
Machine learning for efficient
segregation and labeling of
potential biological sounds in
long-term underwater recordings

Clea Parcerisas1,2*, Elena Schall3, Kees te Velde4,
Dick Botteldooren2, Paul Devos2 and Elisabeth Debusschere1

1Marine Observation Center, Flanders Marine Institute, Ostend, Belgium, 2Waves, Department of
Information Technology, Ghent University, Ghent, Belgium, 3Alfred Wegener Institute for Polar and
Marine Research Bremerhaven, Bremerhaven, Germany, 4Institute of Biology, Leiden University, Leiden,
Netherlands

Studying marine soundscapes by detecting known sound events and quantifying
their spatio-temporal patterns can provide ecologically relevant information.
However, the exploration of underwater sound data to find and identify
possible sound events of interest can be highly time-intensive for human
analysts. To speed up this process, we propose a novel methodology that first
detects all the potentially relevant acoustic events and then clusters them in an
unsupervised way prior to manual revision. We demonstrate its applicability on a
short deployment. To detect acoustic events, a deep learning object detection
algorithm from computer vision (YOLOv8) is re-trained to detect any (short)
acoustic event. This is done by converting the audio to spectrograms using sliding
windows longer than the expected sound events of interest. The model detects
any event present on that window and provides their time and frequency limits.
With this approach, multiple events happening simultaneously can be detected.
To further explore the possibilities to limit the human input needed to create the
annotations to train the model, we propose an active learning approach to select
the most informative audio files in an iterative manner for subsequent manual
annotation. The obtained detection models are trained and tested on a dataset
from the Belgian Part of the North Sea, and then further evaluated for robustness
on a freshwater dataset frommajor European rivers. The proposed active learning
approach outperforms the random selection of files, both in the marine and the
freshwater datasets. Once the events are detected, they are converted to an
embedded feature space using the BioLingual model, which is trained to classify
different (biological) sounds. The obtained representations are then clustered in
an unsupervised way, obtaining different sound classes. These classes are then
manually revised. This method can be applied to unseen data as a tool to help
bioacousticians identify recurrent sounds and save time when studying their
spatio-temporal patterns. This reduces the time researchers need to go through
long acoustic recordings and allows to conduct a more targeted analysis. It also
provides a framework to monitor soundscapes regardless of whether the sound
sources are known or not.
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1 Introduction

The technological advances in Passive Acoustic Monitoring
(PAM) underwater devices in recent years have enormously
increased the amount of marine acoustic data available. Studies
carried out using these data typically focus on a single or a limited
number of species, mainly concentrating on taxa at the top of the
food chain (Stowell, 2022; Rubbens et al., 2023). Archived long-term
data, however, contain a great diversity of other sounds, most of
which remain to date unidentified. Interest in studying these sounds
has grown in recent years, as they can serve as a proxy for
biodiversity or ecosystem health (Desiderà et al., 2019; Bolgan
et al., 2020; Di Iorio et al., 2021; Parsons et al., 2022).

Sound events can inform animals about their surroundings (Au and
Hastings, 2008). This can either come in the form of biotic associated
sounds from predators, prey, or conspecific, or in the form of geophonic
sounds that can contain information about habitat quality or provide
navigational cues (Mooney et al., 2020; Schoeman et al., 2022). Since any
sound event could potentially carry information about an organism’s
environment, characterizing and quantifying unknown sound events can
be used to characterize and understand soundscapes. Soundscape
characterization has been done by detecting certain acoustic events of
relevance, such as animal vocalizations or anthropogenic sounds, and
quantifying their temporal patterns, relationships, or proportions
(Havlik et al., 2022; Schoeman et al., 2022). This provides knowledge
on the local acoustic community and it can be used as a proxy for
biodiversity and ecosystem health. Soundscape characterization by
isolating acoustic events can also be done with sounds from an
unknown source, as long as they can be detected and classified.
Finding, reporting, and understanding the patterns of unidentified
sounds is of significant benefit to the assessment of underwater
soundscapes. This can then help raise awareness and inform
policymakers on the health status of an ecosystem and how best to
tackle conservation or noise mitigation measures (Parsons et al., 2022).

Some sound sources present diurnal, celestial, seasonal and annual
patterns, especially studied for biological sources (Staaterman et al.,
2014; Nedelec et al., 2015; Schoeman et al., 2022). For example, certain
fish species are known to vocalize during dusk and dawn (Parsons et al.,
2016). Therefore, some sources could eventually be assigned to certain
sound events by an exclusion procedure taking into account their
spatio-temporal patterns, but to do this larger scales than the ones that
can be covered in one study/area are necessary. Therefore, a database of
unidentified sounds is, in some ways, as important as one for known
sources (Parsons et al., 2022); as the field progresses, new unidentified
sounds will be collected, and more unidentified sounds can be matched
to species. Therefore, documenting these sounds before they are
identified provides a baseline for their presence and Supplementary
Material for later source identification. This is especially applicable in
areas where very little sound sources are clearly described.

However, studying unknown sounds is a challenging task, as it is
difficult to find sound events in long-term recordings when one does
not know which events to expect. Unidentified sounds might be, or
might not be, of importance for the marine fauna. Yet before deciding
that a certain sound is relevant, a considerable time investment in the
manual screening of the acoustic recordings is necessary, and this can
still sometimes be inconclusive (Wall et al., 2014). In the marine
environment, this task is even more complicated as biological
sounds of interest are often sparse-occurring (Stowell et al., 2015),

non-continuous or rare (Looby et al., 2022). Because of the amount of
generated PAM data, there is interest in having this process
automatized. Several studies suggest that using deep learning is a
promising solution (Stowell, 2022). In these studies, the detection
and classification are often applied to segmented data, where long
recordings are split into equal-sized overlapping windows, and then a
binary output algorithm is used to detect the possible sound events
(Stowell et al., 2015). Afterwards, the selected windows are run through
a classifier where they are assigned a call type, or further discarded as
noise. However useful this approach can be, it has its limitations. For
example, it is complicated to detect and classify signals of different
lengths, or to deal with signals overlapping in time in different
frequency bands. When looking for unidentified sounds, these
considerations are key, as there are no predefined frequency bands,
frequency patterns or event duration to focus on.

Here we propose a method to detect and categorize sound events in
long-term recordings. The method concept is inspired by the analysis
process of human annotators when screening for unidentified sounds.
Human annotators look first at the temporal-spectral shape in a
spectrogram, the duration, and the frequency limits to assign certain
sounds to a specific species. The sounds are then usually annotated by
drawing bounding boxes around them in the time-frequency domain,
namely in a spectrogram. Human annotators first screen a lot of hours
of recordings before deciding which sound groups can be considered,
and only after that are labels assigned to the selected sounds. Therefore,
following the same strategy, we propose to use of one of the newest
computer vision algorithms for object detection YOLOv8 (Jocher et al.,
2023), to detect all the possible sound events on a spectrogram using
transfer learning.

Supervised deep learning models such as the proposed detection
model (YOLOv8) are known to need large amounts of annotated data
to achieve good performances. Hence, to reduce the human annotation
effort needed to generate a first dataset to train the model, we propose
an active learning approach, where the model selects the files with more
diversity of sounds to be manually annotated. We then compare the
results with a random selection of files for annotation. To test the
robustness of the model to unseen data, and to investigate the possible
generalization of the model to detect acoustic events in any underwater
environment, the obtained models are tested on two datasets: 1) a test
set recorded in the Belgian Part of the North Sea (BPNS) as part of the
LifeWatch BroadbandAcoustic Network (Parcerisas et al., 2021), and 2)
test set of freshwater acoustic recordings collected in 4 major
European rivers.

The detectionmodel can then be used to detect sound events in new
data. The obtained detections could already be directly used to speed up
manual annotations, but they can also be used to further cluster these
sound events into sound types and explore the acoustic environment.
To this aim, all the detected events are converted into a
multidimensional embedding space using another pre-trained deep
learning model, which has been trained on a large dataset of diverse
bioacoustic data. We then use these embeddings to cluster all the
detections in an unsupervised way. This approach enables an initial
analysis of the existing sound types within a specific dataset. Through a
manual review of the clusters, sound labels can be assigned to them if
considered appropriate. Once these clusters are defined and revised, we
analyze the obtained temporal patterns and the new sound categories
discovered.We showcase this second part of themethodology in a short
deployment spanning 10 days in one location of the BPNS.
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2 Materials and methods

2.1 General concept flow

The presented methodology is a new approach to discover sound
types of a relatively unstudied environment while reducing human
annotation and labeling time, providing insights on the spatio-

temporal patterns of the discovered sounds leading to potential
clues on sound origins.

The general idea of the proposed methodology is to first detect
all the potentially relevant underwater acoustic events, regardless of
their sound type, using an automated method. Next, the detected
events are converted to a multidimensional embedding space and
then clustered into different classes. The clusters are then manually

FIGURE 1
Flow of the proposed methodology. N is the number of wav files to analyze. m is the number of detections in one wav file after joining. M is then the
total number of annotations within the N wav files.
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revised by checking 10 events per cluster. Finally, the temporal
patterns of the obtained clusters are plotted to assist in the
identification of the source of each sound type (cluster) and to
already provide insight on the soundscape dyamics. A general
schematic of the entire process can be seen in Figure 1.

For the event detection, because we want to allow for multiple
events happening simultaneously in different frequency bands, this
detection is performed in the spectro-temporal space using an object
detector (YOLOv8) (Jocher et al., 2023) from computer vision.
Therefore, the recordings needed segmentation and
transformation into images, in order to be ingested in the model.
This process is explained in Section 2.4. To account for the
continuity of the data, these segments are overlapping. Therefore,
the predictions from the object detector need to be merged
afterwards to avoid double detections. This is explained in
Section 2.5.2. We will refer to the model predictions once they
are already joined as sound event detections from now on. Although
YOLOv8 is pre-trained, specialization for the task at hand is needed,
so the model needs to be re-trained (see Section 2.5.1). This requires
a human selection of areas in the spectrogram that are potentially
interesting sounds, which is a time-consuming task (see Section 2.3
for details on how these areas are selected). We will refer to this
process as human annotation throughout the manuscript. To
increase efficiency of this process we propose an active learning
approach where audio files are selected that could enrich the
database of human annotations most. To this end, suitable
metrics are proposed. This process is described in Section 2.6,
and it is compared to the random selection of files. The
performance of the object detector is tested on two independent
manually annotated datasets: an extensive dataset from the BPNS
(see Section 2.4.3) and a dataset from freshwater recordings (see
Section 2.4.4).

Once all the overlapping predictions are merged, using the start
and end time of each sound detection the raw waveform snippet is
extracted and filtered to the predicted frequency band (frequency
limits predicted by the model). Each snippet is then converted to a
multidimensional embedding space using the pre-trained model
BioLingual. The obtained features are next reduced to a smaller
feature space using UMAP to deal with the curse of dimensionality,
and the reduced feature space is clustered using HDBSCAN. The
obtained clusters are then manually revised to assign them a label
and a possible source (from now on, labeling), and their temporal
patterns are analyzed. This process is explained in Section 2.7, and it
is performed as a showcase on data from continuous recordings
spanning 10 days.

2.2 The datasets

2.2.1 BPNS Data
The audio data were selected from the LifeWatch Broadband

Acoustic Network (Parcerisas et al., 2021), implementing RESEA
320 recorders (RTSys, France) together with Colmar GP1190M-LP
hydrophones (Colmar, Italy, sensitivity: 180 dB/V re 1μPa, frequency
range −3 dB: 10 Hz to 170 kHz), attached to steel mooring frames at
1 m above the sea bottom, with no moving parts. The locations of data
collection within the BPNS are displayed in Figure 2 and the
deployment periods per station are summarized in Supplementary

Table S1. Each deployment was manually screened to decide the
period where the data were valid, considering clipping, instrument
noise and failure of the recorder. The files considered in this study were
all the files falling inside the valid period of a deployment and had less
than 1E-6 percentage of data points clipping. All the files were between
5 and 10 min long, depending on the deployment.

2.2.2 Freshwater Data
To further evaluate the robustness of the detection algorithms the

model was tested on an extra test set recorded in a variety of freshwater
habitats across Europe. The locations of data collection within Europe
are displayed in Figure 2. These habitats included ditch, pond, medium
river, large river, and 4 very large European rivers with varying
characteristics. The total dataset included 42 different deployments,
each at a different location, recorded with two different instruments. On
one side, 28 deployments were conducted using SoundTrap 300 STD
hydrophones (Ocean Instruments NZ, sensitivity: 176.6 dB re:
1 μPa V−1, frequency range −3 dB 20 Hz to 60 kHz), suspended
between an anchor and sub-surface buoy 50 cm above the sediment.
The other 14 deployments were recorded using Hydromoth
hydrophones (Open Acoustic Devices, unknown calibration specs)
(Lamont et al., 2022), attached to a steel frame 20 cm above the
sediment. A detailed summary of all the considered deployments
can be found in the Supplementary Material Supplementary Table S2.

2.3 Manual annotation on audio files
using RavenPro

Manually annotating sounds (drawing bounding boxes around
acoustic events in the spectro-temporal space) is a time and human
labor-intensive task. This is especially the case when a lot of sounds
have to be annotated, and when one does not know what sounds to
look for, because the whole bandwidth needs to be screened. In this
study we focused on a broad frequency band to include benthic
invertebrate, fish and some marine mammal sounds. Invertebrate
sounds are characterized by a wide bandwidth and very short
duration compared to fish sounds (Minier et al., 2023). This
difference in duration and bandwidth poses a challenge during
annotation and description of the sounds.

As ground truth to train and test the sound event detection model,
wav files were manually annotated using Raven Pro version 1.6.4 (K.
Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of
Ornithology, 2023). The software settings were configured to visualize a
window duration of 20 s with frequencies ranging from 0 to 12 kHz. To
facilitate optimal visual representation, the selected color scale was
“Grayscale”, and the spectrogramswere generated with aHannwindow
with 2048 fft bins and a hop size of 164 samples (same parameters than
the ones used afterwards to convert the data into images to input to the
model). Spectro-temporal bounding boxes were meticulously hand-
drawn to accurately capture the contours of the corresponding audio
signals as observed in the spectrogram.

Because of the subjectivity of annotating sound events, some rules
were decided about how to label events. The first requirement for an
event to be logged was that it was both acoustically and visually salient.
Therefore, sounds perceived as “background” were not annotated. This
included ambient sound but also long, continuous sounds not salient
according to subjective human perception. Deciding if a sequence of
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sound events was a “sentence” or separate individual sounds was done
following the subjective criteria of whether the events were perceived to
be coming from the same sound source or not, focusing on the
continuity of the sound. Abrupt frequency jumps were considered
an indication of the start of a different event. Events happening
simultaneously at the same time with the same rhythm in different
frequency bands were annotated as a single event. In case of doubt, a
separate box was always added.

2.4 Data preparation for object detector

The object detector (YOLOv8) is based on visual detections of
the sound events. Therefore, the data were processed into

spectrograms using overlapping windows longer than the
expected sound events of interest. Deciding the parameters to
generate spectrograms is a critical step. All these parameters are
context-specific and should be chosen in a way that the foreground
sounds are contrasting the background in a well-defined and sharp
way. The chosen parameters for this context situation are specified
in Table 1. Once the spectrograms were generated, they were
normalized to the [1, 99] % percentiles after converting to dB,
and a spectral high pass filter at 50 Hz was applied to exclude flow
noise. Finally, the spectrograms were converted first to gray scale,
where white is 0 and black 1 and then converted to RGB using the
colorscale ‘jet’ provided by the package matplotlib (python). This
step was done because the pre-trained YOLOv8 model was trained
on RGB images. Data were processed using the scripts available at

FIGURE 2
Locations where the sound was acquired, for both the BPNS and the freshwater datasets. Area zoomed to the BPNS with the corresponding station
names. Data used from EMODnet Bathymetry Consortium (2018) and GEBCO Compilation Group (2022).

TABLE 1 Settings used to generate the spectrograms for the YOLOv8 model.

Parameter Explanation Value

chunk duration [s] duration of the chunk to analyze 20

chunk overlap [%] how much to overlap between the images fed to the model 50%

sampling frequency [Hz] sampling frequency to re-sample to (only files with a different sampling frequency) 24,000

nfft number of Fourier Transforms in one chunk 2048

window length length of the window to apply the FFT to, in samples 2048

window overlap in %, overlap between the windows 92%

window shape name of the shape used as a window Hann

temporal resolution computed from window length and window overlap, in seconds 0.042

frequency resolution depending on nfft, in Hz 11.71
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https://github.com/lifewatch/sound-segregation-and-
categorization, and Raven annotations were converted into the
YOLOv8 format for each chunk. An example of several input
images with their corresponding annotations is shown on Figure 3.

For manual annotations (not model detections), the column
SNR NIST Quick (db) of Raven Pro was added as a proxy for the
signal to noise ratio (SNR) of the event, to provide a more objective
threshold to include an event or not. This was done because human
annotations of sound events are not always consistent (Leroy et al.,
2018; Nguyen Hong Duc et al., 2021), and “the accuracy of a
trained model heavily depends on the consistency of the labels
provided to it during training” (Bagherinezhad et al., 2018).
Therefore, the post-annotation filtering of SNRs provided a less
subjective criteria on whether to add or not an annotation to
training or test sets. With this idea, box-annotations with a SNR
NIST Quick (db) lower than 10 dB were discarded. For both
manual annotations and model detections, all events shorter
than 1 pixel in temporal resolution (shorter than 0.085 s) were
also removed before the reshaping.

2.4.1 Initial training set
For the initial training set, approximately 1.5 h were used from

the Birkenfels station, recorded the 18th of March of 2021, from
midnight to 1:30a.m. The annotations were carried out by expert E.S.
After processing the raw data, the training data consisted of
556 images in RGB of a size of 1868 × 1,020 pixels, representing
20 s each. From the 556 images, 14 had no annotation (background
images). In total there were 1,595 annotations, from which
1,532 complied with the SNR and minimum duration criteria.
This was chosen as a representative starting scenario, where the
available annotations from a lab are consecutive files from
one location.

2.4.2 Pool of data for selecting additional training
samples using active learning

A pool of the data was created to avoid predicting the entire
dataset at every active learning iteration, which was computationally
not feasible. The unlabeled pool for active learning was selected in a
stratified fashion considering season, station, moment of the day and

FIGURE 3
Example of labeled sounds from the unidentified sounds Dataset when colored to RGB values. Each rectangle represents 20 s in the x-axis and
12,000 Hz in the y-axis.
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Moon phase. Season included the four different seasons, moment of
the day considered twilight, night and day, station consisted of the
seven different stations of LifeWatch Broadband Acoustic Network,
and Moon phase included new, full, growing and decreasing Moon
states. The python package Skyfield (Rhodes, 2019) was used to
assign the environmental variables to each wav file. Seven files were
randomly selected per available combination from all the available
wav files of all the recordings, excluding all the files that had been
selected for the training set, leading to a total of 1,005 wav
file (126.5 h).

2.4.3 BPNS test set
The BPNS test set consisted of a stratified selection of files from the

LifeWatch BroadbandAcoustic Network. The selection strategy was the
same than the one for the unlabeled pool but selecting 1 file per possible
combination of environmental variables instead of 7, and excluding all
the files from the unlabeled pool and from the training set. The test set
was independent of the training set, but it did overlap with the training
set regarding location, season and environmental conditions. The final
selection consisted of 145 wav files, a total of approximately 18 h. The
audio files were processed the same way than the training set, leading to
a dataset of 6,342 images. The annotations were carried out by
independent annotators K.M and O.S., each annotating half of the
test set. The annotations were manually checked using a model-assisted
approach to speed up the process. We used the model obtained from
training using only the initial training set (Model Base) to predict the
files. Then, the human annotator went through all the files, adjusting
detections and modifying the boxes boundaries when necessary. Only
the manual annotations complying with the selection criteria were used
for evaluation.

2.4.4 Freshwater test set
The freshwater test set was also selected for evaluation of the

model from all the freshwater data in a stratified way considering
water type and moment of day. Moment of day included day, night
and civil twilight. The stratified selection was run using the same
approach than for the BPNS test set. 24 files of 5 min were selected,
from which 21 were recorded with SoundTrap and 3 using
Hydromoth. The freshwater test set was annotated by expert K.V.

2.5 Object detector model

2.5.1 Training
The pre-trained YOLOv8n (nano) model was used as an

initialization, which was initially trained on the Common Objects
in Context (COCO) images dataset (Lin et al., 2015). First this model
was re-trained on the initial training set of spectrogram images.
From now on we will refer to this model as the Model Base.

For all the training runs, the initialization was kept to the
YOLOv8 nano weights. The initial training set was split for
training and validation using a K-fold strategy with 3 folds
(6 different full files were kept for validation for each model).
This led to 3 different Model Base.

For each training round, data were fed into the YOLOv8n model
and trained for 200 epochs, with batch size 32. The YOLOv8 model
incorporates several data augmentation techniques. The
augmentation techniques for mix-up, copy-paste, mosaic,

rotation, shear, perspective and scale were deactivated for the re-
training and the prediction on new data because they did not
represent realistic scenarios in the case of object detection in
spectrograms of underwater sounds, and therefore they were not
expected to create any advantageous for spectrograms, or could even
be detrimental. The rest of the augmentation techniques were kept as
the default values. The Intersection Over Union (iou) was set to
0.3 for validation evaluation, and the images were resized to 640 ×
640 pixels. The rest of the parameters were kept as the default values.

2.5.2 Joining predictions: from segmented images
to continuous audio

We used a minimum confidence of 0.1 for all the predictions.
This is the default value used by YOLOv8 for validating the model.
Because of the 50% overlap between two consecutive images, some
model predictions would be repeated when joined as a continuous
audio file. Therefore, we first joined all boxes that had a 50% overlap
or more, keeping the largest boundaries resulting from the union of
the two boxes. The confidence of the resulting box was assigned to
the maximum of the box. The pseud-code to join the boxes is shown
in Supplementary Algorithm S1.

2.5.3 Evaluation
The evaluation was done once the detections were already

joined. When analyzing sounds using an object detector for
unknown sounds, the evaluation metrics are not straight forward.
The sound events selected in the ground truth are subjectively split
into units or joined, according to the best criteria of the human
annotator. Sound events occurring simultaneously in different
frequency bands can be considered two different sounds or the
same sound, and marked accordingly, but all these options should be
considered valid when evaluating the model.

To compute the True Positives, each detection d was compared
with all the manual annotations starting and ending between (dstart_
time - 5) seconds and (dend_time + 5 s). 5 s was chosen as the longest
detections were set to 10 s. This selection was done for
computational efficiency. For the comparison, the iou was
computed between the detection and all the manual annotations
within the respective time window. If any iou was greater than 0.3,
the detection was marked as a true positive. Detections without an
iou value greater than 0.3 were considered false positives. Manual
annotations not exceeding an iou of 0.3 for any prediction were
considered false negatives. From true positives, false positives and
false negatives, we computed recall, precision and F1 metrics.

To gain more information on the performance (i.e., to evaluate if
the errors made by the model were in the time and/or the frequency
dimensions), three additional metrics were computed considering
the overall area detected:

• detection percentage (time/area): the total percentage of time/
area correctly highlighted by the model (detections) divided by
the total time/area of all the manual annotations

• true negative percentage (TNP) (time/area): total percentage
of time/area correctly not highlighted by the model divided by
the total time/area

• false positive percentage (FPP) (time/area): total percentage of
time/area incorrectly highlighted by the model (detections)
divided by the total time/area
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2.6 Extending the training dataset

To evaluate the performance of the foreground events detector
when adding more annotated data to the training iterations, several
approaches were compared:

• Model trained on the training set, without adding any data
(Model Base)

• Random sampling of the additional files to annotate, with
model-assisted annotation

• Active learning annotations, with active selection of the files to
annotate, with model-assisted annotation

For the later two approaches where data were added, a
maximum annotating budget of 10 wav files was set. All the
extra selected files were cut to 5 min duration. Each selected file
was annotated by one annotator and revised by another to reduce
bias on annotations (C.P. and J.A.). The flows of each approach can
be seen on Figure 4. These two approaches (active learning and
random sampling) were run 3 times, each starting with each of the
3 trained Model Base.

Annotating boxes is time-consuming, and using pre-annotated
boxes has been found to increase annotation speed and improve
model performance on other object detection tasks (Fennell et al.,
2022). Hence we used a model-assisted annotation strategy to revise
and correct predictions instead of manually adding all the sound
events from scratch. Even though from a machine learning
perspective it would be more efficient to select individual 20-s
snippets from different files rather than full wav files, this is not

a common practice for bioacousticians. The process to select more
files for each approach is explained in the following sections.

2.6.1 Random sampling
For the random sampling approach, 10 wav files were randomly

selected from all the available files, that were not part of the training
or test sets. These files were converted into images as explained in
Section 2.4. The images were then predicted using the Model Base
and the output was transformed to a Raven-compatible format as
explained in 2.5.2. The output of the Model Base was used as initial
predictions for model-assisted annotation. The 10 randomly
selected files were manually revised and corrected using Raven.
Then the 10 selected files were randomly split into 5 groups of 2 to
simulate the incremental addition of data. This process was repeated
3 times, one per each Model Base.

2.6.2 Active learning
For the active learning approach, the files to be annotated from

the unlabeled pool were determined by the model. This was done by
choosing the 2 files scoring the highest following a criteria decided
with 3 objectives:

• Find new and rare sounds compared to the training set
• Reduce the uncertainty of the model (i.e., providing more
training examples of sounds with high prediction uncertainty)

• Chose a file with a high diversity of sounds

To find rare and new sounds, for each detection in the unlabeled
pool we computed the 90th percentile of spectro-temporal overlap

FIGURE 4
Flows of the three different compared approaches of the Object detector model to add more data. The Model Base is the model obtained on
iteration number 0 on any of the two flow charts (training only on the initial training set).
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with all the detections within the previous training set, as specified in
Eqs (1) and (2). If this value is low, it implies that the overlap with
most of the current training dataset is low, and therefore it is a sound
event in a new frequency band or a different duration, which is a
proxy for the novelty of the sound.

iouij �
min fhigh,i, fhigh ,j( ) −max flow,i, flow,j( )( )min wi, wj( )

Ai
(1)

ioui � ioui,0, ioui,1, . . . , ioui,n[ ]; ioui,90th � ioui �0.9n�( ) (2)
where,

fhigh,i is the upper frequency limit of the detection i,
flow,i is the lower frequency limit of the detection i,
wi is the duration of the detection i,
Ai = (fhigh,i − flow,i)wi is the area of the detection i,iouij is the

intersection over union between detection i and j,
n is the number of detections in the training set.
We defined the uncertainty of each detection as ui = 1 − ci, where

ci is the confidence of the detection i. The number of ‘interesting’
sounds in a wav file was then computed considering an uncertainty
threshold of 0.75 and an overlap threshold of the 90th percentile, as
specified in Eq. (3).

Nwav � ∑m
i�0

ui > 0.75 and ioui < iou90th[ ] (3)

where,
iou90th is the 90th percentile considering all the ioui,90th.
Finally, we computed the diversity of sounds within a file by

computing the entropy of the overlapping matrix of all the
detections of one wav file (Owav in Eq. (4)), as specified in Eqs
(5) and (6).

Owav �
d0,0 d0,1 . . . d0,100

. . . . . . . . . . . .

. . . . . . dk,l . . .
d100,0 . . . . . . d100,100

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

dk,l � ∑m
i�0

flow,i > fnyq

k >fhigh,i andwi > Dmax
l[ ]

m
(5)

Ewav � ∑
k,l

dk,l ln dk,l( ) if dk,l ≠ 0 (6)

where,
Owav is the overlap matrix of one wav file with the training set,
dk,l is the overlap computed at frequency index k and time

index l,
fnyq is half the sampling frequency (12,000 Hz),
Dmax is the maximum duration of all the detections in the

unlabeled pool,
m is the number of detections within the wav file,
Ewav is the entropy of the wav file.
Finally, a third component was added to the score to allow the

selection of a file based on the presence of one unique sound. We
decided to give more weight to adding unseen sounds to the training
set as the acoustic richness is reflected by these rare sounds. A rare
sound with a very low overlap with the training set and a low
confidence in detection, as it should be a shape never seen by
the model.

Therefore, the final score of each wav was computed as shown in
Eq. (7):

swav � Nwav

dwav
max 1 − ioui( )ui∀i ∈ wav( )Ewav (7)

where,
dwav is the duration of the file in seconds,
swav is the score of the wav file.
The overall wav scores were used to select the two files with the

highest score at every loop iteration. After 2 iterations, a 30%
probability was set of replacing one of the selected files with a
randomly selected one. This was done to consider the possibility that
not all factors influencing acoustic diversity within the data were
considered with this approach, and to not bias the model towards
learning on only acoustically divers files.

The selection of files was done in 5 loop iterations; 2 files were
selected each time for annotation, and subsequently removed from
the pool of unlabeled data. At each loop iteration, the annotation was
carried out using the model-assisted annotation strategy, always
using the model obtained at the previous loop iteration for
prediction.

2.7 Clustering and continuous data analysis

To prove the applicability of the method we applied it in one
short deployment from the LifeWatch Broadband Acoustic
Network, the deployment from the Grafton station starting the
27th of October of 2022. This deployment consists of a 10 days of
recordings with a duty cycle of 50% (1 day on, 1 day off) at a fixed
location at the Grafton station. This is intended as a show case to
prove the usability of the proposed methodology, and to illustrate
how this pipeline can be used for soundscape characterization.

The deployment’s audio data were converted to the
YOLOv8 format as explained in Section 2.4, and the final model
was used to extract a collection of possible sounds events
(detections) for subsequent clustering on the 20-s images. The
predictions were joined as explained in Section 2.5.2. A
minimum confidence of 0.1 was chosen for predictions being
considered as sound event detections.

Using the start and end times of the obtained detections, raw
audio snippets were obtained for each detection and converted into a
embedding feature space using the pre-trained BioLingual model
(Robinson et al., 2023), which is a state-of-the-art model for latent
representation for classification of bioacoustics signals across
multiple datasets. This model extracts 512 deep embedding
acoustic features. The maximum length for a snippet was set to
2 s with shorter detections being zero-padded, while longer
detections being cut to 2 s. Each detection was filtered with a
bandpass filter of order 4 to the band of interest of the detected
event (between its minimum and maximum frequency).

The BPNS dataset presents a high imbalance between
broadband, short, impulsive sounds and other longer, more
complex sounds. To avoid obtaining only one big cluster with
these events and another one with the rest, all the detections
shorter than 0.3 s were classified as impulsive sounds and
excluded from the clustering. Such short sounds, even though
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they can be ecologically relevant, are often not classified by their
waveform but according to their frequency limits or peak. Therefore
acoustic features extracted by the BioLingual model were not
expected to provide enough information on further cluster
separation for these types of sounds.

For the rest of the detections, the extracted BioLingual features
were reduced to a 2D space using UMAP (McInnes et al., 2020) with
the number of neighbors set to 10 and aminimum distance set to 0.2.
The UMAP dimension reduction was applied to deal with the high-
dimensional data resulting from extracting the BioLingual features
(512 features), as done previously in Phillips et al. (2018) and Best
et al. (2023). This problem is known as the “curse of dimensionality”,
and density based clustering algorithms such as HDBSCAN are
known to provide low performance in high dimensional spaces.
Then the python implementation of HDBSCAN (McInnes et al.,
2017) was applied to the resulting 2D embedding space, and the
minimum number of samples (events, in this case) per cluster was
set to 5 to allow for rare sounds to form a cluster. The epsilon to
select the clusters was set to 0.05, and the minimum number of
neighbors to 150. All the parameters were selected to get a balance
between noise removal and robustness of clusters.

All the obtained clusters were manually revised for possible
significance by manually checking a minimum of 10 randomly
selected events per cluster. If more than 7 of the revised events
were clearly similar sounds, the cluster was assigned a possible

source category if previous knowledge was available. The possible
categories included pseudo-noise, geophonic, mooring noise,
instrument noise, anthropogenic sounds, and biological. When
none of these categories could be assigned with certainty, clusters
were labeled as unknown. If less than 7 of the revised events per
cluster were clearly similar sounds, the cluster was labeled as unclear.

Once all the obtained detections were assigned to a cluster, the
different clusters’ occurrences were plotted in time to check for diel
patterns, adding the sunset and sunrise timestamps to check for
dusk/dawn patterns. Furthermore, the temporal patterns were
assessed and compared among clusters. This was done by
plotting the average percentage of positive detection minutes
(minutes where there was at least one detection of that cluster)
for each 15 min bin.

3 Results

3.1 Detection results

Several models were trained and their performances were
compared on the independent test sets: 3 Model Base (MB) using
the initial training set, 15 models with incremental training data
using random selection (RS), and 15 models with incremental
training data using active learning (AL) selection. Additionally to

FIGURE 5
Evaluation metrics on (A) freshwater test set and (B) BPNS test set. X-axis represents the number of additional annotated files using the active
learning (AL) and random selection (RS) method for selecting these files. Shaded area represents the minimum andmaximum, and the line represents the
mean value.
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the model evaluation on the separate BPNS test dataset, obtained
models were also evaluated on the freshwater test set to test their
robustness to new data. We also trained a model using all the
available annotated data from the BPNS (initial training set, added
annotations from both the random and active learning selection
approaches, and test set), and evaluated its performance on the
freshwater dataset. We will refer to this model as Model Final (MF)
from now on.

Regarding the strategy of adding files, the active learning approach
presented a faster improvement curve than the random sampling. For
the BPNS test set, recall stayed constant for both approaches and did not
improve. For the freshwater dataset, precision of the two approaches
presented similar values (see Figure 5). The performance of the active
learning approach converged at the end of file addition, due to the fact
that the three repetitions ended up selecting some of the same files.
When comparing the average performances of the models from the last
training iteration (for active learning, AL5, for random sampling RS5)
and the Model Base (MB)on the BPNS test set, AL5 outperformed
RS5 andModel Base on 6metrics, and led to the best F1 score of 56.69%
(see Table 2).

When evaluating models MB, AL5, RS5 and MF on the
freshwater test set, the performance is comparable to the metrics
obtained in the BPNS test set (see Table 2). This proves that the
model is robust across datasets and can be used on data from unseen
locations. For the freshwater test set, AL5 also outperformed
RS5 approach in all the metrics except TNP and FPP (time). It
also outperformedMF in several metrics including precision and F1.

The detected percentage for both area and time in the freshwater
test set is better than in the BPNS set, but worse when looking TNP
and FPP (both time and area). This points out differences between
the events distribution in time and frequency between the two test
sets. Within each test set, TNP and FPP are best when computed for
area, while detection percentage is best when computed for time.

3.2 Clustering and continuous data analysis

The final model detected a total of 197,793 events during the
10 days of the deployment (6 days of data, a total of 705 wav files).

From all the obtained (joined) detections, 90.91% were detections
shorter than 0.3 s. These were not converted to the embedding space
and were classified as impulsive sounds.

For the rest of the detections, the UMAP 2D space applied to
the BioLingual embedded feature space presented a clear cluster
structure (see Figure 6). When applying HDBSCAN to the 2D
space, 8 clusters were obtained (see Figure 6). All the clusters
were manually revised as explained in Section 2.7, and assigned a
label and a possible source. The output of these revision is listed
in the Supplementary Material Supplementary Table S2, where
textual descriptions, mean frequency limits and duration
information (10th and 90th percentile) are provided for
each cluster.

The clusters were then grouped by source type, and the number of
clusters and percentages of each source type were summarized (see
Table 3). From the 9.09% selected for further clustering, the biological/
pseudo-noise were the group with most detections (52.26%), followed
by unknown (non-impulsive) sources (42.06%), and finally
biological (3.11%).

From all the obtained clusters, only one could be identified as
biological with certainty (cluster 2). This cluster was formed by
sound events with a high repetition rate, and a frequency spanning
from around 100 to 4,000 Hz (see Supplementary Table S2 from
Supplementary Material). We refer to it as “Jackhammer”. The
number of pulses was not constant at each detected event,
ranging from 2 to 70 pulses, but with a majority of them around
10–15 pulses. The repetition rate was around 14 pulses/second.
When analyzing 15-minute occurrence of this cluster in time (see
Figure 7), the number of detections seem to be higher at dawn.
However, these sound events were mostly detected only on two
different days, within a specific time frame lasting between 2 and 5 h,
while absent the rest of the days.

Two “metallic” sounds were found throughout the analyzed
recordings, classified in 6 different clusters due to its variability.
From these clusters, two main groups could be extracted, with
clusters 6 and 7 being the representation for each group,
respectively. Group represented by cluster 7 was defined as a
clear jingle-bell-like sound at different frequencies, from 1.5 to
8 kHz, with usually several harmonics and a duration of around

TABLE 2 Average performance of the final models. MB stands for Model Base, AL for Active Learning, RS for Random Sampling and MF for Model Final in
percentage. Area metrics are the ones computed considering both frequency and time. Time metrics are the ones considering only times. det area/time
stands for percentage of detected area/time, TNP stands for True Negative Percentage, and FPP stands for False Positive Percentage. Detection metrics are
computed by counting overlapping boxes, with a iou threshold set to 0.1 to compute precision, recall and F1. Best result per metric and test set is marked in
bold. All results are including predictions with a confidence of 0.1 or more. Theminimum andmaximum values of MB, RS and AL can be seen as the first and
last points of the evolution curves on Figure 5.

Area Time Detections

det. area TNP area FPP area det. Time TNP time FPP time Precision Recall F1

BPNS MB 52.4 99.98 0.02 60.15 89.21 10.79 42.58 51.12 46.38

RS 53.49 99.99 0.01 58.95 93.38 6.62 56.67 47.75 50.33

AL 49.12 99.99 0.01 58.29 95.76 4.24 65.28 50.09 56.69

Freshwater MB 33.45 99.54 0.46 46.86 77.50 22.50 47.07 36.18 40.69

RS 50.39 99.58 0.42 58.27 81.14 18.86 59.53 44.03 49.16

AL 67.77 99.71 0.29 81.87 77.10 22.90 61.57 57.51 59.47

MF 75.23 99.62 0.38 58.98 76.65 23.35 57.96 60.03 58.98
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1 s. Cluster 1 was a single harmonic from this sound, sometimes
selected within the full sound, and sometimes found alone probably
because of propagation loss. The sound represented by cluster 1 and
7 was named “Jingle bell”. On the other hand, group represented by
cluster 6 was labeled sounding as a “squeaking chain” and it was
present at higher frequencies, from 4 to 10 kHz. It often looks like a
down sweep, and it has no impulsive component at the beginning.
When complete (cluster 6), it also presents harmonics and also a
duration of around 1 s. Clusters 0, 4, and 5 were labeled as
harmonics from this sound, also sometimes selected within the
full sound. This group was labeled as “Squeaking chain.”

Cluster 3 was repetition of impulsive sounds, sounding like a
wooden scratch. It presented simultaneously a semi-constant tonal
component at around 2 kHz and several impulsive sounds. These

impulsive sounds were present both broadband or very narrow
band. We named it “Ticks.”

When analyzing the temporal distribution of the clusters, no clear
patterns could be seen. The polar plot in Figure 8 revealed that the
“jackhammer” happened mostly at dawn. “Jingle bell” and “squeaking
chain” seemed to have similar patterns, with a slight increase during the
day. “Ticks” presented a higher density during the night than during the
day, but there were also detections during the day.

4 Discussion

In this study we show a novel methodology to analyze
underwater soundscapes in areas where very few sound sources

FIGURE 6
The UMAP 2D reduction colored by obtained clusters and one spectrogram example for each cluster. For the spectrogram generation, the number
of FFT bins was 512, with an overlapping of 480 samples, Hann window. A black box has been added to show the frequency limits of each detection.
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have been previously described. The method helps to gain insight
into the different (recurrent) sound sources in the soundscape, and
allows for an automatic detection and categorization of sound events
with limited human effort. With this methodology, soundscape
analysis could provide meaningful insight even though the
sources of the different sound types are not known.

The performance achieved by the object detector model on the test
set using any of the three models (base model, random sampling, and
active learning) was comparable to human performance. This is
especially true in data scenarios where annotation is challenging,
such as when high ambient noise levels mask the sound events of
interest (Leroy et al., 2018; NguyenHong Duc et al., 2021). Not knowing
which are the sound events of interest adds an extra challenge and
inconsistency. The concept of acoustical and visual saliency is subjective.
Differentiating foreground events from background noise depends on
the human analyst and the selected settings and goals during annotation,
as there is no clear separation between foreground and background but
rather a continuum of levels of masking. An example of this challenge is
shown in Supplementary Figure S1 of Supplementary Material, where
model predictions and human annotations are diverging substantially,
but the ground truth annotations are very subjective.

The overall obtained F1 values were not high, but TNP and FPP
presented an overall good performance, both when looking at the area
and the time metrics. This is partly due to the sparseness of the sound
events, which makes TNP and FPP suited metrics to evaluate the
performance in long-term data. Furthermore, the performance of the
detection model was proven to be robust across locations and
ecosystems, as it performed better in data from a location that was
not used for any training, even from a complete different ecosystem
such as freshwater. The fact that the obtained models (AL5, RS5 and
MF) performed overall better in the freshwater test set than in the BPNS
test set might be because the freshwater recordings are less noisy than
those of the BPNS, which is known to be an extremely noisy
environment (Parcerisas et al., 2023). However, even though the
models performed better in the freshwater test set than in the BPNS
regarding recall, F1 and detected percentage (area and time), they
performed worse when looking at TNP and FPP. This could be due to
differences regarding quantity, simultaneity and segmentation of events
between the two test sets.

The active learning approach led to better results overall than the
random sampling approach. The files selected for active learning

presented a higher acoustic complexity than the ones selected
randomly. This supports the hypothesis that the metric used to
select wav files points to more complex files. The model overall
performs better (considering all metrics) when complex files are
selected because it can learn how to solve complex situations in a
more similar manner to a human annotator. However, the more
complex the sounds, the higher is the challenge for the model to find
all different sound events (hence the reduction in recall). It is
necessary to note that the files selected by the active learning
algorithm presenting a higher acoustic diversity might not
necessarily represent higher biophonic activity. Furthermore, the
files selected by the algorithm are based on the detections from the
previous model, which means that totally new sounds could be
completely missed (as they are not detected by the model at all). The
active learning selection method thus does not assure the addition of
unseen new and interesting sounds, but it has been proven to be
more effective than the random selection of files. Therefore, if a
model has to be re-trained and the available annotation time is
limited, the active learning approach can deliver better results while
investing less time on annotations. These findings are in line with
other studies applying active learning to detect sounds on long-term
recordings to extract ecological information (Kholghi et al., 2018;
Hilasaca et al., 2021), pointing out that active learning is an
interesting field to explore when human annotations from long-
term recordings are necessary to train machine learning models.

The trained detection model can be applied to data from other
locations, as it has been proven with the freshwater dataset. The
model as it is, provides a performance similar to the human
performance, so it can be used right away on other ecosystems.
Yet, it might miss some sounds of interest, especially if applied on a
different frequency range. A good approach for future fine tuning or
re-training of this model would be to first create a base model trained
with a balanced annotated dataset containing interesting sounds and
a variety of environmental conditions. This way the model can learn
from the beginning a good variety of shapes on the spectrogram.

In this study we prove that the BioLingual (Robinson et al., 2023)
model together with a UMAP 2D (McInnes et al., 2020) reduction
provided enough information to obtain clear and meaningful clusters.
The manual revision of the obtained clusters indeed led to the
conclusion that the clusters were acoustically meaningful and
represented different sound types. Therefore it can be concluded

TABLE 3 Summary of the classification of all the obtained clusters.

Possible source Number of clusters Percentage of events [%]

Unknown 6 3.8

Unknown (impulsive) 1 90.91

Anthropogenic 0 0

Biological 1 0.28

Biological/Pseudo-noise 1 4.75

Mooring noise 0 0

Geophonic 0 0

Instrument noise 0 0

Noise (not clustered) 1 0.23
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that the BioLingual features contained enough information, and that the
reduction to a 2D dimension using UMAP maintained the general
density structure. The combination of UMAP reduction on a feature
space together with HDBSCAN (McInnes et al., 2017) algorithm
applied on the reduced dimension was already successfully applied
by Sainburg et al. (2020), Thomas et al. (2022) and Best et al. (2023) to
separate different biological sound events, so our results align with their
proposal. However, in all these approaches the sound events were
manually selected. The novelty of our proposed approach is that the
whole process is automatized.

Regarding the application of the clustering to data from other
environments, a new clustering algorithm on a new deployment

would provide a different set of clusters, not necessarily comparable
with the clusters obtained from previously analyzed deployments.
To compare soundscapes between different deployments in the
same regions, it is sometimes interesting to keep the existing
clusters in order to track the changes in sound events. This
should be possible if a large and representative enough dataset of
detections is first clustered. Then it is possible to query the
HDBSCAN model on small amounts of new data (McInnes
et al., 2017). The python implementation of HDBSCAN allows
for this, by holding a clustering fixed and then find out where in
the condensed tree the new data would fall. The first representative
dataset to cluster events can be manually annotated or can also be

FIGURE 7
Daily patterns of the number of detections of the selected classes every 15 min. Black lines represent sunset and sunrise.
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the outcome of the detection model ran on a selected set of files
representing all the possible ecological conditions of interest, and
multiple instances of all the expected sound types.

On the presented study we focused on a broadband frequency
range, from 0 to 12 kHz. This decision was made so some cetacean
sounds would also be included without risking not seeing low frequency
sounds in the spectrogram. In the particular case of this study we
focused on the entire frequency band equally. This means that when
manually annotating a broadband frequency range, very narrow-band
sounds can be easily missed, especially the ones in the lower frequency
range. As expected then, the model might also miss these sounds as it
has not been trained on those. Nonetheless, the same method could be
applied to smaller frequency ranges, for example from 0 to 3 kHz if the

interest would be focused on fish vocalizations (Amorim, 2006). The
model should work regardless of the frequency range as long as the time
and frequency resolution are enough to represent the sounds of interest.
In future work it would be interesting to train the model with a
logarithmic frequency scale to emphasize lower frequency sounds
and compare the performance of both models.

In this particular case, due to the abundance of very short
impulsive sounds (< 0.3 s), a first separation among detections
was applied. This should not be necessary in areas where there is not
one sound type dominating and generating this high imbalance, or
where impulsive sounds (clicks) are not present. Because of the lack
of knowledge and information regarding this impulsive sounds, we
just cluster them according to their frequency limits. This is in line

FIGURE 8
Polar plot of the detection distribution per class depending on the hour of the day for the Grafton deployment. Radius represents the percentage of
minutes where at least one detection was present in the corresponding 15 min bin.
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with the thesis by Harland (2017), where clicks (impulsive sounds)
heard in the UK waters were characterized and identified. Future
research would be needed to assess the source of this impulsive
sounds and their ecological significance, but nothing discards them
coming from biological sources Kim et al. (2009); Coquereau et al.
(2016); Cole (2010). If the analyzed location contains click sequences
and the model was not trained to recognize them as sequences but
just as individual pulse units, they would not appear as a sequence
cluster. However, a posterior analysis from all the impulsive sounds
complying with the frequency limits of interest could be analyzed for
temporal patterns and join the clicks into sequences.

When analyzing the obtained clusters in the deployment, the
obtained sound types are similar to the ones mentioned in Calonge
et al. (2024), who did a clustering analysis from labeled manual
annotations. This points out the robustness of the model, and
highlights the reduction of manual input to reach similar conclusions.
Only one sound was found fitting within the known description of fish
sounds, as it is within the known vocalization frequency range of fish, and
it is a repetitive set of impulse sounds (Amorim, 2006; Carriço et al.,
2019). There have been similar fish sounds reported in literature from the
family Sciaenidae (Amorim et al., 2023), and an invasive species of this
family has been documented in the North Sea (Morais et al., 2017).
However, these assumptions have to be taken with the most caution as
ground truth has not been confirmed. The obtained cluster “Ticks” could
maybe come either from bio-abrasion of the hydrophone (Ryan et al.,
2021), invertebrates or fish clicking sounds (Harland, 2017). Finally two
different metallic sounds were found. These could originate from the
mooring itself, as it is a steel mounting system (even though it has no
moving parts), but could also be related to invertebrate sounds, such as
the ones mentioned in Coquereau et al. (2016). The fact that these two
sounds appeared inmultiple clusters is because the sound did not present
all the harmonics all the time, probably due to propagation loss (Forrest,
1994) or sound production inconsistency. With the presented approach,
bounding boxes from sound events can overlap as long as iou is less than
0.5, otherwise they are joined and considered the same detection.
Therefore, harmonic sounds can potentially be selected in multiple
boxes at the same time. This is advantageous because when these
harmonics appear by themselves they are clustered together with the
boxes that overlap with the full sound, so they can be traced back to their
origin. However it can be disadvantageous because it can complicate the
counting of sound occurrences.

The shown case study provides an example of the analysis that can
be performed with the outcome of the presented model pipeline. This
analysis can provide insight on the spatio-temporal patterns of certain
sound types, which in the long term can be used to discover their source.
With this methodology it is possible to already obtain ecological
information at the same time that researchers discover the sources
of sounds and gain insight on the soundscape. However, once a sound
source is identified, considered of interest, and adequately characterized,
other supervised techniques might be more efficient and provide a
greater performance for sound event detection and posterior
soundscape analysis and description (Stowell, 2022; Barroso et al.,
2023). For this reason it is necessary to create databases of sounds
where well-described unidentified sounds can also be added, so in the
future they can be used as references (Parsons et al., 2022).

In conclusion, the proposed method is a useful tool to discover
unknown sounds in a new environment and can be used as afirst analysis
tool. Implementing this methodology in already available annotation or

exploration software such as PAMGuard (Gillespie et al., 2009),
Whombat (Balvanera et al., 2023) or RavenPro (K. Lisa Yang Center
for Conservation Bioacoustics at the Cornell Lab of Ornithology, 2023)
can help addressing some of the challenges encountered when studying
underwater soundscapes with little known sound sources. The obtained
model is robust to different environments and can be applied directly to
newdata, even though for higher performance it would be recommended
to re-train on a subset of this new data. The principal advantage of this
model is that it is not based on previous assumptions of which sounds
could be of interest, as all the possible events are detected and classified.
Furthermore, it provides a framework for discovering the sound types
while already gaining ecological insight of the soundscape. The proposed
methodology helps in filling the gap in knowledge on sound types, which
is currently major issue for using PAM for ecological assessment of the
underwater environment (Rountree et al., 2019; Mooney et al., 2020;
Parsons et al., 2022).
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