al. 2011), further
research where both age groups are tracked with the

same technology is necessary to determine the age dif-
ferences accurately.

Icelandic Whimbrel as a model to study
ontogeny of migration

The role for in-flight social information can be studied
in Icelandic Whimbrel, as juveniles may be departing on
their first migration with and without experienced
adults. Early juveniles are likely to encounter multi-age
departing flocks (Gunnarsson 2006) and can acquire
knowledge en route, whereas late juveniles have no such
opportunity. Simultaneous tracking of adults and juve-
niles, while observing departures in the field to deter-
mine age proportions in flocks, can shed light on the
role of social learning in the first migration.

The geographical characteristics of Iceland also pro-
vide an advantage when studying the importance of
knowledge transfer in the ontogeny of migration.
Together with our findings that juveniles fly non-stop to
West Africa, in this system juveniles have only one
chance to gather social information for most of the
migratory route (i.e. before departure). This is different
from most migratory species that fly over land, allowing
juveniles the opportunity to stop, join new flocks and
gather knowledge from them (N�emeth & Moore 2014,
Loonstra et al. 2023).

Furthermore, the Icelandic Whimbrel allows for a
particular investigation of migration development once
individuals are tracked to their first pre-breeding migra-
tion and in subsequent years. After departing the winter-
ing sites in spring, adults typically take one of two
routes: a direct flight to Iceland (i.e. the same route as
in autumn) or two flights with a stopover (usually Ire-
land or the UK; Carneiro et al. 2019b). From repeated
individual tracking of 12 adult Whimbrels over 2–
5 years, it has been possible to observe three individuals
changing their spring route between years. Interestingly,
such change was only detected in one direction: individ-
uals switched from a direct route to a stopover one; the
opposite was not observed (Carneiro et al. 2019a).
These findings stem from a reduced sample size but they
support the idea that the locations of stopovers and the
route between them are probably learnt. A successful
juvenile may migrate to the breeding area, for the first
time, following the route it knows (i.e. a direct one) and
continue to do so until, in a given spring, it joins and
follows a flock making a stopover, the pattern most
commonly found in the population (Carneiro
et al. 2019b). There may be advantages in making stop-
overs in spring, such as improved prediction of weather
conditions at breeding sites by being closer to them
(Winkler et al. 2014, Bauer et al. 2020, Carneiro
et al. 2020). Once individuals learn the route with a
stopover, they may be expected to follow it in subse-
quent years (Lok et al. 2011, Verhoeven et al. 2022)
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simply by being able to better time their arrival into Ice-
land given weather conditions at stopover sites. The Ice-
landic Whimbrel thus presents an exceptional
‘developmental system’ (sensu Oyama et al. 2001) to
investigate the roles of various developmental factors on
the ontogeny of migration.
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