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FOREWORD 

Although specific problems of high-velocity flow arising from changes in 
open-channel cross section or alinement had frequently been solved by model 
tests, not until the early 1930's did the broad applicability of elastic-wave 
analysis to such gravity-wave phenomena become evident. The resulting 
principles of wave mechanics were first applied at the California Institute of 
Technology at Pasadena in 1935, during the study of flow around the curves of 
the Los Angeles County flood-relief channels in California; shortly thereafter 
similar applications were made to channel contractions at Lehigh University in 
Bethlehem, Pa., and the Massachusetts Institute of Technology in Cambridge, 
and to channel expansions at the State University of Iowa in Iowa City. 

In distinction to the empirical solution of particular design problems, these 
investigations involved the use of general principles whereby simple designs 
could be completed without recourse to experiment and complex designs 
could be approximated understandingly prior to experimental refinement. 
Several papers describing certain phases of the investigations were eventually 
published, but the major part of the material remained in the form of graduate 
theses and reports to various public and private organizations. Therefore, 
much of the essential information did not become readily available to the pro-
fession, and in no way could the engineer secure a unified treatment of the 
subject as a whole. 

Because of this deficiency in the technical literature, in 1946 the newly 
formed Fluid Mechanics Committee of the ASCE Hydraulics Division under-
took as one of its initial projects the sponsorship of a comprehensive symposium 
on the design of curves and transitions for high-velocity flow. This was ar-
ranged as a series of correlated papers, prepared by those who were responsible 
for the original investigations and so organized as to include the underlying 
principles of wave analysis as well as their application to the primary types of 
transition structure. The high lights of the Symposium were presented to the 
1948 Annual Meeting of the Society, and the papers themselves are reproduced 
for discussion in the following pages. It is hoped both by the authors and by 
the Committee on Fluid Mechanics that the ultimate result will be a compact 
yet inclusive treatise on the subject which will prove of practical value to design 
engineers. 

Notation.—The following letter symbols, adopted for the Symposium and 
for the guidance of discussers, conform substantially with American Standard 
Letter Symbols for Hydraulics  (ASA—Z10.21942), prepared by a committee of 
the American Standards Association, with ASCE participation, and adopted 
by the Association in January, 1942: 

b = width of channel; 
c = celerity of small waves =  
d  -- height of a sill; 
F = Froude number;  
g  = gravitational acceleration; 



November, 1949 	 HIGH-VELOCITY FLOW 	 1289  

H  = specific head;  
h  = depth; hc  = critical depth; 

actual sin 01  K = a correction factor thmretirs 1 sin e, 
L = distance along a channel; 
Q = rate of flow; 
r = radius, mean;  ri  = radius of a counterdisturbance section; 
S = slope;  Sc  = cross slope; 
V = mean velocity = Q/A: 

V c  = critical velocity; 
= dimensionless velocity; 

x = longitudinal distance from beginning of expansion;  
y  = lateral distance from center line; 
z = depth of channel drop; 

= angle of a sill in a flume or channel; 
13 = wave angle;  
^y  = specific weight; 
O = deflection angle: 

M = small but finite deflection angle; 
0' ---- angle of curve of the entire flow; 

= central angle of the half wave length in the main curve; and 
p = mass density. 
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MECHANICS OF SUPERCRITICAL FLOW 
BY ARTHUR T. IPPEN,1  M. ASCE 

SYNOPSIS 
The theory of high-velocity flow—flow defined as shooting, rapid, or super-

critical—is presented comprehensively. The principles discussed find practical 
application in the design of all open-channel structures in which surface dis-
turbances and standing waves appear as a consequence of the geometry of the 
lateral boundaries. These surface disturbances are subject to systematic 
analysis on the basis of two distinct methods of approach: 

Gradual surface changes may be analyzed on the basis of constant 
specific head; and 

Standing wave fronts of appreciable height (so-called oblique or slanting 
hydraulic jumps) can be computed, considering the energy dissipation involved. 

Graphical aids for the solution of both types of problems are given in detail, 
and the characteristic disturbance patterns are developed to illustrate a 
number of basic cases. Specific verification of the theory by experiment is 
left to subsequent papers of the Symposium. 

INTRODUCTION 
In recent years the hydraulic designer has been increasingly confronted 

with problems of high-velocity flow in steep flood channels and spillway chutes. 
The specific character of such flow results from the fact that the velocities 
exceed considerably the critical velocity and therefore the velocity at which 
surface disturbances and waves are transmitted in free surface flow. It was 
found that similar problems of design are encountered in the field of high-
velocity gas dynamics and that, by analogy, a hydraulic theory could be 
deduced from the concepts and analytic developments already available in 
that science. Definite findings have resulted from intermittent research con-
ducted since 1934, and the accumulated experimental evidence confirmed 
essentially the soundness of the theoretical approach. Within the limitations 
imposed by the fundamental premises of the theory, consistent qualitative and 
good quantitative results were obtained which justify the comprehensive pre-
sentation of the work at this time. 

The historical development of research in this field may be summarized 
briefly. In the United States the first impulse toward work in this field came 
in the early nineteen thirties when the engineers of the Los Angeles County 
Flood Control District found the conventional methods of designing flood 
channels not applicable to the steep gradients employed in their area of service. 
They therefore approached the Hydraulic Structures Laboratory at the Cali-
fornia Institute of Technology, under the direction of R. T. Knapp, M. ASCE, 
with a proposal to study the flow at supercritical velocities through curved 

Prof. of Hydraulics, Dept. of Civ. and San.  Eng.,  MOM. Inst. of Technology, Cambridge, Maas. 
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sections of rectangular channels in the laboratory. Extensive tests were then 
performed by the writer from 1935 to 1938, under a variety of conditions as 
far as radii, slope, and channel forms were concerned. The test results2,3.4,5  
pointed toward characteristics of such flow, which according to Theodor von 
Kàrmd,n,6  M. ASCE, had their counterpart in the supersonic flow of gases 
and to which the previous findings for such flow could be adapted. The appli-
cation of these principles resulted in a remarkable correlation of the test data. 
It also became clear that a general method of analysis for supercritical flow had 
been found which could be applied to the study of the design characteristics 
of hydraulic structures. 

The analogy of supercritical flow of water to supersonic gas flow had been 
pointed out also by  D.  Riabouchinsky7  and L. Prandt18  without experimental 
evidence. Ernst Preiswere worked on the extension of the theory and con-
ducted a number of systematic experiments on a so-called Laval nozzle at 
Zürich, Switzerland. Although these writers were primarily interested in 
applications to supersonic flow of gases, work was continued more along 
hydraulic lines at the California Institute of Technology under Mr. Knapp's 
direction, at Lehigh University, at the Massachusetts Institute of Technology 
under the direction of the writer, and at the Iowa Institute of Hydraulic Re-
search in Iowa City under the direction of Hunter Rouse, M. ASCE. The 
findings made in these investigations have been embodied in Symposium papers 
Nos. 2 to 4 in a form adapted to the specific problem of design under discussion. 
By contrast the task of this paper is an outline of the general principles of super-
critical flow and a complete development of the fundamental train of ideas for 
those interested in the general physical aspects of the various problems. 

GENERAL PHYSICAL BACKGROUND 

The theory of nonuniform supercritical flow as reflected by its treatment in 
conventional texts has been concerned mainly with the changes taking place 
in only two dimensions, length and height. Depth and velocity changes are 
related in general to the slope and roughness factors by the backwater equation 
and its basic solutions, giving surface points as a function of distance. Lateral 
changes of cross section are absorbed into an average depth and the cross slope 
is always assumed to be zero. Although this method is justified for subcritical 
flow, it must be rejected for supercritical flow because of the appearance of 

2 "A Study of High Velocity Flow in Curved Channels of Rectangular Cross Section," by A. T. Ippen 
and R. T. Knapp, Transactions, Am. Geophysical Union, Vol. 17, 1936, p. 516. 

"An Analytical and Experimental Study of High Velocity Flow in Curved Sections of Open Chan-
nels," by A. T. Ippen, thesis presented to the California Inst. of Technology at Pasadena, in 1936, in partial 
fulfilment of the requirements for the degree of Doctor of Philosophy. 

4 "Experimental Investigations of Flow in Curved Channels" (abstract of results and recommenda-
tions), by A. T. Ippen and R. T. Knapp, U. S. Engr. Office, Los Angeles, Calif., 1938. 

"Curvilinear Flow of Liquids with Free Surfaces at Velocities Above That of Wave Propagation," 
by R. T. Knapp and A. T. Ippen, Proceedings, 5th International Cong. of Applied Mechanics, Cambridge, 
Mass., 1938, p. 531. 

"Eine  praktische  Anwendung der  Analogie  zwischen überschallstrômung in Gasen  und über  kritischer  
Strômung in Offenen Gerinnen," by Theodor von  Kármán,  Zeitschrift  fer  Angewandte Mathematik  und  
Mechanik, February, 1938, pp. 49-56. 

"Sur  l'Analogie Hydraulique  des  Mouvements d'un Fluide  Compressible," by  D.  Riabouchinsky,  
Comptes Rendus  de  l'Académie  des Sciences, Vol. 195, 1932, p. 998, and Vol. 199, 1934, p. 632. 

"Abrias der Strômungslehre," by L. Prandtl, Braunschweig, Vieweg, 1931. 
"Application of the Methods of Gas Dynamics to Water Flows with Free Surface," by Ernst Preis-

werk,  Technical Memoranda Nos. .934 and 935, National Advisory Committee for Aeronautics, Washington,  
D.  C., March, 1940. 
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standing waves as the result of lateral boundary changes for such flow. The 
different types of backwater curves discussed by the classical theory can be 
conceived as valid only for rectilinear supercritical flow between parallel 
walls and for zero cross slope of the bottom. If these conditions are not ful-
filled, considerable errors are to be expected from computations in accordance 
with this theory, although computations for subcritical flow are acceptable. 

The physical difference between subcritical and supercritical flow is best 
revealed by the specific-head diagram (see Fig. 1). A few remarks may sum-
marize its significance with respect to this paper. 

Subcritical Range 

(v5)2  hc - e  
— — -F — — 

Q- Constant 

VC) 2  
2g 

Supercritical Range 

Specific Head,  H  

FIG. 1.—PLOT OF SPECIFIC HEAD VERSUS DEPTH OF FLOW 

In subcritical flow the velocity head V2/(2  g)  is usually a small per-
centage of the specific head  H;  considerable changes in boundary alinement 
cause dynamic pressures which may be large percentages of the velocity head, 
but they remain small when expressed in terms of depth. It is therefore nor-
mally safe to assume hydrostatic pressure distribution for gradual boundary 
curvatures, whether on the bottom or along the walls. Also, large variations 
in  H  are synonymous with large variations of depth. 

In supercritical flow the velocity head not only is comparable to depth  h  
in order of magnitude but, in most cases of practical interest, exceeds the depth 
considerably. In this instance, large variations in specific head  H  are equiva-
lent to large changes in velocity head. Slight curvatures of the boundaries 
may cause relatively small dynamic pressures in terms of velocity head, but 
the changes in depth or surface elevation will be relatively large. Hydrostatic 
pressure distribution may be altered radically, while the velocity head is 
changed only a small percentage. 

Flow near the so-called critical depth, when V = if7i, results in values 
of  h  and V2/(2  g)  of practically the same order of magnitude. While  H  remains 
almost constant, changes in  h  or V2/(2  g)  are reflected in mutual changes. 
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Slight variations of  H  cause large changes in V2/(2  g)  and  h.  Since slight 
changes in boundary alinement, because of their influence on the hydrostatic 
pressure distribution, correspond in effect to slight variations in  H,  large 
disturbances result as far as the depth and velocity head are concerned fnr 
flow near critical velocity, as evidenced by high undulations. Since the ratio 
V//gh, is generally recognized as the Froude number, F, it is used subse-
quently to characterize these flow conditions. The flow described in item 1 
therefore corresponds to Froude numbers smaller than unity, whereas for the 
flow described in item 2 the Froude number is always larger than unity. For 
flow at critical depth F equals one. 

The critical velocity V = -sigh also has significance. as the velocity with 
which very small disturbances or gravity waves travel in shallow water. 
However, it must be remembered, that waves of large height travel faster than 
those of small height and consequently « are able to travel upstream even in 
supercritical flow, whenever the wave velocity exceeds the velocity of flow. 
If the velocity of flow changes along the line of travel of such a high wave, a 
position is eventually reached where the velocity of flow equals the wave 
velocity. Such a stationary surge or wave is well known as the hydraulic 
jump, the theory of which is assumed to be familiar to the reader. 

Gradual changes in supercritical flow can be treated by conventional 
methods only as long as the flow is confined between parallel, rectilinear walls 
with zero cross slope of the bottom. Only then will the theoretical surface 
curves apply as computed for cases of accelerated or decelerated motion in 
long channels and vertical transitions. The same restrictions hold for the 
transition from supercritical to subcritical flow in the hydraulic jump, con-
ceived as a standing surge at right angles to the flow. 

The theory of nonuniform flow at supercritical velocities is extended in the 
following text by the additional variants of curvilinear walls and by the abrupt 
changes of wall alinement considered under specific assumptions, which are 
outlined as the treatment proceeds. In addition to velocity changes in the 
original direction of flow, changes in the direction perpendicular to the original 
one are computed in connection with transverse changes of depth. The sur-
face, therefore, is no longer considered horizontal crosswise or of a definite cross 
slope; but its classification may become quite arbitrary. The only restriction 
remaining is that vertical changes in velocity be neglected, which requires in 
turn that the pressure distribution remain hydrostatic. It will be shown that 
satisfactory solutions can be derived for flow through curved sections of open 
channels and through converging and diverging channels as long as the basic 
assumptions are fulfilled. The limitations imposed by these shapes are clearly 
shown in connection with individual applications. The physical features of 
such flow are characterized by oblique standing wave fronts, originating at the 
walls of the channels at the points of changing alinement. These waves cross 
the channel to the opposite wall, where they are reflected, and in this fashion 
they continue almost undiminished in the downstream direction. Of course 
this visible evidence of boundary disturbance is made up of a multitude of 
small disturbances, the characteristics of which may now be taken up in detail. 
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MECHANICS OF WAVE PROPAGATION IN SUPERCRITICAL FLOW 
A uniform, rectilinear flow is assumed for depth  hl  with a velocity V1  in a 

wide rectangular channel. The streamlines are parallel throughout. If the 
flow is now disturbed at any point by placing an obstacle in the stream, the 
surface of the stream will show deformations whose characteristics are de-
pendent on the value of the velocity V1  with respect to the critical velocity 
1.1  g  h1, which is equal to the celerity c of small waves. If the velocity V1  is 
smaller than 1571. (that is, if F1  = 	< 1), the flow upstream from the 
obstruction will be affected by the presence of the obstacle. The backwater 
will extend a long distance upstream considering the dimensions of the obstacle, 
and a typical wake will appear in the rear of the obstacle. The streamlines 
will be deflected in all directions over a considerable area in conformance with 
the shape of the body. lithe local velocities are expressed as percentages of 
the initial velocity VI, a dimensionless streamline pattern may be drawn which 
remains geometrically similar for a wide range of variation in V1  and h1, or 
better, for values F1  < 1. Surface depressions or superelevations are not very 
marked. If the flow conditions are changed, however, so that V1  approaches 
the value of -NI  g hl  or F1  approaches unity, a marked change in the flow pattern 
becomes apparent. Flow conditions at critical velocity would nevertheless 
still cause a backwater, since in such a more or less hypothetical case the 
slightest obstruction would cause a wave of sufficient height to travel upstream 
and the obstruction would remain surrounded by subcritical flow. 

Only if the velocity V1  increases sufficiently above the value of fi7 is 
it possible to have a sizable obstruction which will not exert any influence 
upstream, as will be shown in detail subsequently. It may suffice to state 
that for F1  > 1, in general, typical standing wave patterns appear as a con-
sequence of any obstacle placed in the stream. These patterns will change 
with F1  and therefore the resistance created by flow obstructions will also 
change as a function of F1. For supercritical flow, in contrast to subcritical 
flow, it is no longer possible to describe the streamline patterns independently 
of F1, since these patterns do not remain geometrically similar as before in 
subcritical flow, where they are subject only to Reynolds number distortions 
or to frictional distortions. Any attempt, therefore, to express head losses 
due to flow obstructions in terms of the Reynolds number only is impossible 
unless similarity exists with respect to the Froude number 

Basic Properties of Standing Waves.—If the discussion is confined at first 
to relatively small disturbances, a very useful analysis may be made which 
will aid greatly in anticipating the performance of numerous hydraulic struc-
tures in supercritical flow, whenever the changes in boundary alinement along 
a body within the flow or along the side walls are gradual. In such cases 
angular deflections are considered small, resulting therefore in small changes 
of depth. For this reason vertical accelerations can be neglected entirely, and 
consequently hydrostatic pressure distribution will be assumed to exist over 
the depth of flow at every point. The flow field shown in Fig. 2 conforms with 
these assumptions. In addition, the velocities are taken as constant over the 
depth, and the energy dissipation is disregarded along the bottom and within 
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the zone of change from depth h1  to depth h2. The assumption of zero shear 
along the bottom may be modified by stating that the bottom shear equals 
the component of the gravity force, so that accelerations from this source 
may be disregarded. This procedure is common in the derivation of the 

no. 2.--PLAN OF WAVE FRONT CROSSING FIELD OF FLOW WITH VECTOR DIAGRAM OF VELOCITIES 

hydraulic jump equation. Thus, one may write the continuity equation and 
the momentum equation for a unit length of wave front crossing a flow of 
depth h1  and velocity V1 at an angle 01  as follows: 

h1 Vnl 	h2 V52 	 (1) 
and 

(hi)2 	^y   
2 	h1 (V51)1  — 	(h2)2  — h2  (V.2)2  g 	 2 

It is clear that the net pressure force acting to decelerate the flow can 
affect only the momentum of the stream normal to the wave front; and, since 
no force component exists parallel to the front, the tangential components  Vei  
and ' Pm of the velocity must remain unaltered as the flow passes under the wave 
front. 

From Eqs. 1 and 2, the expression for the normal component V.1  is obtained 
in terms of the depths h1  and h2: 

V51  .= 	(1 + hh:) 	 (3) 

In applying the momentum equation, V.1 has been automatically defined 
as the wave velocity, since the wave front wks assumed stationary. In turn 

(2) 
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any wave of a certain height, h2  - h1, will assume in supercritical flow such a 
position that the normal component of V1  with respect to the front will equal V.2 
as defined by Eq. 3. The wave front will not be stationary otherwise. It may 
also be stated that in agreement with the equation there must always be a 
stationary position for any wave in supercritical frow, until V.1  as defined by 
Eq. 3 exceeds the value of V I. If V.1  = VI, the wave front assumes a position 
at a right angle to the flow, and becomes the familiar hydraulic jump. For 
Vn1  > V1  the jump will start moving upstream, detaching itself from the 
source of the disturbance, which then remains surrounded by subcritical flow. 

Wave Angle.—The relation between V1  and Vni  may best be given by the 
ratio V,,1/V 1  from the vector diagram as sin e, = V,,1/V1  (in which /31  is 
defined as the .wave angle). 

Substituting for V.1  in Eq. 3 the equivalent 'VI  sin PI and solving for 
sin ,31  the expression— 

sin /31 	157-2.1,\1121  (1+ h2 ) 	  
VI 	1/12 	hi  

 

—is obtained, which holds for any ratio of h2/h1. For small wave heights 
with h2  h1, the expression under the square root approaches unity and the 
angle 131  tends toward a minimum value for any given Froude number 
F1  = Vitarii. A continuous small disturbance in a supercritical flow defined 
by F1  > 1 will therefore always proceed to an angular position with respect to 
the oncoming flow which is given by 

sin p 1 

   

 

    

The disturbance cannot travel beyond the line defined by this wave angle pi un-
less the wave height increases materially. It will always assume this position 
ultimately after a disturbance has been established, since it is the only possible 
stationary position for it. 

Some additional deductions are possible from the geometry of the velocity 
vectors which are shown in Fig. 2. The law of sines applied to triangle ABC 

A  Vn 	sin AO  gives: -v-V - 	(90°  . 	- 	+ 	and, for infinitesimal changes of 0, 
I 	sin 	 AO) 

dV 	d0 . = cos i3 

in which the subscripts may now be omitted. Rewriting the momentum equa-
tion for infinitesimal changes in depth and velocity, a second differential 
expression for dV„ is obtained: 7h dh =  Y-h  V,, dVn ; or 

dh dV n  = - g 	  

	 (6) 

(7) 
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Since V„ may be replaced by V sin 13, Eqs. 6 and 7 may be combined into 
V dB 	g  dh  or cos el = V sin ' 

dh = —1/2 tan 13 dO  	 (8) 

Assumption of Constant Specific Head.—Eq. 8 may be integrated to obtain 
the gradual change of depth with gradual angular deflections of the stream if 
the basic assumption made in the beginning of this section is next introduced 
to relate [3 and V to  h—namely, that energy dissipation may be disregarded 
for such flow in accordance with the Bernoulli theorem. Therefore:  

H  =  h  ± 2—g = constant; and, thus, V = -‘12 g(H -  h).  Since  tanig  = IT; 

sin g 	 ,7?,  	 Eq. 8 can be transformed 
-%/ 1 - sin2  - V 2  -  g h  - -‘12  H  - 3  h  

finally into 
\i2h( i_h\H 

dh 	2 (H - h) -‘rii 	H \ 	H  I  
d0 	•NI 2 H - 3h - 	,\ 1 - 3 h 2 

. (9) 

which was first established by Mr. von Kà.rmàn in 1935-1936. The exact 
integration of Eq. 9 gives  

h 	
1 	

h 	 
O 	 1    Arg-tan-1  j 2 H/3  

2 H/3 
 tan-i 2 H/3  

	

NJ  1 	h 	
2 H/3 	

0, . . (10a) 
1 	

h   

in which Oi constitutes the constant of integration defined by the condition that 
for O = 0 the depth  h  is the initial depth h1. 

Eq. 10a may also be written in an alternate form employing the Froude  
h 	3  number to express 2 H/3 --- 2 ±F2 Substitution of this equivalent results in 

Arà 	 1  
O = 	3 ta11-1 	 tan 	 el 	 (10b) 

-V F2  - 1 	-V F2  - 1 

Summary.—Before discussing Eqs. 10 and their implications any further, 
it is well to summarize the accomplishments of the theory developed up to this 
point: 

1. Assuming an initial flow defined by a definite value of F1 > 1 and char-
acterized by the assumption that  H  remains constant, it has been shown that 
a change in depth  Ah  due to any disturbance of the stream must in general 
always occur along lines or wave fronts crossing the flow at a characteristic 
angle and cannot exist for steady conditions at any other angle. 
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This wave angle e and the depth change  Ah  determine in turn a change 
in the velocity normal to the wave front. Therefore, a definite change AO 
in the direction of flow must take place under each wave front. 

As the flow crosses successive wave fronts at arbitrary distances (the only 
requirement being that they be not too closely arranged to keep vertical 

3.—P1OT OF EQS. 10 

accelerations small), the total change in direction may be related directly to 
the total change in velocity and depth between any two points along any 
streamline. Since any boundary of arbitrary curvature represents a stream-
line, the change of depth along such a boundary can be computed. Conversely, 
for any desirable changes in depth along a boundary the corresponding curva-
ture may be determined. 
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4. Since a curved lateral boundary contains the origins of all disturbance 
lines, the characteristics of which are given by Eqs. 1 to 10, the entire surface 
configuration of the supercritical flow is determined by the family of disturbance 
lines emanating from that boundary or any combination of boundaries. The 
tools by which such contour surfaces may be determined will be developed 
subsequently, and a number of applications are given in Symposium papers 
Nos. 2 to 4. 

Graphical Aids.—Returning now to Eq. 10, it is clear that a curve for the 
maximum range of 0 for all values of h/H in the supercritical range of flow 
will be useful. This range extends from 0 = 00 to 0m = 65° 53', if 01  is zero 
and if h/H is varied from a value of two thirds for critical flow to zero. Neither 
extreme is of practical interest. The curve is plotted in Fig. 3. Since in a 
specific case the value of 01  constitutes the starting point from which the deflec-
tion angle 0 is measured, it is only necessary to compute the initial value of 
hl /H to determine the value of 01  from the curve. The values of h/H are then 
read from the curve as the angles 0, of a boundary or streamline, are added to 
or subtracted from 01. It is important to note that the change in  h  may be 
positive or negative, depending on whether the boundary is curving into the 
stream or away from it. In the first case the surface will rise and in the second 
case the surface will be lowered along the disturbance lines originating at the 
boundary. Both possibilities are indicated in Fig. 3 by the arrows pointing to 
the left and right from an assumed initial value of 01. In addition to the  
h  —scale, a scale of the corresponding Froude numbers is given for convenience.  H  

The general trend of Eq. 10 may easily be recognized from an approxima-
tion based on the first term of the series for tan--1  only. The approximate 
solution, which naturally becomes incorrect for large values of h/H is given 
algebraically by 

h 

h 	— 	—01 	 H 	(11a) 2 H/3  

 

2 H/3 

 

Since the ratio h/H may be replaced in terms of the Froude number F, the 
equation may also be written for small values of h/H (that is, for large values 
of F) in the form: 

2 0 = 2 F2 	1— 1 01 —F — 	 (11b) 

It is obvious that Eqs. 11 could also be solved for h/H or for F in terms of 0 
and 01. The results given under Eq.  lia  for small values of h/H could have 
been obtained directly by neglecting  h  as compared to  H  in Eq. 9, thus simplify-
ing the differential expression to 

dh 
	 (12a)= 
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which is integrated easily into 

O 	 \ri7 = 	— — 01 	 (12b) H  
For small changes in O the approximations to Eqs. 10 are usually very close. 

If the streamlines are given, the changes in h/H or F along a streamline 
can be readily determined. Conversely, the angular changes necessary to 
accomplish desired changes in h/H or F are also easily obtained. Thus, the 
application of the equations in this form is restricted to determining the changes 
taking place along boundaries which are streamlines, as long as the flow process 
along such boundaries is not subject to disturbances propagated from other 
boundaries. In the case of most hydraulic structures this latter possibility 
necessitates the study of the interrelations of various boundaries as sources of 
disturbance lines and of the corresponding system of wave fronts. 

Characteristics of Disturbance Lines.—Any curved boundary can be repre-
sented as a series of tangents or chords with small but finite angular changes 
taking place successively. Every angular change AB thus becomes the origin 
of a line of small finite disturbance or a wave front, which will cause a change 
in depth as indicated by Eq. 9. These wave fronts will traverse the flow at a 
typical angle e, which is fixed by the Froude number F of the flow as given 
by Eq. 5 for every section of the field of flow. As long as the Froude number 
remains constant in the undisturbed flow, there cannot be any break or curva-
ture in the line of disturbance and the disturbance itself is constant along its 
line of propagation. 

It has already been mentioned that disturbance lines may indicate positive 
or negative disturbances. Henceforth, positive disturbances or positive wave 
or surge fronts will be defined as those which deflect the flow toward the line 
of disturbance and cause a rise in the water surface. A wall curved into the 
flow aid displacing fluid would be the source of such positive wave fronts. 
Negative disturbances or depression fronts are caused by boundaries curving 
away from the flow, providing larger cross sections of flow and therefore pro-
ducing a lowering of the surface and a deflection of the flow away from the 
wave front. It is clear that fixed boundaries alone can be the sources of dis-
turbance lines, and that a disturbance line cannot appear or disappear unless 
by action of a boundary or of another disturbance line. Disturbances once 
created must be propagated undiminished from one boundary to the other 
and the effect of the wave front on the flow traversed will be the same as the 
effect of the boundary itself, the same deflection and the same change in surface 
elevation being transmitted. This process may now be illustrated schemati-
cally in Fig. 4 by a flow between two parallel walls with an initial depth h1  
and a velocity VI, which at points A and B is subjected to a change in direction 
through a small angle SO—exaggerated in the sketch for the sake of clearness. 

In agreement with the theory, the disturbances to which the flow is exposed 
at A and B are communicated along only the fronts BC and AC without 
effect on the flow in the sector ABC. Along BC and along AC the flow is 
deflected through an angle M. The flow passing under BC is parallel to the 
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wall beyond point B, and its depth has decreased and its velocity has increased 
in accordance with the equations developed; in other words, it was affected 
by the negative or depression front BC. Point C, Fig. 4, is also the inter-
section with a positive or surge front, which deflects the flow passing between 
points A and C through the same angle AO. This positive front in continuing 
beyond C enters a field of flow already turned through AO, of smaller depth 
and with a higher value of F-2. It will therefore proceed with respect to the 
new direction, but at a new angle  ei  smaller than before. As a positive wave, 
it will produce a further deflection of the stream toward the front and bring 
the lower value of  h  in field F-2  back to h1, thus reestablishing the original 
value of F1  beyond CD. In turn, the negative wave front BC enters a field 
with F+2  as its hydraulic characteristic. Since the deflection AO for a negative 
front is away from the front, it tends to aline the streamlines beyond  CE  
parallel to those beyond CD, so that also beyond  CE  the normal value of F1  
is restored. Along AE and beyond, the normal depth is raised to a higher 
value, whereas between points E and  G  it drops back to below normal under 
the influence of wave BCE and its reflection. Therefore, it will alternate 
between values higher than hi  and lower than h1  all along this wall. At the 

B 	v A 0 

C 

	 F+2  
H  

F-2 - 
F+2 _S--71-F 2 

G F+2  
FIG. 4.-SMA1L SIDE-WALL DEFLECTIONS IN A RECTANGULAR CHANNEL 

reflection points of the positive wave originating first at point A, the depth 
will. be  raised; at the reflection points of the negative wave emanating from 
point B, the depth will always be lowered. In analogy to this, along the wall 
through points B and  D  the flow will alternate between zones of lower than 
normal and higher than normal depth. In zones of normal depth, in the 
center of the stream, the flow is always at an angle AB to the walls. In the 
other zones adjacent to the walls the flow is always parallel to the walls; but 
it is also seen that the flow beyond points B and A will always remain disturbed 
unless further wall-angle changes follow, which may augment the disturbances 
or may be effective in canceling them. 

Wave Interference.—Of course, by proper alinement of walls, methods of 
wave interference may be utilized to remove the undesired disturbances. This 
very possibility will be a challenge to the designer and has already led to certain 
rules in the design of various structures for high-velocity flow, as shown by 
subsequent papers in this Symposium. 

The fact that a negative wave may be canceled by a positive wave, and 
vice versa, would lead to the design of a bend as illustrated in Fig. 5. In the 
first case (Fig. 5(a)) the positive wave produced by a wall-angle change at A 
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is not immediately matched by a negative wave opposite A, but the break on 
the other wall is purposely delayed until the front starting at A arrives at B. 
Since the flow beyond AB is already deflected through an angle AO, the wall 
may be turned through AB at B without causing any disturbance at B. This 
condition may be expressed also by saying that the positive front originating 
at A is canceled at B by a negative wave, since the latter would coincide with 
the reflection of AB in B. 

The second possibility is shown by Fig. 5(b), which indicates that the same 
turn through an angle AO may be accomplished by starting a negative wave 
first at B and by delaying the break at A until this negative wave has crossed 
the channel. The possibilities of combining both methods to obtain flow 
turns with controlled disturbances which will not exceed specified magnitudes 
are easily recognized. Symposium paper No. 2 is concerned more specifically 

AO 
B 

0 	 F 
2
GF1 

I o  
A  

A 0 
B 

P1 
F /  

A 
	A 0 

FIG. 5.—GréALL SIDE-WALL DEFLECTIONS DESIGNED TO ELIMINATE DISTURBANCES 

with such problems, and with other possibilities which follow on the basis of 
the foregoing principles. It may also be added that a successful analysis 
must always very clearly be predicated on a fair prediction of the value of 
the initial Froude number F1. 

This outline was concerned with the principles of wave intersection, reflec-
tion, and interference employing an elementary case for illustration. More 
compliCated systems of curved walls may be replaced by a series of short chords 
or tangents, each one of the latter a source of a surge or a depression front. 
Combinations of wave systems are limited only by the mounting difficulties 
of keeping account of the wave characteristics through numerous intersections 
and reflections. Except for this fact a useful guide to the design of hydraulic 
structures is thus available, provided a clear bookkeeping and numbering 
system can be established and followed. 

F1  
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Successive Waves of Equal Sign.—Before discussion of such a system, a 
few furthur properties of these wave fronts may be detailed by use of Fig. 6.10 
If a number of wall sections are arranged so that successive sections as shown 
send out positive fronts only, it is clear that the wave angles 01  with respect 
to the flow between sections must increase more and more in the downstream 
direction. Ultimately, therefore, these fronts carrying small disturbances only 
must merge into larger ones imposing such height and angle changes that the 
angle /31  can no longer be approximated by Eq. 5 but must be computed from 
Eq. 4, which shows clearly that the wave velocity of a large wave is not only 
larger than -‘11.1 but even larger than 1.fg h2. Such so-called shock waves 

are discussed in detail subsequently. These difficulties are not present with 
negative or depression fronts. With decreasing depth and increasing velocity 
the wave angles [31  become smaller in the downstream direction, and angular 
deflections of the stream are away from the disturbance lines. Therefore, 
negative fronts will generally diverge, and it can easily be concluded that, 
within the framework of the basic assumptions made initially, so-called shock 
waves or disturbances with steeper and steeper fronts cannot be built up 
from successive negative disturbances of small magnitude. 

10  "Gas-Wave Analogies in Open-Channel Flow," by A. T. Ippen, Proceedings, 2d Hydraulics Con-
ference, Bulletin No. .57, Univ. of Iowa Studies in  Eng.,  Iowa City, Iowa, 1942, p. 257, Fig. 3. 
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METHOD OF CHARACTERISTICS 

To facilitate the analysis of wave systems due to continuous disturbances, 
such as those in curved channels or in channel contractions or expansions, a 
graphical method has been devised on the basis of the preceding theory with 
certain ingenious changes. This development was entirely the outcome of 
an early analysis of supersonic flow of gases by A. Busemann" and is known 
as the "method of characteristics." At the suggestion of Mr. von  Kármán  
this method was adopted in 1935 for use in the supercritical flow of water and 
was applied to the problem of flow in the curved sections of open channels 
during the analysis of the test data. Independently, Mr. Preiswerk2  studied 
water flow through channel expansions and other problems related by analogy 
to the high-velocity flow of gases. The basic equation for the graphical method 
of solving problems of supercritical flow of water is given by Eq. 9. For the 
purpose of obtaining the deflections of the streamlines as a function of the 
characteristics of the wave fronts, the ratio (h/H) appearing in that equation  

h  will be replaced by its equivalent from the Bernoulli theorem: 1 — 	-F 	 •  H 	2  g H'  
V  or with v. =  

h  Fir = 1 — r2 	 (13) 

—and d(h/H)  
df" 	= — 2 V. Eq. 9 is thus transposed into the form:  

	 (14) de — 1.13 v. 2 _ 

Eq. 14 represents the expression for an epicycloid between the circles of radii 
1/-a and 1 as the limiting values of F. Only for supercritical flow has 
Eq. 14 any physical meaning, since the denominator is zero for vi = r/(2  g H)  
= 1/3 which corresponds to critical flow, whereas the numerator obviously 
can be zero only for zero depth or V2/(2  g)  =  H.  

The curve representing Eq. 14 may now be plotted between these limits 
noting that dr/c/61  = °° for V = 1/-Nrà = 0.577 and that c/I7  /dB = 0 for v. = 1. 
The corresponding values (h/H) are two thirds and zero. Values between 
O = 0° and 61  = 65° 53' corresponding to 17  = 0.577 and v. = 1.00 are given 
in Table 1. For the drawing of the so-called "characteristics diagram" the 
curve is best transferred to a sheet of celluloid, which is then cut to serve as a 
templet between the two limiting circular arcs. The diagram may be started 
and applied as follows: In a rectangular coordinate system the space within 
a sector of, say, 46° on either side of the Pi-axis is subdivided into sectors 2° 
or 4°  in central angle, and the intervals are marked by radial lines between 
the inner and outer limiting circular arcs starting with 0° on the P.-axis. From 
each point on the inner circle the epicycloid may be drawn by the templet in 
both directions to the outer circle. In this fashion a dense network of inter- 

11..Gasdynamik," by A. Busemann, Handbuch der Experimentalphysik, Vol. IV, 1931. 
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secting epicycloids is obtained. Since the radial distance between the limit 
circles comprises all possible values of P between 0.577 and 1.00, a correspond-
ing scale of conversion to h/H may be added as shown in Fig. 7. The physical 
meaning of the diagram may be demonstrated by first assuming a flow with 
initial values of V1  and h1  or F1  for which 1-71 can be computed. The diagram 
is next alined with its P2-axis parallel to V i  in the plan of flow, in which the 
design of the boundaries is laid out. If one of the boundaries is deflected 
through an angle AO, the streamlines adjacent to the wall will turn through 
the same angle and a disturbance line will originate at this point in the flow 
plan, beyond which the flow will be in a new direction and at a new value of 
(h/H)2  or v.2. To find the latter, one must revert to the characteristics dia-
gram (Fig. 7). The initial value of  ri  laid out along the P.-axis will be near 
an intersection of this axis with the two epicycloids. If the plan of flow indi-
cates a positive disturbance, one of the branches leading inward is followed; 

TABLE 1.-VALITES OF 17  FOR PLOT OF EPICYCLOID BETWEEN 
CIRCLES OF RADIUS 1fa AND 1.0 

00 mo 6° 7° mo 13°  140  mo 20°  21°  TO 27°  280  mo 34°  350  TO 400  410  mo 460  47°1065°53' 

eVeVeVeVoi7 o f 	io V o V 
0 0.577 7 0.709 14 0.782 21 0.840 28 0.886 35 0.925 41 0.952 47 0.972 
1 0.613 8 0.720 15 0.791 22 0.848 29 0.893 36 0.930 42 0.956 48 0.975 
2 0.635 9 0.731 16 0.799 23 0.855 30 0.900 37 0.935 43 0.960 49 0.978 
3 0.651 10 0.742 17 0.808 24 0.861 31 0.905 38 0.939 44 0.963 50 0.980 

t 8.ggl g 8:77gg le 18175 U gin gl 3:glg 13 8:gU lg 8:Ugg -gr,} 
8 0.695 13 0.773 20 0.833 27 0.880 34 0.920 .. .... .. .... .... .... 

in the opposite case one of the branches going outward is followed from the 
origin until it intersects the radial line belonging to the angle of turn AO. 
The radius vector to this point of intersection represents the new value of V. 
Its direction is also the direction of the streamlines beyond the disturbance 
line in the flow plan and its magnitude at once gives the hydraulic conditions 
of depth and velocity or F2. One may thus conclude that every point in the 
characteristics diagram or in the velocity plane determines the hydraulic 
conditions in a section of the flow plane bounded by walls or disturbance lines. 
Before proceeding to extend the construction of streamline patterns in the flow 
plane, a method must be found of constructing the disturbance lines at the 
same time. For this purpose another drafting device is utilized, which is 
base on the following theoretical considerations: 

The component of the velocity normal to the wave fronts V. was assumed 
to be given by 	therefore (Vn)2  =gh=gH- V2/2 and 

V2  = 2  g H  - 2 ( V„)2 	  ...(15a) 

In accordance with Fig. 2 the velocity V can be related to V t  and V„ by 
-172 = (vt)2 	cvnr 	 (15b) 
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Introducing V' from Eq. 15a into Eq. 15b, 

2  g H  = 3 (V.)2  + (Ve)2 	  (16) 
Dividing Eq. 16 by 2  g H  gives the dimensionless components rn and rt in 

07,02 	cre)2 + 	= 1 	 (17) 1/3 	1 

Eq. 17 represents an ellipse with major and minor axes of 1 and 1/-a, 
respectively, and any radius vector from the center of the ellipse is equal to T-7  
since it is given by  •Ni  (V)2 	(Vt)2. This fact is utilized as follows in con- 
nection with the characteristics diagram: An ellipse is inscribed on a trans-
parent sheet of plastic to such a scale that the units are identical in both figures.  

1.00  

Fia.  7.—CRARACTERISTIC8 DIAGRAM; SUPERCRITICAL FLOW WITHOUT ENERGY DISSIPATION 

If the ellipse is rotated about the center, 0, so that finally the ellipse passes 
through the point Pi, which defines VI  in the velocity plane, a line drawn 
parallel to the major axis gives the direction of rfi, which is identical with the 
direction of the disturbance line or wave front in the flow plane. Therefore, 
it may be drawn through the point in Fig. 7 at which the disturbance is said 
to originate. 

An illustrative example is shown in Fig. 7 in the manner just outlined,22  
except that the point chosen for illustration is not the initial point for 0 = 0, 

12 'Gas-Wave Anidogies in Open-Channel Flow," by A. T. Ippen, Proceedings, 2d Hydraulics Con-ference, Bulletin No. 27, Univ. of Iowa Studies in  Eng.,  Iowa City, Iowa, 1942, P.  259, Fig. 4. 
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but one along the wall for 0 = 24° with the change indicated to 0 = 28° and 
with A marking the position on the epicycloid corresponding to F2 in the 
preceding discussion. 

A detailed example solved by this method for supercritical flow through a 
channel contraction is given in Symposium paper No. 3. Although the 
ultimate application of this method permits the rapid and the almost auto-
matic solution of fairly complex problems, anyone applying it must familiarize 
himself thoroughly with all its aspects and must understand the physical 
significance of the individual steps at the beginning. Almost any numbering 
system, methodically applied as the analysis proceeds, will serve satisfactorily, 
and for this reason no recommendations are made. 

HIGH WAVE FRONTS WITH DISSIPATION OF ENERGY 

Attention has already been called to the fact that a number of successive 
positive disturbance lines of small intensity must eventually merge, as distance 
from the origin increases, into a line representing a surge front of material 
height. The exact equation for the velocity of such a wave of finite height has 
been given as Eq. 3 which shows that the wave velocity or celerity is even 
larger than that for a small disturbance traveling at the larger depth. Con-
sequently the wave angle is larger too in accordance with Eq. 4. 

Under the heading, "Method of Characteristics," the wave angle  ei  was 
approximated by the value of sin-' 1/F neglecting the wave height. This 
section will deal with the modification of the theory due to finite and consider-
able wave heights, especially with respect to the angle/3i  at which such a large 
front will assume a steady or "standing" position. Also, the previous assump-
tion of constant energy has to be modified, since energy dissipation is associated 
with wave fronts of considerable height. However, for many practical cases 
this modification is still of minor consequence. Basic material for this section 
was developed by Mr. Rouse and M. P. White," M. ASCE, early in 1937. Mr. 
Preiswere adopted Mr. Busemann's shock-polar diagram for use in the hy-
draulic analogy of supersonic flow in 1938. As before, the problem is the corre-
lation of the wave angle 01 as defined by Eq. 4 and of the angular change 0 
accomplished under every standing wave. Fig. 2 may again be referred to 
except that in keeping with the-purpose of this section the angle change AO is 
replaced by 0, thus acknowledging that large deflections are accomplished by 
large changes in depth under the wave front. 

From the geometry of the vectors the angle 0 may be related to 	by:  
Vnl 	Vn 	 hi  

V el — 	tan 	
2

—  ,inwhieliVn2eanbereplacedbyV„2=—V7,1 
tani3i 	(el  8) 	 h2 

from the continuity equation. Therefore, 

	

tan ([31 — 	_ 	 (18) 

	

tan /33. 	h2  
and, solving Eq. 18 for 0, 

tan e = 
tan a, (I — who  	 (19a) 1 + hi/h2  tan2131 

"Fluid Mechanics for Hydraulic Engineers," by Hunter Rouse, McGraw-Hill Book Co.,  Ine.,  New 
York, N.  Y.,  let Ed., 1938. 
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Eq. 19a can be reduced to a simpler expression if the variations of h1/h2  
and  ei  occurring in practice are introduced. Thus, for values h1/h2  = 2/3 to 
1/3 and 131  = 100  to 350, only a small error results if Eq. 19a is reduced to 

tan 0 = (1 — ) sin 01 	 (19b) h2  

In agreement with Eqs. 4 and 19a the wave angle (31  and the wave height 
are fixed for a given Froude number F1  and a given deflection angle O. Eqs. 4 
and 19a can be combined into one by solving for h1/h2 as follows: 

	

h2  — 1 -F 8 (F1)2 	— 1 
	 (20a)  

hl 	tan f3i  — 	tan 0  
h2 	tan 01 + tan 	 (20b) tan2  01 

Equating Eqs. 20 and solving for tan 0 gives a very useful expression with-
out h1/h2  but containing the initial Fronde number F1: 

tan  ai  ( '/1 + 8 (F1)2  sin2 ei — 3)  tan 0 — 
2 tan2 01  — 1+ •V 1 	8 (F1)2  sin2 01 
	 (21) 

Normally the deflection angle 0 as well as the initial value of the Froude 
number F1  would be given by design. For this case it is practical to plot 
Eq. 21 and to solve graphically for the angle el, since the solution of the 
equation for 131  in terms of F1  and 0 becomes rather involved. With i3i  known 
it is an easy matter to determine h1/h2  from Eq. 20a or from its graphical 
form. If the latter values are too large for the design in question, the wall or 
deflection angle 0 must be reduced and the process of computation is speedily 
repeated with graphs such as Fig. 8. 

The limiting values of 0 for which the flow passes into the subcritical state 
below the wave front are of considerable interest. For their determination an 
expression would be needed involving the Froude number F2 below the wave 
front. The latter can then be given the value of unity for critical flow and the 
corresponding quantities for the other variables may be computed. Since a 
direct relationship between 0 and F2 becomes rather involved algebraically, it 
is preferable to correlate h2/h1, F2, and F1  whereupon, by use of Fig. 8, the 
pertinent values of 0 and 131  are easily read from the curves. 

Making use of a geometric condition evident from Fig. 2, since (V11)2  
(Vg2)2, one obtains 

(Vn1)2  — ( Vn2)2  = (V1)2  — (V2)2 	 (22a) 

hi The continuity equation yields Vn2 = —h2 
V.i, whereas Eq. 2, based on the 

momentum relation, results in V.1 -- -%Tii 171 Ni_l h2 
 \
(1 4.  §) 

2 hi 	hi . By definition 

h1 	 2 

and 



1 

600  500  40° 30° 200  10° 
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F1  = V1hl  g  hi  and F2  = V2h1  g  h2 , so that, after various substitutions, 
Eq. 22a assumes the following form: 

(F2)5 	/e2  [(F1)' — 	— 1)(hh2; + 1)2] 	 (226) 

Eq. 22b establishes the relationship between F1, F2, and h2/h i  for stationary 
wave fronts, its graphical solution having been added in the fourth quadrant in 

„ 
FIG. 8.-GENERAL RELATIONS FOR F1 VERSUS 11, p, - AND F2  

hl  

Fig. 8, in which the critical values for F2  = 1 are easily located as the inter-
sections of the line fur F2  = 1 with the lines F1  = constant. 

A second critical condition exists for a wave angle el of 90°, which reduces 
Eq. 4 to the relation between F1  and h2/h1  familiar from the right hydraulic 
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(F,)2  = he (1 + 	 .(23a) 

ha — = — 	2 (F1)2 + = ( 1 + 8 (F1)2 - 1) 	 (23b) hi 

Mr. Rouse has presentedu a further version of Eqs. 19a, 21, and 22b giving 
the deflection angle 0 in terms of h2/h1 and /91. 

Physical Significance.—For the purpose of this discussion a few points con-
cerning the physical meaning of Eqs. 20 to 23, and of Fig. 8, may be stressed, 
to clarify some of the results of the analysis that cannot easily be established 
mathematically. Subsequently, they will be demonstrated graphically by a 
somewhat different analytical attack. 

The angle 0 is related to eh in Eq. 21, which is represented in the second 
quadrant of Fig. 8, in such a manner that 0 varies from zero to a maximum 
and again to zero as 131  increases for any given value of the Froude number F1 
from its minimum value of sin--1  1/F1  to 90°. When 131 = 90° and simul-
taneously 0 = 0, the wall deflection cannot be the cause of the standing wave 
or jump. The standing wave, therefore, is dependent on some downstream 
disturbances, as soon as the flow balow the wave front passes into the sub-
critical state, which is true for the right hydraulic jump, formed only under 
certain conditions downstream from the jump. It would seem further that 
flow parallel to the wall at an angle 0 for subcritical conditions will only be 
accomplished if the downstream disturbance, combined with the wall deflec-
tion, produces a wave height of the correct magnitude, which can be computed 
from Eqs. 20 to 23. In other words, the equations as given no longer determine 
the wave angle AL uniquely for a given wall angle and Froude number F1  if the 
flow is subcritical below the wave front with F2 < 1, since the wave height is 
subject to downstream disturbances. 

The exception to the latter statement is the case in which the value of F1  
approaches a value of unity as the value of 0 increases to ± 0, so that the 
slightest disturbance would cause a wave front at 90° to the oncoming flow; 
however, this point is purely a philosophical one. 

In most practical eases the hydraulic designer will avoid wall angles causing 
the flow to pass through the critical state or even to approach that state, 
since little dependence can be placed on the theory when the slightest violation 
of the basic premises of the theory or inaccurate knowledge of F1, for instance, 
may cause a hydraulic jump that travels upstream:. 

Furthermore, a single wave front is seldom met in practice, and the flow 
pattern will be determined by intersecting waves and reflections of the waves 
from opposite walls. These phenomena place severe limitations on practical 
wall angles, if supercritical flow is to be maintained throughout a structure. 

Returning to Fig. 8 it is seen that, for any given hydraulic conditions and 
geometry of channel walls, the unknown quantities are quickly obtained. 
For instance, if F1  and 0 are known, e, can be read off immediately as can 
h2/hi  and F2. If the wave front seems too large, then for any desirable value 
of h2/hi  and the given value of F,, the corresponding values of /31  and 0 are 

1310 

jump: 

or 
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found. If the wave is reflected, the value of F2 must be known in order that 
the process may be repeated. 

Magnitude of Energy Dissipation.—In contrast to the small changes in 
depth due to gradual lateral deflections of the stream along walls of small 
curvature, sudden changes in depth, characterized by the appearance of steep 
standing wave fronts, are subject to energy losses, which may be computed 
next. The head loss for the flow through a standing wave or jump is easily 
expressed by the difference in the specific heads: H1  — H2 =  AH;  or (h1 — h2) 

(v1)2 _ (v2)2 
2  g 	àH. Making use of Eq. 22a and of the momentum and 

continuity equations, the velocity-head terms may be eliminated and the head 
loss may ultimately be expressed as 

h2  
AH 	 1 ( hi  —  

— 4 	h2 
/71 

	 (24) 

The head loss remains surprisingly small even for large values of h2/h1. Al-
though the head loss is expressed in terms of h1  (which, for supercritical flow, 
forms a small part of the specific head), the loss remains a small quantity up to 
values of h2/h1  = 2 and for this value it is only one eighth of the initial depth 
h1. The ratio of AH/hi  reaches unity for values of h2/h1 -= 3. However, as 
the possibilities of higher values h2/h1  presume higher Froude numbers F1, the 
depth h1  forms a smaller percentage of the total head H I. Therefore, head 
losses do not increase as rapidly for larger values of 112/h1  as the ratios AH/hi  
indicate. 

The important fact for practical design is that, in general, head losses up to 
the ratios h2/hi  = 3 remain rather small and often may be neglected, since 
their influence on downstream wave angles remains within the limits of accu-
racy set by other approximations made in the theory. It seems that in prac-
tical design this limit of h2/h1 = 3 will seldom be exceeded. 

SHOCK-WAVE INTERSECTION AND REFLECTIONS 
Limiting wall angles, as given in Fig. 8, should never be approached, since 

the flow in a structure will seldom be determined by the first wave front alone. 
Reflections on opposite walls and intersections with other wave fronts will 
have an important role in regard to the character of flow downstream from a 
disturbance. Various possibilities of basic character will therefore merit dis-
cussion. At the outset it may be stated, however, that the following discussion 
is limited to the range of wave heights mentioned in the preceding paragraph 
as being little affected by energy losses. Figs. 9 and 10 illustrate, in plan, the 
following cases to be discussed in order: 

1. Reflection of shock wave at opposite wall; 
2. Intersection of shock waves: 

Of different intensity; 
Of equal intensity; 

3. Convergence of two shock fronts; and 
4. Shock front and negative deflection waves. 
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1. Reflection of Shock Wave at Opposite Wall.—The first case given by 
Fig. 9(a) is the easiest of the four. The flow below the first front AB can be 
determined from Fig. 8 since the angle of deflection O is given. As the wave 
arrives at the opposite wall at point B, the new angle of deflection is the angle 
of this wall relative to the flow downstream of AB. If this angle happens to 
be zero, the disturbance is almost wiped out; if the angle is positive, point B 
will be the source of a wave front determined again from Fig. 8 on the basis of 
flow parallel to the wall below point B crossing the flow to point C, where the 
process is then repeated. In the example in Fig. 9(a) the opposite wall remains 
parallel to the original direction of flow. Therefore the flow below front AB 
is again deflected through the same angle O and the change from F2 to F3 is 
determined for this angle from Fig. 8. Each reflection brings the flow closer 
to subcritical conditions and eventually the wave angle will be 900  unless new 
energy is supplied. 

9.—SHOCK-WAVE ANALYSIS; CONVERGING 	FIG. 10.—SHOCK-WAVE INTERSECTIONS FOR 
WALLS 
	

SUCCESSIVE WALL DEFLECTIONS 

et. Intersection of Shock Waves of Different Intensity.—The second case 
illustrated in Fig. 9(b) is somewhat more difficult. When two shock waves 
meet, each one thereafter will proceed with respect to altered flow conditions. 
Section AB must be adjusted from F1  to F2 and section A'B from F1  to  Fg.  
The intensities of the two waves in the following sections BC and BC' are not 
known and must be determined from the fact that the flow conditions below 
either one are identical. The flow below BC must have the same depth, 
velocity, and direction as the flow below BC'. Remembering that for most 
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cases the energy dissipation may be neglected in the first approximation, the 
new direction of flow in the field F4  may be determined simply as the difference 
of the angles O in fields F2  and Fs. In most cases the waves BC and BC' 
determined on the basis of this first assumption will result in values of F4  
from Fig. 8 which require little adjustment. The approximation becomes 
better as the two waves differ less in intensity and deflection angle. 

2b. Intersection of Waves of Equal Intensity.—In the case of two waves of 
the same intensity and deflection angle the solution is obvious. The conditions 
are the same as if a wall were placed along the center line, and the solution is 
immediate. The shock-wave system on either side of the center line is identical 
with that illustrated in Fig. 9(a). 

Convergence of Two Shock Fronts.—Fig. 10(a) presents the case of two 
converging shock waves, starting on the same side of the wall at points A and 
B and meeting in point C. The two jumps combine into a single jump CD 
which produces a head loss higher than the sum of the head losses by wave 
fronts AC and BC. If no difference in head loss existed, the solution would 
be simple; the direction of flow would be the same downstream from BC as 
it is downstream from CD, and the same Froude number F3  and total deflection 
angles would exist in this field of flow. This approximation will always be a 
good one. If more accuracy is warranted, it must be considered that the head 
below CD must be lower than that below BC and that therefore the inter-
section point C must be the origin of a depression wave CD' which forms the 
boundary between two fields of flow characterized by F3  and (F3)' with (F3)' > 
F3. The intensity of the depression wave must be such that by trial and error the 
combined effect of fronts AC and BC and of the depression wave CD' is iden-
tical with the effect of the combined front CD; that is, to either side of a stream-
line drawn through C the Froude number is (F3)' and the deflection angle is 
(03)' instead of 03  with (03)' > 03. In other words, the effect of the convergence 
of the jump is a slight additional deflection ((93)' — 03) of the flow away from 
the wall below the intersection of the depression wave CD' with the wall. 

The depression wave could be treated further according to the methods 
previously introduced under the heading, "General Physical Background," 
on the basis of zero energy loss. The effect of CD' cannot be large since, in 
agreement with the properties of depression waves discussed previously, 
negative shock waves are not possible. 

Shock Front and Negative Deflection Waves.—This case involves Fig. 10(b) 
where a positive wall deflection is followed by a negative deflection of finite 
magnitude. The finite negative deflection of the wall is the origin of a number 
of depression waves BL, BM, BN, BO, etc., of small intensity as shown in 
Fig. 10(b), some of which will be able to intersect the positive front AC. The 
faculty of deflecting the flow through a certain small angle AO, which each de-
pression wave is assumed to have, is not impaired by its intersection with a 
positive front, since no energy change is involved. In most cases, however, 
only a few of the negative waves will reach the jump within a finite distance, 
and usually reflections from opposite walls take place beforehand. Thus, a 
combination of positive and negative wall deflections will always cause large 
total disturbances of the water surface, with the exception of the case in which 
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a positive wave from the opposite wall and of comparable deflection intensity 
arrives at the point of origin B of the negative disturbances. 

In concluding the discussion of problems concerning intersections and reflec-
tions, combinations of steep wave fronts and of small positive or negative dis-
turbances may be mentioned very generally. Since small disturbances can 
be treated without energy dissipation, their influences may be superposed 
directly on the field of flow subject to the action of steep wave fronts. 

POLAR DIAGRAM OF SHOCK-WAVE CHARACTERISTICS 
Although Fig. 8 contains, in a convenient form, all possible values of the 

variables involved in the treatment of steep wave fronts or shock waves, it 
can be used only indirectly for plotting streamline patterns for flow fields 
with a shock-wave system. The analysis of shock waves in supersonic gas 
dynamics has been based, therefore, on the so-called shock-polar diagram as 
developed first by Mr. Busemann.0 As its name implies, the shock-polar 
diagram represents a polar plot of all possible values of the dimensionless 
velocities upstream and downstream from a shock front similar to the plot of 
the same velocities on the basis of constant energy. However, since the energy 
does not remain constant through the finite jumps, the jump-polar diagram 
cannot be made of such universal character. The basic difference lies in the 
fact that the dimensionless velocity V, = -171/-ai H1  will change below a 
jump of deflection intensity O to the value V, = -v2/v-2 gx1, which is no longer 
identical with V2/ij 2  g  H2  since H1  > H2. Since curves may be plotted only 
for F2  (that is, for dimensionless velocities V, in terms of H1), the values of 
V2 cannot be used to find r3  below a subsequent jump 2-3. The velocity 172  
must be adjusted below the jump, before the diagram can be used again, by 
multiplying the value r2  obtained from H1/H2  which is always larger than 
unity. A new initial value of I72 	= (V2)' is found, which may then 
be used to determine I; in terms of H2. Thus, adjustments must be made 
continuously in accordance with changing values of  H.  The second difference 
appears in the fact that the wave celerity for finite jumps must be considered 
on the basis of Eq. 3, modifying the wave angles e, in conformance with Eq. 4. 

The construction of the shock-polar curves requires the transformation of 
the foregoing basic equations by introducing the x-component and the  y-com-
ponent of the dimensionless velocities V, and 172. Following the geometry of 
the vector diagram of Fig. 11, 

V1 (r.1 — r.2) = V i  (r.1 — r.2) 	 (25a) 
and 	

(rm — rn2)2  = r2)2 	(V1 	17.2)2  	 (25b) 

All the velocities have been divided by -Nr2 ii-r1, as indicated by the bar over 
the velocity components. In addition to Eqs. 25, the momentum relation as 
stated in Eq. 2 and the continuity equation as given in Eq. 1 are available 
while, as a fifth equation, the energy equation is used for the definition of the 

initial energy as H1 = h1 	(V.1)2 
2g ' • OT 



Epicycloids 
Jump  Polars  

PLAN OF FLOW 
IN x-y  PLANE 
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hl 	- 1 = — -I- (V.1)2 	 (26) 
Hi 

Thus, all terms containing hi, and h2  as well as V.1  and Vs2 can be replaced in 
terms of V,„ and V, resulting ultimately in an equation for ry2 as follows:14  

(F2)2  = 07.02  (1 — 

x 	 .../1 _ (F.02  

..\ii 
	 (27) 

_ (r.,)2 ± 4 ( 7.1)2 (1 _ Él
i

v" )  

The curves of possible values of Vti 2 and ra2 are shown in Fig. 11 for a system-
atic set of values of r.1  varying from a maximum of 171/1,g7712  = 1 to 
V1/ Nrrg  Tril  = 1/ Irà.  as a minimum for critical flow." A radius vector to 

PIG. 11.—EXAMPLE SHOWING THE  Usa  OF THE POLAR DIAGRAM, WITH V01 = 0.9 AND O = 200  

any intersection with a curve beginning at a certain value of VI = rz, will 
give, immediately, the only value of r2  possible for the assumed direction, 
whereupon V2 will be known since I/2  is given initially. Remembering also 
that  Vei  = Vt2 and that the direction of these components represents the direc-
tion of the wave front, the latter may be transferred to the plan of flow as was 
done for the characteristics diagram in the example given. The same ellipse 
may be used if a graphical method is desired. 

" "Gas-Wave Analogies in Open-Channel Flow," by A. T. Ippen, Proceedings, 2d Hydraulics Con-
ference, Bulletin No. 27, Univ. of Iowa Studies in  Eng.,  Iowa City, Iowa, 1942, p. 262, Eq. 20.  

,g  Ibid., p. 261, Fig. 8. 
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Only one wave front may be found at one time. With every value of r2, 
of course, belongs a new value of specific head, since H2 < H1, which has to 
be computed next as does the corresponding depth h2. It may be sufficient to 
remind the reader of Fig. 8 (which relates, in a comprehensive manner, all 
pertinent variables) to indicate that curves of H 2/H 1  and h2/h1  could be plotted 
also as polar curves similar to the 172-curves in Fig. 11. Since shock fronts are 
usually not very numerous in a plan of flow, it is felt that a completely graphical 
solution does not offer advantages as great as does the method of characteristics, 
where the solution requires the drawing of a multitude of disturbance lines. 

It may be noted that the polar curves for a wide range of V1-values agree 
quite closely with the epicycloids of the characteristics diagram as indicated 
in Fig. 11. One outstanding difference is the fact that the polar curves extend 
into the subcritical range and therefore within the circle of critical velocity 
with radius r = 1/ -Nrj. As is also evident from Fig. 8, there is a maximum 
deflection angle O for every curve (that is, for every initial value r.1 = 17), 
which falls within the subcritical range of flow below the wave front and is 
subject to the restrictions discussed earlier in this treatment. The points r2 
for O = 0 lying on the  ri-axis, within the range of subcritical flow, represent 
the  Vr-values for the right hydraulic jumps. 

It is desired to obtain the value of r2  in magnitude only, since its direction 
must be parallel to the deflected wall. In addition, the location of the  shock-
wave  front (below which all flow is deflected through the angle 6) is to be 
determined. For this purpose, the  ri-axis of the polar diagram is alined with 
the direction of flow r.1 in the plan of flow. A line parallel to the deflected 
wall is drawn in the polar diagram from the origin to its intersection with the 
polar curve starting from the given r.1 = 0.90. The length of the line repre- 
sents 172, which is 0.72 = V2/ eiv-i so that V2 is known. Through the ends 
of r.1 = 0.90 and r2, the direction normal to the wave front is found; and the 
line normal from point 0 to this direction represents the wave front. The 
latter may then be transferred to the plan of flow, starting from the break on 
the wall. If another deflection is to be investigated below the first one, Hg 

must be found and an adjusted value of (r.2)' = -vil-%.7r2 determined. 
The  ri-axis is to be alined again with V2, and the former steps are then re-
peated. The treatment of wave front intersections and reflections can be 
easily adapted to the shock-polar method on the basis of the preceding discus-
sion. 

SUMMARY 
The fact that boundary-layer influences and nonuniformities of the velocity 

and pressure distributions are disregarded in the theory imposes certain 
limitations which are discussed in detail in the Symposium papers dealing 
with specific practical applications. In general, it may be said that viscous 
forces do not seriously disturb the basic systems of disturbance lines and of 
finite wave fronts. Vertical accelerations are usually also of secondary order 
of magnitude in structures to which the elementary theory applies, since 
changes in the flow patterns discussed are the result of changes of the lateral 
boundaries only. The extension of the theory to cases of accelerated motion 
due to changes of specific head must be reserved for future discussion. 
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The assumption of a sudden change of flow conditions under a wave front 
was made for the convenience of analyzing wave systems and does not corre-
spond to physical reality. Shock-wave fronts, especially, represent a finite 
change in velocity and depth and therefore extend in nature over a consider-
able distance in terms of depth. The hydraulic jump may be cited to illus-
trate this point. Nevertheless, the ultimate change accomplished by these 
standing waves is still as computed by the basic theory. The local phenomena 
become important only where the dimensions of the hydraulic structure 
concerned are small compared to the length of the transition zone. As a 
practical example a bridge pier may be cited, which causes standing waves 
comparable in height and length of transition to its own dimensions. Informa-
tion on the transverse extent of hydraulic wave fronts is yet to be obtained 
experimentally and is tied in with the problems of boundary-layer growth and 
of vertical accelerations. Another more serious effect of viscous forces may 
be mentioned: As changes in velocity and depth occur, the balance between 
gravity and viscous forces existing for uniform flow is disturbed. Minor 
changes in specific head will result, which are not considered in the elementary 
theory. The effect of such changes is negligible only for local phenomena, but 
it is cumulative over a long distance. A small change in wave angle, for 
instance, will cause only a slight shift of the point of the first reflection of a 
wave, but the nth reflection point is displaced n times more than the theoretical 
one. Thus, longitudinally extended systems of waves may become subject to 
considerable differences by interference downstream from the original dis-
turbance. 

Except for these secondary physical phenomena which the basic analysis 
neglects, the elementary theory has contributed the following: 

The primary features of supercritical flow have been rationalized on 
the basis of accepted principles of mechanics. 

The general characteristics of the standing wave patterns have been 
developed systematically. 

The basic requirements for sound high-velocity structures can be formu-
lated qualitatively for the different types, and the effects of various designs 
can be visualized. In general, the aim of design will be toward elimination of 
large surface disturbances. 

Surface disturbances can be subjected to a detailed quantitative analysis 
for given designs with respect to local phenomena, and basic formulas have 
been derived for this purpose. 

The findings of the theory have been used to develop systematic graphical 
procedures for the solution of complex problems. 
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DESIGN OF CHANNEL CURVES FOR 
SUPERCRITICAL FLOW 

BY ROBERT T. KNAPP," M. ASCE 

SYNOPSIS 
Characteristics of flows around curved sections of open channels at velocities 

greater than the wave velocity (that is, F > 1) are discussed in this paper. In 
simple curves such flows produce cross-wave disturbance patterns which also 
persist for long distances in the downstream tangent. These disturbance 
patterns indicate nonequilibrium conditions whose basic cause (when F > 1) 
is that disturbances cannot be propagated upstream or even directly across the 
channel. Thus, the turning effect of the curved walls does not act equally on 
all filaments in a given cross section and equilibrium is destroyed. The paper 
outlines two basic methods of eliminating these disturbance patterns. Ana-
lytical design criteria are developed, and experimental verifications of the 
analyses are presented. The first method consists of applying a lateral force. 
in such a way that it acts simultaneously on all filaments, causing the flow to 
turn without disturbing the equilibrium. Bottom banking supplies such a 
lateral force, and a series of vertical curved vanes across the channel has 
roughly the same effect. The second method employs interference patterns 
introduced deliberately at the beginning and at the end of the curve. Com-
pound curves, spiral transitions, and sills all operate on this principle. Rec-
tangular channels are uniquely suited to the interference method of treatment, 
since for a given channel the wave patterns are substantially independent of 
the flow. Trapezoidal and other nonrectangular channels should be avoided 
if possible, unless the flow is invariant. The fields of application of the different 
treatments are discussed briefly. 

DESCRIPTION OF FLOW AROUND SIMPLE CURVES 
IN RECTANGULAR CHANNELS 

One of the common types of curves in normal use for subcritical and super-
critical velocities is the simple curve of constant radius in a channel of rectan-
gular cross section. For all subcritical velocities this design is quite satis-
factory. For supercritical flows, it is not satisfactory. Fig. 12 shows the 
surface appearance of such a curve. Very strong cross waves occur within 
the curve and persist for a considerable distance downstream. This type of 
behavior could have been predicted from the principles presented in the first 
Symposium paper. Thus, an examination of the mechanics of the flow shows 
that the only forces acting on the fluid to cause it to change its direction origi-
nate, and are applied, at the walls. At the beginning of the curve the elements 
next to the outer wall are forced to turn because the wall curves toward them. 

16 Director, Hydrodynamics Laboratory, California Inst. of Technology. Pasadena, Calif. 



FIG. 12.—CROSS-WAVE DISTURBANCE PATTERN BELOW 
A SIMPLE CURVE 
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The elements next to the inner wall are induced to turn since this wall curves 
away from them and leaves them without support. However, the elements 
in the interior of the flow are unaffected at first. They continue to move in 
the original direction until the wall forces have had time to propagate across 
the channel far enough to act upon them. These wall forces appear as pressure 
differences and as such are propagated at the velocity of a surface wave in the 
channel. Fig. 13 is a diagram of such a curve having a mean radius, r. The 
point A is the beginning of curva-
ture of Lhe uuLei wall."  Tho  first 
small disturbance caused by this 
curvature will be propagated along 
the line AB. Similarly, the initial 
disturbance produced by the inner 
wall is propagated along the line 
AIB. All the flow upstream from 
the boundary ABA1  is unaffected 
by the curve and thus continues to 
move in a direction parallel to the 
upstream tangent. Beyond point 
B the disturbance originating at A 
on the outer wall is no longer prop-
agated in a straight line since the 
flow in this region is moving in a 
curved path under the influence of 
the inner wall. The dotted line, 
BM1  indicates the path of propa-
gation. Similarly, the disturbance 
originating at A1  is propagated on 
the path BM. Thus, four regions 
of flow can be delineated as follows: 

The region unaffected by either wall, lying upstream from ABA1; 
The region affected by the outer wall only, within ABM; 
The region affected by the inner wall only, within AIBMI; and 
The region affected by both walls, downstream from MBMI  

Along the outer wall the fluid surface rises continuously from A to M since an 
increasing force from the wall has been required to turn the increasing amount 
of flow acted upon by this wall. At point M, however, the force from the 
inner wall begins to act. The combined force from the two walls is more than 
that required to keep the flow turning with the same curvature as that of the 
channel. Hence, the pressure, and consequently the liquid surface along the 
outer wall, begin to drop. The reverse condition holds on the inner wall. The 
liquid surface drops continuously from A1  to MI. At the latter point the effect 

17 "Curvilinear Flow of Liquids with Free Surfaces at Velocities Above That of Wave Propagation," 
by R. T. Knapp and A. T. Ippen, Proceedings, 5th International Cong. for Applied Mechanics, Cambridge, 
Maas., 1938, p. 533, Fig. 1. 
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FIG. 13.—DIAGRAM OF FLOW ENTERING A 
Guava 

dined channels since, if the flow 
the friction. 

With these assumptions, and 
Mr. von Kàrman6  derives 
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of the outer wall comes into play and therefore the surface begins to rise again. 
It is evident from Fig. 12 that conditions do not become stabilized when the 
difference in elevation between the outer and inner walls is again just sufficient 
to cause the flow to turn with the channel curvature. This equilibrium also 

is passed through rapidly. The surface 
continues to drop along the outer wall and 
to rise along the inner wall to new maxima 
and minima located at each reflection 
point of the continuing disturbance paths 
ABM,— and AIPM (Fig. 13). These re-
flections will conform to the normal laws 
of wave mechanics. Maxima will occur at 
all reflection points of the continuation of 
the path AIBM and corresponding minima 
will occur along the continuation of ABM,. 

CALCULATION OF LIQUID SURFACE PRO-
FILES ALONG THE WALLS 

In order to calculate the liquid surface 
it is necessary to define the assumptions to 
be used. In the general case, these in-
clude: (a) Two-dimensional flow, (b) con-
stant velocity across the cross section, (c) 
horizontal channel, and  (d)  frictionless 
flow. Assumptions (c) and  (d)  do not ex-
clude the application of the results to in- 

is in equilibrium, the slope compensates for 

the principle of the conservation of energy, 

O 	 h  = -‘rà sin-1  \i  2 	H/3 
sin-I 

2(Hh—  h) 
 + (a constant) 	 (28) 

from which the change of depth along the walls at the beginning of the curve 
can be calculated.'s Angle O is the angle of turn of the channel wall. Positive 
values of O signify a turn toward the channel axis. Eq. 28 is not very con-
venient to use analytically, although this difficulty may be overcome by using 
it in a graphical form. A study of the experimental data for a series of flows 
of this type suggests a simplifying assumption. On the basis of the dual condi-
tions, just specified, of frictionless flow and conservation of energy, the velocity 
in any filament must change as the depth changes, since the sum of the depth 
and the square of the velocity must remain constant. The flow around the 
outer wall, being the deepest, should be the slowest. Measurements indicate, 
however, that the velocity around the outer wall remains constant, or even in- 

ni  "Curvilinear Flow of Liquids with Free Surface at Velocities Above That of Wave Propagation," 
by R. T. Knapp and A. T. Ippen, Proceedings, 5th International Cong. for Applied Mechanics. Cambridge, 
Mass., 1938, p. 532, Eq. 3. 
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creases slightly, whereas along the inner wall it decreases. The deviations are 
caused by the varying effects of friction on the different elements of the channel. 
These measurements justify the replacement of the condition of conservation 
of energy with the approximation that the magnitude of the velocity remains 
constant. For high-velocity flow the depth represents a comparatively small 
fraction of the specific head; therefore any possible change in depth can pro-
duce only a relatively small change in velocity. On the basis of this assumption 
the expression for the depth,  h,  can be derived in the following manner: Con-
sider an open channel with liquid flowing in it at a velocity, V, and a depth,  h.  
If the velocity, V, is supercritical—that is, if V is greater than -Nrg 	pressure 

1571  disturbance can be propagated only at an angle fl = sin-1 	to the direction V 
of V. If such a pressure wave is propagated across the channel (say, as the 
result of the liquid encountering a slight bend in the channel), the pressure 
difference will act normal to the wave front—that is, normal to the angle  fi.  
The effect of the pressure difference at the wave front on the velocity, V, will 
be equal to the change in momentum of the flow normal to the wave front. 
Thus, if the angle of turn is dO, the change in depth produced by this change in 
angle can be expressed as follows: 

dh_ 
dO  

I -Vn dV„  I 	g dO 	 

By Fig. 13 V. = V sin 13; and, assuming V constant, 

dV. = V cos et dO  

Eq. 30 assumes that d0/2 is small compared to e. 
dh 	V 2  . = 	sin  fi  cos  fi  

Eq. 29 now becomes 

 

Introducing in Eq. 31 the relationship previously defined that sin e =  
and the expression that follows directly from it, that tan 13 = 1,17i/11 V 2  -  g h,  
Eq. 31 may be transformed to 

dO - 	 

\  g  
If Eq. 32a is integrated from 0 to 0, 

h  = 	sin2  (e, +Pi ) 	 (32b) 

in which  fil  is the original wave angle corresponding to the depth, h1, upstream 
from the disturbance. 

Eq. 32b is much simpler than Eq. 28 and gives results agreeing equally 
well with experimental measurements for high velocities. It must be re- 

dh  (32a)  
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membered that Eq. 31 is an approximation. However, Eq. 28 is also an 
approximation, because, among other things, it assumes a constant velocity 
across the cross section at the entrance to the curve. In the actual case this 
velocity is not constant. It should be possible to calculate the water-surface 
profile on the basis of actual velocity distribution instead of utilizing this as-
sumption of constant velocity. However, in most cases the requirements are 
not rigorous enough to demand this refinement. 

There is a close relationship between the wave angle, e, and the Froude 
number, F; and sin p is simply the reciprocal of F. Thus either can be used to 
characterize the state of the flow if the velocity is greater than the critical 
velocity. The Froude number is more generally used because it retains its 
significance for subcritical velocities as well as for supercritical ones since 
physically it is simply the ratio of the flow velocity to the velocity of propaga-
tion of a wave with respect to the fluid. On the other hand, the wave angle,  
fi,  has no significance for submitical flow since under these conditions it does 
not exist. 

Neither Eq. 28 nor Eq. 32b gives the law locating the maxima and minima 
along the walls, because they do not contain the factors that determine these 
locations. Fig. 13 furnishes a basis for estimating their location. As pre-
viously stated, the first maximum on the outer wall occurs at point M, which is 
the reflection point of the disturbance which originates at Al. The path is 
straight from point Al  to point B since the water depth, and hence the wave 
velocity, is constant. From point B to point M the path is curved, because 
the water depth (and therefore the wave velocity) is increasing, and also 
because the direction of flow has been changed by the effect of the outer wall. 
The path BM may be computed by the methods outlined in the first Symposium 
paper. Usually it is sufficient to estimate the location of the first maximum 
and minimum by assuming that they occur at intersections of the line  OC  
with the outer and inner walls. Fig. 13 shows that 0. represents a half wave 
length of the disturbance pattern. Its value is given by the expression: 

b 0. = tan-4  

Therefore, subsequent maxima should occur at 3 00, 5 0., etc., along the outer 
wall. If by some method the wave pattern could be eliminated and the flow 
brought to equilibrium within the curve so that the difference iù depth between 
the inner and outer walls would just produce the pressure required to balance 
the centrifugal force, the difference in depth across the channel would be 

V 2  b — h1 = 

The depth along the outer wall should be  h.  + 	b. For 0 = 0. (first maxi- 

mum on the outer wall) Eq. 32b gives nearly twice this depth. The disturbance 

(r -I- 12) tan'.'13. 2 

 

r g  
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pattern that oscillates about the equilibrium depth, therefore, has a wave 
v2 b 

length of 2 0. and an amplitude of — 2 r  g  

DISTURBANCE IN DOWNSTREAM TANGENT 
The disturbance pattern (that is, the pattern of cross waves superimposed 

on the equilibrium superelevation) continues into the downstream tangent. 

The wave length now becomes 2 b
tan 130. Furthermore, because of the sudden 

V 2  b 
change of curvature, a new disturbance of amplitude 2—r  g  originates at the end 

of the curve. This new cross-wave pattern has a maximum on the outer wall 
(at the point of tangency). The wave length is the same as that of the original 
disturbance, since it is determined by the same factors. The resulting dis-
turbance pattern in the downstream tangent is the sum of these two patterns. 
In general, they are out of phase and the resultant pattern is dependent on the 
phase angle. Thus, if a simple curve at equilibrium discharges into the down-
stream tangent, the resulting disturbance pattern will have an amplitude of 
v2 b 

with a maximum occurring on the outer wall at the end of curvature. A 
2 r  g  

v2 b 
similar curve having a disturbance pattern of —2 ng superimposed upon equilib- 

rium conditions will produce no disturbance pattern in the downstream channel 
if the disturbance within the curve has a minimum on the outer wall at the 
end of curvature. Curves of lengths 0, 3 0, 5 0, etc., will have a maximum on 
the outer wall at the end of curvature and will produce a disturbance pattern in 

v2 b,  the downstream channel having maxima of — which is double that of the r  g  
pattern below a curve operating at equilibrium. It will be noted that the 
disturbance in the downstream tangent may have a greater amplitude than 
the corresponding one within the curve but that the actual depth of flow along 
the wall is never greater than it is on the outer wall within the curve, nor less 
than it is along the inner wall. The explanation of this anomalous result is 
that in the tangent the equilibrium condition about which the disturbance 
oscillates is the constant-depth flow, whereas in the curve the corresponding 
equilibrium condition is variable flow depth in the cross section, with super-
elevation on the outer wall, and depression on the inner wall. 

CHANNEL WITH MULTIPLE CURVES 
In the field most channels are made up of a series of curves separated by 

tangents of varying lengths. The disturbance pattern in the lower curves 
and tangents can become very complicated since each curve affects the dis-
turbance in its downstream tangent and the disturbance in each tangent 
affects the performance of the following curve. It was just shown that the 
disturbance in the downstream tangent is a maximum when a maximum exists 
at the end of the outer wall of the preceding curve. The same reasoning will 
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show that the disturbance in a curve will be a maximum whenever a minimum 
point exists on the outer wall at the beginning of curvature. Thus it is possible 
by a particularly unfortunate combination of length of curve and of inter-
mediate tangent, to build up an extremely high disturbance pattern. 

CALCULATION OF THE WATER-SURFACE CONTOURS 
In general it is sufficient for design purposes to calculate the water-surface 

profile along the two walls of the channel. However, it is possible to calculate 
the entire water surface by the method of characteristics described in the first 
Symposium paper. The method of characteristics is not applicable when the 
wave fronts become steep or break. If the vertical accelerations are high 
some disagreement may be found, but in general this will be confined to a 
limited zone and thus will not affect the validity of the calculations as a whole. 

There are two sources for additional energy losses in curves over those 
existing in straight channels. Even if equilibrium conditions are established 
by proper methods of treatment, the cross section of the flow is distorted by the 
superelevation in such a way as to decrease the effective hydraulic radius and 
thus increase the frictional losses. Losses are most apparent in the zone of 
decreased depth. The second major source of loss occurs only if the distur-
bance pattern is strong enough to produce breaking waves, which correspond 
to shock waves in supersonic flow of gases. If the wave breaks, an appreciable 
amount of energy is lost. However, if the surface wave does not break, it 
represents a very small amount of energy loss. A qualitative proof of this 
statement is the number of oscillations required for the damping in the down-
stream channel of a disturbance pattern produced in a curve. Field condi-
tions usually permit the use of radii large enough to avoid breaking waves. 
Thus, in general, it can be stated that, for supercritical flow, the additional 
energy losses in curves are of little significance either in the calculation of the 
disturbance pattern or in the determination of the hydraulic gradient of the 
channel as a whole. 

AVAILABLE METHODS FOR THE REDUCTION OF SUPERELEVATION IN 
CURVES AND IN THE DOWNSTREAM TANGENTS 

Summary of Flow Characteristics Which Affect Method of Treatment.—Before 
discussing the possible ways of reducing the superelevation in curved channels, 
it will be well to review briefly the salient physical characteristics of high-
velocity flow around curves, as follows: 

The flow velocity is greater than the velocity of the surface wave (that 
is, F > 1). Therefore, disturbances cannot travel directly across the channel, 
but only at the oblique angle determined by the ratio of the wave velocity to 
the flow velocity. 

In channels, as normally designed, the side walls are expected to do the 
turning. This is basically a nonequilibrium process because the effect of a 
change in wall alinement is not propagated directly across the channel, and 
therefore cannot immediately affect the entire flow. 
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3. The form of the disturbance produced when water flows from a straight 
to a curved channel or vice versa is oscillating and has the properties of a 
wave train. 

Banking.—The most logical method of eliminating the disturbance pattern 
is to remove its cause. Since it is impossible to act on all the elements of flow 
at once by a change in direction of the side walls, it would be desirable to 
employ some better method of applying the lateral force to change the flow 
direction. The obvious way of applying a lateral force simultaneously to all 
the fluid elements is by the use of a bottom cross slope—that is, by banking. 
This cross slope, S, can easily be calculated by equating the gravity component 
along the cross slope to the centrifugal force determined by the radius and 
velocity. The result is 

tan ck Sc  =  —V2 (35) r  g 	  

It should be emphasized that, with the proper use of banking, all the force 
necessary to change the direction of the flow is supplied by the cross slope. 
The walls do nothing except conform to this change of direction. In banking 
it is not feasible to change the cross slope of the channel instantaneously from 
a level bottom to the value indicated by Eq. 35. The banking requires an 
appreciable change in elevation, which can be obtained either by raising the 
bottom on the outside of the curve, or by lowering it on the inside—or by a 
combination of the two. To avoid shock, the banking must be introduced 
gradually and, to follow the path of the stream, the walls must have a decreasing 
radius of curvature that just matches the increase of cross slope. The most 
elegant design of a banked bottom would be one in which the center of gravity 
of the flow followed the mean slope of the channel. 

One characteristic of a banked curve is that equilibrium conditions are 
obtained for only one velocity of flow, and hence for only one depth and one 
rate of flow. All other flows will show disturbance patterns similar to those in 
untreated curves. The magnitude of the disturbances will be determined by 
the degree of departure from equilibrium velocity. 

Multiple Curved V anes.—Eqs. 32b and 34 show that for a given depth, 
velocity, and radius of curvature, the maximum superelevation varies directly 
with the width of the channel. Therefore, if a given curve is divided into a 
series of narrower curves by concentric vertical vanes, the superelevation in 
the subchannels will be correspondingly reduced. Furthermore, the disturb-
ance in the channel below the vanes will dissipate rapidly because of the 
absence of the vanes that supported the differences in elevation. 

Interference Treatments.—The fact that the disturbances produced at the 
beginning and at the end of a simple curve are wave trains suggests that they 
might be eliminated by proper interference patterns—that is, by the deliberate 
introduction of similar disturbances of equal magnitude but of opposite phase. 
In the flow around a curve of constant radius, the equilibrium condition requires 

V' b a superelevation of —2 r  g  on the outside wall and a corresponding drop along the 
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inner wall. The disturbance wave pattern oscillates about this equilibrium 
condition with a wave height practically equal to the equilibrium change in 
elevation. For complete "interference" the counterdisturbance should have 
this same wave height. The original disturbance has a minimum point on 
the outer wall and a maximum point on the inner wall at the beginning of curva-
ture. Therefore, the counterdisturbance should be introduced with a maximum 
on the outer wall and a minimum on the inner wall at the same point. The 
opposite conditions exist at the end of curvature. There are several ways of 
producing the required counterdisturbances, three of which will be discussed 
briefly—compound curves, spiral transitions, and diagonal sills. All three of 
these treatments are complete in themselves and do not require auxiliary 
measures, such as banking of the bottom, to accomplish the desired result. It is 
possible to combine methods, but such combinations will not be discussed in 
this paper. It may have been noted that in this discussion of interference 
treatments, no attention has been paid to the production of a disturbance 
pattern having the correct wave length. The reason is that the wave length 
is a function of the velocity and the channel width; hence, the counterdisturb-
ance will automatically have the correct wave length to match the original 
disturbance. Therefore, care must be taken to obtain a conterdisturbance of 
the right amplitude and phase. No attention needs to be paid to the wave 
length except as it is used in establishing the correct phase. 

Compound Curves.—A simple curve produces a disturbance pattern having 
an amplitude and a wave length that can be determined quite accurately. 
Therefore, it is logical to employ a section of a simple curve to produce the 
counterdisturbance pattern required to interfere with the one formed by the 
main curve. 

The length of curve most effective in producing a disturbance pattern is 
a half wave length since this length produces the maximum disturbance for a 
given radius of curvature. It is also the minimum length in which the dis-
turbance from both inner and outer walls has had time to affect the entire flow. 
This maximum is on the outer wall, which is where it should be to interfere 
with the disturbance produced by the main curve. This curve length as 

B  measured on the outer wall is tan e; The equivalent central angle is 

0' = 	 b  

In Eq. 36,  ri  is the radius of the counterdisturbance section, not that of the 
main curve. The required radius for this section is just twice that of the 
main curve as it is desired to produce a disturbance of one half that caused by 
the main curve. Thus, the interference pattern must have a wave height equal 
to Ah/2, or 

V 2  b V 2  b  =  2 r  g 	ri  g  

(ri 	-b)  tan  O. 2 

(36) 

(37a) 
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From Eq. 37a it follows directly that 

= 2r 	 (37b) 

in which AA;  is the height of the interference pattern. Therefore, if a simple 
curve of radius r is preceded by a section of another simple curve, whose length 
. 	b  

tan 13. and whose radius is 2 r, the flow will rise gradually to the equilibrium 

value and remain in this condition throughout the entire length of the main 
curve. However, if the main curve terminates abruptly in a downstream tan-
gent, a disturbance pattern will be formed therein having a wave height of 
P b. Similar reasoning to that used in developing the design for the upstream 
2 r  g  
counterdisturbance section will show that an identical section applied at the 
downstream end of the curve will produce the interference pattern required 
to eliminate the disturbance in the downstream tangent. Fig. 14 shows the 

no. 14.-DEIGN CRITERIA FOR A 
	

FIG. 15.-PLAN OF SILL INSTALLATION 
COMPOUND CURVE 

construction of such a compound curve which will operate with no disturbance 
pattern either in the curve itself or in the downstream channel. 

Spiral Transitions.—Spiral transition curves have been suggested to replace 
constant-radius transitions. The suggestion is probably traceable to the use 
of spiral transitions in railroad and highway construction. The spiral can be 
made to produce satisfactory conditions at the beginning and at the end of the 
main curve. For that matter, many other designs of transition curves can 
be found which will be equally satisfactory, provided that the transition curve, 
whatever its design, must produce a simple disturbance pattern which has a 
maximum on the outer wall at the beginning of curvature of the main curve 
and a wave height as given in Eq. 34. One fundamental fact must always be 
borne in mind: As previously shown, no configuration of curved walls used with 
a flat bottom channel can produce a change in direction of a high-velocity flow 
under conditions that maintain equilibrium in all points of the flow. Thus, 
the primary purpose of the transition curve, whatever its shape, is only the 
production of the interference wave pattern necessary to cancel out the one 
produced by the main curve. The fact that the external appearance of the 



1328 	 HIGH-VELOCITY FLOW 	 Papers 

flow shows no evidence of a disturbance pattern is no indication of the absence 
of the interference phenomenon. 

Diagonal Sills.—Diagonal sills on the channel bottom can be used to produce 
the necessary interference pattern. The effect of a diagonal sill is to produce 
a change in direction in the lower layer of the flow, which is quite rapidly 
averaged throughout the entire cross section by the mechanism of momentum 
exchange. The over-all result can be approximated by calculating the lateral 
force exerted on the sill by the flow. This force must produce a corresponding 
lateral change in momentum in the flow. If the force is equated to the product 
of the mass rate of flow and the change in lateral velocity, the latter can be 
calculated readily. The vector sum of the lateral and longitudinal velocities 
gives the resulting direction of the flow below the sill. Since the mass rate of 
the total flow is used, the direction will be the average for the entire flow. 

If skin friction is neglected, the only force that the fluid can exert on a 
sill will be normal to the face. This force is equal and opposite to the rate of 
change of momentum of the flow. Its magnitude is obtained by computing 
the rate of change of momentum of the water that hits the sill. This layer of 
water has the width of the channel and the height of the sill. It can be assumed 
to travel with the average flow velocity and to turn through the angle that the 
sill makes with the channel axis. This layer of water will mix rapidly with the 
remainder of the flow above it. Therefore, the average angle through which the 
entire flow is turned can be computed by applying the principle of conservation 
of momentum to obtain the resulting lateral component of velocity. Thus, if 
the sill height is  d,  the angle of sill inclined to the channel is a, and the angle 
of curve of the entire flow is 0's, 

tan-'  d sin 2 a 
h 2 	 (38) 

Eq. 38 shows that the sill has maximum effectiveness when a = 45°, and this 
is confirmed by laboratory tests. Experiments indicate, however, that a 
smoother disturbance is obtained with a sill angle of 30° with very little loss in 
effectiveness. The required magnitude of the counterdisturbance produced by 
the sill is governed by the same consideration as that which governs the magni-
tude of the counterdisturbance produced by the upstream and downstream 
sections of the compound curve. The same reasoning, therefore, indicates that 
0'8  should be 0o/2 in which 08  is the central angle of the half wave length in the 
main curve, given by Eq. 33. It is not practical to attempt installations for 
values of 0'. greater than 10°, as too great a sill height would be required. 

On first consideration, the desirable location for the diagonal sills would 
appear to be with their downstream end at the beginning of curvature on the 
outer wall. The corresponding position at the end of the curve would be to 
have the downstream end of the sill at the end of curvature on the inner wall. 
However, the disturbance produced by a diagonal sill is not as smooth as that 
resulting from a simple curve. This is particularly true of the first maximum 
produced. Subsequent maxima become smoother and more similar to those 
caused by a simple curve. Experiments have shown that the best location for 



November, 1949 	 HIGH-VELOCITY FLOW 	 1329 • 

the diagonal sills is as indicated in Fig. 15. The distance  Lus  is given by the 
expression: 

b 	 1.12 	0.0313 	I 	 (39)  Lu  s — tan o  [(i  4..  32Ahh
o
i  )i 	sin  0. 

 )2  
ho  

The first term in the brackets is a correction for the increase in velocity of the 
finite disturbance over that of an infinitesimal wave; the second term is an 
addition for the distance downstream from the toe of the sill at which the 
maximum disturbance occurs. The symbol hi denotes the depth of the dis-
turbance produced by the sills and Ahi is hi —  ho.  For normal cases the value 
of the bracket term will lie between 0.9 and 1.15. Eq. 39 should be used with 
caution if the correction factor falls outside this range since the experimental 
verification of the empirical coefficients is rather meager. 

Another laboratory finding is also incorporated in Fig. 15. Two sills are 
shown instead of one at each location. Also the sills end a short distance from 
the walls. Both modifications are for the purpose of eliminating undesirable 
local disturbances and of broadening the main disturbance to make it approach 
the wave form produced by the curved transition section that the sills are re-
placing. The group of three sills at the end of the curve replace the down-
stream transition section of the compound curve method of treatment and per-
form the same necessary function—that is, the elimination of the disturbance 
in the downstream tangent. All the sills shown in Fig. 15 should have heights 
one half of that indicated by Eq. 38 since they act in pairs. 

FIELDS OF APPLICATION OF DIFFERENT TREATMENTS 
FOR RECTANGULAR CHANNELS 

The treatments desclibed have different fields of use. Banking is most 
adaptable to major channels that ordinarily operate at or near the design flow. 
It offers the only method for preventing, completely, the rise in elevation of the 
water surface in the curve. This requires that the banking be obtained 
entirely by depressing the inner wall, which usually involves costly excavation. 
The effect of banking can be decreased or completely nullified by improper wall 
design. Banking does not produce equilibrium conditions for flows above or 
below the design capacity. However, for the lower flows, the disturbances 
produced stay below the design flow line. 

The use of multiple curved vanes is rather restricted. They are not de-
sirable for channels carrying debris unless the vane spacing can be made 
considerably larger than the maximum size of debris to be expected. In case 
it is necessary to bridge such a channel at the curve, an economical design 
may be made by using the vanes as bridge piers. 

Compound curves offer the most desirable solution for most high-velocity 
channels. If properly designed, they appear to offer a completely satisfactory 
solution, not only for the design discharge, but also for all lower discharges. 

Spiral or other complicated transition curves are not recommended for any 
normal application. They simply add to the cost of both the design and the 
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construction with no commensurate improvement in the flow characteristics 
over that secured by the use of compound curves. 

Diagonal sills should be used primarily as a remedial measure in existing 
channels which have been designed with simple circular curves or other un-
satisfactory forms. For such applications, they offer the possibility of changing 
quickly and economically a completely unsatisfactory condition of flow into 
one that is at least acceptable. However, diagonal sills operate best at the 
design rate of flow. For lower flows, the disturbance produced is too large 
and thus there is some residual pattern both in the curve and in the down-
stream channel. This is usually not serious for, as in the case of the banked 
bottom, the superelevations produced by the disturbance pattern fall below 
the flow line for the design discharge. This disturbance pattern at low flows 
may have one somewhat intangible by-product. If the channel in question 
happens to be used for flood-control purposes or for similar uses in which 
maximum flows are rather unusual, the sight of the disturbance pattern at 
low flows may cause uneasiness and distrust among the adjacent residents. 
This is particularly true if overtopping of the channel would be serious. The 
inexperienced observer is likely to reason that, if a low flow shows such a pro-
nounced disturbance pattern, higher rates are certain to cause increasing 
superelevations and major flows are sure to cause failure. The engineer may 
encounter considerable difficulty in explaining that the reverse is true—that the 
channel performance improves as the flow rate increases. 

It must be expected that the maintenance costs for curves with diagonal 
sills will be higher than those for either banked or compound curves, especially 
if the flow is debris laden. However, experience has shown that wood timbers 
bolted to the bottom of concrete channels form quite satisfactory sills even for 
relatively large channels carrying heavy debris loads. If sills are used with 
extremely high-velocity flows, cavitation will occur (see subsequently in Fig. 
31). Cavitation itself will tend to increase rather than decrease the effective-
ness of the sills but the resulting damage may destroy them. 

NONRECTANGULAR CHANNELS 

A good indication of the problems involved in high-velocity flow in non-
rectangular curved channels is obtained by examining two unique advantages 
of the rectangular cross section which hold for all interference type curve 
treatments: 

For a given channel with a given slope, the wave angle remains nearly 
constant over a wide range of flows; and 

The channel width is constant. 
From these two characteristics it follows that the disturbance pattern in 

and below a given curve is constant in configuration and location irrespective 
of the rate of flow. The significance of this statement has already been 
stressed—that is, designs using interference pattern methods of treatment are 
satisfactory for all flows within the design maximum. 

In a nonrectangular channel the wave angle changes with depth since the 
wave and flow velocities no longer vary at the same rate. The surface width 
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likewise varies with depth. This means that the wave pattern varies with 
the flow. 

Therefore it must be concluded that curve treatments using the interference 
method will be much less satisfactory for nonrectangular cross sections than for 
rectangular cross sections. For example, in nonrectangular channels both 
compound curves and sills produce interference patterns of the right phase for 
only one rate of flow. If the channel width varies rapidly with the discharge, 
this phase shift may even change the interference into a reinforcement and 
thus increase materially the superelevation in and below the curves. Fig. 34, 
subsequently, shows such a shift produced by a change in the discharge in a 
trapezoidal channel. It is suggested, therefore, that the use of nonrectangular 
cross sections for high-velocity curved channels be avoided wherever possible, 
especially for applications involving wide ranges of discharge. 

EXPERIMENTAL CONFIRMATION 
The experimental confirmation of these methods of controlling high-velocity 

flows in and below curves was obtained during a study conducted in the 
Hydraulic Structures Section of the Hydrodynamic Laboratories of the Cali-
fornia Institute of Technology under the direction of the writer. Much of 
the experimental work and analysis was done by the author of the first Sym-
posium paper. The study was sponsored by the Los Angeles County Flood 
Control District, which needed design information for its network of flood-
control channels, many of which had steep gradients and high velocities. The 
first objective was the determination of the physical phenomena involved, and 
the second objective, the development of methods of treatment for the curved 
sections of high-velocity channels. Although the Los Angeles County Flood 
Control District was deeply concerned with the design of a specific group of 
channels, it was felt that it would be more profitable to conduct the study 
from this fundamental basis with a view to developing analytical methods of 
design, rather than to adopt a model study technique and be satisfied with 
specific solutions for only this particular group of channels. 

The equipment consisted primarily of two brass channels, one having a 
rectangular cross section and one a trapezoidal cross section. They were 
designed so that under normal flow conditions the sectional areas would be 
the same. They were both provided with abnormally high walls to permit the 
investigation of high superelevations. The rectangular channel was 18 in. 
wide and 14 in. deep; and the trapezoidal channel was 12 in. wide at the 
bottom, 12 in. deep, and had side slopes of 1 on 11. The channels were mounted 
on a platform 100 ft long, which was adjustable to any desired slope up to 1 in 
10. A water-circulating system was provided with a maximum rate of flow 
of 6 cu ft per sec. The flow was measured by a set of three  venturi  meters 
having slightly overlapping ranges. Fig. 16 shows the plan and elevation of 
this equipment,'9  and Figs. 17 and 18 illustrate some of the details of construc-
tion. Water depth and surface contours were measured by point gages 
mounted on rails accurately adjusted to be parallel to the bottom of the 

1,  "Experimental Investigations of Flow in Curved Channels," by A. T. Ippen and R. T. Knapp 
(abstract of results and recommendations, U. S. Engr. Office), Los Angeles, Calif., 1938, p. 2. 
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channel. Velocity profiles were obtained by pitot tubes mounted on the same 
carriage. Considerable care was taken in each run to secure equilibrium con-
ditions between the slope and the velocity of flow. In addition, check runs 
were made with velocities both above and below the equilibrium value to 
determine the effect of departures from equilibrium. It was found that the 
equilibrium requirements were not critical; conditions always remained practi-
cally constant through the experimental stretch, because, at the slopes used, a 
long length of channel is necessary to produce appreciable changes in velocity 

Central Angle-8 
FIG. 19.—COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OP OUTER WALL SURFACE PROFILES IN A CURVE OF 25-FT RADIUS 

or depth. A total of 156 experimental runs was made in the two channels and 
in the auxiliary adjustable slope section. Each run had from one to seven 
divisions. A wide range of slopes and Froude numbers were covered. The 
data presented in this paper are only representative samples. 

Nearly all the experiments were performed in the rectangular channel. 
This was partly due to the limited time available. An additional restriction 
to the work on the trapezoidal channel resulted from the growing realization 
of the inherent characteristics of high-velocity flow in curves and the resulting 
basic limitations imposed upon the use of all cross sections in which the width 
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varied with the depth of flow. A sufficient number of experiments was run in 
the trapezoidal channel to demonstrate clearly the reality of these limitations. 

Constant Radius Curves; Rectangular Channel.—Fig. 19 shows a comparison, 
for four different rates of flow, of the observed values versus the calculated 
values for the water-surface profile along the outer wall from the beginning 
of curvature to the first maximum. These measurements were made in a curve 
having a mean radius of 25 ft. Fig. 20 shows a parallel set of runs for a 50-ft 
curve. Table 2 shows a similar comparison for the height and location of all 

0° 	 20 	 4° 	50 
	

6° 
	

7° 
	

8° 
Central Angle-O 

FIG. 20.—COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF OUTER WALL 
SURFACE PROF/LES IN A CURVE OF 50-FT RADIUS 

the maxima in the curve and for two sets of maxima in the downstream tangent. 
These are the same runs shown in Fig. 19. Within the curve the distance 
between maxima varies from 0.914 to 1.066 of the calculated value, whereas in 
the downstream tangent, the corresponding ranges are 0.868 to 1.262. Varia-
tions of approximately the same magnitude are to be found in the depths. 
These variations are probably the result of: (a) Frictional damping of the 
disturbance pattern; (b) deviation from uniform velocity in the flow; and (c) 
variations in wave velocities caused by variations in the wave heights. Occa- 
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sionally it may be desirable to introduce these secondary effects into the 
analytical treatment. However, in most designs there are other elements of 
uncertainty, of equal or greater magnitude, which make increased accuracy 
unnecessary. For example, the slope of steep channels on natural terrain 

TABLE 2.-MAXIMIIM SUPERELEVATION IN AND BELOW 

Run 
No. 

(1) 

Flow, 
Q, in 
cubic 
feet 
per 

second 

(2) 

Depth,  h.;  
in 

feet 

(3) 

Froude 
number, 

(4) 

Com-
puted  h',  in 
feet 

(5) 

Cora- 	• 
puted 
0., by 
Eq. 37 

(6) 

Com-
puted 
L' 

b 

IN THE CURVE, AT THE OUTSIDE WALL« 

FIRST 
MAXIMUM 

SECOND 
MAXIMUM  

Distance 
to end of 

c( Ére 
0/0. 

(12) 

tan fl 

(7) 

h 
P 

(8) 

0 
79; 
(9)  

h 
rat 

( 10 ) 

2 0. 
(11) 

117C 
120A 
119D 
32A 

2.49 
3.51 
4.52 
5.51 

0.160 
0.199 
0.236 
0.260 

3.29 
3.28 
3.25 
3.45 

0.387 
0.496 
0.584 
0.693 

14° 33' 
14° 47' 
14° 46' 
15° 30' 

6.68 
6.79 
6.78 
7.13 

0.868 
0.905 
0.942 
1.010 

0.928 
0.914 
1.015 
0.967 

0.895 
0.935 
0.951 
1.0020 

1.014 
1.066 
1.016 
1.000 

0.137 o o 
-0.060 

'Ratios of measured values to computed values. b In Cols. 14, 16, 18 and 20 L is the measured 

usually varies quite rapidly. Thus the velocity at any given cross section is 
seldom in equilibrium with the slope, which increases the difficulty in estimating 
the velocity. Furthermore, the effective roughness usually involves as much 
uncertainty as that just shown in the location of the maxima. 
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FIG. 21.-SURFACE PROFILES FOR CURVE WITH BANKED BOTTOM TREATMENT 

Banked Curves; Rectangular Channel.-Fig. 21 shows a run made with a 
banked channel having spiral transitions calculated to match the bottom transi-
tion. The banking was accomplished entirely by depressing the inner wall, 
keeping the outer wall at a constant slope throughout the curve. In accordance 
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with the analysis, there is practically no change in the depth on the outer wall 
in and below the curve. (In the several illustrations, the points of curvature 
and compound curvature, beginning and end, are designated BC, EC, BCC, and 
ECC, respectively.) Figs. 22 and 23 show the surface contours and the velocity 

THE CURVE; TESTS WITHOUT SILLS; RECTANGULAR CHANNEL 

BELOW THE CURVE..b 

DISTANCE, IN FEET, 
BETWEEN SUCCESSIVE 

MAXIMA ON THE 
SAME SIDE 	• Run 

No. 
FIRST MAXIMUM SECOND MAXI1HUM 

INSIDE WALL OUTSIDE WALL INSIDE WALL OUTSIDE WALL  

h  
F  

L  
Ti  

h  
F 

L  
717  

h  
ré  

L  
Ti  

h  
it?  

L 
Ti  L.e-I  LU-I Le-2 

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (1) 

0.631 0.868 0.762 0.973 0.628 1.197 .... .... 1.841 2.170 .... 117C 
0.688 0.884 0.867 0.884 0.700 1.178 0.617 1.178 1.768 2.062 2.356 120A 
0.693 0.958 0.856 0.885 0.757 1.180 0.647 1.180 1.843 2.065 2.360 119D 
0.620 0.910 0.815 0.883 0.700 1.262 0.721 1.080 1.793 2.145 2.342 32A 

lengths between successive maxima on opposite sides. One half foot below the end of the curve. 

Run No. 139 

0° 
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FIG. 22.-SURFACE CONTOURS FOR SPIRALED CURVE WITH BANKED BOTTOM TREATMENT 

distribution observed iu he curve for the same conditions. Fig. 24 shows two 
additional water-surface profiles for the same curve. These are for the same  dis- 
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charge as that represented in Fig. 21. However, the velocity of approach for 
run 140A is lower than the equilibrium value for which the angle of banking was 
computed. The velocity of approach for run 140B was higher than the equilib-
rium value. The behavior is exactly as would be expected. In the curve the  

150A 
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Fm. 25.-SURFACE PROFILES FOR COMPOUND CURVE TREATMENT 

superelevation along the outer wall drops for the low approach velocity because 
the centrifugal force is not sufficient to overcome the cross slope. Therefore 
there is a flow toward the inside wall of the channel. The opposite condition 
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26.-SURFACE PROFILES FOR SPIRAL TRANSITION TREATMENT 

is true for the high velocity of approach. Both these runs show small but ap-
preciable disturbance patterns in the downstream channel. 

Compound Curves with Circular Transition Sections; Rectangular Channel.-
Fig. 25 shows the surface profile along the outer wall for compound curves 
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designed to have circular transition sections of double the radius of the main 
curve and with lengths equal to one half of the wave length of the disturbance 
pattern. The superelevation increases in the transition section, remains nearly 
constant throughout the main curve, and falls to the initial value in the down- 

0.5 
.5 0.4 
g-  0.3 
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FIG. 28.-SURFACE PROFILES FOR SIMPLE CIRCULAR CURVE WITHOUT TREATMENT 

stream transition section. A small disturbance pattern is visible which shows 
that complete interference was not obtained. The measurements indicate 
that, if the velocity of approach had been slightly lower, the curve would have 
behaved exactly in accordance with the predictions. Profiles for different 
flows are shown in Fig. 25. Although the curve was designed for the  dis- 
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charge of run 148A, the performance was equally satisfactory for the other 
three flows. 

Spiral Transitions; Rectangular Channel.—Fig. 26 shows the surface profiles 
for similar flows in a curve of 25-ft radius having spiral instead of circular 
transitions. Its behavior is nearly identical with that of the curve having 
circular transitions. Both curves were designed for a total turn of 540  30". 
The center-line length of the curve with circular transitions was 30.53 It, 
whereas with spiral transitions it was 36.43 ft. Thus, the latter curve is 
approximately 16% longer, although no better. Fig. 27 shows similar profiles 
for both types of compound curves for velocities of approach differing from 
the equilibrium values. Again the performances of the two curves are similar. 
A comparison of these results with Fig. 24 shows that the sensitivity to devia-
tions from the design velocity is about as low as that of the banked bottom 
design.  
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FIG. 29.—SURFACE PROFILES FOR SILL TRF.ATMENT 

Submerged Sills; Rectangular Channel.—The effect of submerged sills can 
be seen by a comparison of Figs. 28 and 29 which show the wall profiles for the 
same flow conditions in the same curve with and without sills above and below 
the curved section. Fig. 30 shows the surface contours for one of the three 
discharges shown in Fig. 29. It will be seen from Figs. 28 and 29 that the sill 
treatment produces very acceptable flow conditions. 

Experimental Comparison of Effectiveness of Various Designs for Rectangular 
Channels.—Table 3 shows the comparative effectiveness of various corrective 
designs in similar rectangular channels having the same slope, the same main 
radius, and the same total angle of turn. The sets of runs are for nearly 
identical rates of flow. The curves with sills have slightly higher disturbances 
in and below the curved section than do other methods of treatment. The 

0' 
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TABLE 3.-RELATIVE EFFECTIVNESS OF CORRECTIVE DESIGNS 
FOR RECTANGULAR CHANNELS' 

Run 
No. 

Flow, Q, 
in cubic 
feet per 
second 

RELATIVE MEASUREMENTS; PERCENTAGES OF THE DESIGN 
VALUE OF Q OR OF THE DESIGN VALUE OF  ho  (0.198 FT) 

DISTANCE FROM END 
OF CURVE (EC) To 

DOWNSTREAM 
M.A.xincum,  

Flow, Depth,  
ho  

MAXIMUM DISTURBANCE 

CURVE 
SECTION 

DOWNSTREAM 
SECTION 

Outer 
wall 

Inner 
wall 

Outer 
wall 

Inner 
wall 

Along 
outer wall 

Along 
inner wall 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(a) NORMAL CURVE 

117B 2.49 71.2 80.8 175.6 85.8 149.0 123.2 1.69 2.87 
120A 3.51 100.3 100.5 225.0 121.7 217.0 178.7 1.77 2.94 
119D 4.52 129.2 119.2 277.6 142.3 250.0 223.0 1.91 3.02 

(b) SINGLE SILLS ABOVE THE CURVE ONLY° 

117B 2.49 71.2 80.3 165.0 68.7 166.1 124.7 1.77 2.87 
119C 3.51 100.3 100.0 197.8 69.7 208.6 157.0 1.77 0.88 
117A 4.52 129.2 119.6 245.9 92.9 243.0 202.6 1.77 3.02 

(C) MULTIPLE SILLS ABOVE AND BELOW THE CURVE 

127C 2.47 70.6 84.8 150.4 65.1 102.0 119.1 2.06 0.32 
127A 3.51 100.3 100.5 180.1 66.7 125.7 138.3 1.77 0.32 
127B 4.53 129.6 118.2 223.0 81.3 169.1 163.0 1.77 1.03  

(d)  CIRCULAR TRANSITION; I' = 50 FT 

149A 1.51 43.2 57.1 106.6 35.3 58.1 61.2 1.80 2.98 
149B 2.49 71.2 80.3 149.4 52.0 87.4 79.8 1.21 2.39 
148A 3.50 100.0 98.5 190.8 102.0 116.1 108.6 1.21 2.68 
150A 4.50 128.7 120.2 226.6 126.7 143.3 130.8 1.21 2.68 

8) SPIRAL TRANSITION 

145C 1.51 43.2 60.1 103.0 54.0 60.6 61.6 1.37 2.85 
146A 2.48 70.8 80.8 151.0 80.8 86.8 90.8 0.78 2.85 
144B 3.50 100.0 97.5 187.2 103.5 122.7 111.6 0.79 2.26 
146B 4.50 128.7 122.2 220.0 124.7 146.4 128.8 0.86 2.26 

(f) SPIRAL TRANSITION WITH BANKING 

141 1.50 42.8 58.1 69.2 83.3d 61.6 61.6 3.00 3.00 142 2.48 70.8 80.8 92.9 95.0 89.4 92.9 1.67 3.00 139 3.50 100.0 97.5 120.3 95.5 109.6 110.6 1.96 3.00 143 4.51 129.0 122.7 160.5 116.1 129.8 136.9 1.67 3.00 

The main radius of all curves used in this series was 25 ft. b Location of a point of downstream maximum 
expressed as half wave lengths from the end of curve for a flow of 3.5  eu  ft per sec (6.794 ft). The three 
runs in Table 3(b) are for qualitative comparison only, because sill conditions are not identical.  d  The reference bottom for the banked channel is depressed along the inner wall. 
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compound curves and the spiral transitions with and without banking all show 
quite comparable performance as regards disturbance in the downstream 
channel. Within the curve itself the least disturbance is shown by the banked 
curve, as would he experted 

FIG. 30.—SITRFACE CONTOURS FOR SILL TREATMENT 

+10) 	+5) +21 0 -2 -5 —7 	—11 	—15 
Manometer Stations, in Inches 

31.—BoTrom PRESSURE DISTRIBUTION ABOVE AND BELOW SILL 

In using sills one factor must be remembered. A low pressure region 
forms on the downstream side of each sill which is very effective in producing 
the desired deflection of the flow. In channels having extremely high veloci-
ties, especially if accompanied by low depths, it is possible for the pressure in 
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this region to drop enough to form an air passage to the surface, with the result 
that the flow springs clear of the bottom. This action reduces greatly the 
effectiveness of the sill and causes unsatisfactory operation. Fig. 31 shows the 
pressure along the bottom above and below the sill installation. This sill was 
normal to the channel; hence, the pressure differences are somewhat higher 
than for the inclined sill. The measurements show that, for extremely high 
velocities and large depths, cavitation may occur below the sill. For all such 
conditions the other methods of treatment, such as compound curves, are to 
be recommended. 

There are a few additional points to be borne in mind in making the com-
parison between analytical results and experimental measurements. First, 
uniform velocity was assumed throughout the cross section. The deviations 
from uniformity found in real channels will affect the surface configuration. 
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32.—COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF OIII.ER WALL SURFACE 

PROFILES IN A TRAPEZOIDAL CHANNEL CURVE OP 25-Fm RADIUS 

For normal conditions the departures from uniform velocity are not enough 
to cause significant discrepancies. However, serious departures from uni-
formity may occur below the junction of two channels or below the entrance 
of an auxiliary into the main channel. Another departure from the assump-
tions may be found in the cross section itself. The analysis assumes a true 
rectangular channel. In the field many rectangular channels have an appreci-
able invert in the bottom. The effect of this invert may be quite noticeable 
for low rates of flow but usually disappears for design flows. 

Trapezoidal Channels.—In discussing the methods of treatment, the charac-
teristics of nonrectangular channels were referred to briefly, but no modifica- 
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tions of the analysis were proposed to permit their use. The trapezoidal 
channel is one of the most common forms of nonrectangular cross section. 
The approximate method of analyzing its behavior is rather obvious and can 
be outlined as follows: Since the depth is not constant, the wave velocity must 
vary throughout the cross section. However, approximate velocities can be 
computed by using the average depth. The effective channel width is in-
fluenced by the amount of superelevation. Again, a fair approximation of the 
wave pattern can be obtained by using the width of the water surface in the 
upstream channel. The rise along the outer wall can likewise be computed on 
the basis of the average channel depth, if the datum is determined by the 
average depth measured down from the water surface. Fig. 32 is a com-
parison between the calculated and measured elevations in a trapezoidal 
channel which had the same hydraulic characteristics as the rectangular 
channels just discussed. The slope, hydraulic radius, and mean radius of 
curvature were all identical. The central angle of the trapezoidal curve 
was 30° instead of 45° because of the space limitations of the laboratory. 
Fig. 33 shows the cross section within the curve for a discharge of about 80% 
of the design. This section illustrates one of the dangers of trapezoidal 
channels for high-velocity flow. As a first approximation, the water surface 
may be considered as an inclined plane. If the slope of the outer wall had been 
flatter, it is apparent that the superelevation would have been much greater. 
Presumably, if the water surface and the outer wall had been parallel, the super-
elevation would have been limited by only the velocity head available in the 
channel, assuming sufficient curve length to develop equilibrium. 

A comparison of the disturbances in rectangular and trapezoidal channels 
indicates that the superelevations are always greater in the trapezoidal channel. 
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33.—COMPOSITE CROSS SECTION SHOWING VARIATION WITH POSITION ALONG THE CURVE 

This effect follows directly from the increased surface width. It was observed 
during the experiments that there seems to be a larger amount of energy 
stored in the "swing" of the trapezoidal disturbance pattern so that it appears 
to damp out less rapidly than in the rectangular section. Figs. 34(a) and 34(b) 
are views of the disturbance in and below the curve for two rates of flow. It 
will be noted that the maximum superelevation on the outer wall of the curve 
moves downstream toward the end of curvature as the rate of flow increases. 
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This downstream travel is accompanied by a disproportionate increase in the 
magnitude of the disturbance pattern in the downstream tangent. This result 
is to be expected from a consideration of the physical configuration involved 
since it was shown that the disturbance in the downstream tangent becomes 
greatest when the last maximum in the curve occurs on the outer wall at the 

FIG. 34.—DISTURBANCE PATTERN IN AND BELOW THE CURVE IN A TRAPEZOIDAL CHANNEL; 
(a) Hum FLOW AND (b) Low flow 

end of curvature. The violent behavior of the flow in this particular example 
is due to the specific length of the curve and is not typical for all trapezoidal 
curves. For example, if the curve had been either appreciably shorter or 
longer with all other factors remaining the same, the disturbance pattern in the 
downstream tangent would have decreased as the flow increased instead of 
increasing as shown in Figs. 33 and 34. 

LIMITS OF APPLICATION 
The analysis and treatments proposed in this paper apply only to channels 

with supercritical velocities. Furthermore, for channels operating with Froude 
numbers between 1 and 1.5, the results may be rather erratic because of the 
fundamental instability of the flow in this region. Minor disturbances cause 
disproportionate effects and may easily produce a jump which suddenly reduces 
the velocity to below that of the wave velocity. As the Fronde number be-
comes greater than 1.5, the stability increases rapidly and, with it, the reliability 
of the calculations. One rather unexpected result of this situation is that 
these methods of calculation and treatment may be used with great confidence 
for very high velocities which would otherwise be most difficult to handle. 
The major limitations on the high-velocity end are air entrainment and cavita- 
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tion. These limitations apply much less to compound curves and curves with 
banked bottoms than they do to simple curves and to the use of sills. 

The scope of this paper has been limited to the conditions of flow in which 
the average velocity is constant—that is, when the friction loss is in equilibrium 
with the slope. The treatments are valid for the small accelerations or decelera-
tions due to the constantly changing slopes usually encountered in the field. 
However, the high accelerations in spillways and similar structures are not 
covered. The physical principles underlying this treatment of open-channel 
flow for supercritical velocities are obviously applicable to nonequilibrium 
conditions as well. Examples of such treatments are found in other parts of 
this Symposium. There are undoubtedly many other cases not yet examined 
which can be solved by considering the unique characteristics of supercriti-
cal flow. 



1348 	 HIGH-VELOCITY FLOW 	 Papers 

DESIGN OF CHANNEL CONTRACTIONS 

BY  ARTHUR T.  IPPEN,'  M.  ASCE,  AND JOHN H.  DAWSON,'  
JUN.  ASCE  

SYNOPSIS 
Channel contractions for subcritical flow are designed for minimum energy 

losses by proper streamlining of the boundaries. Efficient and economic 
solutions are achieved with relatively little difficulty. If supercritical flow 
exists, the accent of design is shifted to the reduction or eventual elimination 
of the standing wave patterns which appear as a result of such flow, in accord-
ance with the principles discussed in the first Symposium paper. So far these 
designs have envolved from experimental cut-and-try processes with models. 
This third Symposium paper endeavors to show, on the basis of experimental 
evidence, that the basic principles of supercritical flow can be applied in a 
satisfactory manner to the design of typical channel contractions and that 
solutions may be found with a minimum amount of surface disturbance 
patterns. Furthermore, the magnitude of the standing waves may be pre-
dicted adequately, as well as their location within the channel contraction. 
The method of eliminating waves in the downstream channel is discussed for a 
basic form of channel contraction. 

GENERAL PROBLEMS OF DESIGN 

The design of channel transitions has received the attention of hydraulic 
engineers in the past and has been formulated into a number of suggestions and 
procedures. The theoretical basis of these procedures is supplied by the 
principles of nonuniform flow applied, successively, to short channel sections. 
Variations of velocity and depth induced by the conveying boundaries are 
assumed to occur only along the channel axis. Basic surface curves identical 
for all longitudinal sections are derived in first approximation by assuming 
that the total head remains constant, and refined 'surface curves are obtained 
by considering the friction losses in the direction of flow. The velocities and 
depths at any station are assumed to be unaffected by curvature of the lateral 
boundaries and, hence, constant in transverse sections. The primary aim of 
economical design is a minimum of energy loss. 

The design of channel transitions for supercritical velocities, on the other 
hand, must be attacked quite differently because of the occurrence of standing 
waves. The basic principles of the theory have been discussed in the first 
Symposium paper. The primary conclusions with respect to the problem in 
question are that, in economically feasible structures, standing waves cannot be 
avoided, and that their characteristics must therefore be explored carefully to 
insure successful design. Velocities in supercritical flow will vary in magnitude 

20 Associate Prof., Civ.  Eng.  Dept., Oklahoma Inst. of Technology, Oklahoma Agri. and Mech. College, 
Stillwater, Okla. 



Radius, 75 In. 
0° 

160  

0° 

Radius, 75 In. V2 

Center Line 

0° 

160  
0° 

41f In. 

Wommher, 1949 	 HIGH-VELOCITY FLOW 	 1349 

and direction in a systematic fashion in transverse sections, and surface eleva-
tions will not be constant. The effect of a transition is not confined to the 
immediate vicinity of the structure as in subcritical flow, but may affect the 
flow conditions downstream from the transition for very long.distances. Design 
for a minimum of standing waves, therefore, is the particular goal for flow at 
supercritical velocities so that economical structures may result. The various 
phases of the flow through contractions were attacked by a number of in-
vestigators21,22.23,24,25 at Lehigh University and at the Massachusetts Institute of 
Technology (M.I.T.) during the years from 1938 to 1947. Although con-
siderable experimental work remains to be done, it is felt that a summary of the 
essential findings is desirable and may prove useful in similar work directly 
concerned with structures of this type. 

CONTRACTIONS COMPOSZD OF CIRCULAR ARCS 

The first systematic attack on the problem was made in the Hydraulic 
Laboratory of Lehigh University with a channel contraction composed of two 
equal circular arcs along each wall as shown in the diagram of Fig. 35. This 

FIG. 35.—CONTRACTION COMPOSED OF CIRCULAR ARCS 

case was chosen as one that might be typical of a contraction designed from 
conventional knowledge of open-channel flow. The photographs of Fig. 36, 
taken in the downstream direction, show clearly the problem to be faced with 
supercritical flow in such contractions. The surface of the stream is traversed 

2.1 "The Effects of Lateral Contractions on Supercritical Flow in Open Channels," by J.  H.  Dawson, 
thesis presented to Lehigh Univ. at Bethlehem, Pa., in 1943, in partial fulfilment of the requirements for the 
degree of Master of Science. 

n"Desigq of a Sharp Angle Contraction in Supercritical Flow," by  D.  P. Rodriguez, thesis presented 
to Lehigh Univ. at Bethlehem, Pa., in 1943, in partial fulfilment of the requirements for the degree of 
Master of Science. 

22  "Experimental Relation Between Sudden Wall Angle Changes and Standing Waves in Supercritical 
Flow," by  D.  Coles and T. Shintaku, thesis presented to Lehigh Univ. at Bethlehem, Pa., in 1943, in partial 
fulfilment of the requirements for the degree of Bachelor of Science. 

r,  "Theoretical Investigation of Standing Waves in Hydraulic Structures," by A. A. Stone, thesis 
presented to the Massachusetts Inst. of Technology at Cambridge, Maas., in 1946, in partial halment of 
the requirements for the degree of Master of Science. 

", "Standing Waves in Supercritical Flow of Water," by M. P. Barschdorf and  H. G.  Woodbury, 
thesis presented to the Massachusetts Inst. of Technology at Cambridge, Mass., in 1947, in Partial ful-
filment of the requirements for the degree of Master of Science. 
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by large standing waves which, in height, exceed considerably the initial depth 
of flow. The converging arcs in the upstream part and the reversed arcs in the 
downstream part of the contraction were chosen to be equal and with a 16° cen-
tral angle each. T,he contraction was from a 2-ft width to a 1-ft width for the 
downstream channel. These two conditions, therefore, determined the radius 
of curvature of 75 in. and the length of the contraction. The channel contrac-
tion was set into a steel flume, which was 2 ft wide at its upper end and 1 ft 
wide in the longer reach of 30 ft below the contraction. For any flow the 
flume was adjusted in slope to give uniform flow conditions for the initial Froude 
number. Proper velocities and depths could be established for any Froude 
number between F -= 2 and F = 12 by discharging the water into the flume 
through a rectangular nozzle, whose opening could be adjusted to give a 
certain desired depth. All water quantities were determined by a calibrated  
venturi  meter in the supply line from a constant-head tank. The entire surface 
within the contraction, and for a sufficient distance downstream from the con-
traction, was mapped for the runs presented in Fig. 37. Normally, however, 
only the side-wall elevation and the center-line elevation were determined for 
all stations along the contraction and downstream tangent. 

FIG. 36.-STANDING WAVE PATTERNS CAUSED BY VERTICAL-ARC CONTRACTIONS 

Surface Contours in Circular-Arc Contractions.—The differences in the sur-
face elevations between subcritical flow and supercritical flow are strikingly 
apparent from the configurations of the constant-depth lines in Fig. 37. Fig. 
37(a) shows distinctly that the usual assumption of essentially constant depths 
in transverse flow sections is basically fulfilled for this run at a Froude number 
of F1  = 0.358. Fig. 37(b), for a Froude number of F1  = 4, shows clearly the 
essentially different surface contours for cases of supercritical flow. The 
characteristic feature of flow remaining undisturbed within the center of the 
contraction is especially apparent. This can easily be explained on the basis of 
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disturbance lines discused in the first Symposium paper. The increases in 
depth caused by converging side walls can only be communicated along dis-
turbance lines at a wave angle f3 to the oncoming flow. Positive lines tending 
to converge originate along the first or concave part of the wall, and diverging 
or negative lines emanate from the convex part of the contraction. In Fig. 38 
a theoretical solution showing the disturbance lines on the basis of the method of 
characteristics is given for comparison with the actually measured surface lines. 
The converging lines result in steep wave fronts which clearly have their 
counterpart in Fig. 37 (b) . The diverging or negative lines extend from Station 
16° on downstream, resulting in a depth along the wall at the end of the con-
traction which reverts to the normal depth. 

FIG. 37.—CONTOURS OF WATER SURFACE IN A CONTRACTION COMPOSED OF CIRCULAR ARCS 

Wall Profiles.—The characteristic variations in depth along the side walls 
are revealed distinctly by the profiles in Fig. 39 for a range of Froude numbers 
and for the same contraction. The theoretical profiles are plotted for direct 
comparison with the measured surface lines. According to the principles 
discussed in connection with Fig. 3 in the first Symposium paper, all theoretical 
lines must show a sharp break at the beginning of the curved wall, since the 
curvature at that section increases from zero to hr and since the velocity at 
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the wall is assumed equal to the normal velocity VI. Aot Station 16° there must 
be a peak, because at this point the curvature is reversed suddenly in the 
example investigated. This point would correspond to the peak obtained 
along the outside of a channel curve where the first negative disturbance is 
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reflected. The only difference is that, in the latter case, the negative impulse 
is created locally instead of being produced at the opposite wall and being trans-
mitted along a negative disturbance line. Since the total angular turn of the 
reverse curve must also be 16°, the depth along the wall must revert to the 
initial depth h1, and the Froude number F of the flow at the end of the contrac-
tion should again be the same as at the entrance, at least along the walls. The 
complication arising from this requirement is not difficult to see: The con-
tinuity condition obviously does not permit the same velocity and depth to 
exist in the narrower section as in the wider entrance. It follows that depth 
and velocity must vary across the end section in such a way as to satisfy the 
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continuity condition. A fundamental weakness of this type of contraction 
is thus exposed. 

The lowest initial Froude number that would not result in a hydraulic jump 
being formed in the contraction was F = 3. The discrepancy between theo- 
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retical and measured profiles is explained by the fact that the Froude number 
of the wave is too near the critical, and therefore small changes in velocity 
result in large changes in depth. The counterpart of this case is found for a 
right hydraulic jump when the undulating stage is reached and unstable condi-
tions are approached. In actual practice such conditions are to be avoided. 
The theory, it is to be remembered, too, neglects vertical accelerations, which 
assume relative importance in the present case. The agreement between 
theory and measurement is very close for F 4 to F = 8 as far as height of 
the total disturbance is concerned. Only when F = 12 is there a serious dis-
crepancy apparent. This difference is explained by the fact that the maximum 
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depth along the wall is now seven times the initial depth, a case in which 
vertical accelerations must become excessive. Such a ratio of h/hi  would 
certainly not be permissible in practice and would clearly call for a longer 
transition with smaller central angles for the arcs composing the side walls. 
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PIG. 39.-MEASIIRED AND THEORETICAL WALL PROFILES FOR CIRCULAR-WALL CONTRACTION 

It is not the magnitude of F which causes the difficulty, but the fact that the 
central angle of the circular-wall sections is excessive for high values of F. A 
longer transition therefore is indicated, which might be designed for a curva-
ture determined by a specified ratio of h/hi. The permissible central angle 
can easily be read from the curve in Fig. 3 for such a ratio, once the starting 
point has been determined from the flow conditions at the entrance. 
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The theoretical profiles in the example chosen are symmetrical with the 
maximum point since the curvature of the two arcs composing the converging 
wall is the same. The maximum will not be changed, regardless of a change in 
curvature of both arcs or of one of the arcs, as long as the central angles remain 
the same. The wall profiles therefore may easily be made unsymmetrical if, for 
example, alargerradius is used for the downstream arc than for the upstream one. 
Nevertheless, a given depth change is always associated with a given change in 
direction, or in O; and at the point of the same total angular change along the 
wall the same depth must occur for given initial conditions, always assuming, 
of course, that no disturbance line reaches the wall from the opposite side. 

Boundary-Layer Effects.—In comparing the measured profiles in Fig. 39 
with the theoretical profiles it is noted, first, that usually the measured profile 
shows a somewhat delayed and smooth rise as compared to the aforementioned 
sharp initial break at the entrance. Second, the peak does not consist of a 
cusp, as shown by the computed profile, but is broad and rounded. Both 
differences are explained by the effect of the velocity distribution along the 
wall. The velocity increases from zero to the normal velocity within a certain 
finite distance from the wall, which implies that the angular change is not 
transmitted to the main flow immediately. The initial angular change AO is ac-
complished within a zone of lower Froude numbers and, therefore, with smaller 
elevation changes. The steep rise of the profile is delayed until the zone of 
higher velocities is affected. This boundary-layer influence is felt also at the 
peak of the profile, since the negative influence of the reversed curvature is 
similarly delayed and takes effect only gradually through the boundary layer 
adjacent to the wall. Although this influence of the boundary layer is quite 
noticeable in the small-scale experiments, for conditions in large structures a 
better conformance to the theoretical profiles must be expected since the 
boundary-layer thickness for large structures is considerably reduced relative 
to the other dimensions. 

Related Types of Contractions.—The question may now be asked as to 
whether the findings presented for this circular-arc contraction are basic and 
unavoidable for such channel contractions in supercritical flow. To give a 
géneral answer, a few additional forms may be discussed in principle on the 
basis of the theory and with the aid of Fig. 40. The Froude number F1  may be 
assumed to increase from one case to another while the wall alinement is kept 
the same for each type of contraction. It can be seen that a given type of con-
traction might, instead, have been varied in length to produce the various 
wave patterns discussed on the basis of the same Froude number. However, 
the former basis of comparison is chosen as the more convenient. It may also 
be stated that, in order to make the comparison systematic, cases which are 
obviously impractical are still included to illustrate certain points. The 
probable wave patterns have been sketched into three plan views (cases 1, 2, 
and 3 of the three types of contraction, A, B, and C). However, only the 
initial disturbance lines and the basic shock waves are indicated, so that the 
lines of reflected disturbances may not obscure the fundamental problem. 

Types A, B, and C, case 1, have little practical significance. Since the 
wave angles are normally small, extremely long contractions would be required 
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for the waves to intersect as far upstream as is shown. Cases Al and BI are 
better than case  Cl,  since the positive waves reach the opposite wall within 
the convex range of wall curvature, whereas case  Cl  has some positive waves 
reflected within the concave range—thus causing still higher elevations along 
this wall. Case B1 will have the most pronounced shock wave because the 
converging positive disturbance lines are so crowded together; the rise in cases 
Al and  Cl  will not be so steep, but of the same ultimate magnitude. Case Al 
and, especially, case  Bi  are more advantageous than case  Clin  that the positive 
disturbances are partly canceled, and somewhat lower diamond waves result in 
the downstream channel. However, these conditions may exist only for very 
long contractions or for large wave angles near critical depth, and, therefore, are 
not expected to occur in practice. 

Type A 

TypeC  

A' 
Case 2; F Normal 

A' 
Case 3; F High 

FIG. 4O.—CONTRACTION/3 COMPOSED OF CIRCULAR ARCS, SHOWING SCHEMATIC DISTURBANCE LINES 

Types A, B, and C, case 2, are characterized by having the first wave inter-
section farther downstream, and they are marked "F normal" because the 
conditions of permissible wave height for given Froude numbers and desirable 
lengths of contractions would result in patterns of this type. Case C2 is the 
most undesirable since the "wave-decreasing" influence of the convex walls 
is shifted downstream, and a maximum depression along the walls may lie in 
the same cross section as the intersection of the shock waves with its resulting 
maximum depth. The highest differentials of depths are obtained and, there-
fore, the maximum disturbances in the channel downstream. In solution 
A2 this tendency is somewhat relieved, and in B2 the converging lines are so 
far upstream that some of the negative disturbances may reach the shock fronts 
in advance of their point of intersection—thereby reducing their heights. 
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For types A, B, and C, case 3, all the shock-wave intersections are moved 
too far downstream, which results in large disturbances, if such conditions can 
be maintained at all. There are indications that for cases A3 and B3 the con-
traction is too short because the Froude numbers appear to be too high. Al-
though peaks may be relatively somewhat lower for cases A3 and B3 than before 
(due to the effect of the negative impulses from the convex wall sections), the 
occurrence of maxima and minima near the same cross section indicates large 
downstream disturbances. 

Summary.-Of all the contractions, B2 will probably perform best. The 
maximum depth in the center, however, will differ little from solution A2, 
and smaller downstream disturbances may be expected due to wave inter-
ference in this case. In designing such circular contractions, therefore, the 
characteristics of this type may be followed. In the following section, how-
ever, a more systematic approach is indicated toward basically better designs. 

STRAIGHT-WALL CONTRACTIONS 

General Principles of Design.-The aim of rational design for supercritical 
flow must be oriented, first, toward lower standing waves and, second, toward 
redyction or possible removal of standing wave patterns in the channel section 
downstream from the contraction. As stated, the total deflection angle I) 
determines the wave height, regardless of the degree of curvature of the side 
walls. It is logical, therefore, to decrease this angle O to a minimum. For the 
contractions discussed in the preceding section, decreasing values of O are 
obtained by inserting longer straight-wall sections between the circular sec-
tions. Thus, for contractions of the same length, increasing curvatures result 
for the circular parts, but the deflection angles are decreased. The minimum 
angle O is had by connecting the upstream and downstream tangent points by 
straight lines, possibly rounding the corners slightly for the sake of appearance. 

TABLE 4.-REDUCTIOk IN MAXIMUM WAVE HEIGHT (SEE FIG. 8) 

Froude 
No., 

e. 80; 
STRAIGHT CONTRACTION 

CENTRAL ANGLE = 160; 
CIRCULAR-ARC CONTRACTION 

h2/h1 ha/h2 hi/hi 1111h2 ha/hi  

2 	  1.35 1.35 1.82 (1.82) Hydraulic jump 
3 	  1.50 1.40 2.10 2.10 1:86 3.78 
4 	  1.63 1.50 2.44 2.46 1.83 4.50 
6 	  2.00 1.67 3.34 3.41 2.05 7.0 
8 	  2.31 1.83 4.23 4.45 2.25 10.0 

10 	  2.70 2.00 5.40 5.61 2.40 13.5 

Table 4 serves to illustrate the reduction in maximum wave height for a con-
traction of given longitudinal extent as a function of the Froude number. 
The values of h2/h1  and hillii are listed for a contraction composed of circular 
arcs of 16°, central angle, and for a straight-wall contraction of 8°, deflection 
angle. The ratio h3/14 represents, in each case, the theoretical depth ratio for 
the zone immediately below the first shock-wave intersection and is assumed to 
be indicative of the highest possible disturbance. The ratios ha/hi naturally 
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become excessive for the higher Froude numbers from a practical point of view, 
but they are considered here only for the sake of comparison. 

The design procedure for a straight contraction is simple: For an initial 
Froude number F1 and for a permissible depth increase h2/h1  the wall angle 0 
and F2 can be found from the diagram in Fig. 8 of the first Symposium paper. 
The first shock wave can be regarded as reflected at the center (see Fig. 41) by 
its image wave from the opposite wall. Since the depth and velocity beyond 
this point of reflection or intersection determine the height and location of the 
disturbances downstream; and, since the angle 0 must be the same for the 
initial and reflected waves, the diagram is used again to determine h3/h2  and 
F3 with the values of 0 and F2 found previously. The ratio h3/h1  can then be 

readily computed and should normally not be higher than three. Fig. 41(c) 
will show immediately whether the hydraulic quantities are safe in so far as 
they remain sufficiently supercritical. In practice, wall angles so small (and, 
therefore, contractions so long) that a second reflection along the wall takes 
place within the contraction are improbable. Theoretically, however, the 
story is not changed in this case; another set of values of h4/h3  and F4 are to 
be added to the computation with the same angle O. 
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Wave Patterns in Channel Below Contraction.—In the preceding section it 
was shown that, on the basis of the theory, better hydrualic performance is 
always obtained for contractions with straight walls rather than with circular-
wall alinements due to the smaller total angle of deflection. The additional 
aim of design is to reduce the standing waves in the channel downstream from 
the contraction. If the length of channel contraction in relation to initial flow 
conditions is ignored, the shock waves set up by the converging walls are subject 
to the negative disturbances originating at points  D  and  D'  (see Fig. 41(a)) in 
a rather haphazard fashion. In the discussion of the various possible wave 
patterns sketched in Fig. 40, the location of the shock-wave intersection B 
with respect to points  D  and  D'  is shown to have a definite influence on the 
wave height in the downstream channel. Maximum disturbances result with 
points B,  D,  and  D',  lying in the same cross section. Minimum disturbances 
are to be expected if the reflected shock waves are made to meet the walls at 
points  D  and  D',  since then the deflecting effects of shock waves and walls 
tend to cancel each other. This cannot easily be accomplished with S-shaped 
wall contractions unless straight sections are introduced between the concave 
and convex wall sections. However, it is possible to design straight-wall 
contractions as indicated in Fig. 41(b) to meet this requirement for low dis-
turbances. The disturbance might even be reduced to zero in such a case, 
provided the basic assumptions of the theory could be satisfied. 

To what extent these assumptions are violated remains for further dis-
cussion. At this point the geometric conditions in relation to hydraulic flow 
conditions may be established for such designs in accordance with the notations 
in Fig. 41(b). The deflection of the flow at points A and A' at the channel 
entrance causes symmetrical shock waves which cross the channel at an angle 
131 and meet at point B at the center. They are reflected to the walls and on 
their way proceed through a new flow field characterized by the parameter 
F2. If they meet the wall (as assumed) at CD and C'D', theoretically, there 
remain no disturbances because the flow has been directed parallel to the walls 
in the downstream channel by synchronizing the deflection effect of the waves 
BC and B'C' with the deflection effect of the wall. Since the deflection angle 
O is the same for both, no disturbance is obtained. It is difficult to correlate, 
mathematically, the geometric and hydraulic conditions for this special case 
although the setup appears simple enough. The following relations hold: 

b1 	 bs  L = L1 + L2 — 2  tan  ei 	2  tan  (/32 — 0) 
also, 

L — b1  — b3  
2 tan O 

Continuity conditions yield b1  h1  V1 = b3  h3  Vg = Q; or 

b1 	 h3  Va 	h3
)

312  ( Fa \ 

=  hl  VI = 

(40) 
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In agreement with Eqs. 19 to 22 of the first Symposium paper. and Eqs. 40 to 42, 
all conditions are available to determine the shape of a contraction. It prob-
ably is impossible to eliminate from Eq. 40 the variables  ei  and e, and to re- 
place them in terms of hi/ha, 0, and F3/F1. Therefore, the procedure must be 
one of trial and error as follows: For a given value of F1  a certain reduction 
in width is required from b1  to b3. The assumption of a desirable depth change 
h8/hi  is made, and Fa/Fi  is thus given by Eq. 42. Provided F3 is not too close 
to the critical value, Fig. 8 may be employed to determine the deflection angle 
0 by trial and error. Assuming a value of 0, the corresponding values of h2/h1  
and F2 are read from that graph. A second determination using the same 0 
and replacing F1  by the F2  just obtained will yield a value of h3/h2. Multi-
plying h2/h1  by h3/h2, the trial value of h3/h1  is obtained. If this is not the 
desired value, the process has to be repeated with an adjusted value of 0 until 
agreement is reached between the assumed h3/1/1  and the one obtained by trial. 
The procedure using this diagram is extremely fast. The length L follows 
from Eqs. 40 and 41. 

In general, long contractions will result for low values of h3/h1  and high 
values of F1. Ratios of h8/h1  = 2 and h3/41  = 3 seem advisable in order to re-
duce the length of contractions, provided F3 stays well above the critical value. 

If the contraction cannot be designed to the correct angle 0, disturbances 
must be expected to continue into the downstream channel, as indicated in 
Fig. 41(a). The maximum height of these disturbances may then be deter-
mined as in the foregoing procedure. The process is repeated twice with a 
given angle 0, since the maximum depth h3/111  will occur at least within a narrow 
zone below the wave intersection B. It will then recur intermittently along side 
walls and center line, provided points C and C' lie below points  D  and  D'.  The 
respective positions of points  D  and C tend to modify the height of the down-
stream waves, since points  D  and  D'  are the origins of negative disturbance 
lines. It is felt, however, that the limitations imposed on the theory by the 
basic assumptions would render a possible theoretical analysis of surfaces 
downstream from the contraction of little practical significance. 

The following summary may express the results of this theoretical investi-
gation briefly: 

Straight-wall contractions are always better than curved-wall contrac-
tions from the standpoint of maximum wave height and compared on the basis 
of equal length. 

For given reductions in channel width, correct deflection angles 0 may 
be found, which result in minimum disturbances in the downstream channel. 

Vertical Accelerations and Boundary-Layer Influence.—The actual physical 
features of shock-wave fronts differ from the ones assumed in the basic theory 
to a considerable extent, as is indicated schematically in Fig. 42. First, vertical 
fronts, represented by single lines in plan and having negligible longitudinal 
dimensions, are arrived at in the elementary theory; and, second, the velocity 
is assumed constant over the depth. 

The flow is assumed to expand under the front instantaneously, in accord-
ance with the deflection imposed on the stream by the side wall. It has 
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FIG. 42.-SCHEMATIC COMPARISON OP ACTUAL AND ASSUMED WAVE FRONT 
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already been shown that the existence of a boundary layer along the channel 
sides will modify the rate of rise or depression of the water surface there. In 
the theory this assumption is one of convenience, and the actual appearance of 
the shock wave is considerably modified under the influence of the neglected 

factors. The flow will expand rather gradually in the case of low waves, 
whereas, for higher fronts, the surface slope approaches the vertical with 
eventual overturning or breaking of the wave. Surface rollers, familiar from 
the hydraulic jump, are formed. Steep fronts naturally cause high vertical 
accelerations and, therefore, considerable deviations from the assumed hydro-
static pressure distribution under the front. Thus, the wave fronts are charac-
terized locally by depths which are higher than those calculated. However, 
within a short distance the depths revert closely to the theoretical depths as 
soon as the streamlines again are paralrel to the bottom. The fact that wave 
fronts extend longitudinally and are distorted vertically in the case of high 
vertical accelerations must be considered in analyzing experimental results. 
The longtitudinal dimensions of the front should be small as compared to the 
dimensions of the structure to be tested. The phenomena of wave reflection 
and intersection are equally influenced and modified by the physical discrepancy 
between theoretical assumption and actuality. However, basic wave patterns 
must remain valid regardless of these local effects. 

In Fig. 42 the boundary layer along the bottom is indicated to an exagger-
ated extent by a dashed line. This boundary layer will increase disproportion-
ately in thickness under the wave front since the low momentum of the fluid 
within this layer is not sufficient to overcome the adverse pressure gradient 
under the front. This fact will change the so-called displacement thickness of 
this layer and will be equivalent to a rise in elevation of the bottom, thus de-
creasing the specific head of the flow. A slight change in the height of the 
front and in its location may result. Although this discussion is helpful in 
the analysis of experimental trends, refinements of the theory do not seem 
warranted for the purpose of this paper. 

EXPERIMENTAL RESULTS WITH STRAIGHT-WALL CONTRACTIONS 

The two phases of the problem with straight contractions were the subject 
of several experimental studies at Lehigh University and at M. I. T. As shown 
previously the basic theory and the experimental results obtained for curved 
side walls agree satisfactorily (see Fig. 39), giving disturbances corresponding 
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to the maximum deflection angles. The statement made previously that 
straight-wall contractions are more satisfactory due to smaller deflection angles 
has already been supported by theoretical evidence in Table 4; it remains, there- 

FIG. 43.-VIEWS, FACING DOWNSTREAM, OF CONTRACTION COMPOSED OF STRAIGHT WALLS; 
F .= 3.86 AND O = 150  

fore, to present experimental confirmation of the basic equations. Two sets 
of results are available for this purpose. 

M. P. Barschdorf and  H. G.  Woodbury," in a flume constructed of alu-
minum plates for accurate work at the Hydraulic Laboratory at M. I. T., 
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arranged for movable side walls, so that wall angles of 0 from 30  to 300  could be 
established. For Froude numbers between 3 and 4 they conducted a series of 
experiments measuring the pertinent features of the standing waves produced 
for wall deflection angles from 30  to 30°. A sufficient number of transverse 
profiles were determined by point gage to obtain the wave heights and wave 
angles independently of the local effects discussed in the preceding section. 
The photographs of Fig. 43 are two views facing downstream into the contrac-
tion with a wall angle of 0 = 15° and for a Froude number of F -= 3.86. The 

0 	5 	'10 
I 	 I 	 I .  Profile Scale of Depth, 

in Inches a t  Sta.  2.4 1,1101r,i, Sta.  2.4  
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I  

Sta.  0.0  Sta.  0.0 
0 10 - 

Channel Width, in Feet 
20 3.0 

44.—SURFACE PROFILES OF STANDING WAVES IN STRAIGHT-WAIL CONTRACTION; 
F =  3.86 AND 9  .= 15°  

surface profiles for all runs were plotted in distorted scale in isometric form as 
shown for the preceding example in Fig. 44. The initial rise of the surface 
near the front above the equilibrium depth is apparent, whereas beyond this 
local disturbance the depth along the wall returns to a more or less constant 
value. Side-wall profiles are also plotted and show clearly the constancy of 
depth 12,2  along the wall. 

In Table 5 a comparison is presented of measured and theoretical values of 
wave angle 131  and of the depth ratio h2/h1. , All theoretical values of  ei  and 
h2/hi  were determined from the known quantities of 0 and  FI  by graphs equiva- 
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lent to Fig. 8. Wave angles eh were determined by averaging the wave fronts 
vertically at each station and by drawing straight lines through the wave front 
locations thus obtained. From Table 5 it is seen that excellent agreement was 
obtained for this Froude number  Fi  as far as ultimate values of h2/ii1  are 

concerned. The values of fei  varied from 
-12% to +5% about the theoretical value 
of  ei  for the different deflection angles 
from 30  to 24°. The general trend  ob- 

20 	 tamed consistently for only slightly differ- 
ent Froude numbers is best illustrated in 
Fig. 45 in which the ratio K of sines of the 
actual el  to the theoretical 

actual sin 01  K  	 (43) theoretical sin 01  

-is plotted against the deflection angle O. 
Since the minimum possible value of  ai  is 
sin-1  1/F1  = 15°0', the influence of the 
wave height on the value of (31  is smaller for 
low values than indicated by the theory, 
and larger than the theoretical values when 

4 	 h2/h1 greatly exceeds values of 2. This 
result shows that vertical accelerations will 
affect the location of the wave front. 

This tendency appeared also in a series 
08 	 1.10 of tests conducted at Lehigh University 

by  D.  Coles and T. Shintaku," Jun. ASCE, 
when the wall angle was kept constant at 
O = 60 for a range of Froude numbers from 

F1  = 3 to F1  = 10. Their results are summarized in Table 6. Although the 
ratios h2/h1  are obtained fairly easily from the measurements, the angle el  is 
not so readily available from the data and depends somewhat on the method 
of interpretation. 

TABLE 5.-COMPARISON OF MEASURED AND THEORETICAL VALUES 
OF 13i AND Will FOR A FROUDE NUMBER OF F1 = 3.86 

Wall 
angle 

Theoretical« 
al 

Measured 
al 

Theoretical 
li:/hi 

Measured 
Iii/hi  

PERCENTAGE 
VARIATION 

FROM THEORY 

th  hz /hi 

30 17° 35' 15° 30' 1.21 1.24 -11.8 2.3 
6° 20° 15' 18° 15' 1.47 1.47 - 9.9 o 
9°  23°  10' 22°  45' 1.70 1.73 - 1.2 1.7 

12°  26°  30' 28° 	7' 2.00 2.00 l' - 1.5 o 
15°  ° 29°  30' 29°  55' 2.22 2.22 + 1.4 0 
18°  32°  25' 34°  15' 2.49 2.47 + 5.6 -0.70 
21° 35°  45' 38°  00' 2.72 2.71 ; 1- 6.3 -0.3 
24°  39°  18' 41°  20' 2.99 3.01 + 8.2 +0.6 

* Minimum  value  ia 15°  00'. 

.24 
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FIG. 45.-PLOT OF CORRECTION FACTOR 
K AGAINST WALL ANGLE O 
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Essentially the basic theory stands confirmed by the experimental findings in 
laboratory flumes for a practical range of F1  from 3 to 8 and of 11,2/h1  from 1 to 3. 
Its usefulness for design is readily apparent within the limitations discussed. 

Disturbance Pattern in Channel Below Contraction.—Several studies were 
finally made to compare disturbances from contractions in the channel down- 

TABLE 6.—COMPARISON OF MEASURED AND THEORETICAL VALUES OF 01  AND 
itsiki FOR VARYING FROUDE NUMBERS AND CONSTANT WALL ANGLE 0 = 6° 

Froude 
No. 

Theoretical 
Pi 

Measured 
Pi 

Theoretical h:/hi  Measured 
hs/hi 

3.00 25° 10' 22° 00' 1.38 1.31 
4.00 19° 30' 18° 40' 1.47 1.52 
8.00 15° 00' 15° 10' 1.75 1.73 
8.00 12° 20' 12° 45' 2.00 2.17 

10.00 11° 10' 10° 30' 2.30 	. 2.88 

stream. Fig. 46(a) shows the dimensionless depth profiles along the walls of 
the channel and its center line, starting at the end of the contraction for the 
circular-arc contraction and with maximum deflection angles of 16°. Although 
the comparable straight-wall contraction should have been built with 0 = 8° 

to obtain a contraction of the 
same length, a longer contrac-
tion with 0 = 6° was built to 
extend its usefulness into the 
range of lower Froude numbers. 
These profiles are shown in Fig. 
46(b) as before for the same 
hydraulic conditions. The im-
provements with respect to wave 
height are readily seen. 

In addition, attention is 
called to the fact that the dis- 
turbances for F 	i  are actu- 
ally less than for F = 3 for the 
name contraction. Thin fact in 
dicates that the contraction at 
F = 4 more nearly satisfied the 
requirements of correct design 
as indicated in Fig. 41(b), 
whereas, for F — 3, the points 
of intersection and reflection of 
the wave fronts were located 
so as to cause maximum dis-
turbances. 

Previous to this study  D.  P. Rodriguez" designed a correct straight-wall 
contraction for F = 4 and for a reduction ratio of b1/b3  = 2. The angle O 
for this case was computed to be 6.9°. Tests were then made on a one-sided 
contraction in the Lehigh flume. The best profiles were found not for F -= 4 
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but for F-values of about 3, as indicated in Fig. 47 showing the various wall and 
center-line depth profiles. This result, although not anticipated at that time, 
is due to the fact (established later) that the actual wave angle 131  for this wall 
angle and Froude number is smaller than the computed value (see Table 5). 
Therefore, a longer contraction is indicated than is obtained from the theory. 
It is also for this reason that the wall angle of 6° was chosen in the study re-
ported by Messrs. Coles and Shintaku." With this smaller wall angle the 
improved profiles for F = 4 in Fig. 46(b) were obtained. A photograph 

FIG. 49.-CONTOUR8 OF WATER SURFACE IN A STRAIGHT-WALL CONTRACTION FROM 2 FT TO 1 FT 

showing this contraction with flow conditions near F = 4 is given in Fig. 48, 
which readily shows the improvement in the surface disturbances when com-
pared to views in Fig. 36. A further graphical illustration of this case is 
supplied by the surface contour maps of Fig. 49. Fig. 49 gives the surface 
for F = 0.315—that is, for subcritical flow, which is equivalent to the case 
plotted in Fig. 37(a) and does not show any essential difference. For the case 
of supercritical flow with F = 4, Fig. 49 may be compared to Fig. 37(b), 
and the reduction in the depths produced along side walls and along center 
lines is seen to be considerable. 

CoNcLusiox 
The experimental evidence presented in the preceding section is not suffi-

cient to establish corrections of general validity for the application of the 
elementary theory. However, by and large, it is adequate to show that the 
basic phenomena are predictable from the theory. Only minor corrections 



1368 	 HIGH-VELOCITY FLOW 	 Papera 

need be applied because of factors not included in the theory (such as the in-
fluence of gravity and friction forces) and because of the vertical accelerations 
under the shock-wave fronts. Further experimentation is to be directed toward 
a systematic coverage of these influences. The limited aims of the present 
paper may be summarized under the following points: 

The behavior of a typical channel contraction composed of circular arcs 
was explored experimentally for a wide range of Froude numbers; 

The flow conditions predictable from the thoery were compared to ex-
perimental measurements; 

On the basis of these results the physical requirements of channel con-
tractions for supercritical flow were defined as distinct from those for sub-
critical flow; 

A basic design form was developed for supercritical flow conditions to 
reduce wave heights and disturbances in the downstream channel; and 

Typical contractions designed with straight converging walls were tested 
and found to conform essentially to the requirements. 

It is thus established that channel contractions for supercritical flow can 
be designed specifically to avoid excessive standing wave heights by proper 
choice of both deflection angles and length for given reductions in width. 
Straight-wall contractions are normally superior to curved-wall contractions, 
as long as the channel bottom is level crosswise and of constant slope in the 
direction of flow. Warping of the bottom and large changes in longitudinal 
slope have not been included in this paper, although improvements in the 
standing wave patterns can be attained experimentally by such methods. 
Additional experimental work and an extension of the theory are needed to 
cover these phases of supercritical flow in channel contractions. 
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DESIGN OF CHANNEL EXPANSIONS 

BY HUNTER ROUSE," M. ASCE, B. V. BHooTA,27  Assoc. M. ASCE, 
AND EN-YUN HSU28  

SYNOPSIS 

Following an introductory discussion of supercritical flow in divergent 
channels, the matter of channel design is discussed under three sequent head-
ings: (1) Surface configuration at abrupt expansions; (2) efficient curvature of 
expanding boundaries; and (3) elimination of disturbances at the end of 
transitions. The extent of the agreement between elementary wave theory 
and experimental measurement is shown, and the results are presented in the 
form of generalized diagrams convenient for rapid exploration and prelim-
inary design. 

INTRODUCTION 

In the design of hydraulic structures it is often necessary to provide for the 
lateral expansion of flow emerging at high velocity from a closed conduit, sluice 
gate, spillway, or steep chute. If such a transition section is made to diverge 
too rapidly, the major part of the flow will fail to follow the boundaries; if the 
divergence is too gradual, on the other hand, waste of structural material will 
result; and, finally, if local disturbances are produced by incorrect boundary 
form, either at these points or farther downstream the walls may fail to confine 
the flow. Any particular problem of this nature, to be sure, may be subjected 
to cut-and-try investigation through model tests, with results which are 
necessarily restricted to the specific model form. An exact and general analytic 
solution, unfortunately, is still a matter for the future, and may be approached 
only through application of sound physical principles as discussed in the first 
Symposium paper. However, a step in this direction has been made in the 
develoQment of reasonably general relationships among the several major 
variables involved, by means of which an approximate solution may be ob-
tained for a great range of boundary conditions. 

As in other problems of steady flow in an open channel of nonuniform cross 
section, the variation in velocity and depth through a channel expansion will 
depend on the geometry of the channel boundaries, the rate of flow, and the 
fluid properties. Under boundary geometry must be considered the form of 
the channel walls, the slope and form of the floor, and the surface roughness of 
floor and walls. In a strict sense, under fluid properties one should consider 
the density, specific weight, viscosity, and surface tension; except in small 
models, however, or under conditions in which boundary shear is of particular 

Director, Iowa Inst. of Hydr. Research, State Univ. of Iowa, Iowa City, Iowa. 
Engr., Foreign Div., The Dorr Co., Bombay, India. 

"Research Associate, Iowa List. of Hydr. Research, State Univ. of Iowa, Iowa City, Iowa. 
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moment, both surface tension and viscosity are of very minor importance, and 
the two remaining properties then reduce to their ratio 7/p =  g,  the gravita-
tional acceleration. 

If these different independent variables are combined by the II-theorem " 
of dimensional analysis into a series of dimensionless ratios, as many length 
ratios will be obtained as are necessary to describe the relative geometrical 
proportions of the boundary, together with a flow parameter of the Froude 
type. The latter is generally written in the form: 

V F — 
-‘rg-Tb 

 

	 (44) 

 

in which  V is  the mean velocity and  h  is the mean depth of the approaching flow. 
For given boundary conditions, the relative form of the free surface and the 

relative velocity distribution will depend solely upon the magnitude of the 
Froude number. As in all cases of open-channel flow, the critical magnitude 
F • • = 1 marks the border between two wholly different types of surface con-
figuration and velocity distribution. For Froude numbers less than unity, the 
depth then being greater than the critical, a gradual enlargement of the cross 
section will result in a gradual increase in mean surface elevation and a cor-
responding reduction in mean velocity. For Froude numbers greater than 
unity, the depth then being less than the critical, the same gradual enlargement 
of the cross section will result in a gradual reduction in mean surface elevation 
and a corresponding increase in mean velocity. However, only if the divergent 
boundaries are continuous planes (which is physically impossible if the transi-
tion is to begin and end with other than zero and infinite cross-sectional areas) 
will the depth of flow and the magnitude of the velocity be constant over any 
normal section. In other words, at the beginning and at the end of the transi-
tion the local curvature or angularity of the walls and floor will produce dis-
turbances which make it impossible to handle such a problem satisfactorily 
on the elementary basis of mean velocity and mean depth. For Froude 
numbers less than unity (which are not the concern of the present paper), the 
boundary may be designed and the flow pattern may be evaluated in much the 
same manner as for the corresponding transition in a closed conduit. On the 
other hand, for Froude numbers greater than unity, the problem of design and 
evaluation becomes one of gravity-wave analysis, since each increment of the 
boundary deflection may be considered to generate an incremental surface 
wave which crosses the flow at an angle depending upon the Froude number 
and the boundary form; only through determination of the cumulative effect 
of all such waves may the depth and velocity at each and every point be 
predicted. 

As has been described in the first Symposium paper, there is at hand 
a graphical method which permits the direct construction of streamlines, 
"isovels," and water-surface contours for any boundary form, provided that: 
(1) The channel walls are vertical and the floor is horizontal, (2) the energy 

20 'Fluid Mechanics for Hydraulic Engineers," by Hunter Rouse, McGraw-Hill Book Co., Inc., New York, N.  Y.,  1938, pp. 13-18. 
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loss due to boundary resistance is negligible, and (3) the pressure is hydro-
statically distributed. These provisions may at first glance appear decidedly 
restrictive, but they become less so as they are considered individually. Ver-
tical channel walls are common; indeed, sloping walls are generally to be 
avoided in nouniform high-velocity flow because of their tendency to exaggerate 
surface disturbances. Channel floors are seldom horizontal, however, and 
the boundary resistance is never completely negligible; on the other hand, 
slight to moderate slopes of either the floor or the total-head line generally 
have an influence which is secondary to that of the wall expansion, and such 
effects are in fact compensative rather than additive. Moreover, only in the 
case of relatively abrupt curvature at the beginning or the end of the expansion 
is the existence of nonhydrostatic zones to be expected, and these may be 
effectively eliminated by proper easing of the transition curve. Only two 
factors, in actuality, tend to limit the graphical method in its use for the com-
plete design of a well-proportioned expansion. First, its application depends 
upon prior knowledge or assumption of the boundary geometry, so that deter-
mination of the best form of transition involves the tedious process of trial and 
error. Second, if (as is usually the case) a hydraulic jump is to form at the 
end of the expansion, the method offers no clue as to the inherent stability (or, 
more likely, instability) of the phenomenon. As a matter of experience, the 
formation of a jump or standing wave by other than the boundary curvature 
(for instance, by backwater from a downstream control) may lead to an asym-
metric pattern of flow within the transition which is still wholly unpredictable. 

Since the purpose of this paper is the provision of general rather than 
specifically detailed information on the behavior of high-velocity flow in any 
channel expansion and on the preliminary design of particular expansion 
structures, primary attention (once the agreement between theory and experi-
ment has been shown to be satisfactory) is focused upon the reduction of all 
experimental data to a few composite diagrams from which the basic details of 
design may be determined. Both the experiments and the generalization of 
the experimental results group themselves naturally into three subdivisions of 
the problem—first, the characteristics of a high-velocity jet expanding upon a 
level floor; second, the effects of boundary curvature in the zone of divergence; 
and, third, phenomena accompanying the return to uniform flow at the end 
of the transition. 

All experiments described herein were conducted at the Iowa Institute of 
Hydraulic Research of the State University of Iowa under a project sponsored 
by The Engineering Foundation and the Committee of the Hydraulics Division, 
ASCE, on Hydraulic Research. The first part of the project, including the 
construction of equipment, was undertaken as a doctoral dissertation by Mr. 
Bhoota," and the second part as a master's thesis by Mr. Hsu,31  who then com-
pleted the investigation as a staff member of the Iowa Institute.. Messrs. C.  H.  

"Characteristics of Supercritical Flow at an Abrupt Open-Channel Enlargement," by B. V. Bhoota, 
thesis presented to the State University of Iowa, at Iowa City, Iowa, in December, 1942, in partial fulfilment 
of the requirements for the degree of Doctor of Philosophy. 

in "Characteristics of Supercritical Flow at a Gradual Open-Channel Enlargement," by En-Yun Hsu, 
thesis presented to the State University of Iowa, at Iowa City, Iowa, in February, 1946, in partial fulfilment 
of the requirements for the degree of Master of Science. 
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Hsia and M. M. Hassan, Assoc. M. ASCE, assisted in various phases of the 
analysis. The entire project was under the direction of Mr. Rouse. 

Essentially the same equipment (see Fig. 50) was used for all experiments. 
Water was supplied from constant-level tanks, through 4-in, lines and 8-in. 
lines containing calibrated elbow meters, to a pressure tank 2.5 ft in diameter 
and 5 ft long. One end of the pressure tank was provided with three inter-
changeable nozzles yielding rectangular jets 0.4 ft by 0.4 ft, 0.3 ft by 0.6 ft, and 
0.25 ft by 1.0 ft in cross section—that is, having width-depth ratios of 1, 2, and 
4. Rates of discharge were such that flow at any Froude number from 1 to 8 
could be established. Flush with the bottom of the nozzle outlet sections was 
a level table, normally horizontal but adjustable to a maximum slope of 
approximately 10° and provided with a suitably hooded waste trough. This 

ELEVATION 

PLAN 

FIG. 50.—SCHEMATIC REPRESENTATION OF EXPERIMENTAL APPARATUS 

table was originally 5 ft wide and 8 ft long,, and was covered with oiled hard-
board except for a plastic section with floor piezometers. It was later doubled 
in length and paved with finished concrete throughout. A gage carriage 
traveling on steel shafts above the table permitted three-directional movement 
of a point gage or pitot tube to any part of the test section. Through the 
earlier experiments one edge of the table was alined with the outer edge of 
each nozzle, a glass wall extending down the assumed line of symmetry of the 
transition for purposes of observation. That such elimination of one half of 
the flow pattern introduced negligible error was shown when the full transitions 
were later tested. 

CHARACTERISTICS OF FLOW AT AN ABRUPT EXPANSION 

The extreme case of a channel expansion is represented by the abrupt 
termination of the side walls, the channel floor continuing at the same slope. 
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If h1  and V1 represent the depth and mean velocity of the approaching flow, b1  is 
the channel width, x and  y  are the longitudinal and lateral coordinates (mea-
sured from the outlet section and the center line, respectively) of a point of 
depth  h,  and if no other factors than the acceleration of gravity are assumed 
to influence the flow, these variables may be combined into the following 
dimensionless relationship:  

h 	x  y  bi  
= fi  	 F1 

(45) 

Evidently, the relative depth at any point of the flow should depend upon the 
relative coordinate location, the relative width of the channel outlet, and the 
Froude number of the approaching flow. The form of this functional relation-
ship, of course, cannot be predicted through dimensional considerations, but 
must depend upon either physical analysis or experimental measurement. 

51.—PArrxax cur •FLow NEAR THE ABRUPT END OF A CHANNEL WALL 

The elementary wave theory indicates that the flow in the neighborhood of 
the end of either wall will begin to change in direction only as it passes the first 
negative wavelet (see Fig. 51), which lies at the angle /3 = sin-1  [7/ V1  
= sin-1  1/Fi  to the initial flow direction. From then on the streamlines may 
be considered to continue deviating through a series of infinitesimal steps, the 
angle of each succeeding wavelet depending upon the local magnitude of the 
continuously changing ratio of V to Arg7—that is, the local Froude number. 
Each wavelet represents, in effect, a line of constant depth, so that proper 
selection among the infinite series of wavelets will yield the systematic series of 
surface contours shown in Fig. 51. 

If now the zone is investigated in which the wavelets from the two opposite 
sides of the outlet begin to intersect, it will be seen (Fig. 52) that the resulting 
pattern of interference will yield a rather complex variation in depth and 
velocity of flow. The surface contours may again be determined by a rather 
laborious analysis of each element of the pattern in accordance with the ele-
mentary wave theory, but a far more rapid solution may be obtained by the 
graphical method of characteristics outlined in the first Symposium paper. 
Three such solutions, for different values of F1, are shown in Fig. 53. 
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The method of characteristics, in effect, reduces the functional relationship 
of Eq. 45 to the form:  

h 	x  y  
f2 \i, 171 F  ) 

by combining the relative coordinate terms x/hi and Yfill with the initial width-
depth ratio, bi/hi. This entails the inherent assumption of hydrostatic pres-
sure distribution at all points—that is, the absence of appreciable vertical 
acceleration. As a matter of fact, at the abrupt end of either channel wall the 
pressure is far from hydrostatically distributed, as the water surface is practi-
cally vertical in such a zone. The extent to which this lack of fulfilment of 

FIG. 52.-E1FECT OF WAVE INTERFERENCE FROM OPPOSITE SIDE OF CHANNEL 

the assumption causes the actual surface configuration to differ from the 
theoretical evidently depends upon the magnitude of the ratio bi/hi. In wide, 
shallow channels the zone of disagreement is of relatively small extent; in 
narrow, deep channels, on the other hand, the pressure distribution will be 
markedly nonhydrostatic from wall to wall. 

In illustrating the variation to be expected, experimentally measured surface 
contours for three different width-depth ratios are plotted in Fig. 54 for the 
same Froude numbers as those in Fig. 53. The deviations with bilk are 
appreciable, but nevertheless secondary to the variation with the Froude 
number. In other words, using an average system of contours in preliminary 
design is quite in order. Even for the widest channel, however, it will be found 
that there is also a discrepancy between the measured contours and those 

(46) 
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obtained by the graphical method of analysis. This may be attributed to the 
failure of the analysis to provide for any variation of total head due to boundary 
resistance, since the analytical contours are invariably displaced upstream. 
Again, however, the discrepancy is secondary in comparison with either the 
measured or the predicted variation of the flow pattern with F1. 

For purposes of rapid exploration of the various possible conditions of flow, 
it would be desirable to combine the Froude number with one or more of the 
other parameters, just as the method of characteristics effectively eliminates 
the ratio b1/h1  by combining the terms x/hi  and y/hi (compare Eqs. 45 and 46). 

h e  ,-.T =0.90 1 o.'-  
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FIG. 55.—GENERALIZATION OF EXPERIMENTAL DATA FOR ABRUPT EXPANSIONS 

A logarithmic plot against F1  of the location of particular contour intercepts 
along any longitudinal axis (say, the line of each wall in Fig. 54), made with this 
purpose in mind, indicated that—except at very low Froude numbers—the 
variation in location was essentially a linear function of F1. In other words, 
division of all values of x/bi  by F1  should tend to superpose all equivalent surface 
contours for all Froude numbers. Eqs. 45 and 46 are thereby reduced to 
the form:  

h 	 ( x y 	 (47) 

As may be shown analytically, this is certainly not a rigorous generalization. 
However, as will be seen from inspection of Fig. 55, when replotted in this 
manner the deviation of the mean contours taken from Fig. 54 is not great. 
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Although single average lines on this generalized diagram would evidently 
represent means of means, their departure from the contours of twenty-one 
runs at different values of  Fi  and bi/hi is considered sufficiently small to 
permit the use of this diagram for the preliminary analysis of abrupt expansions 
at practically any value of either parameter. 

EFFICIENT CURVATURE OF EXPANDING BOUNDARIES 
There is a rule of thumb for the design of divergent boundaries in high-

velocity flow which arbitrarily fixes the angle of divergence at 6' = tan-1  le  to 
O --- tan-' = regardless of the depth and the velocity of flow. As is apparent 
from the foregoing discussion of the expansion of flow without lateral constraint, 
the angle of divergence of any two neighboring streamlines is constant neither 
with the Froude number at a particular longitudinal distance nor with the 
longitudinal distance for a particular Froude number. At the abrupt beginning 
of such a uniformly divergent section the flow itself cannot abruptly change 
direction, and local separation as well as a concentration of negative wavelets 
will result; on the other hand, at a distance downstream which varies with the 
Froude number, the flow would naturally diverge more rapidly than the con-
stant boundary angle will permit, thereby producing positiiie wavelets. Thus, 
as indicated by either of the contour maps of Fig. 56, obtained by the method of 
characteristics, such a divergent section is invariably inefficient at its beginning 
(and again before its end) unless the Froude number is so high that recovery 
from the initial zone is not accomplished before the transition ends. 

It is obvious from such reasoning that an efficient boundary expansion 
should display a continuous change in curvature, and should have different 
proportions for every Froude number. The latter requirement suggests at 
once that, for purposes of preliminary design, the best form of boundary, as 
well as the resulting surface configuration, should be reducible to a generalized 
diagram such as that of Fig. 55. As a matter of fact, Fig. 55 was initially 
used in the arbitrary selection of a number of boundary curves for experimental 
and graphical investigation, the curves being formulated algebraically to 
approximate streamlines of the unconfined flow which enclosed about 90% 
of the total discharge. 

The boundary equation eventually found to be most satisfactory was of 
the form:  

y 	1 ( 	 1 	1 
6-1 	

) ,
bi (48) 

which is plotted in Fig. 57, together with surface contours for a mean value of 
bi/hi  and various values of F1. 

As will be noted from this composite plot, the beginning of the transition is 
sufficiently gradual to reduce effects of nonhydrostatic pressure distribution to 
a minimum, so that the factor bi/hi  is no longer an essential variable. The 
gradual increase in boundary angle, moreover, is sufficient to prevent the for-
mation of positive waves—yet not so great as to cause an undue change in 
depth across any normal section. In fact, using circular arcs to approximate 
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normalcy to the streamlines at successive sections, it will be found that the 
variation in depth from wall to wall does not exceed 30% of the center-line 
value. 

It is, of course, possible to reduce such depth variation between wall and 
center line by decreasing the rate of flare—that is, by decreasing the coefficient 

56.—PATTERNS OF FLOW IN A UNIFORMLY DIVERGENT CHANNEL AT 
DIFFERENT FROUDE NUMBERS 

of Eq. 48. This reduction, however, will result in a longer (and, hence, more 
costly) expansion for a given ratio of initial and final widths. Although the 
decision as to the greatest permissible depth variation is a matter either of 
judgment or of outlet requirements, it is believed that the curve shown in Fig. 
55 will provide a satisfactory average basis for design. 
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The several curves reproduced in Fig. 55 typify the twenty or more which 
were determined experimentally for various Froude numbers and width-depth 
ratios and then checked by the graphical method of characteristics. Although 
a good general agreement was always obtained, the experimental results in-
variably yielded contours which were displaced downstream (from 0 to 35%, 
depending upon the ratio h/hi ). As this was attributed to the failure of the 
graphical method to take into account the gradual loss in total head due to 
boundary resistance, the same measurements were repeated on bed slopes 
varying from 4% to 10%. This, however, resulted in little displacement of 
the contours longitudinally, but in a considerable displacement laterally—
that is, toward the center line, because the maximum bed slope was necessarily 
in the longitudinal direction rather than in the direction of each individual 
streamline. 
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From these considerations it would appear that the boundary form and sur-
face contours for a level bed, shown in Fig. 57, may also be considered applicable 
to such moderate slopes as are normally encountered in open-channel design. 
Great slopes, on the other hand, would require a warped bed to prevent the 
major part of the flow from tending to follow the direction of maximum slope 
parallel to the center line. At present, the bottom surface can be warped 
satisfactorily only by trial and error at model scale. In the latter connection, 
however, it is to be noted that an effort was made to equalize both the surface 
elevation and the unit rate of flow across all normal sections by molding the 
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bottom in conformity with the surface contours of Fig. 57. In other words, 
the initially horizontal bed was arbitrarily made higher at the center and lower 
at the walls in exact conformity to the indicated change in surface elevation 
across each normal section. Although full equalization of flow rate and sur-
face elevation was not attained, conditions were improved perhaps 50%. 
Since application of this method of partial correction requires no further trial-
and-error experimentation, its consideration is recommended where the added 
expense of bottom contouring is warranted. 

ELIMINATION OF DISTURBANCES AT THE END OF AN EXPANSION 
Just as the analysis of supercritical flow of water is closely related to that 

of supersonic flow of gases, an open-channel transition for such flow should 
satisfy essentially the same general requirements as the test section of a super-
sonic wind tunnel—a variation in cross-sectional area such that the velocity 
and depth (or pressure intensity) are evenly distributed across the final section. 

FIG. 58.—DESIGN OP AN EXPANSION WITH UNIFORM OUTFLOW FOR  Fi  = 2, 
BY THE METHOD OF CHARACTERISTICS 

The requirements of a supersonic wind tunnel are far more severe than those 
of an open-channel expansion, to be sure, even though experimental flow condi-
tions are usually subject to arbitrary control; in fact, it is necessary to vary 
precisely the wall curvature of the tunnel test section from run to run in accord-
ance with particular velocities of operation. Nevertheless, the same basic 
principles of boundary design could be applied quite generally to the case of 
open-channel expansions were it not for three practical limitations: First, 
under many circumstances the Froude number of the flow must be expected 
to vary over a considerable range; second, the length of transition required for 
either high Froude numbers or great expansion ratios will frequently be many 
times that permitted by structural economy; and, third, no method is provided 
thereby of stabilizing the hydraulic jump. 
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For the particular condition that an expansion represents merely a desirable 
increase in the width of a continuously paved channel, however, the same de-
sign procedure will yield at least the first approximation to an efficient design 
for a particular Froude number. As indicated in Fig. 58, the basis of the 
design technique is the control of wall curvature in such manner that the 
negative waves formed by successive elements of the outward curve just offset 
the positive waves formed by successive elements of the subsequent inward 
curve, so that the flow is restored to complete uniformity at the end of the 
transition. The procedure is, unfortunately, one of trial and error, and the 
resulting expansion ratio cannot be accurately foretold. A generalized series 
of boundary curves for successively greater expansion ratios is therefore pre-
sented in Fig. 59, as determined by interpolation from a series of solutions for 
various Froude numbers and expansion ratios by the method of character- 
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FIG. 59.—GENERALIZATION OP BOUNDARY CURVES DETERMINED BY THE METHOD OP CHARACTERISTICS 

istics. These curves must be regarded merely as guides in preliminary design, 
for the following reasons: (1) Since the primary purpose was the generalization 
of results, each curve represents the average form of several somewhat different 
curves for different Froude numbers; (2) since the initial outward curve was 
chosen to yield without change the greatest practicable expansion range, it is 
probable that a somewhat shorter expansion curve could be devised for a 
particular condition; and (3) since the length of any transition is far in excess 
of that for which the drop in total head could be ignored, the assumption of 
zero loss in applying the method of characteristics leads to a predicted outlet 
depth which is considerably smaller than that which will actually prevail. 
For example, experiments on several expansions constructed in the laboratory 
on the basis of Fig. 59 resulted in outlet depths as much as from 20% to 40% 
in excess of that indicated by the simple wave theory, even though the flow 
was essentially uniform at the exit. 
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If, on the other hand, the channel expansion is intended to reduce the 
Froude number of the flow just prior to the formation of the hydraulic jump, 
it will be possible to hold the expansion to the shorter form of Fig. 57. If the 
divergent walls are followed by parallel walls with either an abrupt or a gradual 
transition, a positive wave will be formed at each wall junction and will extend 
diagonally across the flow at an angle varying with the local Froude number. 
Such waves would persist a considerable distance down the channel through 
repeated reflection if no jump were formed. If the toe of the jump lies at or 
near the end of the expansion, however, the diagonal waves will no longer form. 
On the other hand, should the jump as a whole advance even slightly into the 
expanding section, the smaller depth at each side will result in a progressively 
greater advancement of the jump along the walls, any slight asymmetry of the 
divergent flow finally giving rise to a deflection of the whole stream along one 
wall as the jump advances along the other almost to the upstream end of the 
expansion. The resulting flow will be of an extremely violent nature, and it 
could conceivably lead to rapid failure of the structure from overtopping of 
the wall at the juncture or from undercutting beyond the end of the paved floor. 

In order to stabilize the jump at the end of such an expansion it appears 
necessary to provide a drop in floor level at the beginning of the parallel section. 
The relative magnitude of the change in elevation should depend primarily upon 
the Froude number of the flow as it leaves the expanding section. With refer-
ence to Fig. 60, it will be seen that the relationship between the Froude number, 
the relative change in depth, and the relative size of drop may be determined, 
like the equation of the jump itself, by the momentum and continuity relation-
ships. There are, however, two different types of jump which may form, de-
pending upon whether the downstream depth is below or above that which 
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produces the standing wave indicated by Fig. 60(b). For the condition of 
Fig. 60(a), the pressure on the face of the drop will be determined by the up-
stream depth; for the condition of Fig. 60(c), the downstream depth will govern. 
The relationships for cases (a) and (c) are as follows: 

1,2 	+ 1 
 1 	h2 /h1 ( 

	

z 	\ 2 	/h2 \21 
	 (49a) I 	

+
A hi 	\ hi/ J 2 1 — 

and 

F2  , 1 	h2/h1 _ _ 

	

f h2 	 Ly1 	  
I. 	hi 	hi (49c) 2 1 — hz/hi 

Curves for Eqs. 49 will be seen in Fig. 61, the right-hand (or lower) series cor-
responding to Eq. 49a and the left-hand series to Eq. 49c. The critical zone for 
the formation of the standing wave—case (b)—cannot be foretold therefrom, 

FIG. 81.—ANALYTICAL AND EXPERIMENTAL CHARACTERISTICS OF THE 
HYDRAULIC JUMP AT AN ABRUPT DROP 

however, and recourse must be had to experimental measurement. Tests on 
both abrupt and sloping drops resulted in the points plotted in the figure, 
which not only verify the approximate analysis but indicate a systematic 
trend of the transition between the two regimes:of flow. 
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From this diagram the magnitude of the drop for a given tailwater depth, , 
e or vice versa, may be determined once the average depth and the Froude 

number of the flow at the end of an expansion have been established. For 
1. protection of the structure, the design should be such that at the maximum  
ri  expected Froude number the tailwater depth will be the minimum required to 

produce a jump. Figs. 62(a) and 62(b) are photographs of conditions for 
expansion ratios of 8 and 4, respectively, the details of the expansions following 

kthe recommendations presented herewith. 

FIG. U.-CHANGE IN JITMP CHARACTERISTICS AT A 1:8 EXPANSION DURING A 30% 
INCREASE /N THE TAILWATER DEPTH 

FIG. 63.-CHANGE IN JUMP CHARACTERISTICS AT A 1:4 EXPANSION DURING A 30% 
DECREASE IN THE RATE OF FLOW 

If the tailwater depth is increased beyond the value for minimum jump re-
quirements, the undular regime will first appear (see Fig. 62(b)), followed by the 
second form of the jump and then by an uneven penetration of the expansion 
(Fig. 62(c)). An asymmetric pattern may eventually result, but the presence 
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of the drop makes this far less likely than would otherwise be the case. On the 
other hand, if the Froude number increases beyond the design value, or if the 
tailwater depth decreases, the jump will be carried downstream. This phe-
nomenon again is rendered less sensitive by the drop; the condition shown in 
Fig. 62(a), for example, will prevail during a 10% change in the downstream 
depth, whereas the three different stages shown in Fig. 62 represent a 30% 
change. Finally, if the Froude number is decreased, essentially the same 
sequence will follow as for the increase in tailwater depth (see Figs. 63(b) and 
63(c)). In this event, however, the decrease in discharge will correspond to 
an equivalent decrease in harmfulness of the flow, and—although asymmetry 
may eventually develop—the structure planned for higher flows should then 
be safe. 

CONCLUSIONS 

Application of the elementary wave theory to the analysis of high-velocity 
flow in open-channel expansions may be expected to yield results in essential 
agreement with experiment as long as the assumptions involved in the theory 
are approximately satisfied. For purposes of design, however, it is convenient 
to reduce all measured data for abrupt expansions to a single generalized plot 
of surface contours as a function of the initial Froude number and the relative 
coordinate location. A similar procedure for gradual expansions permits 
selection of an efficient wall form for any initial Froude number and width-
depth ratio. To avoid dangerous asymmetry of the flow at the end of such 
an expansion, the hydraulic jump should be stabilized by a drop in the channel 
floor, the proper magnitude of which may be determined by the momentum 
equation. 


