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• Intertidal macrophytes and detached,
floating macroalgae were mapped using
Sentinel-2 imagery in SW Greenland

• Icebergs and exposed bare bottoms resulted
in false positives in the EVI and the FAI

• The spectra of exposed bare bottoms, ice-
bergs, and macrophytes resulted in mis-
classifications by spectral mixture analysis

• The normalized difference vegetation index
(NDVI) produced the most reliable results

• The spatial distribution of intertidal macro-
phytes appears to be related to icebergs and
turbid plumes
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Changes in the distribution of coastalmacrophytes in Greenland, and elsewhere in the Arctic are difficult to quantify as
the region remains challenging to access and monitor. Satellite imagery, in particular Sentinel-2 (S2), may enable
large-scale monitoring of coastal areas in Greenland but its use is impacted by the optically complex environments
and the scarcity of supporting data in the region. Additionally, the canopies of the dominant macrophyte species in
Greenland do not extend to the sea surface, limiting the use of indices that exploit the reflection of near-infrared radi-
ation by vegetation due to its absorption by seawater. Three hypotheses are tested: I) 10-m S2 imagery and commonly
used detection methods can identify intertidal macrophytes that are exposed at low tide in an optically complex fjord
system in Greenland impacted by marine and land terminating glaciers; II) detached and floating macrophytes accu-
mulate in patches that are sufficiently large to be detected by 10-m S2 images; III) iceberg scour and/or turbid melt-
water runoff shape the spatial distribution of intertidal macroalgae in fjord systems with marine-terminating
glaciers. TheNDVI produced the best results in optically complex fjord systems in Greenland. 12 km2 of exposed intertidal
macrophytes were identified in the study area at low tide. Floating mats of macrophytes ranged in area from 400 m2 to
326,800 m2 and were most common at the mouth of the fjord. Icebergs and turbidity appear to play a role in structuring
the distribution of intertidalmacrophytes and the retreat ofmarine terminating glaciers could allowmacrophytes cover to
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expand. The challenges and solutions presented here apply to most fjords in Greenland and, therefore, the methodology
may be extended to produce a Greenland-wide estimate of intertidal macrophytes.
1. Introduction

Macroalgae and seagrass, hereafter collectively referred to as ‘macro-
phytes’, are primary producers that provide numerous ecosystem functions
and services in coastal areas (Duffy et al., 2019; Rossiter et al., 2019). Mac-
rophytes stimulate biodiversity and secondary production, affect nutrient
cycling (Smale et al., 2013) and contribute to marine carbon sequestration
(Blue Carbon; Bayley et al., 2021; Krause-Jensen and Duarte, 2016).
Seagrass meadows can sequester carbon locally (Johannessen, 2022) and
detached macroalgae can be transported to deep, offshore sinks by ocean
currents (Krause-Jensen and Duarte, 2016). Human activities and climate
change threaten macrophytes and the ecosystem services that they provide
(Duffy et al., 2019), motivating the need for large scale mapping and mon-
itoring tools to quantify current extent and changes.

The impacts of climate change on macrophytes are acutely felt in the
Arctic (Filbee-Dexter et al., 2019; Krause-Jensen et al., 2020; Marbà et al.,
2018), where the current warming trend exceeds the global average by a
factor of four (Rantanen et al., 2022). Arctic warming may be driving the
expansion of macrophytes (Krause-Jensen et al., 2020; Marbà et al., 2017,
2018) but a lack of baseline data, as well as the methods to produce such
a large-scale baseline, makes quantifying any changes difficult. Arctic mac-
rophytes may also make significant contributions to Blue Carbon (Krause-
Jensen and Duarte, 2014), further necessitating the development of large-
scale monitoring tools.

Greenland is of particular interest, as it is the world's largest island with
an extensive, rocky coastline (Loring and Asmund, 1996) that provides suit-
able substrate for macroalgae (Krause-Jensen and Duarte, 2014). Eelgrass
(Zostera marina) is also found in soft-bottom substrates in the southwest
part of the country (Olesen et al., 2015). Coastal macrophytes in Greenland
may contribute to carbon sinks, either in fjords, which are characterized by
high sedimentation rates (Cottier et al., 2010), or through advection by
ocean currents to the deep ocean. Small-scale, in situ observations of macro-
phytes have been carried out in Greenland (Høgslund et al., 2014; Krause-
Jensen et al., 2012; Krause-Jensen et al., 2019; Olesen et al., 2015;
Schoenrock et al., 2018; Sejr et al., 2021; Thyrring et al., 2021) but the
remote locations, limited infrastructure, and harsh weather conditions
make field surveys costly, time-consuming, and difficult to scale up to
monitor large areas. Large-scale mapping and monitoring capabilities,
therefore, are essential, especially when planningwhere and how to protect
coastal ecosystems in Greenland against extraction of resources, as such
pressures are increasing as these areas become accessible (Tejsner, 2017).

Monitoring tools that can detect both shallow, coastal macrophyte
assemblages and detached, buoyant canopies are urgently needed.
Greenland's bathymetry and shallow benthic habitats, however, remain
poorly mapped. In addition to the general lack of data on the distribution
of coastal macrophytes, pro-glacialmarine ecosystems are changing rapidly
in response to accelerated mass loss from the Greenland Ice Sheet (Hopwood
et al., 2020; Mouginot et al., 2019; Straneo et al., 2022). The elimination of
iceberg scour, which will occur when marine-terminating glaciers retreat
onto land, may open up additional macrophyte habitats in Greenland's exten-
sive fjord systems. A versatilemonitoring system that can quantify concurrent
variability in baseline macrophyte distributions as well as changes in iceberg
concentrations and light availability will greatly aid in research and manage-
ment efforts in a rapidly changing Arctic.

Satellite remote sensing has proven useful in large-scale monitoring of
coastal macrophytes (Duffy et al., 2019; Schroeder et al., 2019), icebergs
(Sulak et al., 2017; Scheick et al., 2019), and turbidity (Klein et al., 2021;
Schild et al., 2017). The Landsat archive, which extends to 1982, allows
long-term trends to be quantified (Bell et al., 2020; Finger et al., 2021;
Hamilton et al., 2020; Lebrasse et al., 2022; Lõugas et al., 2020) but the
30 m spatial resolution limits detection to larger macrophyte patches and
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may not resolve those growing near the shoreline (Nijland et al., 2019).
The revisit time of 16 days also limits the number of available images.

The launch of the Sentinel 2A and 2B satellites in 2015 and 2017,
respectively, (Main-Knorn et al., 2017) provides improved spatial and tem-
poral resolution, enhancing monitoring capabilities for coastal macro-
phytes. The Multi-Spectral Instrument (MSI) onboard the Sentinel-2 (S2)
satellites provides data in 13 spectral bands from the visible to the short-
wave infrared portions of the spectrum at spatial resolutions of 10–60 m
(Main-Knorn et al., 2017). The S2-MSI satellites have a revisit time of
5 days at the equator and 2–3 days above 45° (Drusch et al., 2012). The
10 m spatial resolution in the blue, green, red, and near-infrared bands
permits the detection of smaller macrophyte beds when compared to
Landsat (Zoffoli et al., 2020). The planned launches of two additional, iden-
tical satellites will maintain S2-MSI data coverage until 2030 (Pahlevan
et al., 2017), enablingmonitoring of coastal macrophytes at seasonal, inter-
annual, and decadal time scales (Wilson et al., 2020).

The recent availability of 10m S2-MSI imagery, concurrent developments
in open source atmospheric correction and analysis software, and the prolifer-
ation of small unoccupied aerial systems (UAS; Johnston, 2019; Joyce et al.,
2019; Rossiter et al., 2019) have led to a similar and largely reproducible
workflow (Pottier et al., 2021). In general, this workflow often uses
ACOLITE (Vanhellemont, 2019) to perform atmospheric correction of S2-
MSI imagery, which is then analyzed for coastal macrophytes using open
source software like Quantum GIS (QGIS) and Sentinel Application Platform
(SNAP). The very-high-resolution imagery acquired byUAShas proven useful
in training data for classifiers and for cross-validation of macrophytes that are
detected in the coarser resolution satellite imagery (Carpenter et al., 2022;
Huovinen et al., 2020; Sotille et al., 2020; St-Pierre and Gagnon, 2020). The
use of UAShas also benefited from the development of standardized protocols
for coastal image processing (Over et al., 2021).

The detection of macrophytes in satellite imagery depends largely on the
depth and position of the canopy in the water column. Vegetation reflects
strongly in theNIRwavelengthswhile seawater has low reflectance in the vis-
ible wavelengths and absorbs NIR radiation (Jensen, 1980; Schroeder et al.,
2019). The difference in NIR reflectance/absorptance can allow exposed/
emerged macrophytes to be distinguished from the surrounding seawater
(Bell et al., 2020; Cavanaugh et al., 2021; Finger et al., 2021; Hamilton
et al., 2020; Huovinen et al., 2020; Jensen, 1980; Schroeder et al., 2019).
Different detectionmethods, therefore are employed forfloating canopies, ex-
posed intertidalmacrophytes, and submerged, subtidal vegetation. Variations
in depth, optically active substances in thewater, and location-specific factors
like solar zenith angle, ice, and tides, can also influence the type macrophyte
detection method used.

Subtidal macrophyte detection is, perhaps, most challenging, as it
requires additional data to identify optically shallow waters and to correct
for light attenuation by optically active substances in the overlying water
column (Kuhwald et al., 2021; Kutser et al., 2020). Bathymetry data,
therefore, play an important role in subtidal benthic classifications of
remote sensing data. Bathymetry data are used to mask out optically deep
water and to verify the satellite retrievals of bathymetry. In addition to
bathymetry data, in situ observations of optical water properties can aid in
the water column corrections required to estimate bottom reflectance
(Kuhwald et al., 2021). Subtidal benthic classifications also require accu-
rate atmospheric correction as the reflected radiation signal is weaker due
to attenuation by the water column (Kutser et al., 2020). In situ reflectance
measurements, therefore, are helpful in verifying the results of the atmo-
spheric correction algorithm used.

The use of S2-MSI imagery to detect coastal macrophytes has
extended from clear tropical waters to increasingly optically complex
waters in temperate and high latitudes (Huovinen et al., 2020; Kotta
et al., 2018; Kuhwald et al., 2021; Légaré et al., 2022; Mora-Soto et al.,
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2020; Wilson et al., 2020). Greenland-specific satellite mapping and moni-
toring tools for coastal macrophytes, however, have yet to be developed.
The lack of such tools is likely due to the lack of supporting data and the
complexity introduced by large spatiotemporal gradients in optical proper-
ties. Optical gradients are driven by the complex and dynamic fluxes at the
interfaces between terrestrial, freshwater, and marine systems and also by
exchange processes between fjords and shelf seas. Fjord systems that con-
tain marine-terminating glaciers are especially challenging due to the co-
occurrence of icebergs and sediment-laden freshwater runoff, which are
spectrally similar (Hodgkins et al., 2016).

In addition to the large and dynamic optical gradients in Greenland's
glaciated fjord systems, the detection of macrophytes in S2-MSI imagery
is complicated by limited bathymetry data and macrophyte morphology.
The best available Greenland-wide bathymetry data have a coarse resolu-
tion of 150 m (Bed Machine, Morlighem et al., 2017) that do not resolve,
for example, skerry islands and jagged coastlines, which are prime
macroalgae habitats. As a result, the available bathymetry data are not suf-
ficient for estimating bottom reflectance or for masking deep water. The
eelgrass meadows and the macroalgal beds do not produce canopies that
float on the sea surface. The lack of floating canopies therefore, further
complicates macrophyte detection in S2-MSI imagery in Greenland's fjord
systems. Other complicating factors include large variations in solar zenith
angle, topographic shading, seasonal sea ice cover, large semi-diurnal tidal
range, clouds, and fog.

This paper addresses the challenges posed by the unique combination of
data limitations, macrophyte morphology and optical complexity in
Greenland's fjord systems by applying established vegetation detection
methods to S2-MSI imagery of Nuup Kangerlua (NK) and Ameralik
(Fig. 1A). These fjords were selected because they are some of the largest
and best-studied in Greenland. The lack of high-resolution bathymetry
data was circumvented by detecting intertidal macrophytes that were ex-
posed at low tide. The distributions of macrophytes that were identified
in S2-MSI imagery were cross-validated using very high resolution aerial
imagery that was acquired byUAS (Fig. 1B). Historical in situ data produced
by past projects, as well as limited data from ongoingmonitoring programs,
was compiled to validate classifications of macrophytes and S2-derived
turbidity.

Intertidal macrophyte detection in NK and Ameralik is attempted using
methods that were previously demonstrated in temperate and/or high-
latitude coasts (Nijland et al., 2019) and glacier-impacted fjords
(Huovinen et al., 2020). These methods include the normalized difference
vegetation index (NDVI; Rouse et al., 1974), the enhanced vegetation
index (EVI; Huete and Justice, 1999), the floating algae index (Hu, 2009),
and spectral mixture analysis. The NDVI is commonly used to identify veg-
etation in remote sensing data. The NDVI uses the normalized difference in
reflectance between the NIR and red bands and is defined as.

NDVI ¼ RNIR−Rredð Þ= RNIR þ Rredð Þ ð1Þ

where R denotes the reflectance and the subscripts indicate the near-
infrared (NIR) and red wavelengths.

Thus, a positively sloping reflectance curve between the red and the NIR
will result in a positive NDVI, which can be used to identify vegated pixels.
The NDVI has been used to detect floating kelp canopies (Huovinen et al.,
2020; Mora-Soto et al., 2020; Nijland et al., 2019; Schroeder et al., 2019)
and intertidal macrophytes (Carpenter et al., 2022; Légaré et al., 2022;
O’Neill and Costa, 2013; Taddia et al., 2020; Wilson et al., 2020; Zoffoli
et al., 2020).

The EVI modifies the NDVI by including gain coefficients and reflec-
tance in the blue band and is defined as.

EVI ¼ 2:5� RNIR−Rredð Þ= RNIR þ 6�Rred−7:5�Rblue þ 1ð Þ ð2Þ

The EVI has been applied to the monitoring of green tide blooms (Xiao
et al., 2019) and floating kelp canopies (Huovinen et al., 2020).
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The FAI identifies floating algae using the difference between the
red edge reflectance and a linear baseline between the red and the short-
wave infrared (SWIR) bands and is defined as.

FAI ¼ RrcNIR−R
0
RCNIR

whereR
0
RCNIR ¼ RRC red þ RRCSWIR−RRCredð Þ � λNIR−λredð Þ= λSWIR−λredð Þ

ð3Þ

and λ corresponds to the wavelength.
The FAI has been used to identify floating mats of Sargassum (Wang

et al., 2019) and to detect floating kelp canopies (Huovinen et al., 2020;
Mora-Soto et al., 2020).

Spectralmixture analysis (SMA) uses spectral end-members to represent
multiple sources of reflectance (e.g., kelp, sand, water) in a linear mixture
model that estimates the relative abundance of end-members in each
pixel (Keshava, 2003). SMA may be useful when smaller macrophyte
beds cannot be resolved by the spatial resolution of the satellite sensor,
resulting in a mixture of reflectances from multiple sources in a single
pixel (Schroeder et al., 2019). SMA, therefore, provides sub-pixel esti-
mates of end-member abundances, as long as those end-members are
spectrally distinct (Keshava, 2003). The efficacy of SMA drops when
two or more end-members exhibit similar spectral properties. SMA has
been used to detect floating kelp canopies (Bell et al., 2015;
Cavanaugh et al., 2011; Huovinen et al., 2020; Friedlander et al.,
2018; Schroeder et al., 2019).

The ability of the NDVI, EVI, FAI, and SMA to identify intertidal macro-
phytes that are exposed at low tide in optically complex fjords in Greenland
remains unclear. In particular, the FAI was designed to distinguish floating
algae from open water and implicit in the definition is the assumption that
reflectance in the red, NIR, and SWIR results from algae (or other floating
vegetation). In contrast to an open ocean setting, other sources of red,
NIR and SWIR reflectancemay be found in optically complex fjord systems,
especially those with icebergs and when the intertidal zone is included. Op-
tically complex environments like iceberg-impacted fjords in Greenland,
therefore, may contain vegetated pixels with different sources of back-
ground reflectances. In this case, exposed, intertidal macrophytes must be
distinguished from sand, rock, and/or mud, open water, which may be
clear, highly turbid, or somewhere in between, and icebergs, bergy bits,
and brash ice. Large iceberg sails are easily detected but smaller icebergs,
shallow, underwater ice rams, and adjacency effects (mixed ice and water
pixels) can be difficult to distinguish from other sources of reflectance
and, therefore, misclassified. The ability of the vegetation indices and
SMA to identify intertidal macrophytes in optically complex fjords in
Greenland will depend on the spectral characteristics of these different
sources of background reflectance.

This paper tests three hypotheses: I) 10-m S2-MSI imagery and com-
monly used detection methods can identify intertidal macrophytes that
are exposed at low tide in an optically complex fjord system in Greenland
impacted by marine and land terminating glaciers; II) floatingmacrophytes
accumulate in patches that are sufficiently large to be detected by 10-m S2-
MSI images; III) iceberg scour and turbidmeltwater runoff shape the spatial
distribution of intertidal macrophytes. These hypotheses are especially
timely given the rapid retreat of marine-terminating glaciers in Greenland
(Carr et al., 2017;Wood et al., 2018) and the potential contribution of mac-
rophytes in Greenland to Blue Carbon stocks. Iceberg calving will cease
when marine terminating glaciers retreat onto land, eliminating iceberg
scour, which may increase the habitat available for intertidal macrophytes
in Greenland. The results of this paper can also inform future in situ studies
to ensure optimal usage of limited field resources.

2. Materials and methods

2.1. Study area

The boundaries of the study area extend from 63.90°N, 51.999°W in the
southwest to 64.01°N, 51.302°W in the northeast encompassing the marine



Fig. 1. (A) The capital city of Nuuk is indicated by the yellow cross in the main map and the inset map of Greenland. Locations of eelgrass meadows were retrieved from Olesen
et al. (2015) and are indicated by open green circles. The small green dots represent the locations of in situ CTD observations. Two UAS validation site locations are marked with
yellow triangles and numbers. Marine and land-terminating glaciers are indicated by dark and light purple circles, respectively. (B) The study area includes Nuup Kangerlua,
Kobbefjord, and Ameralik. The topography of the study area from BedMachine v5. (C) The two UAS orthomosaics used to validate the S2-MSI results. The numbers
correspond to the locations in panel (A).
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areas of Nuup Kangerlua (NK; also referred to as Godthåbsfjord),
Kobbefjord, and Ameralik in southwest Greenland (Fig. 1). NK is approxi-
mately 190 km long, with a coastal perimeter of 984 km and a surface
area of 2188 km2. Situated to the south of NK is Ameralik, which is approx-
imately 75 km long (Stuart-Lee et al., 2021) with a marine area of 388 km2

and a coastal perimeter of 283 km. The mouths of the fjords join at the
southwest, near Greenland's capital city of Nuuk, where they connect to
the continental shelf (Fig. 1B). Their combined marine area is 2770 km2

with a coastline of 1300 km.
The coastal boundaries of the NK and Ameralik systems consist largely

of bedrock (Gustavson et al., 2020) with some sand/gravel beaches and
mud banks (Fenger-Nielsen et al., 2020). With the exception of the low-
4

lying terrain that forms the northwest boundary of NK, the coastal margins
consist primarily of steeply-sloped mountains, though shallow and gently
sloping bathymetry can be found in some small bays (Fig. 1B). Themaximum
depths of the fjord systems exceeds 700 m (Fig. 1B). The fjords experience
maximum tidal ranges of 4–5 m during spring tides (Richter et al., 2011).

Three marine-terminating glaciers and three land-terminating glaciers
are found within the boundaries of NK (Fig. 1A; Mortensen et al., 2011).
Kangersuneq, the inner part of NK, is characterized by high iceberg concen-
trations and the middle and outer parts of NK are impacted by a turbid
plume that originates from the glacier-fed Tasersuaq (Arendt et al., 2011).
Sea ice covers the inner part of NK during the winter. Ameralik is impacted
by turbid meltwater runoff from a land terminating glacier near the head of



Fig. 2. Average endmember spectra for clear, turbid, bare, iceberg, and intertidal
macrophytes are plotted with solid lines. The dashed lines indicate reflectance
from iceberg keels and floating macroalgae, which are spectrally similar.
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the fjord (Hudson et al., 2014; Stuart-Lee et al., 2021). Ameralik, therefore,
is free of icebergs and sea ice cover is limited to the river delta in winter
(Stuart-Lee et al., 2021).

In western Greenland, dominant intertidal macroalgae communities in-
clude Ascophyllum nodosum, and Fucus spp, which are exposed at low tide
(Ørberg et al., 2018; Thyrring et al., 2021). Subtidal kelps are dominated
by species such as Saccharina latissima andAgarum clathratum in deeper wa-
ters (Krause-Jensen et al., 2012). Dense eelgrass meadows of Z. marina also
occur in NK, Kobbefjord, and Ameralik and their locations, as reported in
Olesen et al. (2015), are shown in Fig. 1. The macrophytes found in the
study area do not produce canopies that float on the sea surface.

2.2. S2-MSI images

To avoid sea ice, S2-MSI Level-1C (L1C) images that were acquired be-
tween the months of May and September from 2016 to 2021 were
downloaded from the Copernicus Sentinel Hub. The study area was
contained in S2-MSI tiles T22WDS and T22WES. In total, 76 cloud-free
scenes (as determined by visual inspection of the browse images) of the
study area were downloaded.

Theworkflow to estimate the spatial extents of icebergs, turbidity, inter-
tidal macrophytes is summarized in Fig. A.1. ACOLITEmerged the two tiles
covering NK and Ameralik and the top-of-atmosphere (TOA) reflectance in
the 20 m and 60 m bands was resampled to 10 m.

A landmaskwas constructed using a S2-MSI image thatwas acquired on
30 July 2017 at high tide (Carlson, 2022). Land was masked by applying a
threshold of 0.1 Wm−2 to the top-of-atmosphere reflectance in the
1614 nm SWIR band. Mountain lakes and shaded coastal regions were
masked using the DEM. The coastal margin was visually inspected for out-
liers and edited when necessary. The land mask was applied to restrict the
assessments of cloud cover and terrain shadows to the marine domain.

Cloud masks were computed for each image by applying a threshold of
0.0015 Wm−2 to TOA reflectance at 1375 nm. ACOLITE was then used to
compute Rayleigh-corrected reflectances (RRC) in the 26 images (see
Table A.1) with >2 % cloud cover over the marine area. Pixels with RRC <
0 were masked, though this accounted for <0.003 % of the marine area.
These images were used to estimate the spatial extents of icebergs and tur-
bidity (see section 2.2.1).

To identify exposed, intertidal macrophytes the 26 S2-MSI images with
<2 % cloud cover were further filtered according to tide and terrain
shadows. Images obtained when the tide height exceeded ~1 m and
where terrain shadows impacted >2 % of the coastal area were excluded.
Four S2-MSI images remained after applying the tide and terrain shadow
criteria. Two images that were acquired at or near high tide were included
to quantify the effects of water level on intertidal macrophyte detection.

2.2.1. Icebergs and turbidity
High iceberg concentrations and high turbiditywere identified in the 26

cloud-free images to test the hypothesis that iceberg scour and/or high tur-
bidity shape the spatial distribution of macrophytes. Icebergswere detected
by applying a threshold to TOA reflectance in the green band (559 nm or
560 nm for S2A and S2B, respectively). The threshold varied from 0.21
Wm−2 to 0.24 Wm−2 and was adjusted in each image to find the optimal
value that detected the most ice while avoiding the turbid river plumes.
The threshold was used to create a binary iceberg mask where ice and
non-ice pixels were assigned values of 1 and 0, respectively. The ice mé-
lange extent was computed from the iceberg mask by quantifying the num-
ber ice pixels in a 500 m less × 500 m macropixel. High ice concentration
was defined as macropixels containing >25 % ice (>625 pixels). The mé-
lange extent was defined as the contour that enclosed 500 m × 500 m
macropixels whose average exceeded 0.25.

Turbidity was computed using the Dogliotti product embedded in
ACOLITE (Dogliotti et al., 2015). Bare areas in optically shallow water
and small bits of ice that were not detected by the iceberg threshold ap-
peared as pixels with very high (e.g., >1900 FTU) turbidity. These very
high values were masked in the turbidity maps. Disentangling the
5

reflectance from turbid waters and small, sub-pixel-sized, pieces of ice can
be challenging (Hodgkins et al., 2016) and one can easily be mistaken for
the other. Erroneous turbidity values caused by small bits of ice that were
not detected by the brightness threshold were removed by dilating the ice-
berg mask by 5 pixels. Small bits of ice that remained appeared as individ-
ual pixels or small groups of pixels, similar to specular image noise. A 2D
median filter with a 5 × 5 pixel window was applied to smooth out this
noise. A threshold of 10 FNUwas used to identify pixels with high turbidity
and a turbidity binary image was then constructed where high turbidity
pixels were assigned a value of 1 and low turbidity pixels were assigned a
value of 0. The same 500 m × 500 m macropixel grid was applied to the
binary image and contours were extracted that enclosed regions were the
mean exceeded 0.25. The 67 in situ turbidity measurements (see section
2.3.1) that were collected within one day of a cloud-free S2-MSI image
were used to validate satellite-derived turbidity, resulting in 21 matchups.

2.2.2. Spectral endmembers
Average endmember spectra forfive classeswere extracted from S2-MSI

images using SNAP. The five classes included icebergs (n = 1023), bare
(un-vegetated) bottom (n = 1023), clear water (n = 1023), turbid water
(n = 1023), and exposed intertidal macroalgae (n = 256; Fig. 2).
Endmember spectra selection areas differed from the validation sites that
were surveyed by the UAS. Icebergs, turbid water, and clear water were vi-
sually identified in the S2-MSI images. The exposed, intertidal macroalgae
endmember spectrum was obtained from a coastal area north of Nuuk
(Fig. A.2), which is known to the authors. Similarly, the bare endmember
spectrum was obtained from the mouth of the fjord, which is an area that
is also known to the authors (Fig. A.3).

2.2.3. Vegetation indices
Macrophytes were detected by applying thresholds to the NDVI, EVI,

and FAI. The optimal thresholds were identified by comparing the S2 clas-
sification accuracy to the UAS imagery. The locations of eelgrass beds were
obtained from Olesen et al. (2015) and no effort was made to distinguish
macroalgae from eelgrass as they appear spectrally similar in themultispec-
tral S2-MSI imagery (Wilson et al., 2020).

Based on an assessment of the NDVI, EVI, FAI, and SMA in two optically
complex environments, only the NDVI was used to identify macrophytes in
the entire study area (see section 3.1). The NDVI threshold that produced
the highest accuracy in the UAS validation sites differed between sites
one (0.25) and two (0.4) and the more conservative value (0.4) was used
to identify macrophytes in the entire study area.
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The NDVI threshold was used to construct binary images whereby mac-
rophyte and non-macrophyte pixelswere assigned values of 1 and 0, respec-
tively. Connected pixels were then identified in the binary images. Single
pixels that were not connected to others were removed, as observations of
macrophytes in the study area suggest that they occur in long coastal
bands, for coastal, intertidal macrophytes, or in elongated streaks, for float-
ing mats, that would span multiple 10 m S2-MSI pixels (Ager et al., n.d.,
Submitted). Macrophytes were separated into intertidal and floating cate-
gories based on the distance of a macrophyte pixel to the nearest land
pixel. Macrophyte pixels that were 100 m or more from the nearest land
pixel were classified as floating.

2.3. Supporting data

This study relies on publicly available data andmeasurements thatwere
previously acquired either by the authors or through public sources. All ras-
ter data, including S2-MSI and UAS orthomosaics, were projected to UTM
Zone 22 N (WGS 84).

2.3.1. In situ profiles of turbidity and photosynthetically active radiation
In situ measurements of turbidity and photosynthetically active radia-

tion (PAR) that were obtained in the months of May to September from
2016 to 2020 were aggregated into a single database. Sixty-seven profiles
were obtained using a Seabird SBE-19-plus CTD that was equipped with a
Li-Cor Spherical PAR sensor and SeaPoint turbidity sensor. The majority
of these profiles (62) were collected during measurement campaigns that
were conducted from the Greenland Institute of Natural Resources. Five
profiles were obtained from the Greenland Ecosystem Monitoring (GEM)
program. The profile locations are shown in Fig. 1A. The vertical diffuse at-
tenuation coefficient of PAR (KdPAR) was estimated from the slope of the
natural logarithm of PAR versus depth. The in situ profiles of turbidity and
KdPAR are used to validate S2-derived turbidity and to visualize spatial pat-
terns of light availability, respectively.

2.3.2. UAS aerial imagery
Aerial images from two locations in NK were surveyed in July 2017

(Fig. 1A,C) using a DJI Phantom3UAS during theMission Arctic citizen sci-
ence expedition (Carlson et al., 2021). UAS imagery from a third site was
also available through the Greenland Ecosystem Monitoring Program -
Nuuk Basis monitoring of marine flora (http://g-e-m.dk/) but suitable S2-
MSI images could not be found due to clouds and tides.

The Phantom 3 captured 12 megapixel still digital images using a
gimbal-stabilized camera. The Phantom 3 missions (sites one and two)
were flown manually in an approximate grid pattern to ensure sufficient
overlap between images for processing with Structure from Motion (SfM)
photogrammetry software. Imageswere processed using Agisoft Metashape
Professional (v7.1) following the United States Geological Service (USGS)
protocols for coastal imagery (Over et al., 2021). Section B in the appendix
provides UAS image processing details.

The UAS-derived orthomosaics were used to cross-validate the macro-
phytes that were detected in the S2 images by finding the closest matchup
date with favorable cloud and tide conditions. The UAS-derived DEM was
used to create a land mask for the orthomosaic. Both UAS orthomosaics
were resampled to 0.1 m resolution to provide a common resolution.
Macroalgae were identified in UAS orthomosaics by applying thresholds
to the RGB images in QGIS. The S2-MSI pixels were used to construct a
10 m grid in each UAS orthomosaic. Grid cells were classified as land,
water, or macrophytes. 10 m grid cells that contained >75 % macrophyte
pixels were classified as macrophytes. The no-data mask for each UAS or-
thomosaic was applied to the corresponding S2-MSI NDVI image. The S2-
MSI NDVI was also classified as either land, water, or macrophytes
(Fig. 3). The UAS validation was used to find threshold values for the S2-
derived vegetation indices that resulted in the highest producer, user, and
overall accuracy for each class. Note that UAS validation sites lacked turbid
water and icebergs.
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2.3.3. Tide and terrain data
Modeled tide data for Nuukwere obtained from the DanishMeteorolog-

ical Institute (http://ocean.dmi.dk/tides/tides_grl.uk.php). The 90 m
TanDEM-X digital elevation model produced by the German Aerospace
Center (Wessel et al., 2018) was used in the hillshade function in Matlab
(Hebeler, 2022) to compute a terrain shadow mask for each S2-MSI image.

3. Results and discussion

3.1. Hypothesis I: SMA and NDVI, EVI, and FAI can identify exposed, intertidal
macrophytes in optically complex fjords in Greenland

Figs. 4 and 5 demonstrate the performance of the vegetation indices and
the SMA in areas with high iceberg concentrations and exposed mudbanks,
respectively. The examples in Figs. 4 and 5 are derived from the S2-MSI
image acquired on 10 July 2017 and they are representative of all these
sources of optical complexity in all images that were analyzed. In Fig. 4A,
the RGB composite image shows large icebergs and many smaller bits of
ice. The EVI and FAI mis-classified icebergs as macrophytes (Fig. 4B-C).
The NDVI did not detect macrophytes in the inner fjord (Fig. 4D). The
SMA shows elevated macrophyte abundances (>0.3) around the margins
of icebergs (Fig. 4E). The SMA iceberg abundance identified the sails of
large icebergs (Fig. 4F) but comparison with the RGB composite (Fig. 4A)
shows that it failed to identify smaller bits of ice. Comparing the turbidity
abundance (Fig. 4G) to the RGB composite (Fig. 4A) shows that the smaller
bits of ice were mis-classified as turbidity. Note the absence of macrophytes
on the coastal margins (Fig. 4B-G).

Assuming that the SMA, EVI, and FAI results in Fig. 4 were accurate and
that the inner fjord contains abundant floating macrophytes, the next logi-
cal question is where did they come from if intertidal macrophytes were not
detected along the coastal margins? Floating macrophytes drift passively in
response to prevailing currents so surface Lagrangian transport could have
carried them into the inner fjord. However, during summer, estuarine circu-
lation dominates in NK (Mortensen et al., 2011) and the net surface trans-
port flows away from the glaciers toward the mouth of the fjord.
Macrophytes floating in the inner fjord could not have been transported
fromdownstream sources and, therefore,would have had local origins. Fur-
thermore, while some floating macroalgae may be found floating around
icebergs, the probability that they are found around themargin of every ice-
berg is very low. Instead, mis-classification of icebergs as macrophytes by
the SMA, EVI, and FAI is the more likely explanation.

Exposed mudbanks were visible at low tide in the RGB image of the
Tasersuaq outflow in Fig. 5A. The FAI and EVI misclassified mudbanks as
macrophytes (Fig. 5B-C). The NDVI (Fig. 5A), on the other hand, did not clas-
sify exposed mudbanks as vegetation. The SMA shows elevated macrophyte
abundances on the mudbanks (Fig. 5D). The iceberg endmember correctly
identified the grounded icebergs that are visible in the bottom of the image
(Fig. 5E). The turbidity endmember correctly identified the turbid plume
but could not distinguish between turbid water and mudbanks (Fig. 5F).

The apparent failure of the SMA, EVI, and FAI in areas with high iceberg
concentrations and exposed mudbanks can be explained by examining the
reflectance spectra (Fig. 2). With regards to the SMA, similarities between
the endmembers result inmisclassifications. In particular, the spectra of ice-
berg margins and iceberg keels were also very similar to floating
macroalgae (dashed lines in Fig. 2). Threshold adjustments to the FAI,
EVI, and SMA did not remove false positives in either the iceberg-
congested inner fjord or areas with bare substrate.

The misclassification of icebergs as macrophytes is likely due to the re-
flectance from iceberg keels (Fig. 4H). In summer, relatively warm (>0C)
surfacewaters lead to the production of subsurface ice ‘rams’ or protrusions
that extend away from the iceberg just below the surface (Wagner et al.,
2014). Methods to address the effects of iceberg keel reflectance on macro-
phyte detection schemes have yet to be reported. Icebergs and bare bottom
(including mudbanks, sand, and bedrock) exhibited high reflectance in the
red, NIR, and SWIR wavelengths (Fig. 2) that resulted in elevated values in
the FAI and EVI that were misinterpreted as macrophytes.

http://g-e-m.dk/
http://ocean.dmi.dk/tides/tides_grl.uk.php


Fig. 3.The validation of the classification of 10m S2-MSINDVI images using 0.1mUAS orthomosaics is illustrated here using site 1 and the same process was applied at site 2
(see Fig. 1A for locations). Land was masked (black pixels), intertidal macrophytes were detected using a threshold, and a classified image was produced.

D.F. Carlson et al. Science of the Total Environment 865 (2023) 161213
The iceberg keel and floating macroalgae spectra exhibit a difference in
the NIR reflectance (Fig. 2) that could be exploitedwhen classifyingmacro-
phytes in pro-glacial fjord systems with high concentrations of ice. The
mean iceberg keel reflectance spectrum exhibits a dip at 833 nm, whereas
the mean floating macroalgae spectrum increases (Fig. 2). Thus, iceberg
keels may be excluded by masking pixels using the difference R833 – R865,
though this may be too restrictive in areas that are not impacted by ice.

The simplistic assumption could be made that sources of high reflec-
tance, including icebergs, bare bottom, and very turbid waters, indicate
areas that do not support macrophyte growth. Under this assumption, the
brightness threshold was lowered to mask any pixels with TOA reflectance
in the green band that exceeded 0.15 Wm−2. This approach, however, did
notmask small bits of brash ice thatwere characterized by lower reflectances,
perhaps because of their size or because they were wet. These small bits of
brash ice were then misclassified as macrophytes by the SMA, FAI, and EVI.
Alternatively, one could assume that hypothesis III is correct and that iceberg
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scour prevents macrophytes from growing in the intertidal zone in the inner
fjord. Under this assumption the entire inner fjord could be neglected. This
approach, however, would not allow any future expansion of macrophytes
into the inner fjord to be detected, nor would it solve the problem of masking
small icebergs that reach themiddle and outer fjord or themisclassification of
exposed bare bottom elsewhere in the fjords.

With regard to hypothesis I, the NDVI appears to be insensitive to the
optical complexity introduced by icebergs and exposed, bare, exposed in-
tertidal substrates. As a result, the NDVI was used to quantify the distribu-
tions of intertidal and floating macrophytes in the study area. Intertidal
macrophytes identified in S2-MSI-derived NDVI images were compared to
0.1 m resolution UAS orthomosaics of two validation sites in NK (Figs. 1
and 3). The overall accuracy was 90 % at site one and 89 % at site two.
The user accuracy varied from 49% at site one to 76% at site two. The pro-
ducer accuracy varied from 50 % at site one to 67 % at site two. The higher
number of false positives and omissions at site one may be explained by the



Fig. 4. (A) A S2-MSI RGB composite image from the inner part of NK on 10 July 2017. Panels B–D show the RGB imagewith themacrophytemasks for the EVI, FAI, andNDVI
overlaid in bright pink. Panels E-G show the SMA intertidalmacrophyte abundance, iceberg abundance, and turbidity abundance, respectively,with abundances>0.3masked
with bright pink. In panels A-G black areas represent the land mask. (H) A UAS image in the inner part of NK shows a large iceberg with a shallow keel protrusion.
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difference of 0.3 m in tide height between the UAS and S2-MSI images.
Note that the UAS validation imagery lacked turbid plumes and icebergs,
which should be remedied in future studies. The user and producer's accu-
racies and kappa values for all three classes (macrophytes, land, and water)
is presented in Table B.2.

NDVI thresholds of 0.4 and 0.25 produced the highest accuracy at sites
one and two, respectively. The more conservative NDVI threshold of 0.4
was used to identify intertidal macrophytes that were exposed at low tide in
the entire study area (Fig. 6). The NDVI threshold of 0.4 is higher than bare
sand values of 0–0.12 reported byWilson et al. (2020) and higher than terres-
trial bare soil values of 0.2 reported by Montandon and Small (2008).

Intertidal macrophyte coverage at low-tide varied from 10 km2 to 16
km2 (Fig. 6A-D). At high tide, intertidal macrophyte coverage dropped to
0.34 km2 to 1.36 km2 (Fig. 6E-F). The total intertidal macrophyte cover
was estimated by finding intertidal macrophyte pixels that were present
in at least three of the four low-tide macrophyte images. This approach
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resulted in an intertidal macrophyte cover of 12.04 km2 and their locations
are shown in Fig. 7. The 12 km2 coverage of intertidal macrophytes is likely
conservative because shallow sub-tidalmacrophyteswere excluded and ter-
rain shadows obscured some areas. The NDVI appears to have identified
known eelgrass meadows (Olesen et al., 2015) but no attempt was made
to distinguish eelgrass from macroalgae (see section 2.2.3). High NDVI
values in known eelgrassmeadow locations could also result from the accu-
mulation of detached, drifting macroalgae (Barillé et al., 2010).

3.2. Hypothesis II: Floating macrophytes accumulate in patches that are suffi-
ciently large to be detected by 10-m S2-MSI images

The locations of floating mats of macrophytes are shown in light green
in Fig. 6. The total area covered by floating macrophytes ranged from 0.07
km2 to 1.36 km2 (Fig. 6). Floating macrophytes were most common around
the skerry islands at themouth of the fjord and at the intersections of fjords.



Fig. 5. (A) A S2-MSI RGB composite image from the Tasersuaq outflow from the image acquired on 10 July 2017. The NDVI macrophyte vegetation mask is overlaid on the
RGB image in panel (A). Note the absence of macrophytes detected by the NDVI. Panels B-C show the RGB image with the macrophyte masks for the EVI and FAI overlaid in
bright pink. Panels D-F show the SMA intertidal macrophyte abundance, iceberg abundance, and turbidity abundance, respectively, with abundances >0.3 masked with
bright pink.
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Fig. A.4 shows an example of large floatingmat near themouth of Ameralik
in the image acquired on 10 July 2017. Individual mats of floating macro-
phytes ranged in area from 400 m2 to 326,800 m2. Thus, floating macro-
phytes accumulate in patches that are sufficiently large to be detected in
10-m S2-MSI images using the NDVI. A field study in NK found floating
macroalgae throughout the fjord with an average biomass of 55 kg wet
weight km−2 and observations confirm the accumulation of floating bio-
mass near the mouth of the fjord (Ager et al. 2022).

3.3. Hypothesis III: Iceberg scour and turbid meltwater runoff shape the spatial
distribution of intertidal macrophytes

The locations of intertidal macrophytes that were present in at least
three of the four low-tide macrophyte images are shown in Fig. 7. The con-
tour lines of high iceberg concentrations and turbid plumes are also shown.
The intertidal macrophyte distribution exhibits very little spatial overlap
with the high iceberg and turbidity contours. Intertidal macrophytes were
not found in Kangersuneq, from the Tasersuaq plume to the head of the
fjord (Fig. 7). High iceberg concentrations were consistently found in the
inner fjord, consistent withMortensen et al. (2014) who found that the sub-
surface heat transport causes the majority of the glacial ice to melt in the
inner fjord. Elevated turbidity was consistently observed fromKangersuneq
to the middle of the fjord at Qoornup Ikinngua, where NK branches into
three arms (Fig. 7). High turbidity also occured at Qugssuk (Fig. 7),
where dense eelgrass meadows have been reported (Olesen et al., 2015).
Glacial meltwater runoff impacted the inner part of Ameralik (Hudson
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et al., 2014). The CTD-derived KdPAR values also show the highest light at-
tenuation in the inner parts of NK and Ameralik (Fig. 7). These results sug-
gest that turbidity-induced light limitations and/or iceberg scour may play
a role in shaping the spatial distribution of intertidal macrophytes in the
study area.

The iceberg scour hypothesis assumes that intertidal macrophytes can
recover from the episodic disturbance caused by the grounding of a single
iceberg. On the other hand, repeated scouring by iceberg collisions with
the fjord margins prevents macrophytes from settling in regions with a per-
sistent presence of high concentrations of icebergs and frequent scouring.
Thus, fjord regions that are characterized by high iceberg concentrations
and frequent scouring should not support intertidal macrophytes. Con-
versely, macrophytes should be found in areas where the risk of repeated
iceberg scouring is low, due to an absence of icebergs and/or the presence
of a physical protective barrier. The spatial distribution of glacial ice in NK
is controlled by melt-driven subsurface heat transport, which is currently
about an order of magnitude larger than the calving flux from the glacier
(Mortensen et al., 2014). Climate change could affect the area of impacted
iceberg scour. In the near-term, changes in fjord circulation and heat ex-
change processes could alter the submarine melt rate of icebergs in the
inner fjord. On longer time scales, the retreat of marine terminating glaciers
onto land and the cessation of iceberg calving could open up the inner fjord
to colonization by macrophytes, most likely macroalgae.

The turbidity hypothesis is based on the light requirements for photo-
synthetic organisms and the previously-established relationship between
suspended particulate matter and light attenuation. Areas impacted by



Fig. 6. The distribution of intertidal (dark green) and floating (light green) macrophytes in the study area for the four low-tide S2-MSI images (A-D) and the two high-tide
images (E-F). The respective areas of intertidal and floating macrophyte cover are indicated in each panel.
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persistent high turbidity should be light-limited and, therefore, should not
support macrophytes. While the iceberg size distribution has not been re-
ported for NK, most of the glacial ice in the fjord consists of small icebergs
and bergy bits (Carlson et al., 2017). Bergy bits and brash ice have length
scales that are the same order of magnitude as the 10 m S2-MSI pixels,
which makes them more difficult to detect and increases the chances
of mis-classifying them as turbid water (Hodgkins et al., 2016). Even
when the sails of larger icebergs can be detected in the 10 m S2-MSI im-
agery, their margins introduce optical complexity that impacts the
detection of macrophytes. Iceberg-induced optical complexity may
arise through adjacency effects or reflectance from submerged ice
‘rams’ (Fig. 4H).

While turbid freshwater runoff intermittently enters the fjord at
Qugssuk through a small stream, this area is also characterized by shallow
waters and some of the high turbidity could, in fact, be due to bottom reflec-
tance. Dense beds of eelgrass (Zosteramarina) are found at Qugssuk and just
north of the river delta at the head of Ameralik (Olesen et al., 2015), despite
the presence of turbid water.

Turbidity may not limit light in the shallow intertidal zone to the extent
that macrophytes cannot grow. Instead, multiple stressors likely act to limit
the distribution of intertidal macrophytes. In the river plumes, low salinity
combined with high turbidity and sedimentation rates may prevent
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macrophytes from growing. Similarly, in the inner part of NK, macrophyte
growthmay be limited by the combination of iceberg scouring and high tur-
bidity. Limited anecdotal observations suggest that macroalgae can be
found in the iceberg-congested inner part of NK. These macroalgal beds
may be obscured by the high iceberg concentrations and/or steep coastal
margins and terrain shadows.

A robust turbidity algorithm for glacier-impacted waters has yet to be
developed. The Dogliotti algorithm was used here given relatively good
agreement with in situ turbidity. The 21matchups between in situ CTDmea-
surements of S2-derived turbidity computed from the Dogliotti algorithm
are shown in Fig. A.5A. The least-squares linear fit to all data points indi-
cates that the Dogliotti algorithm overestimates high turbidity values
(e.g., >10 FTU). High turbidity values are under-represented in the in situ
data, however, and when only values from 0 to 10 FTU are considered
the Dogliotti algorithm underestimates the lower values (Fig. A.5B). De-
spite the disagreements between the absolute values, the fits account for
most of the variance in the data (Fig. A.5), which suggests that the Dogliotti
algorithm is at least sufficient for quantifying spatial gradients in turbidity.
Other turbidity algorithms include the Nechad (Nechad et al., 2010), ANTA
(Klein et al., 2021) and exponential fits to reflectance in the red and NIR
(Hudson et al., 2014; Schild et al., 2017). The available in situ data are
not sufficient to evaluate these algorithms. Future studies should develop



Fig. 7. Small, dark green points indicate locationswhere intertidal macrophyteswere detected in at least three of the four low-tide S2-MSI images. Light blue lines and orange
lines indicate contours of high iceberg and high turbidity concentrations, respectively, from the 26 cloud-free S2-MSI images. Colored dots indicate the logarithm of the CTD-
derived vertical diffuse attenuation coefficient of PAR (KdPAR). Eelgrass meadows are indicated by open green circles (positions were obtained from Olesen et al., 2015).
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turbidity algorithms that resolve the wide range of values found in glacially
impacted fjords that often contain both very clear and highly turbid waters.

The brightness threshold applied to TOA reflectance at 560 nm to de-
tect iceberg sails varied from 0.21 Wm−2 to 0.24 Wm−2, which lies
within the range of values used in panchromatic Landsat images
(Scheick et al., 2019; Sulak et al., 2017). Other methods to identify ice-
bergs have also been tested and may be useful in future studies.
Heiselberg and Heiselberg (2017) distinguished between icebergs and
ships in S2-MSI images of NK using a supervised classification method
that identified pixels that deviated from the background reflectance.
Moyer et al. (2019) and Rezvanbehbahani et al., 2020 applied a bright-
ness threshold to the 10 m S2-MSI near-infrared band (band 8; 833 nm)
to identify icebergs in fjords in east Greenland.

4. Conclusions

This paper tested three hypotheses: I) 10-m S2-MSI imagery and
commonly used detection methods can identify intertidal macrophytes
that are exposed at low tide in an optically complex fjord system in
Greenland impacted by marine and land terminating glaciers; II) float-
ing macrophytes accumulate in patches that are sufficiently large to be
detected by 10-m S2-MSI images; III) iceberg scour and turbid meltwa-
ter runoff shape the spatial distribution of intertidal macrophytes.
With regard to hypothesis I, the NDVI is best suited for studies of inter-
tidal macrophytes in optically complex, glacially impacted fjord systems
with large tidal ranges. The other indices tested, namely the EVI and the
FAI, resulted in false positives around icebergs and exposed, bare sub-
strate, which reflected in the red, NIR, and SWIR. SMA also produced
false positives in these environments due to spectral similarities in the
endmembers. In particular, iceberg keel reflectance posed a unique,
and unexpected problem as it was spectrally similar to floating
macroalgae. Approximately 12 km2 of exposed, intertidal macrophytes
were found in low-tide S2-MSI images.

With regard to hypothesis II, floating mats of macrophytes were de-
tected in S2-MSI imagery. Floating macrophytes were most common
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around the skerry islands at the mouth of the fjord and at the intersections
of fjords. The total area covered by floating macrophytes ranged from 0.07
km2 to 1.36 km2 and individual mats of floating macrophytes ranged in
area from 400 m2 to 326,800 m2. The detection of floating mats of macro-
phytes in S2-MSI NDVI images could assist in estimates of the contributions
of coastal macrophyte communities to offshore, deep-water carbon sinks.

With regard to hypothesis III, exposed, intertidal macrophyte locations
did not overlap with regions of high iceberg concentration or elevated tur-
bidity, suggesting that iceberg scouring and turbidity play a role in shaping
the spatial distributions of macrophytes in fjords with marine terminating
glaciers. Thus, the spatial distribution of exposed, intertidal macrophytes
as well as the drivers of their spatial distribution (icebergs and turbidity)
were determined from a single remote sensing dataset. The methods pre-
sented here can be applied to quantify climate-change-induced shifts in in-
tertidal macrophytes distributions in fjord systems that contain retreating
marine terminating glaciers.

The sources of optical complexity apply tomost fjords in Greenland and,
therefore, the methodology may be extended to produce a Greenland-wide
estimate of shallow marine vegetation. Future studies should focus on sub-
tidal macrophyte communities by collecting high-resolution bathymetry
and in situ radiometery. Additional UAS surveys should be conducted to ex-
tend the availability of very-high-resolution validation imagery into regions
with turbid plumes and icebergs.
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Appendix A. Sentinel-2 imagery
Theworkflowused to process and analyze Sentinel-2 (S2) images of the study area is summarized in Fig. A.1. The date, tide height, and cloud coverage of the
26 S2 images analyzed for icebergs and turbidity are summarized in Table A.1. The six S2 images analyzed for macrophytes are indicated in bold in
Table A.1.
cess S2-MSI images is summarized here.
Table A.1

The dates, tide height, and cloud coverage of the 26 Sentinel-2 images used to compute iceberg concentrations and turbid plume extents are summarized. Cloud coverage is
presented as total area and the percentage of the marine area impacted by clouds. The six images that were analyzed for intertidal macrophytes are indicated in bold.
Date
 Tide (m)
 Cloud coverage (km2/%)
016-07-25
 3.4
 0.24/8.5e-3

016-07-28
 2.9
 7.8/0.28

016-08-14
 2.2
 1.7/6.1e-2

016-09-23
 3.9
 53.5/1.93

016-09-26
 2.3
 130/4.7

017-05-31
 3.3
 0.59/2.1e-2

017-07-10
 1.0
 32.1/1.2

http://dx.doi.org/10.17897/KMEK-TK21
http://dx.doi.org/10.17897/KMEK-TK21
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able A.1 (continued)
Date
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

ig. A.2. (A) Dense macroalgal beds are visible in a Bing aerial image of the
de on 10 July 2017. The black pixels correspond to land and high NDVI is i
f meters, in UTM Zone 22 N (WGS 84).
Tide (m)
town of Nuuk, Greenland. (B) The same area is shown in a Sentinel-2 d
ndicated by yellow-white pixels. Coordinates on the x and y axes corres
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Cloud coverage (km2/%)
017-07-30
 3.5
 46.4/1.7

018-05-09
 2.6
 625/22.6

018-07-13
 0.9
 470/17.0

018-07-30
 1.2
 0.03/1e-3

018-09-18
 2.8
 286/10.3

019-08-29
 0.6
 197/7.1

020-05-20
 1.1
 61.9/2.23

021-05-13
 1.7
 10.8/0.4

021-06-22
 1.3
 5.3/0.19

021-07-02
 2.9
 0.29/1e-2

021-07-09
 1.1
 4.8/0.17

021-08-31
 3.0
 998/36

021-09-05
 1.0
 236/8.5

021-09-10
 2.5
 51.9/1.9

021-09-15
 3.0
 96/0.96

021-09-17
 2.0
 26.7/0.96

021-09-25
 2.8
 648/23.4
2
Intertidal macroalgae that were exposed at low tide are visible around the capital city of Nuuk, Greenland (see Fig. 1A for location) in Bing aerial imagery
(Fig. A.2A) and appear as high (0.4–0.9) NDVI in Sentinel-2 imagery (Fig. A.2B). Intertidal macroalgae thatwere exposed at low tide aroundNuukwere used
to compute the average intertidal macrophyte spectral endmember for the spectral mixture analysis (SMA; see section 2.2.2). Similarly, bare sand can be
found in areas in near themouth of the fjord and these areas are visible in Bing aerial imagery (Fig. A.3A) and correspond to lower (0.05–0.15) NDVI values
(Fig. A.3B). These bare sand areas were used to compute the average bare spectral endmember for SMA (see section 2.2.2).
erived NDVI image at low
pond to positions, in units



Fig. A.3. (A) Bare sand is visible in a Bing aerial image of the coast near themouth of the fjord. (B) The same area is shown in a Sentinel-2 derived NDVI image at low tide on
10 July 2017. Coordinates on the x and y axes correspond to positions, in units of meters, in UTM Zone 22 N (WGS 84).
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An example of a large floating mat of what is most likely macroalgae is shown in Fig. A.4. The floating mat is visible in both the RGB composite image
(Fig. A.4A) and the NDVI (Fig. A.4B). This image was extracted from the S2 image that was acquired on 10 July 2017.
Fig. A.4. Large floatingmats ofmacrophytes are visible near themouth of Ameralik fjord in (A) an RGB composite image and (B) in the NDVI from10 July 2017. Coordinates
on the x and y axes correspond to positions, in units of meters, in UTM Zone 22 N (WGS 84).
The matchups between the in situ CTD-derived surface turbidity and the turbidity estimated from the Dogliotti (Dogliotti et al., 2015) algorithm included
with ACOLITE are shown in Fig. A5. The entire dataset is shown in Fig. A.5A and turbidity values that exceed 10 FTU are excluded in Fig. A.5B.
14



Fig. A.5. Matchups between in situ surface turbidity measurements and corresponding S2-derived turbidity values are displayed as scatter plots over (A) the full range of
values observed and (B) over values of 0–10 FTU. The red lines denote the least squares linear fit to the data. The coefficient of determination, number of values, slope,
and intercept are also provided. Note that the fit is not forced through the origin.
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Appendix B. UAS image acquisition and processing
The UAS surveys of sites one and two (see Fig. 1A for locations) are summarized in Table B.1. The confusionmatrix for the three classes (macrophytes, land,
and water) for the comparison between UAS and S2 NDVI are shown in Table B.2.

Table B.1

The date, number of images, altitude, ground sampling distance (GSD), reprojection error, ground control point (GCP) error, total area covered, equivalent number of 10 m
Sentinel-2 pixels, and the digital object identifier for each UAS dataset are summarized here.
Site
1

1

N
2

Date
 No. Img.
 Tide (m)
 Alt. (m)
 GSD (m)
 Reproj. Err. (pix)
15
GCP Err. (m)
 Area (km2)
 No. S2 Pix.
 DOI
2017-07-05
 128
 1.3
 153
 0.05
 0.32
 0.59
 0.261
 1956
 https://doi.org/10.5281/zenodo.7066580

2017-07-11
 225
 0.8
 76
 0.025
 0.31
 0.42
 0.102
 1006
 https://doi.org/10.5281/zenodo.7066573
2
During manual missions, the Phantom 3 flew at a constant altitude and acquired still images at five second intervals. The UAS hovered when images were
acquired and changed position during the five second interval between images. To account for the large contrast in brightness between marine and terres-
trial areas the exposure value was set to −1. Lowering the exposure value prevented overexposure of images that contained both bright terrestrial and
darker marine areas. This manual flight approach resulted in high-quality images, in terms of focus and contrast.

Images were aligned in Agisoft Metashape using the ‘high’ accuracy setting, key point and tie point limits of 60,000 and 0, respectively, and generic and
reference preselection (Over et al., 2021). After alignment, GCPs were added to improve the overall accuracy of the georectification. GCPs were added
by identifying prominent rocks in either Google Earth or Bing Satellite imagery, similar to methods employed by Azim et al. (2019) and Rossiter et al.
(2019).

After adding GCPs, the intrinsic and extrinsic camera parameters were optimized. Next, low-quality tie points were removed using an iterative gradual se-
lection process based on three accuracy measures. These accuracy measures included the reconstruction uncertainty, projection accuracy, and reprojection
error (see Over et al., 2021 for details). Initial thresholds were specified for each accuracymeasure, as well as a maximum percentage of tie points to remove
during each iteration. If the number of points selected for removal did not exceed the maximum threshold then the threshold was adjusted until the max-
imum was reached. The camera parameters were optimized after each set of low-accuracy tie points was removed.

The remaining high-accuracy tie points were then used to compute the dense point cloud. The dense point cloud was computed using the ‘ultra-high’ accu-
racy, ‘mild’ depth filtering, ‘calculate point colors’, and ‘calculate point confidence’ options. Outliers in the dense cloud were removed by selecting points
with confidences between 0 and 2. Any remaining ‘fliers’ and/or ‘sinkers’ were manually removed. The dense cloud was then used to compute a digital el-
evation model (DEM). An orthomosaic was computed after the DEM. Orthomosaics and DEMs were exported as geotiffs that were reprojected to UTM Zone
22 N (WGS 84).
Table B.2

The user and producer accuracies for UAS validation sites one and two (see Fig. 1 for locations) are summarized. The values in parentheses indicate the NDVI thresholds that
resulted in the highest accuracies. The kappa value for each class is also indicated.
Site
 NDVI (0.4)
 User Accuracy
 Producer Accuracy
 Kappa
Macroalgae
 48.62
 50.62
 0.41

Land
 94.56
 94.44
 0.91

Water
 90.12
 89.26
 0.81
DVI (0.25)

Macroalgae
 76.48
 67.24
 0.72

Land
 94.91
 99.62
 0.89

Water
 85.81
 84.42
 0.79

https://doi.org/10.5281/zenodo.7066580
https://doi.org/10.5281/zenodo.7066573
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