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FOREWORD

Although specific problems of high-velocity flow arising from changes in
open-channel cross section or alinement had frequently been solved by model
tests, not until the early 1930’s did the broad applicability of elastic-wave
analysis to such gravity-wave phenomena become evident. The resulting
principles of wave mechanics were first applied at the California Institute of
Technology at Pasadena in 1935, during the study of flow around the curves of
the Los Angeles County flood-relief channels in California; shortly thereafter
similar applications were made to channel contractions at Lehigh University in
Bethlehem, Pa., and the Massachusetts Institute of Technology in Cambridge,
and to channel expansions at the State University of Iowa in Iowa City.

In distinction to the empirical solution of particular design problems, these
investigations involved the use of general principles whereby simple designs
could be completed without recourse to experiment and complex designs
could be approximated understandingly prior to experimental refinement.
Several papers describing certain phases of the investigations were eventually
published, but the major part of the material remained in the form of graduate
theses and reports to various public and private organizations. Therefore,
much of the essential information did not become readily available to the pro-
fession, and in no way could the engineer secure a unified treatment of the
subject as a whole.

Because of this deficiency in the technical literature, in 1946 the newly
formed Fluid Mechanics Committee of the ASCE Hydraulics Division under-
took as one of its initial projects the sponsorship of a comprehensive symposium
on the design of curves and transitions for high-velocity flow. This was ar-
ranged as a series of correlated papers, prepared by those who were responsible
for the original investigations and so organized as to include the underlying
principles of wave analysis as well as their application to the primary types of
transition structure. The high lights of the Symposium were presented to the
1948 Annual Meeting of the Society, and the papers themselves are reproduced
for discussion in the following pages. It is hoped both by the authors and by
the Committee on Fluid Mechanics that the ultimate result will be a compact
yet inclusive treatise on the subject which will prove of practical value to design
engineers. :

Notation.—The following letter symbols, adopted for the Symposium and
for the guidance of discussers, conform substantially with American Standard
Letter Symbols for Hydraulics (ASA—Z10.21942), prepared by a committee of
the American Standards Association, with ASCE participation, and adopted
by the Association in January, 1942:

b = width of channel;

¢ = celerity of small waves = v g &;
d = height of a sill;

F = Froude number;

g = gravitational acceleration;
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specific head;
depth; k. = critical depth;
actual sin 81 |

theoretical sin B,
distance along a channel;
rate of flow;
radius, mean; r; = radius of a counterdisturbance section;
slope; S. = cross slope;
mean velocity = @/A4:

V. = critical velocity;

¥V = dimensionless velocity;

longitudinal distance from beginning of expansion;
lateral distance from center line;
depth of channel drop;
angle of a sill in a flume or channel;
wave angle;
specific weight;
deflection angle:

A8 = small but finite deflection angle;

6’ = angle of curve of the entire flow;

a correction factor =

8, = central angle of the half wave length in the main curve;

mass density.
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MECHANICS OF SUPERCRITICAL FLOW
By ARTHUR T. IPPEN,* M. ASCE

SyNopsis

The theory of high-velocity low—flow defined as shooting, rapid, or super-
critical—is presented comprehensively. The principles discussed find practical
application in the design of all open-channel structures in which surface dis-
turbances and standing waves appear as a consequence of the geometry of the
lateral boundaries. These surface disturbances are subject to systematic
analysis on the basis of two distinet methods of approach:

1. Gradual surface changes may be analyzed on the basis of constant
specific head; and

2. Standing wave fronts of appreciable height (so-called oblique or slanting
hydraulic jumps) can be computed, considering the energy dissipation involved.

Graphical aids for the solution of both types of problems are given in detail,
and the characteristic disturbance patterns are developed to illustrate a
number of basic cases. Specific verification of the theory by experiment is
left to subsequent papers of the Symposium.

INTRODUCTION

In recent years the hydraulic designer has been increasingly confronted
with problems of high-velocity flow in steep flood channels and spillway chutes.
The specific character of such flow results from the fact that the velocities
exceed considerably the critical velocity and therefore the velocity at which
surface disturbances and waves are transmitted in free surface flow. It was
found that similar problems of design are encountered in the field of high-
velocity gas dynamics and that, by analogy, a hydraulic theory could be
deduced from the concepts and analytic developments already available in
that science. Definite findings have resulted from intermittent research con-
ducted since 1934, and the accumulated experimental evidence confirmed
essentially the soundness of the theoretical approach. Within the limitations
imposed by the fundamental premises of the theory, consistent qualitative and
good quantitative results were obtained which justify the comprehensive pre-
gentation of the work at this time.

The historical development of research in this field may be summarized
briefly. In the United States the first impulse toward work in this field came
in the early nineteen thirties when the engineers of the Los Angeles County
Flood Control District found the conventional methods of designing flood
channels not applicable to the steep gradients employed in their area of service.
They therefore approached the Hydraulic Structures Laboratory at the Cali-
fornia Institute of Technology, under the direction of R. T. Knapp, M. ASCE,
with a proposal to study the flow at supercritical velocities through curved

1 Prof. of Hydraulics, Dept. of Civ. and San. Eng., Mass. Inst. of Technology, Cambridge, Mass.
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sections of rectangular channels in the laboratory. Extensive tests were then
performed by the writer from 1935 to 1938, under a variety of conditions as
far as radii, slope, and channel forms were concerned. The test results®3.45
pointed toward characteristics of such flow, which according to Theodor von
Kérmén,® M. ASCE, had their counterpart in the supersonic flow of gases
and to which the previous findings for such flow could be adapted. The appli-
cation of these principles resulted in a remarkable correlation of the test data.
It also became clear that a general method of analysis for supereritical flow had
been found which could be applied to the study of the design characteristics
of hydraulic structures.

The analogy of supercritical flow of water to supersonic gas flow had been
pointed out also by D. Riabouchinsky’ and L. Prandtl® without experimental
evidence. IFrnst Preiswerk® worked on the extension of the theory and con-
ducted a number of systematic experiments on a so-called Laval nozzle at
Zirich, Switzerland. Although these writers were primarily interested in
applications to supersonic flow of gases, work was continued more along
hydraulic lines at the California Institute of Technology under Mr. Knapp’s
direction, at Lehigh University, at the Massachusetts Institute of Technology
under the direction of the writer, and at the Iowa Institute of Hydraulic Re-
search in Iowa City under the direction of Hunter Rouse, M. ASCE. The
findings made in these investigations have been embodied in Symposium papers
Nos. 2 to 4 in a form adapted to the specific problem of design under discussion.
By contrast the task of this paper is an outline of the general principles of super-
critical flow and a complete development of the fundamental train of ideas for
those interested in the general physical aspects of the various problems.

GENERAL PaYSICAL BACKGROUND

The theory of nonuniform supercritical flow as reflected by its treatment in
conventional texts has been concerned mainly with the changes taking place
in only two dimensions, length and height. Depth and velocity changes are
related in general to the slope and roughness factors by the backwater equation
and its basic solutions, giving surface points as a function of distance. Lateral
changes of cross section are absorbed into an average depth and the cross slope
is always assumed to be zero. Although this method is justified for suberitical
flow, it must be rejected for supercritical flow because of the appearance of

2 A Study of High Velocity Flow in Curved Channels of Rectangular Cross Section,” by A. T. Ippen

and R. T. Knapp, Transactions, Am. Geophysical Union, Vol. 17, 1936, p. 516.

1 “An Analytical and Experimental Study of High Velocity Flow in Curved Sections of Open Chan-
nels,” by A. T. Ippen, thesis presented to the California Inst. of Technology at Pasadena, in 1936, in partial
fulfilment of the requirements for the degree of Doctor of Philosophy.

4 ““Experimental Investigations of Flow in Curved Channels” (abstract of results and recommenda-
tions), by A. T. Ippen and R. T. Knapp, U. S. Engr. Office, Los Angeles, Calif., 1938.

5 “‘Curvilinear Flow of Liquids with Free Surfaces at Velocities Above That of Wave Propagation,”
by R. T. Knapp and A. T. Ippen, Proceedings, 5th International Cong. of Applied Mechanics, Cambridge,
Mass., 1938, p. 531.

¢ “‘Eine praktische Anwendung der Analogie zwischen Uberschallstromung in Gasen)un%}!b:r kritischer

Stromung in Offenen Gerinnen,” by Theodor von Kérméin, Zeitschrift fir A tik und
Mechanik, February, 1938, pp. 49-56.

7¢8ur I’Analogie Hydraulique des Mouvements d’un Fluide Compressible,” by D. Riabouchinsky,
Comples Rendus de ' Académie des Sciences, Vol. 195, 1932, p. 998, and Vol. 199, 1834, p. 632.

8 ““Abriss der Stromungslehre,” by L. Prandtl, Braunschweig, Vieweg, 1931.

s “Application of the Methods of Gas Dynamics to Water Flows with Free Surface,” by Ernst Preis-
geré, lee/lchm'ﬁallgl 4:(;)mara.nda Nos. 934 and 935, National Advisory Committee for Aeronautics, Washington,

. C., March, ’
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standing waves as the result of lateral boundary changes for such flow. The
different types of backwater curves discussed by the classical theory can be
conceived as valid only for rectilinear supercritical flow between parallel
walls and for zero cross slope of the bottom. If these conditions are not ful-
filled, considerable errors are to be expected from computations in accordance
with this theory, although computations for subcritical flow are acceptable.

The physical difference between subecritical and supercritical flow is best
revealed by the specific-head diagram (see Fig. 1). A few remarks may sum-
marize its significance with respect to this paper.

Subcritical Range

Depth, k

Q=Constant

Supercritical Range

Specific Head, H

Fia. 1.—Prot oF SprciFic Heap Versus Depra or Frow

1. In suberitical flow the velocity head V2/(2g¢) is usually a small per-
centage of the specific head H; considerable changes in boundary alinement
cause dynamic pressures which may be large percentages of the velocity head,
but they remain small when expressed in terms of depth. It is therefore nor-
mally safe to assume hydrostatic pressure distribution for gradual boundary
curvatures, whether on the bottom or along the walls. Also, large variations
in H are synonymous with large variations of depth.

2. In supercritical flow the velocity head not only is comparable to depth &
in order of magnitude but, in most cases of practical interest, exceeds the depth
considerably. In this instance, large variations in specific head H are equiva-
lent to large changes in velocity head. Slight curvatures of the boundaries
may cause relatively small dynamic pressures in terms of velocity head, but
the changes in depth or surface elevation will be relatively large. Hydrostatic
pressure distribution may be altered radically, while the velocity head is
changed only a small percentage.

3. Flow near the so-called critical depth, when V = +/ ¢k, results in values
of h and V2/(2 g) of practically the same order of magnitude. While H remains
almost constant, changes in A or V2/(2g) are reflected in mutual changes.
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Slight variations of H cause large changes in V?/(2¢) and k. Since slight
changes in boundary alinement, because of their influence on the hydrostatic
pressure distribution, correspond in effect to slight variations in H, large
disturbances result as far as the depth and velocity head are concerned far
flow near eritical velocity, as evidenced by high undulations. Since the ratio
V/N gk is generally recognized as the Froude number, F, it is used subse-
quently to characterize these flow conditions. The flow described in item 1
therefore corresponds to Froude numbers smaller than unity, whereas for the
flow deseribed in item 2 the Froude number is always larger than unity. For
flow at critical depth F equals one.

The critical velocity V = + ¢ & also has significance as the velocity with
which very small disturbances or gravity waves travel in shallow water.
However, it must be remembered, that waves of large height travel faster than
those of small height and consequently ‘are able to travel upstream even in
supercritical flow, whenever the wave velocity exceeds the velocity of flow.
If the velocity of flow changes along the line of travel of such a high wave, a
position is eventually reached where the velocity of flow equals the wave
velocity. Such a stationary surge or wave is well known as the hydraulie
jump, the theory of which is assumed to be familiar to the reader.

Gradual changes in supercritical fiow can be treated by conventional
methods only as long as the flow is confined between parallel, rectilinear walls
with zero cross slope of the bottom. Only then will the theoretical surface
curves apply as computed for cases of accelerated or decelerated motion in
long channels and vertical transitions. The same restrictions hold for the
tmnsmlon from supercritical to suberitical flow in the hydraulic jump, con-
ceived as a standing surge at right angles to the flow.

The theory of nonuniform flow at supercritical velocities is extended in the
following text by the additional variants of curvilinear walls and by the abrupt
changes of wall alinement considered under specific assumptions, which are
outlined as the treatment proceeds. In addition to velocity changes in the
original direction of flow, changes in the direction perpendicular to the original
one are computed in connection with transverse changes of depth. The sur-
face, therefore, is no longer considered horizontal crosswise or of a definite cross
slope; but its classification may become quite arbitrary, The only restriction
remaining is that vertical changes in velocity be neglected, which requires in
turn that the pressure distribution remain hydrostatic. It will be shown that
satisfactory solutions can be derived for flow through curved sections of open
channels and through converging and diverging channels as long as the basic
assumptions are fulfilled. The limitations imposed by these shapes are clearly
shown in connection with individual applications. The physical features of
such flow are characterized by oblique standing wave fronts, originating at the
walls of the channels at the points of changing alinement. These waves cross
the channel to the opposite wall, where they are reflected, and in this fashion
they continue almost undiminished in the downstream direction. Of course
this visible evidence of boundary disturbance is made up of a multitude of
small disturbances, the characteristics of which may now be taken up in detail.
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MEecHANICS OF WAVE PROPAGATION IN SUPERCRITICAL FLow

A uniform, rectilinear flow is assumed for depth h; with a velocity Viin a
wide rectangular channel. The streamlines are parallel throughout. If the
flow is now disturbed at any point by placing an obstacle in the stream, the
surface of the stream will show deformations whose characteristics are de-
pendent on the value of the velocity Vi with respect to the critical velocity
v g hy, which is equal to the celerity ¢ of small waves. If the velocity V, is
smaller than « g 4 (thatis, if F; = Vi/4 ¢ by < 1), the flow upstream from the
obstruction will be affected by the presence of the obstacle. The backwater
will extend a long distance upstream considering the dimensions of the obstacle,
and a typical wake will appear in the rear of the obstacle. The streamlines
will be deflected in all directions over a considerable area in conformance with
the shape of the body. If the local velocities are expressed as percentages of
the initial velocity Vi, a dimensionless streamline pattern may be drawn which
remains geometrically similar for a wide range of variation in V; and %, or
better, for values F; < 1. Surface depressions or superelevations are not very
marked. If the flow conditions are changed, however, so that V; approaches
the value of Vg 41 or F, approaches unity, a marked change in the flow pattern
becomes apparent. Flow conditions at critical velocity would nevertheless
still cause a backwater, since in such a more or less hypothetical case the
slightest obstruction would cause a wave of sufficient height to travel upstream
and the obstruction would remain surrounded by suberitical flow.

Only if the velocity V., increases sufficiently above the value of g &y is
it possible to have a sizable obstruction which will not exert any influence
upstream, as will be shown in detail subsequently. It may suffice to state
that for F; > 1, in general, typical standing wave patterns appear as a con-
sequence of any obstacle placed in the stream. These patterns will change
with F, and therefore the resistance created by flow obstructions will also
change as a function of F;. For supercritical flow, in contrast to suberitical
flow, it is no longer possible to describe the streamline patterns independently
of Fy, since these patterns do not remain geometrically similar as before in
subcritical flow, where they are subject only to Reynolds number distortions
or to frictional distortions. Any attempt, therefore, to express head losses
due to flow obstructions in terms of the Reynolds number only is impossible
unless similarity exists with respect to the Froude number.

Basic Properties of Standing Waves—If the discussion is confined at first
to relatively small disturbances, a very useful analysis may be made which
will aid greatly in anticipating the performance of numerous hydraulic struc-
tures in supercritical flow, whenever the changes in boundary alinement along
a body within the flow or along the side walls are gradual. In such cases
angular deflections are considered small, resulting therefore in small changes
of depth. For this reason vertical accelerations can be neglected entirely, and
consequently hydrostatic pressure distribution will be assumed to exist over
the depth of flow at every point. The flow field shown in Fig. 2 conforms with
these assumptions. In addition, the velocities are taken as constant over the
depth, and the energy dissipation is disregarded along the bottom and within
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the zone of change from depth A; to depth ;. The assumption of zero shear
along the bottom may be modified by stating that the bottom shear equals
the component of the gravity force, so that accelerations from this source
may be disregarded. This procedure is common in the derivation of the

.. B |
v —_— — h,
hl 1y nl 3 ~] ’
AANNN\\W NN\ ' AR
SFCTION A-A

Fig. 2.—Pran or Wave FronT Crossing FieLp oF FLow wITE VECTOR DIAGRAM OF VELOCITIES

hydraulic jump equation. Thus, one may write the continuity equation and
the momentum equation for a unit length of wave front crossing a flow of
depth h; and velocity V, at an angle 8, as follows:

Hi Vini = Bs Vipginsse i ainesaimsa s aias (1)
and

ALYE Ly (Va? = T &l L 92 TR @)

It is clear that the net pressure force acting to decelerate the flow can
affect only the momentum of the stream normal to the wave front; and, since
no force component exists parallel to the front, the tangential components Vi
and V. of the velocity must remain unaltered as the flow passes under the wave
front.

From Egs. 1 and 2, the expression for the normal component V., is obtained
in terms of the depths &, and As:

ol l@l( ’Lz> .................. 3
an—‘\/ghl 72 1+hl ()

In applying the momentum equation, V,; has been automatically defined
as the wave velocity, since the wave front whs assumed stationary. In turn
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any wave of a certain height, A, — &, will assume in supereritical flow such a
position that the normal component of ¥, with respect to the front will equal V,;
as defined by Eq. 3. The wave front will not be stationary otherwise. It may
also be stated that in agreement with the equation there must always be a
stationary position for any wave in supereritical flow, until V,; as defined by
Eq. 3 exceeds the value of V1. If V, = V3, the wave front assumes a position
at a right angle to the flow, and becomes the familiar hydraulic jump. For
Vni > Vi1 the jump will start moving upstream, detaching itself from the
source of the disturbance, which then remains surrounded by suberitical flow.

Wave Angle.—The relation between Vi and V., may best be given by the
ratio V.i/V: from the veector diagram as sinB, = V,i/V: (in which 8; is
defined as the wave angle).

Substituting for Va1 in Eq. 3 the equivalent 'V,sin 8, and solving for
sin B; the expression—

. _Vghl hzl( h2> 4
sin B; = i h_1§ 1-’.—}-;I ................. (4)

—is obtained, which holds for any ratio of he/h:i. For small wave heights
with Ay = k), the expression under the square root approaches unity and the
angle B, tends toward a minimum value for any given Froude number
F. = Vi/v g k1. A continuous small disturbance in a supercritical flow defined
by F: > 1 will therefore always proceed to an angular position with respect to
the oncoming flow which is given by

The disturbance cannot travel beyond the line defined by this wave angle 8, un-
less the wave height increases materially. It will always assume this position
ultimately after a disturbance has been established, since it is the only possible
stationary position for it.

Some additional deductions are possible from the geometry of the velocity
vectors which are shown in Fig. 2. The law of sines applied to triangle ABC

AV, sin A

BIVeS 7 = Sin (90° — B: + A0)

and, for infinitesimal changes of 6,

Ay = V do

in which the subscripts may now be omitted. Rewriting the momentum equa-
tion for infinitesimal changes in depth and velocity, a second differential

expression for dV, is obtained: v h dh = %h VadVa; or

dh
.an——Vng‘...(7)
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Since V, may be replaced by V sin 3, Egs. 6 and 7 may be combined into
Vds  gdh
cosf Vsing’

Assumption of Constant Specific Head—Eq. 8 may be integrated to obtain
the gradual change of depth with gradual angular deflections of the stream if
the basic assumption made in the beginning of this section is next introduced
to relate 8 and V to A—namely, that energy dissipation may be disregarded
for such flow in accordance with the Bernoulli theorem. Therefore:

H=h+ QK;- = constant; and, thus, V = V2g(H — %). Since tan g = —II;_:'
‘. sin 8 R, 4T B __\lh—_ Eq. 8 can be transformed
V1—sin?f VVi—gh ~V2H—3%
finally into

2h h)

_2H -0 VF _ \/F<1"1? z ©

d0 5% E ............

2H

which was first established by Mr. von Kérmén in 1935-1936. The exact
integration of Eq. 9 gives

1 )
6 = V3 tan— %—tnl 2H/3 — 6, ..(10a)
2H/3 2 H /3
in which 6, constitutes the constant of integration defined by the condition that

for & = 0 the depth 4 is the initial depth 4.
Eq. 10a may also be written in an alternate form employing the Froude

h 3 = . ; :
number to express e Substitution of this equivalent results in
# = V3tan™ i — tan™! Ll — 0 (100)
VF — 1 s s 22

Summary.—Before discussing Eqs. 10 and their implications any further,
it is well to summarize the accomplishments of the theory developed up to this
point:

1. Assuming an initial flow defined by a definite value of F; > 1 and char-
acterized by the assumption that H remains constant, it has been shown that
a change in depth AA due to any disturbance of the stream must in general
always occur along lines or wave fronts crossing the flow at a characteristic
angle 8, and cannot exist for steady conditions at any other angle.
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2. This wave angle 8 and the depth change Ak determine in turn a change
in the velocity normal to the wave front. Therefore, a definite change A8
in the direction of flow must take place under each wave front.

8. Asthe flow crosses successive wave fronts at arbitrary distances (the only
requirement being that they be not too closely arranged to keep vertical

0.667 1
/ISP S .
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F1a. 3.—Prot oF Eqs. 10

accelerations small), the total change in direction may be related directly to
the total change in velocity and depth between any two points along any
streamline. Since any boundary of arbitrary curvature represents a stream-
line, the change of depth along such a boundary can be computed. Conversely,
for any desirable changes in depth along a boundary the corresponding curva-
ture may be determined.
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4, Since a curved lateral boundary contains the origins of all disturbance
lines, the characteristics of which are given by Egs. 1 to 10, the entire surface
configuration of the supercritical flow is determined by the family of disturbance
lines emanating from that boundary or any combination of boundaries. The
tools by which such contour surfaces may be determined will be developed
subsequently, and a number of applications are given in Symposium papers
Nos. 2 to 4.

Graphical Aids.—Returning now to Eq. 10, it is clear that a curve for the
maximum range of 8 for all values of A/H in the supereritical range of flow
will be useful. This range extends from 6 = 0° to Omax = 65° 53’, if 6, is zero
and if h/H is varied from a value of two thirds for critical flow to zero. Neither
extreme is of practical interest. The curve is plotted in Fig. 3. Since in a
specific case the value of 8, constitutes the starting point from which the deflec-
tion angle # is measured, it is only necessary to compute the initial value of
h1/H to determine the value of 8, from the curve. The values of 4/H are then
read from the curve as the angles 0, of a boundary or streamline, are added to
or subtracted from @#;. It is important to note that the change in A may be
positive or negative, depending on whether the boundary is curving into the
stream or away from it. In the first case the surface will rise and in the second
case the surface will be lowered along the disturbance lines originating at the
boundary. Both possibilities are indicated in Fig. 3 by the arrows pointing to
the left and right from an assumed initial value of #,. In addition to the
Ih—Tscale, a scale of the corresponding Froude numbers is given for convenience.

The general trend of Eq. 10 may easily be recognized from an approxima-
tion based on the first term of the series for tan™ only. The approximate
solution, which naturally becomes incorrect for large values of A/H is given
algebraically by

Y

h

1 2 H/3 h

0 = <\/3_ﬁ> :—01 =z ﬁ\/ﬁ—& ..... (lla)
2

Since the ratio h/H may be replaced in terms of the Froude number F, the
equation may also be written for small values of A/H (that is, for large values
of F) in the form:

o1

It is obvious that Egs. 11 could also be solved for A/H or for F in terms of 8
and 6;. The results given under Eq. 11a for small values of A/H could have
been obtained directly by neglecting & as compared to H in Eq. 9, thus simplify-
ing the differential expression to
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which is integrated easily into

h
0=+2 F = Prine v nnsbinwemassoan (125)

For small changes in  the approximations to Egs. 10 are usually very close.

If the streamlines are given, the changes in A/H or F along a streamline
can be readily determined. Conversely, the angular changes necessary to
accomplish desired changes in 2/H or F are also easily obtained. Thus, the
application of the equations in this form is restricted to determining the changes
taking place along boundaries which are streamlines, as long as the flow process
along such boundaries is not subject to disturbances propagated from other
boundaries. In the case of most hydraulic structures this latter possibility
necessitates the study of the interrelations of various boundaries as sources of
disturbance lines and of the corresponding system of wave fronts.

Characteristics of Disturbance Lines.—Any curved boundary can be repre-
sented as a series of tangents or chords with small but finite angular changes
taking place successively, Every angular change A8 thus becomes the origin
of a line of small finite disturbance or a wave front, which will cause a change
in depth as indicated by Eq. 9. These wave fronts will traverse the flow at a
typical angle 8, which is fixed by the Froude number F of the flow as given
by Eq. 5 for every section of the field of flow. As long as the Froude number
remains constant in the undisturbed flow, there cannot be any break or curva-
ture in the line of disturbance and the disturbance itself is constant along its
line of propagation.

It has already been mentioned that disturbance lines may indicate positive
or negative disturbances. Henceforth, positive disturbances or positive wave
or surge fronts will be defined as those which deflect the flow toward the line
of disturbance and cause 2 rise in the water surface. A wall curved into the
flow and displacing fluid would be the source of such positive wave fronts.
Negative disturbances or depression fronts are caused by boundaries curving
away from the flow, providing larger cross sections of flow and therefore pro-
ducing a lowering of the surface and a deflection of the flow away from the
wave front. It is clear that fixed boundaries alone can be the sources of dis-
turbance lines, and that a disturbance line cannot appear or disappear unless
by action of a boundary or of another disturbance line. Disturbances once
created must be propagated undiminished from one boundary to the other
and the effect of the wave front on the flow traversed will be the same as the
effect of the boundary itself, the same deflection and the same change in surface
elevation being transmitted. This process may now be illustrated schemati-
cally in Fig. 4 by a flow between two parallel walls with an initial depth A,
and a velocity V,, which at points A and B is subjected to a change in direction
through 2 small angle AG—exaggerated in the sketch for the sake of clearness.

In agreement with the theory, the disturbances to which the flow is exposed
at A and B are communicated along only the fronts BC and AC without
effect on the flow in the sector ABC. Along BC and along AC the flow is
deflected through an angle Af. The flow passing under BC is parallel to the
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wall beyond point B, and its depth has decreased and its velocity has increased
in accordance with the equations developed; in other words, it was affected
by the negative or depression front BC. Point C, Fig. 4, is also the inter-
section with a positive or surge front, which deflects the flow passing between
points A and C through the same angle Af. This positive front in continuing
beyond C enters a field of flow already turned through A8, of smaller depth
and with a higher value of F_,. It will therefore proceed with respect to the
new direction, but at a new angle 8 smaller than before. As a positive wave,
it will produce a further deflection of the stream toward the front and bring
the lower value of % in field F_, back to A, thus reestablishing the original
value of F; beyond CD. In turn, the negative wave front BC enters a field
with F . as its hydraulic characteristic. Since the deflection A8 for a negative
front is away from the front, it tends to aline the streamlines beyond CE
parallel to those beyond CD, so that also beyond CE the normal value of F,
is restored. Along AE and beyond, the normal depth is raised to a higher
value, whereas between points E and G it drops back to below normal under
the influence of wave BCE and its reflection. Therefore, it will alternate
between values higher than A; and lower than h; all along this wall. At the

Fia. 4.~—8MaLn SipE-WALL DEFLECTIONS IN A RECTANGULAR CHANNEL

reflection points of the positive wave originating first at point A, the depth
will-be raised; at the reflection points of the negative wave emanating from
point B, the depth will always be lowered. In analogy to this, along the wall
through points B and D the flow will alternate between zones of lower than
normal and higher than normal depth. In zones of normal depth, in the
center of the stream, the flow is always at an angle Af to the walls. In the
other zones adjacent to the walls the flow is always parallel to the walls; but
it is also seen that the flow beyond points B and A will always remain disturbed
unless further wall-angle changes follow, which may augment the disturbances
or may be effective in canceling them.

Wave Interference—Of course, by proper alinement of walls, methods of
wave interference may be utilized to remove the undesired disturbances. This
very possibility will be a challenge to the designer and has already led to certain
rules in the design of various structures for high-velocity flow, as shown by
subsequent papers in this Symposium.

The fact that a negative wave may be canceled by a positive wave, and
vice versa, would lead to the design of a bend as illustrated in Fig. 5. In the
first case (Fig. 5(a)) the positive wave produced by a wall-angle change at A
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is not immediately matched by a negative wave opposite A, but the break on
the other wall is purposely delayed until the front starting at A arrives at B.
Since the flow beyond AB is already deflected through an angle A8, the wall
may be turned through A8 at B without causing any disturbance at B. This
condition may be expressed also by saying that the positive front originating
at A is canceled at B by a negative wave, since the latter would coincide with
the reflection of AB in B.

The second possibility is shown by Fig. 5(b), which indicates that the same
turn through an angle A8 may be accomplished by starting a negative wave
first at B and by delaying the break at A until this negative wave has crossed
the channel. The possibilities of combining both methods to obtain flow
turns with controlled disturbances which will not exceed specified magnitudes
are easily recognized. Symposium paper No. 2 is concerned more specifically
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Fia. 5—SmaLL Sie-WaLL DerLecTiONS DESIGNED T0 ELIMINATE DISTURBANCES

with such problems, and with other possibilities which follow on the basis of
the foregoing principles. It may also be added that a successful analysis
must always very clearly be predicated on a fair prediction of the value of
the initial Froude number F,.

This outline was concerned with the principles of wave intersection, reflec-
tion, and interference employing an elementary case for illustration. More
complicated systems of curved walls may be replaced by a series of short chords
or tangents, each one of the latter a source of a surge or a depression front.
Combinations of wave systems are limited only by the mounting difficulties
of keeping account of the wave characteristics through numerous intersections
and reflections. Except for this fact a useful guide to the design of hydraulic
structures is thus available, provided a clear bookkeeping and numbering
system can be established and followed.
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Successive Waves of Equal Sign.—Before discussion of such a system, a
few furthur properties of these wave fronts may be detailed by use of Fig. 6.1°
If a number of wall sections are arranged so that successive sections as shown
send out positive fronts only, it is clear that the wave angles 8: with respect
to the flow between sections must increase more and more in the downstream
direction. Ultimately, therefore, these fronts carrying small disturbances only
must merge into larger ones imposing such height and angle changes that the
angle B; can no longer be approximated by Eq. 5 but must be computed from
Eq. 4, which shows clearly that the wave velocity of a large wave is not only
larger than + g k1 but even larger than Vg hs. Such so-called shock waves

Concave Wall
Positive Disturbance Lines

Convex Wall -
Negative Disturbance Lines 16°

Fra. 6.—Frow Avong CurvEp WaLLs

are discussed in detail subsequently. These difficulties are not present with
negative or depression fronts. With decreasing depth and increasing velocity
the wave angles B; become smaller in the downstream direction, and angular
deflections of the stream are away from the disturbance lines. Therefore,
negative fronts will generally diverge, and it can easily be concluded that,
within the framework of the basic assumptions made initially, so-called shock
waves or disturbances with steeper and steeper fronts cannot be built up
from successive negative disturbances of small magnitude.

10 “‘(3a3-Wave Analogies in Open-Channel Flow,” by A. T. Ippen, Proceedings, 2d Hydraulics Con-
ference, Bulletin No. 27, Univ. of lowa Studies in Eng., Iowa City, Iowa, 1942, p. 257, Fig. 3.
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MEeTHOD OF CHARACTERISTICS

To facilitate the analysis of wave systems due to continuous disturbances,
such as those in curved channels or in channel contractions or expansions, a
graphical method has been devised on the basis of the preceding theory with
certain ingenious changes. This development was entirely the outcome of
an early analysis of supersonic flow of gases by A. Busemann! and is known
a8 the “method of characteristies.” At the suggestion of Mr. von Kérmén
this method was adopted in 1935 for use in the supercritical flow of water and
was applied to the problem of flow in the curved sections of open channels
during the analysis of the test data. Independently, Mr. Preiswerk® studied
water flow through channel expansions and other problems related by analogy
to the high-velocity flow of gases. The basic equation for the graphical method
of solving problems of supercritical flow of water is given by Eq. 9. For the
purpose of obtaining the deflections of the streamlines as a function of the
characteristics of the wave fronts, the ratio (A/H) appearing in that equation

will be replaced by its equivalent from the Bernoulli theorem: 1 = % + E{LH;
. |4
rwith V = ————

3 V2¢H

h

b= = Phgeeidvourie i g s (13)
—and d(Z/VH) = — 2 V. Eq.9 is thus transposed into the form:

— 2
1dV _N1-¥ e (18)

Eq. 14 represents the expression for an epicycloid between the circles of radii
1/Y3 and 1 as the limiting values of V. Only for supercritical flow has
Eq. 14 any physical meaning, since the denominator is zero for V2 = V2/(24 H)
= 1/3 which corresponds to critical flow, whereas the numerator obviously
can be zero only for zero depth or V2/(2¢g) = H.

The curve representing Eq. 14 may now be plotted between these limits
noting that d7/df = = for v = 1/ 3 = 0.577 and that dV/d8 = Ofor 7 = 1.
The corresponding values (h/H) are two thirds and zero. Values between
6 = 0° and 6 = 65° 53’ corresponding to V = 0.577 and V = 1.00 are given
in Table 1. For the drawing of the so-called ‘“‘characteristics diagram’’ the
curve is best transferred to a sheet of celluloid, which is then cut to serve as a
templet between the two limiting circular arcs. The diagram may be started
and applied as follows: In a rectangular coordinate system the space within
a sector of, say, 46° on either side of the V.-axis is subdivided into sectors 2°
or 4° in central angle, and the intervals are marked by radial lines between
the inner and outer limiting circular arcs starting with 0° on the 7.-axis. From
each point on the inner circle the epicycloid may be drawn by the templet in
both directions to the outer circle. In this fashion a dense network of inter-

11 *‘Gasdynamik,” by A. Busemann, Handbuck der Experimentalphysik, Vol. IV, 1931.
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secting epicycloids is obtained. Since the radial distance between the limit
circles comprises all possible values of ¥ between 0.577 and 1.00, a correspond-
ing scale of conversion to /H may be added as shown in Fig. 7. The physical
meaning of the diagram may be demonstrated by first assuming a flow with
initial values of V and k; or Fy for which ¥V, can be computed. The diagram
is next alined with its V.-axis parallel to V; in the plan of flow, in which the
design of the boundaries is laid out. If one of the boundaries is deflected
through an angle A8, the streamlines adjacent to the wall will turn through
the same angle and a disturbance line will originate at this point in the flow
plan, beyond which the flow will be in a new direction and at a new value of
(h/H)s or V5. To find the latter, one must revert to the characteristics dia-
gram (Fig. 7). The initial value of V; laid out along the V.-axis will be near
an intersection of this axis with the two epicycloids. If the plan of flow indi-
cates a positive disturbance, one of the branches leading inward is followed;

TABLE 1.—VaLues or V ror Pror oF EpicycLoip BETWEEN
CrroLes oF Raprus 1/43 anp 1.0

|

0°To 6° | 7° 7o 13° | 14° 10 20° | 21°T0 27° | 28° 10 34° | 35° T0 40° | 41° 0 46° | 47°T0 65° 53’

8 v ] v [ 1 ] v [ v ] ‘ v ] v 0 v
"0 |los77| 7 |0709 | 14 | 0782 | 21 | 0.840 | 28 | 0.886 | 35 | 0.925 | 41 | 0.952 | 47 |0.972

1 |o0613| 8|0720 | 15 |0791 | 22 | 0.848 | 29 | 0.893 | 36 | 0.930 | 42 | 0.956 | 48 |0.975

2 (0635 | 9|0731 |16 | 0799 | 23 | 0.855 | 30 | 0.900 | 37 | 0.935 | 43 | 0.960 | ‘49 |0.978

3 065t | 10 | 0742 | 17 | 0.808 | 24 | 0.861 | 31 | 0.905 | 38 | 0.939 | 44 | 0.963 | 50 | 0.980

4 | 0666 | 11 | 0753 | 18 | 0.817 | 25 | 0.868 | 32 | 0.910 | 39 | 0.943 | 45 | 0.966 65°} 1.000

5 | 0683 | 12 | 0763 | 19 | 0.825 | 26 | 0.874 | 33 | 0.915 | 40 | 0.948 | 46 | 0.969 |—53"f| ™

6 | 0695 | 13 | 0773 | 20 | 0.833 | 27 | 0.880 | 34 | 0.920 | .. | .... |l

in the opposite case one of the branches going outward is followed from the
origin until it intersects the radial line belonging to the angle of turn Af.
The radius vector to this point of intersection represents the new value of V.
Its direction is also the direction of the streamlines beyond the disturbance
line in the flow plan and its' magnitude at once gives the hydraulic conditions
of depth and velocity or F,. One may thus conclude that every point in the
characteristics diagram or in the velocity plane determines the hydraulic
conditions in a section of the flow plane bounded by walls or disturbance lines.
Before proceeding to extend the construction of streamline patterns in the flow
plane, a method must be found of constructing the disturbance lines at the
same time. For this purpose another drafting device is utilized, which is
based on the following theoretical considerations:

The component of the velocity normal to the wave fronts V, was assumed

to be given by v g k; therefore (V)2 = gh = ¢ H — V?/2 and
V2 = 2g H —2(Va)t.: vuun snws snsmmanmes (15a)
In accordance with Fig. 2 the velocity V can be related to V: and Vs, by
V2= (V2 (Va)?oeociiiiiiiinnonnn . (150)
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Introducing V2 from Eq. 15a into Eq. 155,
29H =3 (V)2 4+ (Vo2 (186)

Dividing Eq. 16 by 2 g H gives the dimensionless components ¥, and 7, in

(Va)? (V‘)z 2=
1—/3— + = = L gien covs v isies e sa ws

Eq. 17 represents an ellipse with major and minor axes of 1 and 1/+/3,
respectively, and any radius vector from the center of the ellipse is equal to V7
since it is given by « (V.)2 4+ (V)2 This fact is utilized as follows in con-
nection with the characteristics diagram: An ellipse is inscribed on a trans-
parent sheet of plastic to such a scale that the units are identical in both figures.

Fra. 7.—CHARACTERISTICS Diaaranm; SurercrITicAL FLow Wirsour ENERGY DISSIPATION

If the ellipse is rotated about the center, O, so that finally the ellipse passes
through the point F,, which defines ¥V, in the velocity plane, a line drawn
parallel to the major axis gives the direction of V;, which is identical with the
direction of the disturbance line or wave front in the flow plane. Therefore,
it may be drawn through the point in Fig. 7 at which the disturbance is said
to originate.

An illustrative example is shown in Fig. 7 in the manner just outlined,?
except that the point chosen for illustration is not the initial point for § = 0,

2 “‘Gas-Wave Analogies in Open-Channel Flow,” by A. T. Ippen, Proceedings, 2d Hydraulics Con-
ference, Bulletin No. 27, Univ. of Iowa Studies in Eng., Iowa City, Iowa, 1942, p. 259, Fig. 4.
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but one along the wall for § = 24° with the change indicated to 6 = 28° and
with A marking the position on the epicyecloid corresponding to F; in the
preceding discussion,

A detailed example solved by this method for supercritical flow through a
channel contraction is given in Symposium paper No. 3. Although the
ultimate application of this method permits the rapid and the almost auto-
matic solution of fairly complex problems, anyone applying it must familiarize
himself thoroughly with all its aspects and must understand the physical
significance of the individual steps at the beginning. Almost any numbering
system, methodically applied as the analysis proceeds, will serve satisfactorily,
and for this reason no recommendations are made.

Hica Wave FronTs wiTH DissiPATION oF ENERGY

Attention has already been called to the fact that a number of successive
positive disturbance lines of small intensity must eventually merge, as distance
from the origin increases, into a line representing a surge front of material
height. The exact equation for the velocity of such a wave of finite height has
been given as Eq. 3 which shows that the wave velocity or celerity is even
larger than that for a small disturbance traveling at the larger depth. Con-
sequently the wave angle is larger too in accordance with Eq. 4.

Under the heading, ‘“Method of Characteristics,” the wave angle 8 was
approximated by the value of sin™' 1/F neglecting the wave height. This
section will deal with the modification of the theory due to finite and consider-
able wave heights, especially with respect to the angle 8; at which such a large
front will assume 2 steady or ‘““standing’ position. Also, the previous assump-
tion of constant energy has to be modified, since energy dissipation is associated
with wave fronts of considerable height. However, for many practical cases
this modification is still of minor consequence. Basic material for this section
was developed by Mr. Rouse and M. P. White,'* M. ASCE, early in 1937. Mr.
Preiswerk?® adopted Mr. Busemann’s shock-polar diagram for use in the hy-
draulic analogy of supersonic flow in 1938. As before, the problem is the corre-
lation of the wave angle 8: as defined by Eq. 4 and of the angular change 6
accomplished under every standing wave. Fig. 2 may again be referred to
except that in keeping with the-purpose of this section the angle change A#f is
replaced by 6, thus acknowledging that large deflections are accomplished by
large changes in depth under the wave front.

From the geometry of the vectors the angle § may be related to 8; by:
Vo = t—-—;"kl ok e i (I';:‘z_ 5y in which V,.; can be replaced by Vi,s = %—: Var

from the continuity equation. Therefore,

tan (.Bl == 0) = }ﬂ
tanﬁl L h2 -----------------------
and, solving Eq. 18 for 0,
tanﬁl (1 — h1/h2)
T bt @, &

13 “Fluid Mechanics for Hydraulic Engineers,”” by Hunter Rouse, MeGraw-Hill Book Co., Inc., New
York, N, Y., 1st Ed., 1938.

tan 6 =

ceeeena.(190)
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Eq. 19¢ can be reduced to a simpler expression if the variations of Ai/k,
and B; occurring in practice are introduced. Thus, for values hi/h: = 2/3 to
1/3 and B; = 10° to 35°, only a small error results if Eq. 194 is reduced to

tan § = <1 - Z—:) SinBr.oiii (190)

In agreement with Eqgs. 4 and 19a the wave angle 8, and the wave height
are fixed for a given Froude number F; and a given deflection angle 8. Eqs. 4
and 19¢ can be combined into one by solving for Ai/h. as follows:

hy 2

and
h tan 8, — tan @

hn = Tanp: F tan O tani ;"o e s e (200)

Equating Eqgs. 20 and solving for tan 8 gives a very useful expression with-
out hi/hs but containing the initial Froude number Fy:

tanB; (V1 + 8 (Fi)?sin2 8, — 3)
2tan261 -1 + '\/1 + 8 (Fﬂ’sin’ﬁl

tan @ =

Normally the deflection angle 8 as well as the initial value of the Froude
number F; would be given by design. For this case it is practical to plot
Eq. 21 and to solve graphically for the angle 8;, since the solution of the
equation for 8, in terms of F, and § becomes rather involved. With 8; known
it is an easy matter to determine &;/h: from Eq. 20¢ or from its graphical
form. If the latter values are too large for the design in question, the wall or
deflection angle § must be reduced and the process of computation is speedily
repeated with graphs such as Fig. 8.

The limiting values of 8 for which the flow passes into the suberitical state
below the wave front are of considerable interest. For their determination an
expression would be needed involving the Froude number F; below the wave
front. The latter can then be given the value of unity for critical flow and the
corresponding quantities for the other variables may be computed. Since a
direct relationship between 6 and F; becomes rather involved algebraically, it
is preferable to correlate ho/hi, Fs, and F, whereupon, by use of Fig. 8, the
pertinent values of § and 3; are easily read from the curves.

Making use of a geometric condition evident from Fig. 2, since (V)2
= (V12)? one obtains

(Vn1)2 — (Vn2)2 == (Vl)2 = (Vz)z, SRS .(22(1)

The continuity equation yields Vo, = %Vﬂ, whereas Eq. 2, based on the
2

L &s (1 + Z—:) By definition

momentum relation, results in Va = Vg i \/ 37
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Fi=Viy/Vgh and F, = Vo/Vghs, so that, after various substitutions,
Eq. 22q assumes the following form:

_h Lhi(ha _ \[ b ; i
o - fomr (- ) (B 0)] Ve

Eq. 22b establishes the relationship between Fy, Fy, and he/h, for stationary
wave fronts, its graphieal solution having been added in the fourth quadrant in
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Fia. 8.—GENERAL RELATIONS FOR Fi VERSUS 4, 8, :——fi AND F:

Fig. 8, in which the critical values for F; = 1 are easily located as the inter-
sections of the line for F; = 1 with the lines F; = constant.

A second critical condition exists for a wave angle 8; of 90°, which reduces
Eq. 4 to the relation between F; and hs/h, familiar from the right hydraulie
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jump:
1h h
(F1)2=§h_f<1+h_:>"""""""""’(23a)
or

==t V2F)P+1=3(V1I+8F)2—1).......(23b)

Mr. Rouse has presented®® a further version of Eqs. 194, 21, and 22b giving
the deflection angle 8 in terms of hs/h; and 8.

Physical Significance.—For the purpose of this discussion a few points con-
cerning the physical meaning of Eqs. 20 to 23, and of Fig. 8, may be stressed,
to clarify some of the results of the analysis that cannot easily be established
mathematically. Subsequently, they will be demonstrated graphically by a
somewhat different analytical attack.

The angle 6 is related to 8; in Eq. 21, which is represented in the second
quadrant of Fig. 8, in such a manner that @ varies from zero to a maximum
and again to zero as 3, increases for any given value of the Froude number F,
from its minimum value of sin™! 1/F; to 90°. When B; = 90° and simul-
taneously 6 = 0, the wall deflection cannot be the cause of the standing wave
or jump. The standing wave, therefore, is dependent on some downstream
disturbances, as soon as the flow below the wave front passes into the sub-
critical state, which is true for the right hydraulic jump, formed only under
certain conditions downstream from the jump. It would seem further that
flow parallel to the wall at an angle 8 for subecritical conditions will only be
accomplished if the downstream disturbance, combined with the wall deflec-
tion, produces a wave height of the correct magnitude, which can be computed
from Eqgs. 20 to 23. In other words, the equations as given no longer determine
the wave angle 8, uniquely for a given wall angle and Froude number F, if the
flow is suberitical below the wave front with F; < 1, since the wave height is
subject to downstream disturbances.

The exception to the latter statement is the case in which the value of F,
approaches a value of unity as the value of ¢ increases to = 0, so that the
slightest disturbance would cause a wave front at 90° to the oncoming flow;
however, this point is purely a philosophical one.

In most practical cases the hydraulic designer will avoid wall angles causing
the flow to pass through the critical state or even to approach that state,
since little dependence can be placed on the theory when the slightest violation
of the basic premises of the theory or inaccurate knowledge of F;, for instance,
may cause a hydraulic jump that travels upstream.

Furthermore, a single wave front is seldom met in practice, and the flow
pattern will be determined by intersecting waves and reflections of the waves
from opposite walls. These phenomena place severe limitations on practical
wall angles, if supercritical flow is to be maintained throughout a structure.

Returning to Fig. 8 it is seen that, for any given hydraulic conditions and
geometry of channel walls, the unknown quantities are quickly obtained.
For instance, if F; and 6 are known, 8; can be read off immediately as can
hs/hy and Fy. If the wave front seems too large, then for any desirable value
of hy/h; and the given value of Fy, the corresponding values of 81 and 6 are
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found. If the wave is reflected, the value of F, must be known in order that
the process may be repeated.

Magnitude of Energy Dissipation—In contrast to the small changes in
depth due to gradual lateral deflections of the stream along walls of small
curvature, sudden changes in depth, characterized by the appearance of steep
standing wave fronts, are subject to energy losses, which may be computed
next. The head loss for the flow through a standing wave or jump is easily
expressed by the difference in the specific heads: H; — Hy = AH; or (h1 — hs)

(V)2 — (V)?
+ o
continuity equations, the velocity-head terms may be eliminated and the head
loss may ultimately be expressed as

= AH. Making use of Eq. 22¢ and of the momentum and

e (28)

The head loss remains surprisingly small even for large values of ky/h;. Al-
though the head loss is expressed in terms of k: (which, for supercritical flow,
forms a small part of the specific head), the loss remains a small quantity up to
values of ks/hy = 2 and for this value it is only one eighth of the initial depth
k1. The ratio of AH/hi reaches unity for values of he/h; = 3. However, as
the possibilities of higher values h2/h; presume higher Froude numbers F,, the
depth h, forms a smaller percentage of the total head Hi. Therefore, head
losses do not increage as rapidly for larger values of hs/h; as the ratios AH/hy
indicate.

The important fact for practical design is that, in general, head losses up to
the ratios hs/h1 = 3 remain rather small and often may be neglected, since
their influence on downstream wave angles remains within the limits of accu-
racy set by other approximations made in the theory. It seems that in prac-
tical design this limit of As/h1 = 3 will seldom be exceeded.

SHEHOCK-WAVE INTERSECTION AND REFLECTIONS

Limiting wall angles, as given in Fig. 8, should never be approached, since
the flow in a structure will seldom be determined by the first wave front alone.
Reflections on opposite walls and intersections with other wave fronts will
have an important role in regard to the character of flow downstream from a
disturbance. Various possibilities of basic character will therefore merit dis-
cussion. At the outset it may be stated, however, that the following discussion
is limited to the range of wave heights mentioned in the preceding paragraph
a8 being little affected by energy losses. Figs. 9 and 10 illustrate, in plan, the
following cases to be discussed in order:

1. Reflection of shock wave at opposite wall;
2. Intersection of shock waves:
a. Of different intensity;
b. Of equal intensity;
3. Convergence of two shock fronts; and
4. Shock front and negative deflection waves.
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1. Reflection of Shock Wave at Opposite Wall.—The first case given by
Fig. 9(a) is the easiest of the four. The flow below the first front AB can be
determined from Fig. 8 since the angle of deflection 8 is given. As the wave
arrives at the opposite wall at point B, the new angle of deflection is the angle
of this wall relative to the flow downstream of AB. If this angle happens to
be zero, the disturbance is almost wiped out; if the angle is positive, point B
will be the source of a wave front determined again from Fig. 8 on the basis of
flow parallel to the wall below point B crossing the flow to point C, where the
process is then repeated. In the example in Fig. 9(a) the opposite wall remains
parallel to the original direction of flow. Therefore the flow below front AB
is again deflected through the same angle 6 and the change from F; to F; is
determined for this angle from Fig. 8. Each reflection brings the flow closer
to subcritical conditions and eventually the wave angle will be 90° unless new
energy is supplied.

Fia. 9.—SHOCK-WAVE Anavyvers; CONVERGING Fra. 10.—8HOCK-WAVE INTERSECTIONS FOR
WaLLs Successive WaLs DEFLECTIONS

2aq. Intersection of Shock Waves of Different Intensity.—The second case
illustrated in Fig. 9(b) is somewhat more difficult. When two shock waves
meet, each one thereafter will proceed with respect to altered flow conditions.
Section AB must be adjusted from F; to F: and section A’B from F; to F,.
The intensities of the two waves in the following sections BC and BC’ are not
known and must be determined from the fact that the flow conditions below
either one are identical. The flow below BC must have the same depth,
velocity, and direction as the flow below BC’. Remembering that for most
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cases the energy dissipation may be neglected in the first approximation, the
new direction of flow in the field Fs; may be determined simply as the difference
of the angles @ in fields F, and F;. In most cases the waves BC and BC’
determined on the basis of this first assumption will result in values of F,
from Fig. 8 which require little adjustment. The approximation becomes
better as the two waves differ less in intensity and deflection angle.

2b. Intersection of Waves of Equal Intensity—In the case of two waves of
the same intensity and deflection angle the solution is obvious. The conditions
are the same as if a wall were placed along the center line, and the solution is
immediate. The shock-wave system on either side of the center line is identical
with that illustrated in Fig. 9(a).

3. Convergence of Two Shock Fronts.—Fig. 10(a) presents the case of two
converging shock waves, starting on the same side of the wall at points A and
B and meeting in point C. The two jumps combine into a single jump CD
which produces a head loss higher than the sum of the head losses by wave
fronts AC and BC. If no difference in head loss existed, the solution would
be simple; the direction of flow would be the same downstream from BC as
it is downstream from CD, and the same Froude number F; and total deflection
angles would exist in this field of flow. This approximation will always be a
good one. If more accuracy is warranted, it must be considered that the head
below CD must be lower than that below BC and that therefore the inter-
section point C must be the origin of a depression wave CD’ which forms the
boundary between two fields of flow characterized by F; and (F;)’ with (F3)’ >
F;. The intensity of the depression wave must be such that by trial and error the
combined effect of fronts AC and BC and of the depression wave CD’ is iden-
tical with the effect of the combined front CD; that is, to either side of a stream-
line drawn through C the Froude number is (F;)’ and the deflection angle is
(03)" instead of 65 with (8s)’ > 6s. In other words, the effect of the convergence
of the jump is a slight additional deflection ((8s)’ — 85) of the flow away from
the wall below the intersection of the depression wave CD’ with the wall.

The depression wave could be treated further according to the methods
previously introduced under the heading, ‘“General Physical Background,”
on the basis of zero energy loss. The effect of CD’ cannot be large since, in
agreement with the properties of depression waves discussed previously,
negative shock waves are not possible.

4. Shock Front and Negative Deflection W aves.—This case involves Fig. 10(b)
where a positive wall deflection is followed by a negative deflection of finite
magnitude. The finite negative deflection of the wall is the origin of a number
of depression waves BL, BM, BN, BO, etec., of small intensity as shown in
Fig. 10(b), some of which will be able to intersect the positive front AC. The
faculty of deflecting the flow through a certain small angle A8, which each de-
pression wave is assumed to have, is not impaired by its intersection with a
positive front, since no energy change is involved. In most cases, however,
only a few of the negative waves will reach the jump within a finite distance,
and usually reflections from opposite walls take place beforehand. Thus, a
combination of positive and negative wall deflections will always cause large
total disturbances of the water surface, with the exception of the case in which
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a positive wave from the opposite wall and of comparable deflection intensity
arrives at the point of origin B of the negative disturbances.

In concluding the discussion of problems concerning intersections and reflec-
tions, combinations of steep wave fronts and of small positive or negative dis-
turbances may be mentioned very generally. Since small disturbances can
be treated without energy dissipation, their influences may be superposed
directly on the field of flow subject to the action of steep wave fronts.

Porar Diagram oF SHOCK-WAVE CHARACTERISTICS

Although Fig. 8 contains, in a convenient form, all possible values of the
variables involved in the treatment of steep wave fronts or shock waves, it
can be used only indirectly for plotting streamline patterns for flow fields
with a shock-wave system. The analysis of shock waves in supersonic gas
dynamics has been based, therefore, on the so-called shock-polar diagram as
developed first by Mr. Busemann.!! Ag its name implies, the shock-polar
diagram represents a polar plot of all possible values of the dimensionless
velocities upstream and downstream from a shock front similar to the plot of
the same velocities on the basis of constant energy. However, since the energy
does not remain constant through the finite jumps, the jump-polar diagram
cannot be made of such universal character. The basic difference lies in the
fact that the dimensionless velocity Vi = Vi/v 2 g H; will change below a
jump of deflection intensity @ to the value s = Va// 2 g H1, which is no longer
identical with Va/v 2 g H. since H; > H,. Since curves may be plotted only
for V. (that is, for dimensionless velocities V', in terms of H,), the values of
V. cannot be used to find V; below a subsequent jump 2-3. The velocity 7,
must be adjusted below the jump, before the diagram can be used again, by
multiplying the value V: obtained from \/m which is always Iarger than
unity. A new initial value of 7, VH,/H; = (V,)’ is found, which may then
be used to determine ¥; in terms of H;. Thus, adjustments must be made
continuously in accordance with changing values of H. The second difference
appears in the fact that the wave celerity for finite jumps must be considered
on the basis of Eq. 3, modifying the wave angles 3, in conformance with Eq. 4.

The construction of the shock-polar curves requires the transformation of
the foregoing basic equations by introducing the z-component and the y-com-
ponent of the dimensionless velocities 7, and V.. Following the geometry of
the vector diagram of Fig. 11, ’

17,,1 (an — V,.z) = Vzl (731 == '[722) .............. (25&)

and )
(Pn1 — Pa2)2 = (P)2 4+ (Var — V) oo e (25b)

All the velocities have been divided by V2 g Hy, as indicated by the bar over

the velocity components. In addition to Egs. 25, the momentum relation as

stated in Eq. 2 and the continuity equation as given in Eq. 1 are available

while, as a fifth equation, the energy equation is used for the definition of the
2

initial energy as H; = h; + % ; or

.
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h & %y
1= ITII NS 2% L (26)

Thus, all terms containing h, and %, as well a8 Va1 and Vae can be replaced in
terms of V, and V., resulting ultimately in an equation for V. as follows:"

(Pt = (7o (1 - ‘;-)

zl

o [Ze2_ VI — (V) % ER 0 el

i 1 - P+ 4 Ty (1-32)

The curves of possible values of Vy2 and V.. are shown in Fig. 11 for a system-
atic set of values of V. varying from a maximum of Vi/V2gH: =1 to
Viy/V2gH; =1/V3 as a minimum for critical flow.® A radius vector to

g
4 «d Epicycloids A
\El Jump Polars \*

PLAN OF FLOW
IN zy PLANE

0.20 \

0.40

Fro. 11.—~ExampLe Smowine THE Use oF THE PorAr DIAGraM, WITH Vi = 0.9 anp § = 20°

any intersection with a curve beginning at a certain value of 7, = V21 will
give, immediately, the only value of V. possible for the assumed direction,
whereupon V. will be known since H, is given initially. Remembering also
that Vs = V.2 and that the direction of these components represents the direc-
tion of the wave front, the latter may be transferred to the plan of flow as was
done for the characteristics diagram in the example given. The same ellipse
may be used if a graphical method is desired.

u “Gas-Wave Analogies in Oi)en-Channel Flow,” by A. T. Ippen, Proceedings, 2d Hydraulics Con-
ference, Bulletin No, 27, Univ. of Iowa Studies in Eng., Iowa City, Iows, 1942, p. 262, Eq. 20.

1 Ibid., p. 261, Fig. 6.
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Only one wave front may be found at one time. With every value of ¥V,
of course, belongs a new value of specific head, since H, < H;, which has to
be computed next as does the corresponding depth k.. It may be sufficient to
remind the reader of Fig. 8 (which relates, in a comprehensive manner, all
pertinent variables) to indicate that curves of H,/H; and ka/h; could be plotted
also as polar curves similar to the Vs-curves in Fig. 11. Since shock fronts are
usually not very numerous in a plan of flow, it is felt that a completely graphical
solution does not offer advantages as great as does the method of characteristics,
where the solution requires the drawing of a multitude of disturbance lines.

It may be noted that the polar curves for a wide range of V;-values agree
quite closely with the epicycloids of the characteristics diagram as indicated
in Fig. 11. One outstanding difference is the fact that the polar curves extend
into the suberitical range and therefore within the circle of critical velocity
with radius V = 1/V 3. Asis also evident from Fig. 8, there is a maximum
deflection angle 8 for every curve (that is, for every initial value V.1 = V),
which falls within the suberitical range of flow below the wave front and is
subject to the restrictions discussed earlier in this treatment. The points V,
for 8 = 0 lying on the V.-axis, within the range of subcritical flow, represent
the Ve-values for the right hydraulic jumps.

It is desired to obtain the value of ¥, in magnitude only, since its direction
must be parallel to the deflected wall. In addition, the location of the shock-
wave front (below which all flow is deflected through the angle 6) is to be
determined. For this purpose, the 7.-axis of the polar diagram is alined with
the direction of flow V.: in the plan of flow. A line parallel to the deflected
wall is drawn in the polar diagram from the origin to its intersection with the
polar curve starting from the given V1 = 0.90. The length of the line repre-
gents V,, which is 0.72 = Vao/ Y2 ¢ H, so that V,is known. Through the ends
of 721 = 0.90 and V5, the direction normal to the wave front is found; and the
line normal from point O to this direction represents the wave front. The
latter may then be transferred to the plan of flow, starting from the break on
the wall. If another deflection is to be investigated below the first one, H,
must be found and an adjusted value of (V.2) = Vs/V2g H; determined.
The V.-axis is to be alined again with V,, and the former steps are then re-
peated. The treatment of wave front intersections and reflections can be
easily adapted to the shock-polar method on the basis of the preceding discus-
sion.

SUMMARY

The fact that boundary-layer influences and nonuniformities of the velocity
and pressure distributions are disregarded in the theory imposes certain
limitations which are discussed in detail in the Symposium papers dealing
with specific practical applications. In general, it may be said that viscous
forces do not seriously disturb the basic systems of disturbance lines and of
finite wave fronts. Vertical accelerations are usually also of secondary order
of magnitude in structures to which the elementary theory applies, since
changes in the flow patterns discussed are the result of changes of the lateral
boundaries only. The extension of the theory to cases of accelerated motion
due to changes of specific head must be reserved for future discussion.
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The assumption of a sudden change of flow conditions under a wave front
was made for the convenience of analyzing wave systems and does not corre-
spond to physical reality. Shock-wave fronts, especially, represent a finite
change in velocity and depth and therefore extend in nature over a consider-
able distance in terms of depth. The hydraulic jump may be cited to illus-
trate this point. Nevertheless, the ultimate change accomplished by these
standing waves is still as computed by the basic theory. The local phenomena
become important only where the dimensions of the hydraulic structure
concerned are small compared to the length of the transition zone. As a
practical example a bridge pier may be cited, which causes standing waves
comparable in height and length of transition to its own dimensions. Informa-
tion on the transverse extent of hydraulic wave fronts is yet to be obtained
experimentally and is tied in with the problems of boundary-layer growth and
of vertical accelerations. Another more serious effect of viscous forces may
be mentioned: As changes in velocity and depth occur, the balance between
gravity and viscous forces existing for uniform flow is disturbed. Minor
changes in specific head will result, which are not considered in the elementary
theory. The effect of such changes is negligible only for local phenomena, but
it is cumulative over a long distance. A small change in wave angle, for
instance, will cause only a slight shift of the point of the first reflection of a
wave, but the nth reflection point is displaced n times more than the theoretical
one. Thus, longitudinally extended systems of waves may become subject to
considerable dlﬁerences by interference downstream from the original dis-
turbance.

Except for these secondary physical phenomena which the basic analysis
neglects, the elementary theory has contributed the following:

1. The primary features of supercritical fiow have been rationalized on
the basis of accepted principles of mechanics.

2. The general characteristics of the standing wave patterns have been
developed systematically.

3. The basic requirements for sound high-velocity structures can be formu-
lated qualitatively for the different types, and the effects of various designs
can be visualized. In general, the aim of design will be toward elimination of
large surface disturbances.

4. Surface disturbances can be subjected to a detailed quantitative analysis
for given designs with respect to local phenomena, and basic formulas have
been derived for this purpose.

5. The findings of the theory have been used to develop systematic graphical
procedures for the solution of complex problems.
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DESIGN OF CHANNEL CURVES FOR
SUPERCRITICAL FLOW

By ROBERT T. Knapp,* M. ASCE

SyNoesis

Characteristics of flows around curved sections of open channels at velocities
greater than the wave velocity (that is, F > 1) are discussed in this paper. In
simple curves such flows produce cross-wave disturbance patterns which also
persist for long distances in the downstream tangent. These disturbance
patterns indicate nonequilibrium conditions whose basic cause (when F > 1)
is that disturbances cannot be propagated upstream or even directly across the
channel. Thus, the turning effect of the curved walls does not act equally on
all filaments in a given cross section and equilibrium is destroyed. The paper
outlines two basic methods of eliminating these disturbance patterns. Ana-
lytical design criteria are developed, and experimental verifications of the
analyses are presented. The first method consists of applying a lateral forces
in such a way that it acts simultaneously on all filaments, causing the flow to
turn without disturbing the equilibrium. Bottom banking supplies such a
lateral force, and a series of vertical curved vanes scross the channel has
roughly the same effect. The second method employs interference patterns
introduced deliberately at the beginning and at the end of the curve. Com-
pound curves, spiral transitions, and sills all operate on this principle. Rec-
tangular channels are uniquely suited to the interference method of treatment,
since for a given channel the wave patterns are substantially independent of
the flow. Trapezoidal and other nonrectangular channels should be avoided
if possible, unless the flow is invariant. The fields of application of the different
treatments are discussed briefly.

DescriprioN oF FLow Arounp SivmprLe CURVES
IN REcTANGULAR CHANNELS

One of the common types of curves in normal use for suberitical and super-
critical velocities is the simple curve of constant radius in a channel of rectan-
gular cross section. For all suberitical velocities this design is quite satis-
factory. For supercritical flows, it is not satisfactory. Fig. 12 shows the
surface appearance of such a curve. Very strong cross waves ocour within
the curve and persist for a considerable distance downstream. This type of
behavior could have been predicted from the principles presented in the first
Symposium paper. Thus, an examination of the mechanics of the flow shows
that the only forces acting on the fluid to cause it to change its direction origi-
nate, and are applied, at the walls. At the beginning of the curve the elements
next to the outer wall are forced to turn because the wall curves toward them.

18 Director, Hydrodynamics Laboratory, California Inst. of Technology, Pasadens, Calif.
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The elements next to the inner wall are induced to turn since this wall curves
away from them and leaves them without support. However, the elements
in the interior of the flow are unaffected at first. They continue to move in
the original direction until the wall forces have had time to propagate across
the channel far enough to act upon them. These wall forces appear as pressure
differences and as such are propagated at the velocity of a surface wave in the
channel. Fig. 13 is a diagram of such a curve having a mean radius, r. The
point A is the beginning of curva-
ture of the vuler wall'”  The first
small disturbance caused by this
curvature will be propagated along
the line AB. Similarly, the initial
disturbance produced by the inner
wall is propagated along the line
A;B. All the flow upstream from
the boundary ABA, is unaffected
by the curve and thus continues to
move in a direction parallel to the
upstream tangent. Beyond point
B the disturbance originating at A
on the outer wall is no longer prop-
agated in a straight line since the
flow in this region is moving in a
curved path under the influence of
the inner wall. The dotted line,
BM; indicates the path of propa-
gation. Similarly, the disturbance
originating at A, is propagated on Fe. 12. -Cross-Wavs Distursance Parroan Buuow
the path BM. Thus, four regions - RRER n

of flow can be delineated as follows:

1. The region unaffected by either wall, lying upstream from ABA,;
2. The region affected by the outer wall only, within ABM;

3. The region affected by the inner wall only, within A;BM;; and
4. The region affected by both walls, downstream from MBM,

Along the outer wall the fluid surface rises continuously from A to M since an
increasing force from the wall has been required to turn the increasing amount
of flow acted upon by this wall. At point M, however, the force from the
inner wall begins to act. The combined force from the two walls is more than
that required to keep the flow turning with the same curvature as that of the
channel. Hence, the pressure, and consequently the liquid surface along the
outer wall, begin to drop. ‘The reverse condition holds on the inner wall. The
liquid surface drops continuously from A; to M;. At the latter point the effect

17 “Curvilinear Flow of Liquids with Free Surfaces at Velocities Above That of Wave Propagation,”
by R. T. Knapp and A. T. Ippen, Proceedings, 5th International Cong. for Applied Mechanics, Cambridge,
Mass., 1938, p. 533, Fig. 1.
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of the outer wall comes into play and therefore the surface begins to rise again.
It is evident from Fig. 12 that conditions do not become stabilized when the
difference in elevation between the outer and inner walls is again just sufficient
to cause the flow to turn with the channel eurvature. This equilibrium also
is passed through rapidly. The surface
continues to drop along the outer wall and
to rise along the inner wall to new maxima
and minima located at each reflection
point of the continuing disturbance paths
ABM;— and A;BM (Fig. 13). These re-
. flections will conform to the normal laws

| - of wave mechanics. Maxima will occur at
/r‘ '\W all réflection points of the continuation of
1

the path A;BM and corresponding minima

/ will occur along the continuation of ABM;.

P CarcuraTioN oF Liquip Surrace Pro-
L / FILES ALoNG THE WALLS

In order to calculate the liquid surface

it is necessary to define the assumptions to

be used. In the general case, these in-

clude: (@) Two-dimensional flow, (b) con-

o stant velocity across the cross section, (c)

10 oy o S L horizontal channel, and (d) frictionless

v Cuave flow. Assumptions (¢) and (d) do not ex-

clude the application of the results to in-

clined channels since, if the flow is in equilibrium, the slope compensates for

the friction.

With these assumptions, and the principle of the conservation of energy,

Mr. von Kdrm4n® derives

§ =  3sin! \/ 2;}_/3 — sin™! \/ 2(Th——h) -+ (a constant)..... (28)

from which the change of depth along the walls at the beginning of the curve
can be calculated.!’® Angle @ is the angle of turn of the channel wall. Positive
values of # signify a turn toward the channel axis. Eq. 28 is not very con-
venient to use analytically, although this difficulty may be overcome by using
it in a graphical form., A study of the experimental data for a series of flows
of this type suggests a simplifying assumption. On the basis of the dual condi-
tions, just specified, of frictionless flow and conservation of energy, the velocity
in any filament must change as the depth changes, since the sum of the depth
and the square of the velocity must remain constant. The flow around the
outer wall, being the deepest, should be the slowest. Measurements indicate,
however, that the velocity around the outer wall remains constant, or even in-

18 ‘‘Curvilinear Flow of Liquids with Free Surface at Velocities Above That of Wave Propagation,”
by R. T. Knapp and A. T. Ippen, Proceedings, 5th International Cong. for Applied Mechanics, Cambridge,
Mass., 1938, p. 532, Bq. 3.
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creases slightly, whereas along the inner wall it decreases. The deviations are
caused by the varying effects of friction on the different elements of the channel.
These measurements justify the replacement of the condition of conservation
of energy with the approximation that the magnitude of the velocity remains
constant. For high-velocity flow the depth represents a comparatively small
fraction of the specific head; therefore any possible change in depth can pro-
duce only a relatively small change in velocity. On the basis of this assumption
the expression for the depth, %, can be derived in the following manner: Con-
gider an open channel with liquid flowing in it at a velocity, V, and a depth, A.
1f the velocity, V, is supercritical—that is, if V is greater than v/ g i—a pressure

Vgh
vV
of V. If such a pressure wave is propagated across the channel (say, as the
result of the liquid encountering a slight bend in the channel), the pressure
difference will act normal to the wave front—that is, normal to the angle 8.
The effect of the pressure difference at the wave front on the velocity, V, will
be equal to the change in momentum of the flow normal to the wave front.

Thus, if the angle of turn is df, the change in depth produced by this change in
angle can be expressed as follows:

to the direction

disturbance can be propagated only at an angle 8 = sin™!

dV,

dh — Va
@ - !T T o B ) 29)
By Fig. 13 V, = V sin 8; and, assuming V constant,
dVa=VeosBdo.......................(30)
Eq. 30 assumes that d0/2 is small compared to 8. Eq. 29 now becomes
2
%%=Yg—-sinﬁcosﬁ..._............._.,..(31)

Introducing in Eq. 31 the relationship previously defined that sin 8 = V/v g &,
and the expression that follows directly from it, that tan 8 = Ngh/NVE—gh,
Eq. 31 may be transformed to

If Eq. 32a is integrated from 0 to 6,

., 8
h—'g—sln2<61+§>....... ............ (32b)

in which B, is the original wave angle corresponding to the depth, A1, upstream
from the disturbance. '

Eq. 32b is much simpler than Eq. 28 and gives results agreeing equally
well with experimental measurements for high velocities. It must be re-
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membered that Eq. 31 is an approximation. However, Eq. 28 is also an
approximation, because, among other things, it assumes a constant velocity
across the cross section at the entrance to the curve. In the actual case this
velocity is not constant. It should be possible to calculate the water-surface
profile on the basis of actual velocity distribution instead of utilizing this as-
sumption of constant velocity., However, in most cases the requirements are
not rigorous enough to demand this refinement.

There is a close relationship between the wave angle, 8, and the Froude
number, F; and sin 8 is simply the reciprocal of F. Thus either can be used to
characterize the state of the flow if the velocity is greater than the critical
velocity. The Froude number is more generally used because it retains its
significance for subcritical velocities as well as for supercritical ones since
physically it is simply the ratio of the flow velocity to the velocity of propaga-
tion of a wave with respect to the fluid. On the other hand, the wave angle,
8, has no significance for subcritical flow since under these conditions it does
not exist.

Neither Eq. 28 nor Eq. 32b gives the law locating the maxima and minima
along the walls, because they do not contain the factors that determine these
locations. Fig. 13 furnishes a basis for estimating their location. As pre-
viously stated, the first maximum on the outer wall occurs at point M, which is
the reflection point of the disturbance which originates at A;. The path is
straight from point A; to point B since the water depth, and hence the wave
velocity, is constant. From point B to point M the path is curved, because
the water depth (and therefore the wave velocity) is increasing, and also
because the direction of flow has been changed by the effect of the outer wall.
The path BM may be computed by the methods outlined in the first Symposium
paper. Usually it is sufficient to estimate the location of the first maximum
and minimum by assuming that they oceur at intersections of the line OC
with the outer and inner walls. Fig. 13 shows that 0, represents a half wave
length of the disturbance pattern. Its value is given by the expression:

0, = tan™! —————l-’i——
. <r e ) tan’B,

Therefore, subsequent maxima should occur at 3 6,, 5 6., etc., along the outer
wall. If by some method the wave pattern could be eliminated and the flow
brought to equilibrium within the curve so that the difference in depth between
the inner and outer walls would just produce the pressure required to balance
the centrifugal force, the difference in depth across the channel would be

b
2rg
mum on the outer wall) Eq. 32b gives nearly twice this depth., The disturbance

The depth along the outer wall should be &, + For 8 = 0, (first maxi-
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pattern that oscillates about the equilibrium depth, therefore, has a wave
2
length of 2 6, and an amplitude of 217'_3

DisTURBANCE IN DOWNSTREAM TANGENT

The disturbance pattern (that is, the pattern of cross waves superimposed
on the equilibrium superelevation) continues into the downstream tangent.

The wave length now becomes %. Furthermore, because of the sudden

2
change of curvature, a new disturbance of amplitude % originates at the end

of the curve. This new cross-wave pattern has a maximum on the outer wall
(at the point of tangency). The wave length is the same as that of the original
disturbance, since it is determined by the same factors. The resulting dis-
turbance pattern in the downstream tangent is the sum of these two patterns.
In general, they are out of phase and the resultant pattern is dependent on the
phase angle. Thus, if a simple curve at equilibrium discharges into the down-
stream tangent, the resulting disturbance pattern will have an amplitude of
%7;-3 with a maximum occurring on the outer wall at the end of curvature. A

2
similar curve having a disturbance pattern of % superimposed upon equilib-

rium conditions will produce no disturbance pattern in the downstream channel
if the disturbance within the curve has a minimum on the outer wall at the
end of eurvature. Curves of lengths 6, 3 6, 5 6, etc., will have a maximum on
the outer wall at the end of curvature and will produce a disturbance pattern in

2
the downstream channel having maxima of % which is double that of the

pattern below & curve operating at equilibrium. It will be noted that the
disturbance in the downstream tangent may have a greater amplitude than
the corresponding one within the curve but that the actual depth of flow along
the wall is never greater than it is on the outer wall within the curve, nor less
than it is along the inner wall. The explanation of this anomalous result is
that in the tangent the equilibrium condition about which the disturbance
oscillates is the constant-depth flow, whereas in the curve the corresponding
equilibrium condition is variable flow depth in the cross section, with super-
elevation on the outer wall, and depression on the inner wall.

CraNNEL WITH MurtipLE CURVES

In the field most channels are made up of a series of curves separated by
tangents of varying lengths. The disturbance pattern in the lower curves
and tangents can become very complicated since each curve affects the dis-
turbance in its downstream tangent and the disturbance in each tangent
affects the performance of the following curve. It was just shown that the
disturbance in the downstream tangent is 2 maximum when a maximum exists
at the end of the outer wall of the preceding curve. The same reasoning will
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show that the disturbance in a curve will be a maximum whenever a minimum
point exists on the outer wall at the beginning of curvature. Thus it is possible
by a particularly unfortunate combination of length of curve and of inter-
mediate tangent, to build up an extremely high disturbance pattern.

CALCULATION OF THE WATER-SURFACE CONTOURS

In general it is sufficient for design purposes to calculate the water-surface
profile along the two walls of the channel. However, it is possible to calculate
the entire water surface by the method of characteristics described in the first
Symposium paper. The method of characteristics is not applicable when the
wave fronts become steep or break. If the vertical accelerations are high
some disagreement may be found, but in general this will be confined to a
limited zone and thus will not affect the validity of the calculations as a whole.

There are two sources for additional energy losses in curves over those
existing in straight channels. Even if equilibrium conditions are established
by proper methods of treatment, the cross section of the flow is distorted by the
superelevation in such a way as to decrease the effective hydraulic radius and
thus increase the frictional losses. Losses are most apparent in the zone of
decreased depth. The second major source of loss oceurs only if the distur-
bance pattern is strong enough to produce breaking waves, which correspond
to shock waves in supersonic flow of gases. If the wave breaks, an appreciable
amount of energy is lost. However, if the surface wave does not break, it
represents a very small amount of energy loss. A qualitative proof of this
statement is the number of oscillations required for the damping in the down-
stream channel of a disturbance pattern produced in a curve. TField condi-
tions usually permit the use of radii large enough to avoid breaking waves.
Thus, in general, it can be stated that, for superecritical flow, the additional
energy losses in curves are of little significance either in the calculation of the
disturbance pattern or in the determination of the hydraulic gradient of the
channel as a whole.

AvarLABLE METHODS FOR THE REDUCTION OF SUPERELEVATION IN
CURVES AND IN THE DoOwNSTREAM TANGENTS

Summary of Flow Characteristics Which Affect Method of Treatment.—Before
discussing the possible ways of reducing the superelevation in curved channels,
it will be well to review briefly the salient physical characteristics of high-
velocity flow around curves, as follows:

1. The flow velocity is greater than the velocity of the surface wave (that
is, F > 1). Therefore, disturbances cannot travel directly across the channel,
but only at the oblique angle determined by the ratio of the wave velocity to
the flow velocity.

2. In channels, as normally designed, the side walls are expected to do the
turning. This is basically a nonequilibrium process because the effect of a
change in wall alinement is not propagated directly across the channel, and

" therefore cannot immediately affect the entire flow.
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3. The form of the disturbance produced when water flows from a straight
to a curved channel or vice versa is oscillating and has the properties of a
wave train.

Banking.—The most logical method of eliminating the disturbance pattern
is to remove its cause. Since it is impossible to act on all the elements of flow
at once by a change in direction of the side walls, it would be desirable to
employ some better method of applying the lateral force to change the flow
direction. The obvious way of applying a lateral force simultaneously to all
the fluid elements is by the use of a bottom cross slope—that is, by banking.
This cross slope, S., can easily be calculated by equating the gravity component
along the cross slope to the centrifugal force determined by the radius and
velocity. The result is

'VZ

tan¢g = S, = g e g v (35)
It should be emphasized that, with the proper use of banking, all the force
necessary to change the direction of the flow is supplied by the cross slope.
The walls do nothing except conform to this change of direction. In banking
it is not feasible to change the cross slope of the channel instantaneously from
a level bottom to the value indicated by Eq. 35. The banking requires an
appreciable change in elevation, which can be obtained either by raising the
bottom on the outside of the curve, or by lowering it on the inside—or by a
combination of the two. To avoid shock, the banking must be introduced
gradually and, to follow the path of the stream, the walls must have a decreasing
radius of curvature that just matches the increase of cross slope. The most
elegant design of a banked bottom would be one in which the center of gravity
of the flow followed the mean slope of the channel.

One characteristic of a banked curve is that equilibrium conditions are
obtained for only one velocity of flow, and hence for only one depth and one
rate of flow. All other flows will show disturbance patterns similar to those in
untreated curves. The magnitude of the disturbances will be determined by
the degree of departure from equilibrium velocity.

Multiple Curved Vanes—Eqs. 32b and 34 show that for a given depth,
velocity, and radius of curvature, the maximum superelevation varies directly
with the width of the channel. Therefore, if a given curve is divided into a
series of narrower curves by concentric vertical vanes, the superelevation in
the subchannels will be correspondingly reduced. Furthermore, the disturb-
ance in the channel below the vanes will dissipate rapidly because of the
absence of the vanes that supported the differences in elevation.

Interference Treatments—The fact that the disturbances produced at the
beginning and at the end of a simple curve are wave trains suggests that they
might be eliminated by proper interference patterns—that is, by the deliberate
introduction of similar disturbances of equal magnitude but of opposite phase.
In the flow around a curve of constant radius, the equilibrium condition requires

2
a superelevation of EVr—z on the outside wall and a corresponding drop along the
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inner wall. The disturbance wave pattern oscillates about this equilibrium
condition with a wave height practically equal to the equilibrium change in
elevation. For complete “interference’”’ the counterdisturbance should have
this same wave height. The original disturbance has a minimum point on
the outer wall and a maximum point on the inner wall at the beginning of curva-
ture. Therefore, the counterdisturbance should be introduced with a maximum
on the outer wall and a minimum on the inner wall at the same point. The
opposite conditions exist at the end of curvature. There are several ways of
producing the required counterdisturbances, three of which will be discussed
briefly—compound curves, spiral transitions, and diagonal sills. All three of
these treatments are complete in themselves and do not require auxiliary
measures, such as banking of the bottom, to accomplish the desired result. Itis
possible to combine methods, but such combinations will not be discussed in
this paper. It may have been noted that in this discussion of interference
treatments, no attention has been paid to the production of a disturbance
pattern hdaving the correct wave length. The reason is that the wave length
is a function of the velocity and the channel width; hence, the counterdisturb-
ance will automatically have the correct wave length to match the original
disturbance. Therefore, care must be taken to obtain a conterdisturbance of
the right amplitude and phase. No attention needs to be paid to the wave
length except as it is used in establishing the correct phase.

Compound Curves—A simple curve produces a disturbance pattern having
an amplitude and a wave length that can be determined quite accurately.
Therefore, it is logical to employ a section of a simple curve to produce the
counterdisturbance pattern required to interfere with the one formed by the
main curve.

The length of curve most effective in producing a disturbance pattern is
a half wave length since this length produces the maximum disturbance for a
given radius of curvature. It is also the minimum length in which the dis-
turbance from both inner and outer walls has had time to affect the entire flow.
This maximum is on the outer wall, which is where it should be to interfere
with the disturbance produced by the main curve. This curve length as

measured on the outer wall is i%’ The equivalent central angle is
; = b
¢ =tan ' —m— ..., (36)

(r,- +—g) tan 8,

In Eq. 36, r; is the radius of the counterdisturbance section, not that of the
main curve. The required radius for this section is just twice that of the
main curve as it is desired to produce a disturbance of one half that caused by
the main curve. Thus, the interference pattern must have a wave height equal
to Ah/2, or
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From Eq. 37a it follows directly that

in which Ak, is the height of the interference pattern. ‘l'herefore, if a simple
curve of radius r is preceded by a section of another simple curve, whose length
is t————aﬁ 3 and whose radius is 2 r, the flow will rise gradually to the equilibrium
value and remain in this condition throughout the entire length of the main
curve. However, if the main curve terminates abruptly in a downstream tan-
gent, a disturbance pattern will be formed therein having a wave height of
2
——g - Z Similar reasoning to that used in developing the design for the upstream
counterdisturbance section will show that an identical section applied at the
downstream end of the curve will produce the interference pattern required
to eliminate the disturbance in the downstream tangent. Fig. 14 shows the

Fia. 14.—DEb1GN CRITERIA FOR A F1@. 15,—Pran orF SiLL INSTALLATION
CompoUND CURVE

construction of such a compound curve which will operate with no disturbance
pattern either in the curve itself or in the downstream channel.

Spiral Transitions.—Spiral transition curves have been suggested to replace
constant-radius transitions. The suggestion is probably traceable to the use
of spiral transitions in railroad and highway construction. The spiral can be
made to produce satisfactory conditions at the beginning and at the end of the
main curve. For that matter, many other designs of transition curves can
be found which will be equally satisfactory, provided that the transition curve,
whatever its design, must produce a simple disturbance pattern which has a
maximum on the outer wall at the beginning of curvature of the main curve
and a wave height as given in Eq. 34. One fundamental fact must always be
borne in mind: As previously shown, no configuration of curved walls used with
a flat bottom channel can produce a change in direction of a high-velocity flow
under conditions that maintain equilibrium in all points of the flow. Thus,
the primary purpose of the transition curve, whatever its shape, is only the
production of the interference wave pattern necessary to cancel out the one
produced by the main curve. The fact that the external appearance of the
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flow shows no evidence of a disturbance pattern is no indication of the absence
of the interference phenomenon.

Diagonal Sills—Diagonal sills on the channel bottom can be used to produce
the necessary interference pattern. The effect of a diagonal sill is to produce
a change in direction in the lower layer of the flow, which is quite rapidly
averaged throughout the entire cross section by the mechanism of momentum
exchange. The over-all result can be approximated by calculating the lateral
force exerted on the sill by the flow. This force must produce a corresponding
lateral change in momentum in the flow. If the force is equated to the product
of the mass rate of flow and the change in lateral velocity, the latter can be
calculated readily. The vector sum of the lateral and longitudinal velocities
gives the resulting direction of the flow below the sill. Since the mass rate of
the total flow is used, the direction will be the average for the entire flow.

If skin friction is neglected, the only force that the fluid can exert on a
sill will be normal to the face. This force is equal and opposite to the rate of
change of momentum of the flow. Its magnitude is obtained by computing
the rate of change of momentum of the water that hits the sill. This layer of
water has the width of the channel and the height of the sill. It can be assumed
to travel with the average flow velocity and to turn through the angle that the
sill makes with the channel axis. This layer of water will mix rapidly with the
remainder of the flow aboveit. Therefore, the average angle through which the
entire flow is turned can be computed by applying the principle of conservation
of momentum to obtain the resulting lateral component of velocity. Thus, if
the sill height is d, the angle of sill inclined to the channel is &, and the angle
of curve of the entire flow is &',,

Eq. 38 shows that the sill has maximum effectiveness when a = 45°, and this
is confirmed by laboratory tests. Experiments indicate, however, that a
smoother disturbance is obtained with a sill angle of 30° with very little loss in
effectiveness. The required magnitude of the counterdisturbance produced by
the sill is governed by the same consideration as that which governs the magni-
tude of the counterdisturbance produced by the upstream and downstream
sections of the compound curve. The same reasoning, therefore, indicates that
0, should be 6,/2 in which 8, is the central angle of the half wave length in the
main curve, given by Eq. 33. It is not practical to attempt installations for
values of 8, greater than 10° as too great a sill height would be required.

On first consideration, the desirable location for the diagonal sills would
appear to be with their downstream end at the beginning of curvature on the
outer wall. The corresponding position at the end of the curve would be to
have the downstream end of the sill at the end of curvature on the inner wall.
However, the disturbance produced by a diagonal sill is not as smooth as that
resulting from a simple curve. This is particularly true of the first maximum
produced. Subsequent maxima become smoother and more similar to those
caused by a simple curve. Experiments have shown that the best location for
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the diagonal sills is as indicated in Fig. 15. The distance Lyg is given by the

expression:
= b 1.12 0.0313
Los = g |75 38+ T ,} ,,,,,,,,,, (39)
( 2 h, ) <h,, sin B3, )

The first term in the brackets is a correction for the increase in velocity of the
finite disturbance over that of an infinitesimal wave; the second term is an
addition for the distance downstream from the toe of the sill at which the
maximum disturbance occurs. The symbol h; denotes the depth of the dis-
turbance produced by the sills and Ak, is k; — k,. For normal cases the value
of the bracket term will lie between 0.9 and 1.15. Eq. 39 should be used with
caution if the correction factor falls outside this range since the experimental
verification of the empirical coefficients is rather meager.

Another laboratory finding is also incorporated in Fig, 15. Two sills are
shown instead of one at each location. Also the sills end a short distance from
the walls. Both modifications are for the purpose of eliminating undesirable
local disturbances and of broadening the main disturbance to make it approach
the wave form produced by the curved transition section that the sills are re-
placing. The group of three sills at the end of the curve replace the down-
stream transition section of the compound curve method of treatment and per-
form the same necessary function—that is, the elimination of the disturbance
in the downstream tangent. All the sills shown in Fig. 15 should have heights
one half of that indicated by Eq. 38 since they act in pairs.

FIELDS OF APPLICATION OF DIFFERENT TREATMENTS
FOR REcTANGULAR CHANNELS

The treatments described have different fields of use. Banking is most
adaptable to major channels that ordinarily operate at or near the design flow.
It offers the only method for preventing, completely, the rise in elevation of the
water surface in the curve. This requires that the banking be obtained
entirely by depressing the inner wall, which usually involves costly excavation.
The effect of banking can be decreased or completely nullified by improper wall
design. Banking does not produce equilibrium conditions for flows above or
below the design capacity. However, for the lower flows, the disturbances
produced stay below the design flow line.

The use of multiple curved vanes is rather restricted. They are not de-
sirable for channels carrying debris unless the vane spacing can be made
considerably larger than the maximum size of debris to be expected. In case
it is necessary to bridge such a channel at the curve, an economical design
may be made by using the vanes as bridge piers,

Compound curves offer the most desirable solution for most high-velocity
channels. If properly designed, they appear to offer a completely satisfactory
solution, not only for the design discharge, but also for all lower discharges.

Spiral or other complicated transition curves are not recommended for any
normal application. They simply add to the cost of both the design and the
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construction with no commensurate improvement in the flow characteristics
over that secured by the use of compound curves.

Diagonal sills should be used primarily as a remedial measure in existing
channels which have been designed with simple circular curves or other un-
satisfactory forms. For such applications, they offer the possibility of changing
quickly and economically a completely unsatisfactory condition of flow into
one that is at least acceptable. However, diagonal sills operate best at the
design rate of flow. For lower flows, the disturbance produced is too large
and thus there is some residual pattern both in the curve and in the down-
stream channel. This is usually not serious for, as in the case of the banked
bottom, the superelevations produced by the disturbance pattern fall below
the flow line for the design discharge. This disturbance pattern at low flows
may have one somewhat intangible by-product. If the channel in question
happens to be used for flood-control purposes or for similar uses in which
maximum flows are rather unusual, the sight of the disturbance pattern at
low flows may cause uneasiness and distrust among the adjacent residents.
This is particularly true if overtopping of the channel would be serious. The
inexperienced observer is likely to reason that, if a low flow shows such a pro-
nounced disturbance pattern, higher rates are certain to cause increasing
superelevations and major flows are sure to cause failure. The engineer may
encounter considerable difficulty in explaining that the reverse is true—that the
channel performance improves as the flow rate increases.

It must be expected that the maintenance costs for curves with diagonal
sills will be higher than those for either banked or compound curves, especially
if the flow is debris laden. However, experience has shown that wood timbers
bolted to the bottom of concrete channels form quite satisfactory sills even for
relatively large channels carrying heavy debris loads. If sills are used with
extremely high-velocity flows, cavitation will oceur (see subsequently in Fig.
31). Cavitation itself will tend to increase rather than decrease the effective-
ness of the sills but the resulting damage may destroy them.

NONRECTANGULAR CHANNELS

A good indication of the problems involved in high-velocity flow in non-
rectangular curved channels is obtained by examining two unique advantages
of the rectangular cross section which hold for all interference type curve
treatments:

1. For a given channel with a given slope, the wave angle remains nearly
constant over a wide range of flows; and
2. The channel width is constant.

From these two characteristics it follows that the disturbance pattern in
and below a given curve is constant in configuration and location irrespective
of the rate of flow. The significance of this statement has already been
stressed—that is, designs using interference pattern methods of treatment are
satisfactory for all lows within the design maximum,

In a nonrectangular channel the wave angle changes with depth since the
wave and flow velocities no longer vary at the same rate. The surface width
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likewise varies with depth. This means that the wave pattern varies with
the flow.

Therefore it must be concluded that curve treatments using the interference
method will be much less satisfactory for nonrectangular cross sections than for
rectangular cross sections. For example, in nonrectangular channels both
compound curves and sills produce interference patterns of the right phase for
only one rate of flow. If the channel width varies rapidly with the discharge,
this phase shift may even change the interference into a reinforcement and
thus increase materially the superelevation in and below the curves, Fig. 34,
subsequently, shows such a shift produced by a change in the discharge in a
trapezoidal channel. It is suggested, therefore, that the use of nonrectangular
cross sections for high-velocity curved channels be avoided wherever possible,
especially for applications involving wide ranges of discharge.

ExPERIMENTAL CONFIRMATION

The experimental confirmation of these methods of controlling high-velocity
flows in and below curves was obtained during a study conducted in the
Hydraulic Structures Section of the Hydrodynamic Laboratories of the Cali-
fornia Institute of Technology under the direction of the writer, Much of
the experimental work and analysis was done by the author of the first Sym-
posium paper. The study was sponsored by the Los Angeles County Flood
Control District, which needed design information for its network of flood-
control channels, many of which had steep gradients and high velocities. The
first objective was the determination of the physical phenomena involved, and
the second objective, the development of methods of treatment for the curved
sections of high-velocity channels. Although the Los Angeles County Flood
Control District was deeply concerned with the design of a specific group of
channels, it was felt that it would be more profitable to conduct the study
from this fundamental basis with a view to developing analytical methods of
design, rather than to adopt a model study technique and be satisfied with
specific solutions for only this particular group of channels.

The equipment consisted primarily of two brass channels, one having a
rectangular cross section and one a trapezoidal cross section. They were
designed so that under normal flow conditions the sectional areas would be
the same. They were both provided with abnormally high walls to permit the
investigation of high superelevations. The rectangular channel was 18 in.
wide and 14 in. deep; and the trapezoidal channel was 12 in. wide at the
bottom, 12 in. deep, and had side slopes of 1 on 13. The channels were mounted
on a platform 100 ft long, which was adjustable to any desired slope up to 1 in
10. A water-circulating system was provided with a maximum rate of flow
of 6 cu ft per sec. The flow was measured by a set of three venturi meters
having slightly overlapping ranges. Fig. 16 shows the plan and elevation of
this equipment,!® and Figs. 17 and 18 illustrate some of the details of construc-
tion. Water depth and surface contours were measured by point gages
mounted on rails accurately adjusted to be parallel to the bottom of the

1 ‘“Experimental Investigations of Flow in Curved Channels,” by A. T. Ippen and R. T. Knapp
(abstract of results and recommendations, U. 8. Engr. Office), Los Angeles, Calif., 1938, p. 2.
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channel. Velocity profiles were obtained by pitot tubes mounted on the same
carriage. Considerable care was taken in each run to secure equilibrium con-
ditions between the slope and the velocity of flow. In addition, check runs
were made with velocities both above and below the equilibrium value to
determine the effect of departures from equilibrium. It was found that the
equilibrium requirements were not critical; conditions always remained practi-
cally constant through the experimental stretch, because, at the slopes used, a
long length of channel is necessary to produce appreciable changes in velocity
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or depth. A total of 156 experimental runs was made in the two channels and
in the auxiliary adjustable slope section. Each run had from one to seven
divisions. A wide range of slopes and Froude numbers were covered. The
data presented in this paper are only representative samples.

Nearly all the experiments were performed in the rectangular channel.
This was partly due to the limited time available. An additional restriction
to the work on the trapezoidal channel resulted from the growing realization
of the inherent characteristics of high-velocity flow in curves and the resulting
basic limitations imposed upon the use of all cross sections in' which the width
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varied with the depth of flow. A sufficient number of experiments was run in
the trapezoidal channel to demonstrate clearly the reality of these limitations.

Constant Radius Curves; Rectangular Channel.—Fig. 19 shows a comparison,
for four different rates of flow, of the observed values versus the calculated
values for the water-surface profile along the outer wall from the beginning
of curvature to the first maximum. These measurements were made in a curve
having a mean radius of 25 ft. Fig. 20 shows a parallel set of runs for a 50-ft
curve. Table 2 shows a similar comparison for the height and location of all
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the maxima in the curve and for two sets of maxima in the downstream tangent.
These are the same runs shown in Fig. 19. Within the curve the distance
between maxima varies from 0.914 to 1.066 of the calculated value, whereas in
the downstream tangent, the corresponding ranges are 0.868 to 1.262. Varia-
tions of approximately the same magnitude are to be found in the depths.
These variations are probably the result of: (a) Frictional damping of the
disturbance pattern; (b) deviation from uniform velocity in the flow; and (c)
variations in wave velocities caused by variations in the wave heights. Occa-
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sionally it may be desirable to introduce these secondary effects into the

analytical treatment.

However, in most designs there are other elements of

uncertainty, of equal or greater magnitude, which make increased accuracy
unnecessary. For example, the slope of steep channels on natural terrain

TABLE 2.—MAXIMUM SUPERELEVATION IN AND BELow

Run
No.

|
INn THE CURVE, AT THE OUTSIDE WALL®
Flow, | Com-
Q, in Depth, | Com- Com- |
eubic ho, Frmlx)de puted puted | plftf Finsr Seconp Distance
feet in nunll“ er, R, in o, by b Maximom MaxIMUM | {5 end of
per feet feet Eq. 37 =g curve
second tan 8 (EC)
| 8/8
R R
14 fo 14 2 8o
(2) (3 (4) (5) (6) " @ | 9 | a0 | A (12)
2.49 0.160 3.29 0.387 14° 33’ 6.68 0.868 | 0.928 | 0.895 | 1.014 0.137
3.51 0.199 3.28 0.496 14° 47/ 6.79 0.905 | 0.914 | 0.935 | 1.066 0
4.52 0.236 3.25 0.584 14° 46’ 6.78 0.942 | 1.015 | 0.951 | 1.016 0
5.51 0.260 3.45 0.693 15° 30/ 7.13 1.010 | 0.967 | 1.002¢ | 1.000 | —0.06¢

< Ratios of measured values to computed values.

5 In Cols. 14, 16, 18, and 20, L is the measured

usually varies quite rapidly. Thus the velocity at any given cross section is
seldom in equilibrium with the slope, which increases the difficulty in estimating
the velocity. Furthermore, the effective roughness usually involves as much
uncertainty as that just shown in the location of the maxima.
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Fra. 21.—SurFace ProriLes ¥or CUrRvVE wITH BAnkep Borrom TREATMENT

Banked Curves; Rectangular Channel—Fig. 21 shows a run made with a
banked channel having spiral transitions calculated to mateh the bottom transi-
The banking was accomplished entirely by depressing the inner wall,

tion.

keeping the outer wall at a constant slope throughout the curve.

In accordance
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with the analysis, there is practically no change in the depth on the outer wall
in and below the curve. (In the several illustrations, the points of curvature
and compound curvature, beginning and end, are designated BC, EC, BCC, and
ECC, respectively.) Figs. 22 and 23 show the surface contours and the velocity

THE CUrve; TeEsts WiTHOUT SI1LLs; RECTANGULAR CHANNEL

BerLow THE CURVE®D
Distance, IN FEET,
FirsT MaxiMuom Srconp MaxiMum BEmifS ASg:cg;sévm
SaMe Sipe - RNUD
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h L h L 3 L 13 L
7 = o b7 = % W 57 Lo Laia Ldo.z
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lengths between successive maxima on opposite sides. ¢ One half foot below the end of the curve.
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distribution obacrved iu Ulie curve for the same conditions. Fig. 24 shows two
additional water-surface profiles for the same curve. These are for the same dis-
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charge as that represented in Fig. 21. However, the velocity of approach for
run 140A is lower than the equilibrium value for which the angle of banking was
computed. The velocity of approach for run 140B was higher than the equilib-
rium value. The behavior is exactly as would be expected. In the curve the
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superelevation along the outer wall drops for the low approach velocity because
the centrifugal force is not sufficient to overcome the cross slope. Therefore
there is a flow toward the inside wall of the channel. The opposite condition
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is true for the high velocity of approach. Both these runs show small but ap-
preciable disturbance patterns in the downstream channel.

Compound Curves with Circular Transition Sections; Rectangular Channel.—
Fig. 25 shows the surface profile along the outer wall for compound curves
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designed to have circular transition sections of double the radius of the main
curve and with lengths equal to one half of the wave length of the disturbance
pattern. The superelevation increases in the transition section, remains nearly
constant throughout the main curve, and falls to the initial value in the down-

ig:i [ ital | [t LLLLLH | () SPIRAL TRANSITIONS _]
5 0.3 4 i) s —> Al /1458 |
Z0.
02 T 1448 T iy, Vi o~
ey S
o=l e
B 0 T } t T
8 0 1° li 8° 14|°30’ 27"15" 40° |50°30' | 54°307 D10.33/ D20.33/ D30.33/
| I 22°3o' 32° |46°30’ 53°30/ D533/ D15.33/ D25.33!  D3533!
EC
Spiral Curved Sectlo Spiral Strai i
-—+— 250 —-|<— —bl‘-— traight Section
£05 Transmon Rad 25 Transition - . : Gradient=0.050
£04l—LjageH L | | ! [TI( cIRCULAR TRANS%TIONS_ Discharge 3.50 Cu Ft per Sec
£03 I A=149C Normal Run No. 139
0.2 prmmr gL 148A N R0 Normal  [RunNo.144B
S 0.1 149D | o T 148 | Normal Run No. 148A
£ o L1 11 [ 149D+ ] Accelerated |Run No. 1408
& U3 0° 4° |14°307 27°15! 40° |52°307 | D522 D15.22 Accelerated|Run NozldsA
0qst dant ano AR ! ° 7 ,| Accelerated |Run No. 149D
| 7°45!  22°30'. 32°  46°45' 54°30¢ D10.22 D20.22
BC BCC ECC Ec Decelerated |Run No. 140A
Curved Section 39° X Decelerated |Run No. 1458
l; “l‘“ Rad.=25! —’I‘—'l‘— Straight Section —> | pecelerated [Run No. 149C
ransition Transition
50! Rad. 50! Rad.
F1a. 27.—0vuTER WaLL ProriLes For SriraL AND CircULAR TRANSITIONS;
Hiar, NORMAL, AND Low APPROACH VELOCITIES
0.8 t EiEL B4 1=
0.7 (2) OUTSIDE WALL PROFILES | 1
e N A)
So0s N A0 }\_\ AN
& /A=A A AN
504 /T FAVANE B
e T |
o2 = ! e
0.1 I [ - - —
ol Gradient 0.050 L1
Run No. Discharge
. 117C | 249 Cu Ft per Sec
2051 120A | 3.51 Cu Ft per Sec i T
S04} 119D | 4.52 Cu Ft per Sec L 1
oy 32A | 5.51 Cu Ft per Sec A )
ot & =—N[[]| N | Tl
5 02| = : / ' !é.d%
501_.._._ ..,.:\:.’"‘"'- N S
8 9 [(5 INSIDE WALL PROFILES | T il 17
a t
U 5 ulo’ UIS' 0° 9° 18° 27° 36° 45° D5/ DiOF DIS! D20’ D25/ D30/
EC
o
re— Straight Section —hl-<— C"c;l:‘; Cuzrg? 40 +—~— Straight Section ———————™
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stream transition section. A small disturbance pattern is visible which shows
that complete interference was not obtained. The measurements indicate
that, if the velocity of approach had been slightly lower, the curve would have
behaved exactly in accordance with the predictions. Profiles for different
flows are shown in Fig. 25. Although the curve was designed for the dis-
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charge’ of run 148A, the performance was equally satisfactory for the other
three flows.

Spiral Transitions; Rectangular Channel.—Fig. 26 shows the surface profiles
for similar flows in a curve of 25-ft radius having spiral instead of ecircular
transitions. Its behavior is nearly identical with that of the curve having
circular transitions. Both curves were designed for a total turn of 54° 30”.
The center-line length of the curve with circular transitions was 30.53 ft,
whereas with spiral transitions it was 36.43 ft. Thus, the latter curve is
approximately 167, longer, although no better. Fig. '27 shows similar profiles
for both types of compound curves for velocities of approach differing from
the equilibrium values. Again the performances of the two curves are similar.
A comparison of these results with Fig. 24 shows that the sensitivity to devia-
tions from the design velocity is about as low as that of the banked bottom
design.
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F1a. 20.—Surrace PrROFILES ¥OoR SiLi TREATMENT

Submerged Sills; Rectangular Channel.—The effect of submerged sills can
be seen by a comparison of Figs. 28 and 29 which show the wall profiles for the
same flow conditions in the same curve with and without sills above and below
the curved section. Fig. 30 shows the surface contours for one of the three
discharges shown in Fig. 29. It will be seen from Figs. 28 and 29 that the sill
treatment produces very acceptable flow conditions.

Ezxperimental Comparison of Effectiveness of Various Designs for Rectangular
Channels.—Table 3 shows the comparative effectiveness of various corrective
designs in similar rectangular channels having the same slope, the same main
radius, and the same total angle of turn. The sets of runs are for nearly
identical rates of flow. The curves with sills have slightly higher disturbances
in and below the curved saction than do other methods of treatment. The



1342 HIGH-VELOCITY FLOW Papers
TABLE 3.—RELATIVE EFFECTIVNESS OF CORRECTIVE DESIGNS
FOR REOTANGULAR CHANNELS®
RevaTive MEARUREMENTS; PERCENTAGES OF THE DErsian
VaLur oF @ or oF TaE DesieN VALUE OF Ao (0.198 Fr)
DIS!lé&NCE F?Eolé)END
or CURVE TO
Flow, Q, MaxiMUM DISTURBANCE Downarssiss
Run in cubic Maximum?
No. f:::oggr Flow, Depth, CurvE DoOWNSTREAM
Q ho SecTiOoN SrcrioN
Oﬁber Inner Outer Yoner Along Along
wall wall wall wall | outer wall| inner wall
(1) ) (3) (4) (5) (6) [¢4] (8) 9 (10)
(a) NormaL CURVE
1178 2.49 71.2 80.8 175.6 85.8 149.0 123.2 1.69 2.87
120A 3.51 100.3 100.5 225.0 121.7 217.0 178.7 1.77 2,94
119D 4.52 129.2 119.2 277.6 142.3 250.0 223.0 1.91 3.02
(b) SixaLe Siuns ABoviE THE CURVE ONLY?
117B 2.49 712 80.3 165.0 166.1 124.7 1.77 2.87
119C 3.51 100.3 100.0 197.8 69.7 208.6 157.0 1.77 0.88
117A 4.52 129.2 119.6 245.9 243.0 202.6 1.77 3.02
(¢) MuurirLe SiLis ABoveE AND BerLow TEE CURVE
127C 2.47 70.6 84.8 150.4 65.1 102.0 119.1 2.06 0.32
127A 3.51 100.3 100.5 180.1 66.7 125.7 138.3 1.77 0.32
127B 4.53 129.6 118.2 223.0 81.3 169.1 163.0 1.77 1.03
(d) Circurar Transrmion; r = 50 Fr
149A 1.51 43.2 57.1 106.6 35.3 58.1 61.2 1.80 2.98
149B 2.49 71.2 80.3 149.4 52.0 87.4 79.8 1.21 2.39
148A 3.50 100.0 98.5 190.8 102.0 116.1 108.6 1.21 2.68
150A 4.50 128.7 120.2 226.6 126.7 143.3 130.8 1.21 2.6
(¢) Sriral TRANSITION
145C 1.51 43.2 60.1 103.0 54.0 60.6 61.6 1.37 2.85
146A 2.48 70.8 80.8 151.0 80.8 86.8 90.8 0.78 2.85
144B 3.50 100.0 97.5 187.2 103.5 122.7 111.8 0.79 2.26
146B 4.50 128.7 122.2 220.0 124.7 146.4 128.8 0.86 2.26
(f) SpiraL TraANsITION WITE BAnkING
141 1.50 42.8 58.1 69.2 83.3¢ 61.6 61.6 3.00 3.00
142 2.48 70.8 80.8 92.9 95.0 89.4 92.9 1.67 3.00
139 3.50 100.0 97.5 120.3 95.5 109.6 110.6 1.96 3.00
143 4.51 129.0 122.7 160.5 116.1 129.8 136.9 1.67 3.00

¢ The main radius of all curves used in this series was 25 ft.

b Location of a point of downstream mazimum

expressed as half wave lengths from the end of curve for a flow of 3.5 cu ft per sec (6.794 ft). ©The three

runs in Table 3(b) are for

reference bottom for the bal

ualitative comparison only, because sill conditions are not identical. 4 Th
ed channel is depressed along the inner wall, 2
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compound curves and the spiral transitions with and without banking all show
quite comparable performance as regards disturbance in the downstream
channel. Within the curve itself the least disturbance is shown by the banked
curve, as would he expercted
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Fra. 31.—BorroM Pressurg DISTRIBUTION ABOVE AND BELow Smi

In using sills one factor must be remembered. A low pressure region
forms on the dowmnstream side of each sill which is very effective in producing
the desired deflection of the flow. In channels having extremely high veloci-
ties, especially if accompanied by low depths, it is possible for the pressure in
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this region to drop enough to form an air passage to the surface, with the result
that the flow springs clear of the bottom. This action reduces greatly the
effectiveness of the sill and causes unsatisfactory operation. Fig. 31 shows the
pressure along the bottom above and below the sill installation. This sill was
normal to the channel; hence, the pressure differences are somewhat higher
than for the inclined sill. The measurements show that, for extremely high
velocities and large depths, cavitation may occur below the sill. For all such
conditions the other methods of treatment, such as compound curves, are to
be recommended.

There are a few additional points to be borne in mind in making the com-
parison between analytical results and experimental measurements. First,
uniform velocity was assumed throughout the cross section. The deviations
from uniformity found in real channels will affect the surface configuration.
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For normal conditions the departures from uniform velocity are not enough
to cause significant discrepancies. However, serious departures from uni-
formity may occur below the junction of two channels or below the entrance
of an auxiliary into the main channel. Another departure from the assump-
tions may be found in the cross section itself. The analysis assumes a true
rectangular channel. In the field many rectangular channels have an appreci-
able invert in the bottom. The effect of this invert may be quite noticeable
for low rates of flow but usually disappears for design flows.

Trapezoidal Channels—In discussing the methods of treatment, the charac-
teristics of nonrectangular channels were referred to briefly, but no modifica-
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tions of the analysis were proposed to permit their use. The trapezoidal
channel is one of the most common forms of nonrectangular cross section.
The approximate method of analyzing its behavior is rather obvious and can
be outlined as follows: Since the depth is not constant, the wave velocity must
vary throughout the cross section. However, approximate velocities can be
computed by using the average depth. The effective channel width is in-
fluenced by the amount of superelevation. Again, a fair approximation of the
wave pattern can be obtained by using the width of the water surface in the
upstream channel. The rise along the outer wall can likewise be computed on
the basis of the average channel depth, if the datum is determined by the
average depth measured down from the water surface. Fig. 32 is a com-
parison between the calculated and measured elevations in a trapezoidal
channel which had the same hydraulic characteristics as the rectangular
channels just discussed. The slope, hydraulic radius, and mean radius of
curvature were all identical. The central angle of the trapezoidal curve
was 30° instead of 45° because of the space limitations of the laboratory.
Fig. 33 shows the cross section within the curve for a discharge of about 80%
of the design. This section illustrates one of the dangers of trapezoidal
channels for high-velocity flow. As a first approximation, the water surface
‘may be considered as an inclined plane. If the slope of the outer wall had been
flatter, it is apparent that the superelevation would have been much greater.
Presumably, if the water surface and the outer wall had been parallel, the super-
elevation would have been limited by only the velocity head available in the
channel, assuming sufficient curve length to develop equilibrium.

A comparison of the disturbances in rectangular and trapezoidal channels
indicates that the superelevations are always greater in the trapezoidal channel.
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This effect follows directly from the increased surface width. It was observed
during the experiments that there seems to be a larger amount of energy
stored in the “swing’’ of the trapezoidal disturbance pattern so that it appears
to damp out less rapidly than in the rectangular section. Figs. 34(a) and 34(b)
are views of the disturbance in and below the curve for two rates of flow. It
will be noted that the maximum superelevation on the outer wall of the curve
moves downstream toward the end of curvature as the rate of flow increases.
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This downstream travel is accompanied by a disproportionate increase in the
magnitude of the disturbance pattern in the downstream tangent. This result
is to be expected from a consideration of the physical configuration involved
since it was shown that the disturbance in the downstream tangent becomes
greatest when the last maximum in the curve occurs on the outer wall at the

F1g. 34.—D1sTURBANCE PATTERN IN AND BErLow THE CURVE IN A TRAPEZOIDAL CHANNEL:
{a) Hiee FrLow Anp (b) Low Frow

end of curvature. The violent behavior of the flow in this particular example
is due to the specific length of the curve and is not typical for all trapezoidal
curves. For example, if the curve had been either appreciably shorter or
longer with all other factors remaining the same, the disturbanece pattern in the
downstream tangent would have decreased as the flow increased instead of
increasing as shown in Figs. 33 and 34.

LiMiTs OF APPLICATION

The analysis and treatments proposed in this paper apply only to channels
with supercritical velocities. Furthermore, for channels operating with Froude
numbers between 1 and 1.5, the results may be rather erratic because of the
fundamental instability of the flow in this region. Minor disturbances cause
disproportionate effects and may easily produce a jump which suddenly reduces
the velocity to below that of the wave velocity. As the Froude number be-
comes greater than 1.5, the stability increases rapidly and, with it, the reliability
of the calculations. One rather unexpected result of this situation is that
these methods of calculation and treatment may be used with great confidence
for very high velocities which would otherwise be most difficult to handle.
The major limitations on the high-velocity end are air entrainment and cavita-
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tion. These limitations apply much less to compound curves and curves with
banked bottoms than they do to simple curves and to the use of sills.

The scope of this paper has been limited to the conditions of flow in which
the average velocity is constant—that is, when the friction loss is in equilibrium
with the slope. The treatments are valid for the small accelerations or decelera-
tions due to the constantly changing slopes usually encountered in the field.
However, the high accelerations in spillways and similar structures are not
covered. The physical principles underlying this treatment of open-channel
flow for supercritical velocities are obviously applicable to nonequilibrium
conditions as well. Examples of such treatments are found in other parts of
this Symposium. There are undoubtedly many other cases not yet examined
which can be solved by considering the unique characteristics of supereriti-
cal flow.
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DESIGN OF CHANNEL CONTRACTIONS

By ARTHUR T. IPPEN,* M. ASCE, AND JOHN H. DAWSON,?®
JUN. ASCE

SYNOPsIS

Channel contractions for suberitical flow are designed for minimum energy
losses by proper streamlining of the boundaries. Efficient and economic
golutions are achieved with relatively little difficulty. If supercritical flow
exists, the accent of design is shifted to the reduction or eventual elimination
of the standing wave patterns which appear as a result of such flow, in accord-
ance with the principles discussed in the first Symposium paper. So far these
designs have envolved from experimental cut-and-try processes with models.
This third Symposium paper endeavors to show, on the basis of experimental
evidence, that the basic principles of supercritical flow can be applied in a
satisfactory manner to the design of typical channel contractions and that
solutions may be found with a minimum amount of surface disturbance
patterns. Furthermore, the magnitude of the standing waves may be pre-
dicted adequately, as well as their location within the channel contraction.
The method of eliminating waves in the downstream channel is discussed for a
basic form of channel contraction.

GENERAL PrOBLEMS oF DEsiaN

The design of channel transitions has received the attention of hydraulic
engineers in the past and has been formulated into a number of suggestions and
procedures. The theoretical basis of these procedures is supplied by the
principles of nonuniform flow applied, successively, to short channel sections.
Variations of velocity and depth induced by the conveying boundaries are
assumed to occur only along the channel axis. Basic surface curves identical -
for all longitudinal sections are derived in first approximation by assuming
that the total head remains constant, and refined surface curves are obtained
by considering the friction losses in the direction of flow. The velocities and
depths at any station are assumed to be unaffected by curvature of the lateral
boundaries and, hence, constant in transverse sections. The primary aim of
economical design is a minimum of energy loss.

The design of channel transitions for supercritical velocities, on the other
hand, must be attacked quite differently because of the occurrence of standing
waves. The basic principles of the theory have been discussed in the first
Symposium paper. The primary conclusions with respect to the problem in
question are that, in economically feasible structures, standing waves cannot be
avoided, and that their characteristics must therefore be explored carefully to
insure successful design. Velocities in supercritical low will vary in magnitude

20 Associate Prof., Civ. Eng. Dept., Oklahoma Inst. of Technology, Oklahoma Agri. and Mech. College,
Stillwater, Okla. -
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and direction in a systematic fashion in transverse sections, and surface eleva-
tions will not be constant. The effect of a transition is not confined to the
immediate vicinity of the structure as in subcritical flow, but may affect the
flow conditions downstream from the transition for very long distances. Design
for a minimum of standing waves, therefore, is the particular goal for flow at
supercritical velocities so that economical structures may result. The various
phases of the flow through contractions were attacked by a number of in-
vestigators? 223,242 at Lehigh University and at the Massachusetts Institute of
Technology (M.L.T.) during the years from 1938 to 1947. Although con-
siderable experimental work remains to be done, it is felt that a summary of the
essential findings is desirable and may prove useful in similar work directly
concerned with structures of this type.

ContrAactiONs CoMmPosED oF CIRCULAR ARCS

The first systematic attack on the problem was made in the Hydraulic
Laboratory of Lehigh University with a channel contraction composed of two
equal circular arcs along each wall as shown in the diagram of Fig. 35. This

Radius, 75 In.
00
16°
0°
Vl
e T Radius, 75 In. Vz T
b ' —_ )
-— =
S Center Line A S
0° J
y i 16° i
0°L
413 In. >

Fia. 35.—CoNTRAcTION COMPOSED OF CIRCULAR ARCS

case was chosen as one that might be typical of a contraction designed from
conventional knowledge of open-channel flow. The photographs of Fig. 36,
taken in the downstream direction, show clearly the problem to be faced with
supercritical flow in such contractions. The surface of the stream is traversed

2 “The Effects of Lateral Contractions on Supercritical Flow in Open Channels,” by J. H. Dawson,
thesis presented to Lehigh Univ. at Bethlehem, Pa., in 1943, in partial fulfilment of the requirements for the
degree of Master of Science.

22 *Design of a Sharp Angle Contraction in Supercritical Flow,” by D. P. Rodriguez, thesis presented
to Lehigh Univ. at Bethlehem, Pa., in 1943, in partial fulfilment of the requirements for the degree of
Master of Science. .

% *“Experimental Relation Between Sudden Wall Angle Changes and Standing Waves in Supereritical
Flow.” by D. Coles and T. Shintaku, thesis presented to Lehigh Univ. at Bethlehem, Pa., in 1943, in partial
fulfilment of the requirements for the degree of Bachelor of Science.

% “Theoretical Investigation of Standing Waves in Hid_raulic Structures,” by A. A. Stone, thesis
presented to the Massachusetts Inst. of Technology at Cambridge, Mass., in 1946, in partial fulfilment of
the requirements for the degree of Master of Science.

# “Standing Waves in Supercritical Flow of Water,” by M. P. Barschdorf and H. G. Woodbury,
thesis presented to the Massachusetts Inst. of Technology at Cambridge, Mass., in 1947, in partial ful-

ent of the requirements for the degree of Master of Science.
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by large standing waves which, in height, exceed considerably the initial depth
of flow. The converging ares in the upstream part and the reversed ares in the
downstream part of the contraction were chosen to be equal and with a 16° cen-
tral angle each. The contraction was from a 2-ft width to a 1-ft width for the
downstream channel. These two conditions, therefore, determined the radius
of curvature of 75 in. and the length of the contraction. The channel contrac-
tion was set into a steel flume, which was 2 ft wide at its upper end and 1 ft
wide in the longer reach of 30 ft below the contraction. For any flow the
flume was adjusted in slope to give uniform flow conditions for the initial Froude
number. Proper velocities and depths could be established for any Froude
number between F = 2 and F = 12 by discharging the water into the flume
through a rectangular nozzle, whose opening could be adjusted to give a
certain desired depth. All water quantities were determined by a calibrated
venturi meter in the supply line from a-constant-head tank. The entire surface
within the contraction, and for a sufficient distance downstream from the con-
traction, was mapped for the runs presented in Fig. 37. Normally, however,
only the side-wall elevation and the center-line elevation were determined for
all stations along the contraction and downstream tangent.

Fr1e. 36.—STANDING WAVE PATTERNS CAUSED BY VERTICAL-ARC CONTRACTIONS

Surface Contours in Circular-Arc Contractions.—The differences in the sur-
face elevations between suberitical flow and supercritical flow are strikingly
apparent from the configurations of the constant-depth lines in Fig. 37. Fig.
37(a) shows distinctly that the usual assumption of essentially constant depths
in transverse flow sections is basically fulfilled for this run at a Froude number
of F; = 0.358. Fig. 37(b), for a Froude number of F; = 4, shows clearly the
essentially different surface contours for cases of supercritical flow. The
characteristic feature of flow remaining undisturbed within the center of the
contraction is especially apparent. This can easily be explained on the basis of

r
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disturbance lines discusged in the first Symposium paper. The increases in
depth caused by converging side walls can only be communicated along dis-
turbance lines at a wave angle 8, to the oncoming flow. Positive lines tending
to converge originate along the first or concave part of the wall, and diverging
or negative lines emanate from the convex part of the contraction. In Fig. 38
a theoretical solution showing the disturbance lines on the basis of the method of
characteristics is given for comparison with the actually measured surface lines.
The converging lines result in steep wave fronts which clearly have their
counterpart in Fig. 37(b). The diverging or negative lines extend from Station
16° on downstream, resulting in a depth along the wall at the end of the con-
traction which reverts to the normal depth.

H 1.'0' +210'

40 2° Q°

() F=4
0° 20 4°

F1g. 37.—CONTOURS OF WATER SURFACE IN A CONTRACTION CoMPOSED OF CIRCULAR ARcS

Wall Profiles.—The characteristic variations in depth along the side walls
are revealed distinctly by the profiles in Fig. 39 for a range of Froude numbers
and for the same contraction. The theoretical profiles are plotted for direct
comparison with the measured surface lines. According to the prineciples
discussed in connection with Fig. 3 in the first Symposium paper, all theoretical
lines must show a sharp break at the beginning of the curved wall, since the
curvature at that section increases from zero to 1/r and since the velocity at
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the wall is assumed equal to the normal velocity V1. Af Station 16° there must
be a peak, because at this point the curvature is reversed suddenly in the
example investigated. This point would correspond to the peak obtained
along the outside of a channel curve where the first negative disturbance is
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reflected. The only difference is that, in the latter case, the negative impulse
is created locally instead of being produced at the opposite wall and being trans-
mitted along a negative disturbance line. Since the total angular turn of the
reverse curve must also be 16°, the depth along the wall must revert to the
initial depth A1, and the Froude number F of the flow at the end of the contrac-
tion should again be the same as at the entrance, at least along the walls. The
complication arising from this requirement is not difficult to see: The con-
tinuity condition obviously does not permit the same velocity and depth to
exist in the narrower section as in the wider entrance. It follows that depth
and velocity must vary across the end section in such a way as to satisfy the



November, 1949 HIGH-VELOCITY FLOW 1353

continuity condition. A fundamental weakness of this type of contraction
is thus exposed. :

The lowest initial Froude number that would not result in a hydraulic jump
being formed in the contraction was F = 3. The discrepancy between theo-
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retical and measured profiles is explained by the fact that the Froude number
of the wave is too near the critical, and therefore small changes in velocity
result in large changes in depth. The counterpart of this case is found for a
right hydraulic jump when the undulating stage is reached and unstable condi-
tions are approached. In actual practice such conditions are to be avoided.
The theory, it is to be remembered, too, neglects vertical accelerations, which
assume relative importance in the present case. The agreement between
theory and measurement is very close for F = 4 to F = 8 as far as height of
the total disturbance is concerned. Only when F = 12 is there a serious dis-
crepancy apparent. This difference is explained by the fact that the maximum
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depth along the wall is now seven times the initial depth, a case in which
vertical accelerations must become excessive. Such a ratio of h/k; would
certainly not be permissible in practice and would clearly call for a longer
transition with smaller central angles for the arcs composing the side walls.
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F16. 39.—MEeasurRED AND THEORETICAL WaLL ProFiLes FOR CIRCULAR-WALL CONTRACTION

It is not the magnitude of F which causes the difficulty, but the fact that the
central angle of the circular-wall sections is excessive for high values of F. A
longer transition therefore is indicated, which might be designed for a curva-
ture determined by a specified ratio of h/hi. The permissible central angle
can easily be read from the curve in Fig. 3 for such a ratio, once the starting
point has been determined from the flow conditions at the entrance.
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The theoretical profiles in the example chosen are symmetrical with the
maximum point since the curvature of the two arcs composing the converging
wall is the same. The maximum will not be changed, regardless of a change in
eurvature of both arcs or of one of the arcs, as long as the central angles remain
the same. The wall profiles therefore may easily be made unsymmetrical if, for
example, alargerradiusis used for the downstream arc than for the upstream one.
Nevertheless, a given depth change is always associated with a given change in
direction, or in 8; and at the point of the same total angular change along the
wall the same depth must occur for given initial eonditions, always assuming,
of course, that no disturbance line reaches the wall from the opposite side.

Boundary-Layer Effects—In comparing the measured profiles in Fig. 39
with the theoretical profiles it is noted, first, that usually the measured profile
shows a somewhat delayed and smooth rise as compared to the aforementioned
sharp initial break at the entrance. Second, the peak does not consist of a
cusp, as shown by the computed profile, but is broad and rounded. Both
differences are explained by the effect of the velocity distribution along the
wall. The velocity increases from zero to the normal velocity within a certain
finite distance from the wall, which implies that the angular change is not
transmitted to the main flow immediately. The initial angular change A8 is ac-
complished within a zone of lower Froude numbers and, therefore, with smaller
elevation changes. The steep rise of the profile is delayed until the zone of
higher velocities is affected. This boundary-layer influence is felt also at the
peak of the profile, since the negative influence of the reversed curvature is
gimilarly delayed and takes effect only gradually through the boundary layer
adjacent to the wall. Although this influence of the boundary layer is quite
noticeable in the small-scale experiments, for conditions in large structures a
better conformance to the theoretical profiles must be expected since the
boundary-layer thickness for large structures is considerably reduced relative
to the other dimensions.

Related Types of Contractions.—The question may now be asked as to
whether the findings presented for this circular-arc contraction are basic and
unavoidable for such channel contractions in supereritical low. To give a
general answer, a few additional forms may be discussed in principle on the
basis of the theory and with the aid of Fig. 40. The Froude number F; may be
assumed to increase from one case to another while the wall alinement is kept
the same for each type of contraction. It can be seen that a given type of con-
traction might, instead, have been varied in length to produce the various
wave patterns discussed on the basis of the same Froude number. However,
the former basis of comparison is chosen ag the more convenient. It may also
be stated that, in order to make the comparison systematic, cases which are
obviously impractical are still included to illustrate certain points. The
probable wave patterns have been sketched into three plan views (cases 1, 2,
and 3 of the three types of contraction, A, B, and C). However, only the
initial disturbance lines and the basic shock waves are indicated, so that the
lines of reflected disturbances may not obscure the fundamental problem.

Types A, B, and C, case 1, have little practical significance. Since the
wave angles are normally small, extremely long contractions would be required
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for the waves to intersect as far upstream as is shown. Cases Al and B1 are
better than case Cl, since the positive waves reach the opposite wall within
the convex range of wall curvature, whereas case Cl has some positive waves
reflected within the concave range—thus causing still higher elevations along
this wall. Case Bl will have the most pronounced shock wave because the
converging positive disturbance lines are so crowded together; the rise in cases
A1l and C1 will not be so steep, but of the same ultimate magnitude. Case Al
and, especially, case Bl are more advantageous than case C1 in that the positive
disturbances are partly canceled, and somewhat lower diamond waves result in
the downstream channel. However, these conditions may exist only for very
long contractions or for large wave angles near critical depth, and, therefore, are
not expected to occur in practice.

Case 1; F Low Case 2; F Normal Case 3; F High

F1a. 40.—ContracTIONS COMPOBED OF CIRCULAR ARcS, SHOWING ScHEMATIC DI1STURBANCE LINES

Types A, B, and C, case 2, are characterized by having the first wave inter-
section farther downstream, and they are marked “F normal” because the
conditions of permissible wave height for given Froude numbers and desirable
lengths of contractions would result in patterns of this type. Case C2 is the
most undesirable since the “wave-decreasing’’ influence of the convex walls
is shifted downstream, and a maximum depression along the walls may lie in
the same cross section as the intersection of the shock waves with its resulting
maximum depth. The highest differentials of depths are obtained and, there-
fore, the maximum disturbances in the channel downstream. In solution
A2 this tendency is somewhat relieved, and in B2 the converging lines are so
far upstream that some of the negative disturbances may reach the shock fronts
in advance of their point of intersection—thereby reducing their heights.
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For types A, B, and C, case 3, all the shock-wave intersections are moved
too far downstream, which results in large disturbances, if such conditions can
be maintained at all. There are indications that for cases A3 and B3 the con-
traction is too short because the Froude numbers appear to be too high. Al-
though peaks may be relatively somewhat lower for cases A3 and B3 than before
(due to the effect of the negative impulses from the convex wall sections), the
occurrence of maxima and minima near the same cross section indicates large
downstream disturbances.

Summary.—Of all the contractions, B2 will probably perform best. The
maximum depth in the center, however, will differ little from solution A2,
and smaller downstream disturbances may be expected due to wave inter-
ference in this case. In designing such circular contractions, therefore, the
characteristics of this type may be followed. In the following section, how-
ever, a more systematic approach is indicated toward basically better designs.

STrRAIGHT-WALL CONTRACTIONS

General Principles of Design.—The aim of rational design for supereritical
flow must be oriented, first, toward lower standing waves and, second, toward
redyction or possible removal of standing wave patterns in the channel section
downstream from the contraction. As stated, the total deflection angle 6
determines the wave height, regardless of the degree of curvature of the side
walls. It is logical, therefore, to decrease this angle 8 to 2 minimum. For the
contractions discussed in the preceding section, decreasing values of 6 are
obtained by inserting longer straight-wall sections between the circular sec-
tions. Thus, for contractions of the same length, increasing curvatures result
for the circular parts, but the deflection angles are decreased. The minimum
angle 0 is had by connecting the upstream and downstream tangent points by
straight lines, possibly rounding the corners slightly for the sake of appearance.

TABLE 4.—RepvuctioN IN Maximom Wave Heiear (See Fig. 8)

6 = 8°; CENTRAL ANGLE = 16°;
Froude StraraaT CONTRACTION CircULAR-ARC CONTRACTION
No., F1
ha/hy ha/hse ha/hy he/ha hy/hs ] ha/hy
DA 1.35 1.35 1.82 (1.82) 8 gl Hydraulic jump
Baivais e 1.50 1.40 2.10 2.10 1.80 3.78
A onci i % e 1.63 1.50 2.44 2.48 1.83 4.50
B e 2.00 1.67 3.34 3.41 2.05 7.0
(UL N 2.31 1.83 4,23 4.45 2.25 10.0
10.. 2.70 2.00 5.40 5.61 2.40 13.5

Table 4 serves to illustrate the reduction in maximum wave height for a con-
traction of given longitudinal extent as a function of the Froude number.
The values of hs/h; and hs/hy are listed for a contraction composed of circular
arcs of 16°, central angle, and for a straight-wall contraction of 8°, deflection
angle. The ratio hs/h: represents, in each case, the theoretical depth ratio for
the zone immediately below the first shock-wave intersection and is assumed to
be indicative of the highest possible disturbance. The ratios ks/h; naturally
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become excessive for the higher Froude numbers from a practical point of view,
but they are considered here only for the sake of comparison.

The design procedure for a straight contraction is simple: For an initial
Froude number F; and for a permissible depth increase hs/h1 the wall angle
and F; can be found from the diagram in Fig. 8 of the first Symposium paper.
The first shock wave can be regarded as reflected at the center (see Fig. 41) by
its image wave from the opposite wall. Since the depth and velocity beyond
this point of reflection or intersection determine the height and location of the
disturbances downstream; and, since the angle # must be the same for the
initial and reflected waves, the diagram is used again to determine %3/k; and
F; with the values of 8 and F; found previously. The ratio 2s/A; can then be
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Fig. 41.—DgesigNs OF STRAIGHT-WALL CONTRACTIONS

readily computed and should normally not be higher than three. Fig. 41(c)
will show immediately whether the hydraulic quantities are safe in so far as
they remain sufficiently supercritical. In practice, wall angles so small (and,
therefore, contractions so long) that a second reflection along the wall takes
place within the contraction are improbable. Theoretically, however, the
story is not changed in this case; another set of values of hs/hs and F, are to
be added to the computation with the same angle 6.
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Wave Patterns in Channel Below Contraction.—In the preceding section it
was shown that, on the basis of the theory, better hydrualic performance is
always obtained for contractions with straight walls rather than with circular-
wall alinements due to the smaller total angle of deflection. The additional
aim of design is to reduce the standing waves in the channel downstream from
the contraction. If the length of channel contraction in relation to initial flow
conditions is ignored, the shock waves set up by the converging walls are subject
to the negative disturbances originating at points D and D’ (see Fig. 41(a)) in
a rather haphazard fashion. In the discussion of the various possible wave
patterns sketched in Fig. 40, the location of the shock-wave intersection B
with respect to points D and D’ is shown to have a definite influence on the
wave height in the downstream channel. Maximum disturbances result with
points B, D, and D’, lying in the same cross section. Minimum disturbances
are to be expected if the reflected shock waves are made to meet the walls at
points D and D', since then the deflecting effects of shock waves and walls
tend to cancel each other. This cannot easily be accomplished with S-shaped
wall contractions unless straight sections are introduced between the concave
and convex wall sections. However, it is possible to design straight-wall
contractions as indicated in Fig. 41(b) to meet this requirement for low dis-
turbances. The disturbance might even be reduced to zero in such a case,
provided the basic assumptions of the theory could be satisfied.

To what extent these assumptions are violated remains for further dis-
cussion. At this point the geometric conditions in relation to hydraulic flow
conditions may be established for such designs in accordance with the notations
in Fig. 41(b). The deflection of the flow at points A and A’ at the channel
entrance causes symmetrical shock waves which cross the channel at an angle
B, and meet at point B at the center. They are reflected to the walls and on
their way proceed through a new flow field characterized by the parameter
F.. If they meet the wall (as assumed) at CD and C’'D’, theoretically, there
remain no disturbances because the flow has been directed parallel to the walls
in the downstream channel by synchronizing the deflection effect of the waves
BC and B’C’ with the deflection effect of the wall. Since the deflection angle
0 is the same for both, no disturbance is obtained. It is difficult to correlate,
mathematically, the geometric and hydraulic econditions for this special case
although the setup appears simple enough. The following relations hold:

_ _ b1 bs
L_L‘+L’_2tan61+2tan(ﬁz—0) ........... (40)
also,
by — bs
B Rap @ e (41)

Continuity conditions yield by by V1 = bshs Vs = Q; or

b _ hs Vs _ b)a/z <E€>
bs mV: - <h1 ¥, J rvesalimnensiags (42)




1360 HIGH-VELOCITY FLOW Papers

In agreement with Eqs. 19 to 22 of the first Symposium paper and Eqs. 40 to 42,
all conditions are available to determine the shape of a contraction. It prob-
ably is impossible to eliminate from Eq. 40 the variables 8, and 8; and to re-
place them in terms of 41/hs, 0, and Fs/F:. Therefore, the procedure must be
one of trial and error as follows: For a given value of F; a certain reduection
in width is required from b, to bs. The assumption of a desirable depth change
hs/hy is made, and F3/F, is thus given by Eq. 42. Provided F; is not too close
to the critical value, Fig. 8 may be employed to determine the deflection angle
0 by trial and error. Assuming a value of 8, the corresponding values of hsy/h;
and F, are read from that graph. A second determination using the same 8
and replacing ¥, by the F. just obtained will yield a value of ks/hs. Multi-
plying hs/hy by hs/hs, the trial value of hs/h: is obtained. If this is not the
desired value, the process has to be repeated with an adjusted value of § until
agreement is reached between the assumed h3/k, and the one obtained by trial.
The procedure using this diagram is extremely fast. The length L follows
from Eqs. 40 and 41.

In general, long contractions will result for low values of hs/h, and high
values of F1. Ratios of 2s/hy = 2 and hs/h; = 3 seem advisable in order to re-
duce the length of contractions, provided F, stays well above the critical value.

If the contraction cannot be designed to the correct angle 6, disturbances
must be expected to continue into the downstream channel, as indicated in
Fig. 41(a). The maximum height of these disturbances may then be deter-
mined as in the foregoing procedure. The process is repeated twice with a
given angle 8, since the maximum depth hs/h, will oceur at least within a narrow
zone below the wave intersection B. It will then recur intermittently along side
walls and center line, provided points C and C’ lie below points D and D’. The
respective positions of points D and C tend to modify the height of the down-
stream waves, since points D and D’ are the origins of negative disturbance
lines. It is felt, however, that the limitations imposed on the theory by the
basic assumptions would render a possible theoretical analysis of surfaces
downstream from the contraction of little practical significance.

The following summary may express the results of this theoretical investi-
gation briefly:

1. Straight-wall contractions are always better than curved-wall contrac-
tions from the standpoint of maximum wave height and compared on the basis
of equal length.

2. For given reductions in channel width, correct deflection angles 8 may
be found, which result in minimum disturbances in the downstream channel.

Vertical Accelerations and Boundary-Layer Influence—The actual physical
features of shock-wave fronts differ from the ones assumed in the basic theory
to a considerable extent, as is indicated schematically in Fig. 42. First, vertical
fronts, represented by single lines in plan and having negligible longitudinal
dimensions, are arrived at in the elementary theory; and, second, the velocity
is assumed constant over the depth.

The flow is assumed to expand under the front instantaneously, in accord-
ance with the deflection imposed on the stream by the side wall. It has
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already been shown that the existence of a boundary layer along the channel
sides will modify the rate of rise or depression of the water surface there. In
the theory this assumption is one of convenience, and the actual appearance of
the shock wave is considerably modified under the influence of the neglected
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Fia. 42.—ScHEMATIC COMPARISON OF ACTUAL AND A8SUMED WAVE FRONT

factors. The flow will expand rather gradually in the case of low waves,
whereas, for higher fronts, the surface slope approaches the vertical with
eventual overturning or breaking of the wave. Surface rollers, familiar from
the hydraulic jump, are formed. Steep fronts naturally cause high vertical
accelerations and, therefore, considerable deviations from the agsumed hydro-
static pressure distribution under the front. Thus, the wave fronts are charac-
terized locally by depths which are higher than those calculated. However,
within a short distance the depths revert closely to the theoretical depths as
soon a8 the streamlines again are parallel to the bottom. The fact that wave
fronts extend longitudinally and are distorted vertically in the case of high
vertical accelerations must be considered in analyzing experimental results.
The longtitudinal dimensions of the front should be small as compared to the
dimensions of the structure to be tested. The phenomena of wave reflection
and intersection are equally influenced and modified by the physical discrepancy
between theoretical assumption and actuality. However, basic wave patterns
must remain valid regardless of these local effects.

In Fig. 42 the boundary layer along the bottom is indicated to an exagger-
ated extent by a dashed line. This boundary layer will increase disproportion-
ately in thickness under the wave front since the low momentum of the fluid
within this layer is not sufficient to overcome the adverse pressure gradient
under the front. This fact will change the so-called displacement thickness of
this layer and will be equivalent to & rise in elevation of the bottom, thus de-
creasing the specific head of the flow. A slight change in the height of the
front and in its location may result. Although this discussion is helpful in
the analysis of experimental trends, refinements of the theory do not seem
warranted for the purpose of this paper.

ExXPERIMENTAL RESULTS WITH STRAIGHT-WALL CONTRACTIONS

The two phases of the problem with straight contractions were the subject
of several experimental studies at Lehigh University and at M. I. T. Asshown
previously the basic theory and the experimental results obtained for curved
side walls agree satisfactorily (see Fig. 39), giving disturbances corresponding
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to the maximum deflection angles. The statement made previously that
straight-wall contractions are more satisfactory due to smaller deflection angles
has already been supported by theoretical evidence in Table 4; it remains, there-

Fre. 43.—Views, Facing DowNsTREAM, OF CONTRACTION COMPOSED OF STRAIGHT WALLS;
F = 3.86 anp 0 = 15°

fore, to present experimental confirmation of the basic equations. Two sets
of results are available for this purpose.

M. P. Barschdorf and H. G. Woodbury,? in a flume constructed of alu-
minum plates for accurate work at the Hydraulic Laboratory at M. I. T.,
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arranged for movable side walls, so that wall angles of 8 from 3° to 30° could be
established. For Froude numbers between 3 and 4 they conducted a series of
experiments measuring the pertinent features of the standing waves produced
for wall deflection angles from 3° to 30°. A sufficient number of transverse
profiles were determined by point gage to obtain the wave heights and wave
angles independently of the local effects discussed in the preceding section.
The photographs of Fig. 43 are two views facing downstream into the contrac-
tion with a wall angle of # = 15° and for a Froude number of F = 3.86. The
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surface profiles for all runs were plotted in distorted scale in isometric form as
shown for the preceding example in Fig. 44. The initial rise of the surface
near the front above the equilibrium depth is apparent, whereas beyond this
local disturbance the depth along the wall returns to a more or less constant
value. Side-wall profiles are also plotted and show clearly the constancy of
depth ks along the wall.

In Table 5 a comparison is presented of measured and theoretical values of
wave angle 8; and of the depth ratio As/hi. . All theoretical values of 8; and
ha/hy were determined from the known quantities of 8 and Fi by graphs equiva-
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lent to Fig. 8. Wave angles 3, were determined by averaging the wave fronts
vertically at each station and by drawing straight lines through the wave front
locations thus obtained. From Table 5 it is seen that excellent agreement was
obtained for this Froude number F; as far as ultimate values of hs/h, are

24

20

’
) /

Wall Angle 6, in Degrees

0

08 09 1.00
Correction Factor, K

1.10

Fie. 45.—PrLoT oF CorrRECTION FACTOR
K AgAINsT WALL ANGLE 6

concerned. The values of B varied from
—129, to 459 about the theoretical value
of 81 for the different deflection angles
from 3° to 24°. The general trend ob-
tained consistently for only slightly differ-
ent Froude numbers is best illustrated in
Fig. 45 in which the ratio K of sines of the
actual B; to the theoretical 8,—

actual sin 8, (43)

= theoretical sin B8, "~

—ig plotted against the deflection angle 6.
Since the minimum possible value of 8, is
sin~! 1/F; = 15°0’, the influence of the
wave height on the value of 8, is smaller for
low values than indicated by the theory,

" and larger than the theoretical values when

he/h1 greatly exceeds values of 2. This
result shows that vertical accelerations will
affect the location of the wave front.

This tendency appeared also in a series
of tests conducted at Lehigh University
by D. Coles and T. Shintaku,? Jun. ASCE,
when the wall angle was kept constant at
¢ = 6° for a range of Froude numbers from

F, = 3to F; = 10. Their results are summarized in Table 6. Although the
ratios hs/h1 are obtained fairly easily from the measurements, the angle 8, is
not so readily available from the data and depends somewhat on the method

of interpretation.

TABLE 5.—CoMPARISON OF MEASURED AND THEORETICAL VALUES
oF B; AND hs/hy For A FroUDE NuUMBER oF F; = 3.86

PERCENTAGE
VARIATION
ngll Theorﬁetical“ Measured Thio%ﬁcal Mia.?l’ired FROM THEORY
angle 1 B 2/ht 2/hi
81 he/h1
3° 17° 35’ 15° 30’ 1.21 1.24 -11.8 2.3
6° 20° 15 18°15' 147 1.47 - 99 0
9° 23° 10/ 22° 45’ 1.70 1.73 - 12 1.7
12° 26° 30/ 26° 7’ 2.00 2.00 7 - 1.5 (1]
15272 29° 30’ 20° 55' 2.22 2.22 4+ 1.4 1]
18° 32° 25' 4° 157 2.49 247 + 5.8 —-0.70
21° 35° 45" 38° 00’ 2.72 2.71 - + 6.3 ~0.3
24° 39° 18’ 41° 20’ 2.99 3.01 + 5.2 +0.6

s Minimum value is 15° 00’.
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Essentially the basic theory stands confirmed by the experimental findings in
laboratory flumes for a practical range of F, from 3 to 8 and of ks/k, from 1 to 3.
Its usefulness for design is readily apparent within the limitations discussed.

Disturbance Pattern in Channel Below Coniraction.—Several studies were
finally made to compare disturbances from contractions in the channel down-

TABLE 6.—CoMPARISON OF MEASURED AND THEORETICAL VALUES OF $; AND
ha/h1 FOR VARYING FROUDE NUMBERS AND CoNSTANT WALL ANGLE § = 6°

Froude Theoretical Measured Theoretical Measured
o. B 81 ha/h1 ha/y
3.00 25° 10’ ° 00’ 1.38 1.31
4.00 19° 30/ 18° 40’ 1.47 1.52
6.00 ° 00’ 15° 10’ 1.75 1.73
8.00 12°20° ° 45/ 2.00 217
10.00 11° 10’ 10° 30/ 230 | 2.88

stream. Fig. 46(a) shows the dimensionless depth profiles along the walls of
the channel and its center line, starting at the end of the contraction for the
circular-arc contraction and with maximum deflection angles of 16°. Although
the comparable straight-wall eontraction should have been built with § = 8°
to obtain a contraction of the
samc length, a longer contrac-
tion with 6 = 6° was built to
extend its usefulness into the
range of lower I'roude numbers.
These profiles are shown in Fig.
46(b) as before for the same
hydraulic conditions. The im-
provements with respect to wave
height are readily seen.

In addition, attention is
called to the fact that the dis-
turhances for F = 4 are actu-
ally less than for F = 3 for the
name eontrantion.  Thin fantin
dicates that the contraction at
F = 4 more nearly satisfied the
requirements of correct design
as indicated in Fig. 41(d),
whoreas, for F — 3, the points
of intersection and reflection of

Fic. 48.—Facing DownsTREAM TowWARrRD SURFACE the wave fronts were located

e T o as to cause maximum dis-
turbances.

Previous to this study D. P. Rodrigues? designed a correct straight-wall
contraction for F = 4 and for a reduction ratio of b,/b; = 2. The angle 8
for this case was computed to be 6.9°. Tests were then made on a one-sided
contraction in the Lehigh flume. The best profiles were found not for F = 4
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but for F-values of about 3, as indicated in Fig. 47 showing the various wall and
center-line depth profiles. This result, although not anticipated at that time,
is due to the fact (established later) that the actual wave angle 8, for this wall
angle and Froude number is smaller than the computed value (see Table 5).
Therefore, a longer contraction is indicated than is obtained from the theory.
It is also for this reason that the wall angle of 6° was chosen in the study re-
ported by Messrs. Coles and Shintaku.?® With this smaller wall angle the
improved profiles for F = 4 in Fig. 46(b) were obtained. A photograph

B \9 : 0352
G

0

F=0.315; Q=145 CU FT PER SEC; Vj =1.32 FT PER SEC;
hy=055 FT

F=4; Q=144 CU FT PER SEC; V,=7.15 FT PER SEC;
£=0.100 FT

Fi1e. 49.—CONTOURS OF WATER SURFACE IN A STRAIGHT-WALL ConTrACTION FrROM 2 Fr 10 1 Fr

showing this contraction with flow conditions near F = 4 is given in Fig. 48,
which readily shows the improvement in the surface disturbances when com-
pared to views in Fig. 36. A further graphical illustration of this case is
supplied by the surface contour maps of Fig. 49. Fig. 49 gives the surface
for F = 0.315—that is, for suberitical flow, which is equivalent to the case
plotted in Fig. 37(a) and does not show any essential difference. For the case
of supercritical flow with F = 4, Fig. 49 may be compared to Fig. 37(b),
and the reduction in the depths produced along side walls and along center
lines is seen to be considerable.

CONCLUSION

The experimental evidence presented in the preceding section is not suffi-
cient to establish corrections of general validity for the application of the
elementary theory. However, by and large, it is adequate to show that the
basic phenomens are predictable from the theory. Only minor corrections
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need be applied because of factors not included in the theory (such as the in-
fluence of gravity and friction forces) and because of the vertical accelerations
under the shock-wave fronts. Further experimentation is to be directed toward
a systematic coverage of these influences. The limited aims of the present
paper may be summarized under the following points:

1. The behavior of a typical channel contraction composed of circular arcs
was explored experimentally for a wide range of Froude numbers;

2. The flow conditions predictable from. the thoery were compared to ex-
perimental measurements;

3. On the basis of these results the physical requirements of channel con-
tractions for supercritical flow were defined as distinet from those for sub-
critical flow;

4, A basic design form was developed for supercritical flow conditions to
reduce wave heights and disturbances in the downstream channel; and

" 5. Typical contractions designed with straight converging walls were tested
and found to conform essentially to the requirements.

It is thus established that channel contractions for supercritical flow can
be designed specifically to avoid excessive standing wave heights by proper
choice of both deflection angles and length for given reductions in width.
Straight-wall contractions are normally superior to curved-wall contractions,
a8 long as the channel bottom is level crosswise and of constant slope in the
direction of flow. Warping of the bottom and large changes in longitudinal
slope have not been included in this paper, although improvements in the
standing wave patterns can be attained experimentally by such methods.
Additional experimental work and an extension of the theory are needed to
cover these phases of supercritical flow in channel contractions.
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DESIGN OF CHANNEL EXPANSIONS

By HUNTER ROUSE,? M. ASCE, B. V. BHooTA,?* Assoc. M. ASCE,
AND EN-YUN Hsu?®

SyNoPsIS

Following an introductory discussion of supercritical flow in divergent
channels, the matter of channel design is discussed under three sequent head-
ings: (1) Surface configuration at abrupt expansions; (2) efficient curvature of
expanding boundaries; and (3) elimination of disturbances at the end of
transitions. The extent of the agreement between elementary wave theory
and experimental measurement is shown, and the results are presented in the
form of generalized diagrams convenient for rapid exploration and prelim-
inary design.

INTRODUCTION

In the design of hydraulie structures it is often necessary to provide for the
lateral expansion of flow emerging at high velocity from a closed conduit, sluice
gate, spillway, or steep chute. If such a transition section is made to diverge
too rapidly, the major part of the flow will fail to follow the boundaries; if the
divergence is too gradual, on the other hand, waste of structural material will
result; and, finally, if local disturbances are produced by incorrect boundary
form, either at these points or farther downstream the walls may fail to confine
the flow. Any particular problem of this nature, to be sure, may be subjected
to cut-and-try investigation through model tests, with results which are
necessarily restricted to the specific model form. An exact and general analytic
solution, unfortunately, is still a matter for the future, and may be approached
only through application of sound physical principles as discussed in the first
Symposium paper. However, a step in this direction has been made in the
development of reasonably general relationships among the several major
variables involved, by means of which an approximate solution may be ob-
tained for a great range of boundary conditions.

As in other problems of steady flow in an open channel of nonuniform cross
section, the variation in velocity and depth through a channel expansion will
depend on the geometry of the channel boundaries, the rate of flow, and the
fluid properties. Under boundary geometry must be considered the form of
the channel walls, the slope and form of the floor, and the surface roughness of
floor and walls. In a strict sense, under fluid properties one should consideér
the density, specific weight, viscosity, and surface tension; except in small
models, however, or under conditions in which boundary shear is of particular

2 Director, lowa Inst. of Hydr. Research, State Univ. of lows, Iowa City, Iowa.
27 Engr., Foreign Div., The Dorr Co., Bombay, India.
18 Research Associate, Iowa Inst. of Hydr. Research, State Univ. of Iowa, Iowa City, Iowa.
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moment, both surface tension and viscosity are of very minor importance, and
the two remaining properties then reduce to their ratio v/p = g, the gravita-
tional acceleration.

If these different independent variables are combined by the II-theorem 2
of dimensional analysis into a series of dimensionless ratios, as many length
ratios will be obtained as are necessary to describe the relative geometrical
proportions of the boundary, together with a flow parameter of the Froude
type. The latter is generally written in the form:

in which V is the mean velocity and % is the mean depth of the approaching flow.

For given boundary conditions, the relative form of the free surface and the
relative velocity distribution will depend solely upon the magnitude of the
Froude number. As in all cases of open-channel flow, the critical magnitude
F =1 marks the border between two wholly different types of surface con-
figuration and velocity distribution. For Froude numbers less than unity, the
depth then being greater than the critical, a gradual enlargement of the cross
section will result in a gradual increase in mean surface elevation and a cor-
responding reduction in mean velocity. For Froude numbers greater than
unity, the depth then being less than the critical, the same gradual enlargement
of the cross section will result in a gradual reduction in mean surface elevation
and a corresponding increase in mean velocity. However, only if the divergent
boundaries are continuous planes (which is physically impossible if the transi-
tion is to begin and end with other than zero and infinite cross-sectional areas)
will the depth of flow and the magnitude of the velocity be constant over any
normal section. In other words, at the beginning and at the end of the transi-
tion the local curvature or angularity of the walls and floor will produce dis-
turbances which make it impossible to handle such a problem satisfactorily
on the elementary basis of mean velocity and mean depth. For Froude
numbers less than unity (which are not the concern of the present paper), the
boundary may be designed and the flow pattern may be evaluated in much the
same manner as for the corresponding transition in a closed conduit. On the
other hand, for Froude numbers greater than unity, the problem of design and
evaluation becomes one of gravity-wave analysis, since each increment of the
boundary deflection may be considered to generate an incremental surface
wave which crosses the flow at an angle depending upon the Froude number
and the boundary form; only through determination of the cumulative effect
of all such waves may the depth and velocity at each and every point be
predicted.

As has been described in the first Symposium paper, there is at hand
a graphical method which permits the direct construction of streamlines,
“isovels,” and water-surface contours for any boundary form, provided that:
(1) The channel walls are vertical and the floor is horizontal, (2) the energy

20 “‘Fluid Mechanics for Hydraulic Engineers,” by Hunter Rouse, McGraw-Hill Book Co., Ine., New
York, N. Y., 1938, pp. 13-18.
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loss due to boundary resistance is negligible, and (3) the pressure is hydro-
statically distributed. These provisions may at first glance appear decidedly
restrictive, but they become less so as they are considered individually. Ver-
tical channel walls are common; indeed, sloping walls are generally to be
avoided in nouniform high-velocity flow because of their tendency to exaggerate
surface disturbances. Channel floors are seldom horizontal, however, and
the boundary resistance is never completely negligible; on the other hand,
slight to moderate slopes of either the floor or the total-head line generally
have an influence which is secondary to that of the wall expansion, and such
effects are in fact compensative rather than additive. Moreover, only in the
case of relatively abrupt curvature at the beginning or the end of the expansion
is the existence of nonhydrostatic zones to be expected, and these may be
effectively eliminated by proper easing of the transition curve. Only two
factors, in actuality, tend to limit the graphical method in its use for the com-
plete design of a well-proportioned expansion. First, its application depends
upon prior knowledge or assumption of the boundary geometry, so that deter-
mination of the best form of transition involves the tedious process of trial and
~error. Second, if (as is usually the case) a hydraulic jump is to form at the
end of the expansion, the method offers no clue as to the inherent stability (or,
more likely, instability) of the phenomenon. As a matter of experience, the
formation of a jump or standing wave by other than the boundary curvature
(for instance, by backwater from a downstream control) may lead to an asym-
metric pattern of flow within the transition which is still wholly unpredictable.

Since the purpose of this paper is the provision of general rather than
specifically detailed information on the behavior of high-velocity flow in any
channel expansion and on the preliminary design of particular expansion
structures, primary attention (once the agreement between theory and experi-
ment has been shown to be satisfactory) is focused upon the reduction of all
experimental data to a few composite diagrams from which the basic details of
design may be determined. Both the experiments and the generalization of
the experimental results group themselves naturally into three subdivisions of
the problem—first, the characteristics of a high-velocity jet expanding upon a
level floor; second, the effects of boundary curvature in the zone of divergence;
and, third, phenomena accompanying the return to uniform flow at the end
of the transition.

All experiments described herein were conducted at the Iowa Institute of
Hydraulic Research of the State University of Iowa under a project sponsored
by The Engineering Foundation and the Committee of the Hydraulics Division,
ASCE, on Hydraulic Research. The first part of the project, including the
construction of equipment, was undertaken as a doctoral dissertation by Mr.
Bhoota,?® and the second part as a master’s thesis by Mr. Hsu,® who then com-
pleted the investigation as a staff member of the Towa Institute.” Messrs. C. H,

# ‘‘Characteristios of Supercritical Flow at an Abrupt Open-Channel Enlargement,” by B. V. Bhoota,
thesis presented to the State University of Iowa, at Iowa City, Iowa, in December, 1942, in partial fulfilment
uf the requirements for the degree of Doctor of Philosophy.

8t *‘Characteristics of Supercritical Flow at a Gradual Open-Channel Enlargement,” by En-Yun Hsu,
thesis presented to the State University of Iowa, at Iowa City, lowa, in February, 1946, in partial fulfilment
of the requirements for the degree of Master of Science.
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Hsia and M. M. Hassan, Assoc. M. ASCE, assisted in various phases of the
analysis. The entire project was under the direction of Mr. Rouse.
Essentially the same equipment (see Fig. 50) was used for all experiments.
Water was supplied from constant-level tanks, through 4-in. lines and 8-in.
lines containing calibrated elbow meters, to a pressure tank 2.5 ft in diameter
and 5 ft long. One end of the pressure tank was provided with three inter-
changeable nozzles yielding rectangular jets 0.4 ft by 0.4 ft, 0.3 ft by 0.6 ft, and
0.25 ft by 1.0 ft in cross section—that is, having width-depth ratios of 1, 2, and
4. Rates of discharge were such that flow at any Froude number from 1 to 8
could be established. Flush with the bottom of the nozzle outlet sections was
a level table, normally horizontal but adjustable to a maximum slope of
approximately 10° and provided with a suitably hooded waste trough. This

Baffles“ h-‘!/-Vent Gage Carriage
T | = >

From | 5 = = = - —d
Elbow o = & 2 3 5
Meters = | i I'__—-,—_"___"—'j Adustaple s
=g o ST T O S
1) |

Inte}changeab Waste
Nozzle Trough

Drain
e 77 7 - ¢

ELEVATION
1 ! | H — Waste
r 5 Ft —-| P Ad]uwsatlalble Trough

Gage
% Carriag‘e’ I.W
[ )
—_— E Hh —1—&-“— - — ¥4 jGiass Wall at Center Line
§St | Shaft =
» o 16t
PLAN

F1a. 50.—SCHEMATIC REPRESENTATION OF EXPERIMENTAL APPARATUS

table was originally 5 ft wide and 8 ft long, and was covered with oiled hard-
board except for a plastic section with floor piezometers. It was later doubled
in length and paved with finished concrete throughout. A gage carriage
traveling on steel shafts above the table permitted three-directional movement
of a point gage or pitot tube to any part of the test section. Through the
earlier experiments one edge of the table was alined with the outer edge of
each nozzle, a glass wall extending down the assumed line of symmetry of the
transition for purposes of observation. That such elimination of one half of
the flow pattern introduced negligible error was shown when the full transitions
were later tested.

CHARACTERISTICS OF FLow AT AN ABRUPT ExXPANSION

The extreme case of a channel expansion is represented by the abrupt
termination of the side walls, the channel floor continuing at the same slope.
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If by and V, represent the depth and mean velocity of the approaching flow, b, is
the channel width, z and y are the longitudinal and lateral coordinates (mea-
sured from the outlet section and the center line, respectively) of a point of
depth %, and if no other factors than the acceleration of gravity are assumed
to influence the flow, these variables may be combined into the following
dimensionless relationship:

h_ (2 yb
}Tl“f‘<h_1’hx’h1’F‘>""""""""""(45)

Evidently, the relative depth at any point of the flow should depend upon the
relative coordinate location, the relative width of the channel outlet, and the
Froude number of the approaching flow. The form of this functional relation-
ship, of course, cannot be predicted through dimensional considerations, but
must depend upon either physical analysis or experimental measurement.

7
Stream Lines (‘ 1.0

F1a. 51.—ParTrRRN OF ‘FLow NEAR THE ABRUPT END OF A CHANNEL WaLL

The elementary wave theory indicates that the flow in the neighborhood of
the end of either wall will begin to change in direction only as it passes the first
negative wavelet (see Fig. 51), which lies at the angle 8 = sin~* v ¢ h:i/V;
= gin~! 1/F; to the initial flow direction. From then on the streamlines may
be considered to continue deviating through a series of infinitesimal steps, the
angle of each succeeding wavelet depending upon the local magnitude of the
continuously changing ratio of V to + g A—that is, the local Froude number.
Each wavelet represents, in effect, a line of constant depth, so that proper
gelection among the infinite series of wavelets will yield the systematic series of
surface contours shown in Fig. 51.

If now the zone is investigated in which the wavelets from the two opposite
sides of the outlet begin to intersect, it will be seen (Fig. 52) that the resulting
pattern of interference will yield & rather complex variation in depth and
velocity of flow. The surface contours may again be determined by a rather
laborious analysis of each element of the pattern in accordance with the ele-
mentary wave theory, but a far more rapid solution may be obtained by the
graphical method of characteristics outlined in the first Symposium paper.
Three such solutions, for different values of F,, are shown in Fig. 53.
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The method of characteristics, in effect, reduces the functional relationship

of Eq. 45 to the form:
h _, (2 ¥
g fa (bl, by F1> ...................... (46)

by combining the relative coordinate terms 2/k; and y/k; with the initial width-
depth ratio, &1/k:. This entails the inherent assumption of hydrostatic pres-
sure distribution at all points—that is, the absence of appreciable vertical
acceleration. As a matter of fact, at the abrupt end of either channel wall the
pressure is far from hydrostatically distributed, as the water surface is practi-
cally vertical in such a zone. The extent to which this lack of fulfilment of

Stream Lines \- -O.QXQ . . :
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Fre. 52.—Errucr oF WavE INTERFERENCE FrROM OpposiTE SIDE oF CHANNEL

the assumption causes the actual surface configuration to differ from the
theoretical evidently depends upon the magnitude of the ratio b:/A:;. In wide,
shallow channels the zone of disagreement is of relatively small extent; in
narrow, deep channels, on the other hand, the pressure distribution will be
markedly nonhydrostatic from wall to wall.

In illustrating the variation to be expected, experimentally measured surface
contours for three different width-depth ratios are plotted in Fig. 54 for the
gsame Froude numbers as those in Fig. 53. The deviations with bi/h, are
appreciable, but nevertheless secondary to the variation with the Froude
number. In other words, using an average system of contours in preliminary
design is quite in order. Even for the widest channel, however, it will be found
that there is also a discrepancy between the measured contours and those
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obtained by the graphical method of analysis. This may be attributed to the
failure of the analysis to provide for any variation of total head due to boundary
resistance, since the analytical contours are invariably displaced upstream.
Again, however, the discrepancy is secondary in comparison with either the
measured or the predicted variation of the flow pattern with Fi.

For purposes of rapid exploration of the various possible conditions of flow,
it would be desirable to combine the Froude number with one or more of the
other parameters, just as the method of characteristics effectively eliminates
the ratio b:1/h1 by combining the terms z/A; and y/h: (compare Egs. 45 and 46).
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F16. 55—CGENERALIZATION OF EXPERIMENTAL DATA FOR ABRUPT EXPANSIONS

A logarithmic plot against Fy of the location of particular contour intercepts
along any longitudinal axis (say, the line of each wall in Fig. 54), made with this
purpose in mind, indicated that—except at very low Froude numbers—the
variation in location was essentially a linear function of 1. In other words,
division of all values of z/b; by F, should tend to superpose all equivalent surface
contours for all Froude numbers. Eqs. 46 and 46 are thereby reduced to
the form:

h oW
o = fs (bx X b1> ...................... 47

As may be shown analytically, this is certainly not a rigorous generalization.
However, as will be seen from inspection of Fig. 55, when replotted in this
manner the deviation of the mean contours taken from Fig. 54 is not great.



November, 1949 HIGH-VELOCITY FLOW 1377

Although single average lines on this generalized diagram would evidently
represent means of means, their departure from the contours of twenty-one
runs at different values of F; and b,/h: is considered sufficiently small to
permit the use of this diagram for the preliminary analysis of abrupt expansions
at practically any value of either parameter.

ErricieENT CURVATURE OF EXPANDING BOUNDARIES

There is a rule of thumb for the design of divergent boundaries in high-
velocity flow which arbitrarily fixes the angle of divergence at § = tan™ § to
§ = tan™! = %, regardless of the depth and the velocity of flow. Asisapparent
from the foregoing discussion of the expansion of flow without lateral constraint,
the angle of divergence of any two neighboring streamlines is constant neither
with the Froude number at a particular longitudinal distance nor with the
longitudinal distance for a particular Froude number. At the abrupt beginning
of such a uniformly divergent section the flow itself cannot abruptly change
direction, and local separation as well as a concentration of negative wavelets
will result; on the other hand, at a distance downstream which varies with the
Froude number. the flow would naturally diverge more rapidly than the con-
stant boundary angle will permit, thereby producing positive wavelets. Thus,
as indicated by either of the contour maps of Fig. 56, obtained by the method of
characteristics, such a divergent section is invariably inefficient at its beginning
(and again before its end) unless the Froude number is so high that recovery
from the initial zone is not accomplished before the transition ends.

It is obvious from such reasoning that an efficient boundary expansion
should display a continuous change in curvature, and should have different
proportions for every Froude number. The latter requirement suggests at
once that, for purposes of preliminary design, the best form of boundary, as
well as the resulting surface configuration, should be reducible to a generalized
diagram such as that of Fig. 55. As a matter of fact, Fig. 55 was initially
used in the arbitrary selection of a number of boundary curves for experimental
and graphical investigation, the curves being formulated algebraically to
approximate streamlines of the unconfined flow which enclosed about 909,
of the total discharge.

The boundary equation eventually found to be most satisfactory was of
the form:

which is plotted in Fig. 57, together with surface contours for a mean value of
b1/h1 and various values of F;.

As will be noted from this composite plot, the beginning of the transition is
sufficiently gradual to reduce effects of nonhydrostatic pressure distribution to
a minimum, so that the factor b:1/A; is no longer an essential variable. The
gradual increase in boundary angle, moreover, is sufficient to prevent the for-
mation of positive waves—yet not so great as to cause an undue change in
depth across any normal section. In fact, using circular arcs to approximate

.
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normalecy to the streamlines at successive sections, it will be found that the
variation in depth from wall to wall does not exceed 309, of the center-line
value.

It is, of course, possible to reduce such depth variation between wall and
center line by decreasing the rate of flare—that is, by decreasing the coefficient
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Fig. 56.—Parrerns oF FLow IN A UNIFORMLY DIVERGENT CHANNEL AT
IFFERENT FROUDE NUMBERS

of Eq. 48. This reduction, however, will result in a longer (and, hence, more
costly) expansion for a given ratio of initial and final widths. Although the
decision as to the greatest permissible depth variation is a matter either of
judgment or of outlet requirements, it is believed that the curve shown in Fig.
55 will provide a satisfactory average basis for design.
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The several curves reproduced in Fig. 55 typify the twenty or more which
were determined experimentally for various Froude numbers and width-depth
ratios and then checked by the graphical method of characteristics. Although
a good general agreement was always obtained, the experimental results in-
variably yielded contours which were displaced downstream (from 0 to 35%,
depending upon the ratio A/h;). As this was attributed to the failure of the
graphical method to take into account the gradual loss in total head due to
boundary resistance, the same measurements were repeated on bed slopes
varying from 49, to 10%,. This, however, resulted in little displacement of
the contours longitudinally, but in a considerable displacement laterally—
that is, toward the center line, because the maximum bed slope was necessarily
in the longitudinal direction rather than in the direction of each individual
streamline.
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F1a. 57.—GENERALIZATION OF EXPERIMENTAL DATA FOR GRADUAL EXPANSIONS

From these considerations it would appear that the boundary form and sur-
face contours for a level bed, shown in Fig. 57, may also be considered applicable
to such moderate slopes as are normally encountered in open-channel design.
Great slopes, on the other hand, would require a warped bed to prevent the
major part of the flow from tending to follow the direction of maximum slope
parallel to the center line. At present, the bottom surface can be warped
satisfactorily only by trial and error at model scale. In the latter connection,
however, it is to be noted that an effort was made to equalize both the surface
elevation and the unit rate of flow across all normal sections by molding the
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bottom in conformity with the surface contours of Fig. 57. In other words,
the initially horizontal bed was arbitrarily made higher at the center and lower
at the walls in exact conformity to the indicated change in surface elevation
across each normal section. Although full equalization of flow rate and sur-
face elevation was not attained, conditions were improved perhaps 50%,.
Since application of this method of partial correction requires no further trial-
and-error experimentation, its consideration is recommended where the added
expense of bottom contouring is warranted.

ELIMINATION OF DISTURBANCES AT THE END OF AN EXPANSION

Just as the analysis of supercritical flow of water is closely related to that
of supersonic flow of gases, an open-channel transition for such flow should
satisfy essentially the same general requirements as the test section of a super-
sonic wind tunnel—a variation in cross-sectional area such that the velocity
and depth (or pressure intensity) are evenly distributed across the final section.
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The requirements of a supersonic wind tunnel are far more severe than those
of an open~channel expansion, to be sure, even though experimental flow condi-
tions are usually subject to arbitrary control; in fact, it is necessary to vary
precisely the wall curvature of the tunnel test section from run to run in aceord-
ance with particular velocities of operation. Nevertheless, the same basic
principles of boundary design could be applied quite generally to the case of
open-channel expansions were it not for three practical limitations: First,
under many circumstances the Froude number of the flow must be expected
to vary over a considerable range; second, the length of transition required for
either high Froude numbers or great expansion ratios will frequently be many
times that permitted by structural economy; and, third, no method is provided
thereby of stabilizing the hydraulic jump.
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For the particular condition that an expansion represents merely a desirable
increase in the width of a continuously paved channel, however, the same de-
sign procedure will yield at least the first approximation to an efficient design
for a particular Froude number. As indicated in Fig. 58, the basis of the
design technique is the control of wall curvature in such manner that the
negative waves formed by successive elements of the outward curve just offset
the positive waves formed by successive elements of the subsequent inward
curve, so that the flow is restored to complete uniformity at the end of the
transition. The procedure is, unfortunately, one of trial and error, and the
resulting expansion ratio cannot be accurately foretold. A generalized series
of boundary curves for successively greater expansion ratios is therefore pre-
sented in Fig. 59, as determined by interpolation from a series of solutions for
various Froude numbers and expansion ratios by the method of character-

25 '
by _
2.0 b_l_4
X T 3 ——
= __-—--
l=%(bxF )z+l—__ /’, -/ I by |
5 ) TR T | e ] 32 =35
als 15 | 5 = /’________ b2 =3
k-1 ,1' e 5 . 3
] £ =25 .
b
= / by :
> 10 /....—-— b_1=2
b
RN 7;2; =15
0.5 L.-A
\““—-LPoint of Tangency i
O |
Q 1 2 3 4 5 6 7 8 9 10 11 12

=%
Values of baF,

F1a. 59.—GENERALIZATION OF BouNDARY CURVES DETERMINED BY THE METHOD OF CHARACTERISTICS

istics. These curves must be regarded merely as guides in preliminary design,
for the following reasons: (1) Since the primary purpose was the generalization
of results, each curve represents the average form of several somewhat different
curves for different Froude numbers; (2) since the initial cutward curve was
chosen to yield without change the greatest practicable expansion range, it is
probable that a somewhat shorter expansion curve could be devised for a
particular condition; and (3) since the length of any transition is far in excess
of that for which the drop in total head could be ignored, the assumption of
zero loss in applying the method of characteristics leads to a predicted outlet
depth which is considerably smaller than that which will actually prevail.
For example, experiments on several expansions constructed in the laboratory
on the basig of Fig. 59 resulted in outlet depths as much as from 209, to 40%,
in excess of that indicated by the simple wave theory, even though the flow
was essentially uniform at the exit.
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If, on the other hand, the channel expansion is intended to reduce the
Froude number of the flow just prior to the formation of the hydraulic jump,
it will be possible to hold the expansion to the shorter form of Fig. 57. If the
divergent walls are followed by parallel walls with either an abrupt or a gradual
transition, a positive wave will be formed at each wall junction and will extend
diagonally across the flow at an angle varying with the local Froude number.
Such waves would persist a considerable distance down the channel through
repeated reflection if no jump were formed. If the toe of the jump lies at or
near the end of the expansion, however, the diagonal waves will no longer form.
On the other hand, should the jump as a whole advance even slightly into the
expanding section, the smaller depth at each side will result in a progressively
greater advancement of the jump along the walls, any slight asymmetry of the
divergent flow finally giving rise to a deflection of the whole stream along one
wall as the jump advances along the other almost to the upstream end of the
expansion. The resulting flow will be of an extremely violent nature, and it
could conceivably lead to rapid failure of the structure from overtopping of
the wall at the juncture or from undercutting beyond the end of the paved floor.
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F1a. 60.—ArTeErNATE Forms oF THE HyprAULIC JUMP AT AN ABRUPT DrOP

In order to stabilize the jump at the end of such an expansion it appears
necessary to provide a drop in floor level at the beginning of the parallel section.
The relative magnitude of the change in elevation should depend primarily upon
the Froude number of the flow as it leaves the expanding section. With refer-
ence to Fig. 60, it will be seen that the relationship between the Froude number,
the relative change in depth, and the relative size of drop may be determined,
like the equation of the jump itself, by the momentum and continuity relation-
ships. There are, however, two different types of jump which may form, de-
pending upon whether the downstream depth is below or above that which
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produces the standing wave indicated by Fig. 60(b). For the condition of
Fig. 60(a), the pressure on the face of the drop will be determined by the up-
stream depth; for the condition of Fig. 60(c), the downstream depth will govern.
‘T'he relationships tor cases (a) and (c) are as follows:

le,__.%i_%[(}%-i-l)z— <%>2J.......,...(49a)

1 ho/h he 2z )\?
2‘—§TTz/}LI[1—<hf h1>] ............. (49¢)

Curves for Egs. 49 will be seen in Fig. 61, the right-hand (or lower) series cor-
responding to Eq. 490 and the left-hand series to Eq. 49¢c. The critical zone for
the formation of the standing wave—case (b)—cannot be foretold therefrom,
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F16. 81.—ANALYTICAL AND EXPERIMENTAL CHARACTERISTICS OF THE
HyprauLc Jump AT AN ABmUPT DroOP

however, and recourse must be had to experimental measurement. Tests on
both abrupt and sloping drops resulted in the points plotted in the figure,
which not only verify the approximate analysis but indicate a systematic
trend of the transition between the two regimesof flow.
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From this diagram the magnitude of the drop for a given tailwater depth,

'(11.'-'-'or vice versa, may be determined once the average depth and the Froude
b"‘ number of the flow at the end of an expansion have been established. For
_protection of the structure, the design should be such that at the maximum

.expected Froude number the tailwater depth will be the minimum required to
produce a jump. Figs. 62(a) and 62(b) are photographs of conditions for
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cexpansion ratios of 8 and 4, respectively, the details of the expansions following
the recommendations presented herewith.

e

Fie. 62—CraaneE 1N Jump CHARACTERISTICS AT A 1:8 Expansion Durinag a 30%
INCREASE IN THE TAILWATER DEPTH

Fra. 63—CHANGE IN JuMP CHARACTERISTICS AT A 1:4 Expansion DurinG 4 30%
DecrEASE IN THE RaTE oF Frow

If the tailwater depth is increased beyond the value for minimum jump re-
quirements, the undular regime will first appear (see Fig. 62(b)), followed by the
second form of the jump and then by an uneven penetration of the expansion
(Fig. 62(c)). An asymmetric pattern may eventually result, but the presence
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of the drop makes this far less likely than would otherwise be the case. On the
other hand, if the Froude number increases beyond the design value, or if the
tailwater depth decreases, the jump will be carried downstream. This phe-
nomenon again is rendered less sensitive by the drop; the condition shown in
Fig. 62(a), for example, will prevail during a 109, change in the downstream
depth, whereas the three different stages shown in Fig. 62 represent a 309,
change. Finally, if the Froude number is decreased, essentially the same
sequence will follow as for the increase in tailwater depth (see Figs. 63(b) and
63(c)). In this event, however, the decrease in discharge will correspond to
an equivalent decrease in harmfulness of the flow, and—although asymmetry
may eventually develop—the structure planned for higher flows should then

be safe.
CONCLUSIONS

Application of the elementary wave theory to the analysis of high-velocity
flow in open-channel expansions may be expected to yield results in essential
agreement with experiment as long as the assumptions involved in the theory
are approximately satisfied. For purposes of design, however, it is convenient
to reduce all measured data for abrupt expansions to a single generalized plot
of surface contours as a function of the initial Froude number and the relative
coordinate location. A similar procedure for gradual expansions permits
selection of an efficient wall form for any initial Froude number and width-
depth ratio. To avoid dangerous asymmetry of the flow at the end of such
an expansion, the hydraulic jump should be stabilized by a drop in the channel
floor, the proper magnitude of which may be determined by the momentum
equation.



