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Abstract – Ensemble Kalman Filtering is a powerful technique for 
performing data assimilation. However, the disadvantage of this 
technique is that it is computationally expensive, thus making the 
application in TELEMAC-2D and especially TELEMAC-3D 
difficult. Therefore, in the present paper, an alternative 
methodology was applied, namely Optimal Interpolation. In this 
technique, the Kalman Gain, used for data assimilation using a 
Kalman filter is parametrized and precomputed, rather than 
computed during an Ensemble Kalman Filtering simulation. 
Therefore, only a single computation needs to be performed, 
meaning that the computational cost of a simulation with data 
assimilation is comparable to the computational cost of a 
simulation without data assimilation. This method was 
implemented in TELEMAC and applied in the test cases in 
TELEMAC-2D. Here, measured water level data are assimilated 
into IMDC’s continental shelf model of the North Sea (iCSM), 
where it is shown that in a reanalysis, the root mean square error 
(RMSE) in the water levels decreases by a factor of two with data 
assimilation. 

Keywords: TELEMAC-2D, TELEMAC-3D, Data-assimilation, 
Kalman Filter, optimal interpolation, reanalysis, continental shelf 
model. 

I. INTRODUCTION 
In order to increase the predictive power of operational 

models, data assimilation is often used. Further, data 
assimilation is often applied to perform a reanalysis, in which a 
combination of observed data and model simulation is adopted 
to generate an accurate high resolution dataset, which can be for 
example used to obtain boundary condition data for nesting 
smaller scale models. 

Ensemble Kalman Filtering [1] [2] is a powerful technique 
for performing data assimilation. However, this technique is 
computationally expensive, thus making the application in 
models like TELEMAC-2D and especially TELEMAC-3D 
difficult. Therefore, in the present paper, an alternative 
methodology was applied, namely Optimal Interpolation [3] [4]. 
In this technique, the Kalman Gain, used for data assimilation 
with Kalman filter is parametrized and precomputed. Therefore, 
only a single computation needs to be performed, meaning that 
the computational cost of a simulation with data assimilation is 
comparable to the computational cost of a simulation without 
data assimilation.  

The objective of this paper is to implement data assimilation 
using Optimal Interpolation in TELEMAC by means of a 
generic module, which can then be used in any of the 
TELEMAC modules. Further it is the objective to test the data 

assimilation for hindcast simulations in TELEMAC-2D using 
IMDC’s Continental Shelf Model of the North Sea (iCSM), in 
which measured water level data are assimilated into the model. 

The structure of the paper is as follows. First the data 
assimilation methodology is explained, including details on the 
implementation in TELEMAC. The iCSM model is presented 
next, and it is described how data assimilation is applied in this 
model. The results of the validation calculation are shown in a 
subsequent section. An outlook on future activities with respect 
to data assimilation is given thereafter. The paper is ended with 
some conclusions. 

II. DATA ASSIMILATION 

A. Optimal interpolation methodology 
 

Data assimilation using optimal interpolation is performed 
using the following equation to update a model variable xmod, 
using measurement data xmeas: 

 
�⃗�𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = �⃗�𝑥𝑚𝑚𝑚𝑚𝑢𝑢 + 𝐾𝐾(�⃗�𝑥𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚 − 𝐻𝐻𝑇𝑇�⃗�𝑥𝑚𝑚𝑚𝑚𝑢𝑢) 

 
Here, xmod, xmeas and xupdate are vectors. The xmod and xupdate  

have the same size, which in TELEMAC-2D equal to the 
number of nodes in the mesh (NPOIN × 1). Xmeas has a different 
size, namely the number of observation points that are used for 
data assimilation (NOBS × 1). H is an operator that maps the 
modelled data to the location of the observations. In case linear 
interpolation is used, H can be written as a matrix of size NOBS 
× NPOIN. Finally K is the Kalman Gain (a matrix of size 
NPOIN × NOBS), which determines how the difference 
between model and observations (at the location of the 
observations) is used to update the model prediction.  

The Kalman Gain K is determined from: 

𝐾𝐾 = 𝑃𝑃𝑓𝑓𝐻𝐻𝑇𝑇�𝐻𝐻𝑃𝑃𝑓𝑓𝐻𝐻𝑇𝑇 − 𝑅𝑅�−1 
 

Here PfHT is the covariance between the model data (size 
NPOIN × NOBS) at the location of the observation and the 
model data anywhere in the model. R is the correlation matrix 
(size NOBS × NOBS), which prescribes the uncertainty of the 
measurements. When using Ensemble Kalman Filtering, 
multiple simulations are performed using perturbed model data 
and/or observations as a kind of Monte-Carlo simulations, to 
determine 𝑃𝑃𝑓𝑓𝐻𝐻𝑇𝑇  using statistical calculations. 
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In Optimal Interpolation, K is not determined during the 
simulation, but precomputed. There are often two approaches to 
do so: 

• Perform a prior calculation using Ensemble Kalman 
filtering, and store the calculated values of K, for using 
in later simulations. Typically, in such calculations, K 
is averaged in time [5]. 
 

• Parametrize 𝑃𝑃𝑓𝑓𝐻𝐻𝑇𝑇. 
 

In the present study, experiments were initially performed 
with the first method, in which ADAO (Data Assimilation and 
Optimization) [6] was used to determine K. However, these 
experiments were unsatisfactory. The main reason was that in 
ADAO it is needed to prescribe the full matrix Pf (size NPOIN 
× NPOIN) to have perturbations to the model data that vary 
smoothly in space, which is too large to be practically possible. 
Therefore, method two was used. The following parametrization 
was used, which used the correlation function with the distance 
between the location of the observations �⃗�𝑥𝑜𝑜𝑜𝑜𝑜𝑜 and the model 
location of each node in the model �⃗�𝑥 [7]: 

𝑃𝑃𝑓𝑓𝐻𝐻𝑇𝑇 = 𝜎𝜎𝑚𝑚𝑜𝑜𝑚𝑚
2 𝑒𝑒(−|�⃗�𝑥−�⃗�𝑥𝑜𝑜𝑜𝑜𝑜𝑜|

𝐿𝐿  ) 
 

Here 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 is the standard deviation of the model data (i.e a 
measure of the uncertainty in the model), and 𝐿𝐿 is the correlation 
length scale over which the model data is correlated.  

The matrix R is parametrized as: 

 
 
 
 

Here 𝜎𝜎𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚 is the standard deviation in the observations (i.e. 
a measure of the uncertainty in the observations, assumed to be 
0.1 m throughout the study). 

B. Implementation in TELEMAC 
 

In order to assimilate the optimal interpolation in 
TELEMAC, a new module named OPTIMAC was 
programmed. This module was written in FORTRAN to be 
easily integrated in the rest of the codes in TELEMAC, such that 
it can be used in any kind of calculations (with or without 
TelApy, serial and in parallel). In this module, a precomputed 
Kalman Gain (which is stored in a SELAFIN file) is used in 
combination with an ASCII input file containing the data to be 
assimilated. This file contains x, and y coordinates of the 
location of the observations (and the z coordinate in case of data 
assimilation in TELEMAC-3D), as well as time series of the 
observed data. The module consists of three functional parts: 

• Initialization. Here, data is allocated for the necessary 
arrays. The precomputed Kalman Gain, is read from a 
SELAFIN file. Then, the location of the measurements 
are read from the ASCII file. The coefficients of the 
matrix H (interpolation matrix) are determined using 

linear interpolation, for use in all future interpolation 
steps. 

 
• Application. For every time step during the 

simulation, it is checked whether observation data is 
available. In case new data are available, a model 
variable is updated. A no data value (-999) is used to 
handle gaps in the time series. A threshold for the 
water depth is used, to prevent the use of data 
assimilation in areas with very shallow water depths, 
in order to prevent instabilities due to the combination 
of wetting and drying and data assimilation. Note that 
no validation of the observation data is performed 
inside the calculation. It is assumed that data 
validation has been performed previously (before the 
start of the TELEMAC simulation). This validation is 
very important, because the algorithm readily 
assimilates wrong data in the model, leading to an 
incorrect result of the simulation. 
 

• Finalization: The allocated arrays are cleaned and 
internal variables are reset for the use in a new 
calculation. 
 

It should be noted that this methodology was developed 
particularly for the case, where the number of observations is 
rather low, which occurs for example when a couple of point 
measurements are used in the data assimilation. It is not very 
suited for cases where large fields of data need to be assimilated, 
such as happens for example when using data assimilation on 
satellite data. 

C. Determination of the distance 
 

The parametrized equation for the Kalman gain depends on 
the distance between the location of the observations and the 
nodes in the mesh. However, this distance should take into 
account the presence of the coastlines in the model. Therefore, 
the distance was defined as the shortest distance between two 
nodes following the edges of the model. This distance was 
calculated in MATLAB using Dijkstra’s algorithm [8], by 
converting the mesh to a graph. For the location of the 
observation, the closest node in the mesh is used (Figure 1). Note 
that using this method, the distance is expected to be somewhat 
larger than in reality. However, because the parameter L is used 
as a tuning parameter in this study, this assumption shall not lead 
to any problems. 

 

𝑅𝑅 =  �𝜎𝜎𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚
2 0
0 𝜎𝜎𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚2 � 
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Figure 1. Determination of distance between the observation point and all 

nodes in the mesh using Dijkstra’s algorithm. 

III. MODEL SETUP OF THE CONTINENTAL SHEL MODEL OF 
THE NORTH SEA 

A. Model setup for iCSM 
 

The IMDC Continental Shelf Model (iCSM) is a 2D 
barotropic tidal surge model developed in-house in TELEMAC-
2D [9] [10], focusing on the continental shelf of the North Sea 
(Figure 2). The model is built in a spherical Mercator projection 
with Coriolis effect included. The computational mesh consists 
of approximately 150,000 nodes and 292,000 elements. The 
unstructured mesh is refined near the coastal zones, e.g. with a 
minimal resolution of 500 m at Belgian coast. Mesh refinement 
is also applied along the coastlines of the UK, France and The 
Netherlands as well as in the Wadden Sea and the English 
Channel. 

The bathymetry in iCSM is derived from the European 
Marine Observation and Data Network (EMODnet) which is 
referenced to Mean Sea Level (version 2020). The model 
includes the most dominant physical processes in the North Sea, 
such as inverse barometer correction, which accounts for an 
isostatic response of the oceans to atmospheric pressure. The 
self-attraction and loading [11] due to three effects is also taken 
into account: the deformation of the seafloor under the weight 
of the water column; the redistribution of Earth mass and its 
corresponding changes in the gravitational field; the 
gravitational attraction induced by the water body on itself. It 
has a well-acknowledged impact on the tidal phases and 
therefore is included in the iCSM using a beta (β) approximation 
approach. The internal tidal dissipation considers the dissipation 
of tidal energy through generation of internal tides which is the 
dominant mechanism when tides propagate over steep 
topography in deep stratified waters. This is important in the Bay 
of Biscay and is also included in iCSM.  

To account for the effect of bottom friction, a spatially-
varying roughness field of Nikuradse value was automatically 
calibrated [12] on bottom friction using ADAO with three-
dimensional variational assimilation (3D-Var). This automated 
optimization tool allows to find the best possible parameter set 
for the model. 

In its present form, the model reproduces the hydrodynamics 
in the European Continental Shelf accurately. For instance, the 

Root-Mean-Squared-Error (RMSE) of water levels along the 
Belgian coast is in the order of 10 cm. The RMSE of stationary 
velocity magnitude in the Belgian Coastal Zone is of the order 
0.1 m/s, which is considered as top-of-range numerical model 
accuracy.  

The details of the model setup and its performance are 
referred to [12], thus will not be elaborated here. 

 
Figure 2. iCSM model mesh and bathymetry (horizontal system: Spherical 

Mercator projection. Vertical datum: MSL). 

B. Model setup for assimilation of measured water levels 
 

Measurement of water level data at 29 stations in the North 
Sea are used in this study (Figure 3). Table 1 presents the model 
simulations carried out in this study.  

Run01 is the base run without data assimilation, which is 
used to compare to all the experiments using data assimilation. 
Run02 assimilates measured water level at all the 29 stations as 
shown in Figure 3, the purpose of this run is to test the module 
developed for this study (§II). Run03 is a validation run which 
investigates whether data assimilation could improve water level 
predictions at stations where no data assimilation is applied 
directly. The validation stations are selected in a way to have at 
least one station per coastal zone/country (Figure 5). More 
sensitivity runs using different validation stations will be 
considered in future studies. Run04 to Run07 are sensitivity runs 
with different values of standard deviation of the model data 
(𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢) and the length scale over which the model data is 
correlated (L). Note that an attempt was made to determine L 
directly from the results of a separate model simulation without 
data assimilation by determining the autocorrelation of the 
modelled water levels around the different measurement 
stations. These data suggested that the shape of 𝑃𝑃𝑓𝑓𝐻𝐻𝑇𝑇  might look 
more like a Gaussian function than an exponential function, but 
give correlation length in the order of 100 km, used in this study. 
This is something that will be studied further in future. 
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Table 1: Summary of model simulations carried out in this study. 

Run ID 𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎 L Description 
Run01 - - Base run without data assimilation, same 

as [12]. 
Run02 0.1m 100 km Full data assimilation using measured 

water level at all 29 stations. 
Run03 0.1 m 100 km Idem Run02, but with 7 validation stations 

and 22 assimilation stations. 
Run04 0.25 m 100 km Idem Run03 
Run05 0.05 m 100 km Idem Run03 
Run06 0.1 m 50 km Idem Run03 
Run07 0.25 m 150 km Idem Run03 

 

 

 
Figure 3: Top: Observation stations of water level used for data assimilation 

in the North Sea. Bottom: Close up of the  Belgian and Dutch coast.  

The Kalman Gain is firstly computed for Run02 using 
𝜎𝜎𝑚𝑚𝑢𝑢𝑢𝑢𝑚𝑚 = 0.1 m; 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 = 0.1 m; L = 100 km. Note that the 

Kalman gain has a size of NPOIN × NOBS (hence 29 maps). 
The 29 maps of the Kalman Gains are assembled into one graph 
(Figure 4) for readability, by presenting the maximum value of 
Kalman Gain at each computational node. 

The Kalman Gain is recomputed for Run03 using 22 
measurement stations, see the map in Figure 5. 

Figure 6 shows the comparison of computed Kalman Gain 
with different values of 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 of 0.1 m (Run03), 0.25 m (Run04) 
and 0.05 m (Run05). It clearly shows the trend that higher 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 
leads to higher values of the Kalman Gain. It essentially means 
that the updated water level will be based more on measurement 
data than on the model. 

Figure 7 shows the comparison of the computed Kalman 
Gain with different values of L of 100 km (Run03), 50 km 
(Run06) and 150 km (Run07). It clearly shows the trend that 
larger L leads to higher values of Kalman Gain. It essentially 
means that the updated water level will be based more on the 
measurement data than on the model results since the Kalman 
Gain has a larger area of influence. 

 

 
Figure 4: Kalman Gain with 29 measurement stations (Run02). 

 
Figure 5: Kalman Gain with 22 measurement stations and 7 stations (marked 

in red) for validation (Run03). 
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Figure 6: Comparison of Kalman Gain with 22 measurement stations and 7 
stations (marked in red) for validation  with different values of 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 

(Top:Run03; Middle: Run04; Bottom: Run05).  

 

 

 
Figure 7: Comparison of Kalman Gain with 22 measurement stations and 7 

stations (marked in red) for validation  with different values of L (Top:Run03; 
Middle: Run06; Bottom: Run07). 

IV. MODEL RESULTS 
Figure 8 shows the comparison of the RMSE of the water 

levels at the coastal stations from Run01, 02 and 03. The RMSE 
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is lowered by 50% on average using data assimilation. The 
RMSE at the validation stations (Run03) is slightly higher than 
the RMSE with direct data assimilation at those stations 
(Run02), but it is still lower than the RMSE without data 
assimilation (Run01). It should be noted that if data assimilation 
is not applied at Cuxhaven in the German Bight, the RMSE 
becomes substantially larger than when data assimilation is 
applied locally. This is reasonable since the data assimilation at 
the remaining stations are too far away to have a substantial 
impact on the water level at Cuxhaven. 

Figure 9 compares the RMSE of water level from Runs 01, 
03, 04, and 05. In general, different values of 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 lead to 
comparable RMSE values, which are always lower than those 
obtained without using data assimilation. Lower value of 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 
(0.05 m) result in slightly higher values of the RMSE, implying 
that the updated water level is dependent more on model 
predictions than the measurements when assuming the model 
error is lower (0.05 m). However, this is less justified along the 
British coast where the original model (Run01, no data 
assimilation) already produces higher RMSE values.        

Figure 10 compares the RMSE of the water level from Runs 01, 
03, 06, and 07. In general, different values of L lead to 
comparable RMSE values, which are always lower than those 
obtained without using data assimilation. It is noted that the 
lower value of L = 50 km results in slightly higher values of the 
RMSE at Leith, North Shields and Whitby in UK, implying that 
the updated water level is dependent more on the model 
predictions than on the measurement data with smaller Kalman 
Gain (Figure 7). Again, this is less justified along the British 
coast, where the original model (Run01, no data assimilation) 
already produces higher RMSE values. Interestingly, the RMSE 
at Immingham and Sheerness are less sensitive to L even when 
the original model (Run01, no data assimilation) produces a 
RMSE up to 25 cm. This probably suggests that a station 
dependent L could be investigated for future studies.  

 
Figure 8: RMSE of water levels from Run01, Run02 and Run03. The stations 

with red outbox are the seven validation stations. 

 
Figure 9: RMSE of water levels using different values of 𝜎𝜎𝑚𝑚𝑚𝑚𝑢𝑢 from Run03, 

Run04 and Run05. 

 
Figure 10: RMSE of water levels using different values of L from Run03, 

Run06 and Run07. 

V. OUTLOOK  
The application of data assimilation in iCSM shows a 

decrease of the RMSE of a factor two, meaning that more 
accurate boundary conditions for the IMDC’s Scheldt model are 
obtained. Tests of using these updated boundary conditions for 
the nested Scheldt model will be investigated in the future.  

The data assimilation module was implemented in a generic 
way, meaning that it can easily be applied within other 
TELEMAC modules. Tests, in which the methodology is 
applied to assimilate salinity data in IMDC’s TELEMAC-3D 
Scheldt model has already been started and show promising 
results. Note hereby that in this case, the data assimilation is 
applied to a three dimensional field rather than a two 
dimensional one. Due to the generic way the module is setup, 
this was possible without any changes to the data assimilation 
code. 

It is the intention to apply the presented data assimilation 
module OPTIMAC to IMDC’s North Sea wave model in 
TOMAWAC [13], in order to improve the predicted wave 
conditions in the Belgian Coastal Zone. The challenge for this is 
that in TOMAWAC, wave energy density spectra are the 
principle variable, which at each location in time depend on the 
direction and frequency of the wave components. This means 
that the data assimilation needs to be performed on a four-
dimensional variable. The preferred data assimilation 
methodology depends on the availability of the data. In case 
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measured wave spectra are available, it is preferred to assimilate 
these directly. However, often only integrated parameters 
(significant wave height, peak period) or simplified (1D) spectra 
are available. In this case, it is needed to develop some extra 
code that parametrizes the effect of these simplified variables on 
the full two-dimensional wave spectrum. To perform well, it is 
likely that the Kalman Gain needs to be different for each 
frequency and especially for each direction in the spectrum. 

VI. SUMMARY AND CONCLUSIONS  
In this paper, OPTIMAC, a generic module that performs 

data assimilation in TELEMAC using Optimal Interpolation, 
was presented. The module was tested by performing data 
assimilation in IMDC’s continental shelf model of the North 
Sea. In this model, observed water level data were assimilated 
in a one year hindcast simulation. The RMSE of water level in 
the North Sea is significantly reduced by 50% with data 
assimilation. Sensitivity analysis on standard deviation of the 
model data (𝜎𝜎𝑚𝑚𝑜𝑜𝑚𝑚) and the correlation length scale (L) used in 
Optimal Interpolation have been carried out. In general, 
different values of 𝜎𝜎𝑚𝑚𝑜𝑜𝑚𝑚 and L lead to relatively comparable 
RMSE values, which are always lower than those obtained 
without using data assimilation. 

The computational time with and without data assimilation 
is rather similar, meaning that the Optimal Interpolation 
algorithm developed for TELEMAC in this study is 
computational efficient.  
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