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Abstract 30 

To predict the potential impacts of climate change on marine organisms, it is critical to understand 31 

how multiple stressors constrain the physiology and distribution of species. We evaluated the effects 32 

of seasonal changes in seawater temperature and near-future ocean acidification (OA) on organismal 33 

and sub-organismal traits associated with the thermal performance of Eleginops maclovinus, a sub-34 

Antarctic notothenioid species with economic importance to sport and artisanal fisheries in southern 35 

South America. Juveniles were exposed to mean winter and summer sea surface temperatures (4 and 36 

10 ºC) at present-day and near-future pCO2 levels (~500 and 1800 μatm). After a month, the Critical 37 

Thermal maximum and minimum (CTmax, CTmin) of fish were measured using the Critical Thermal 38 

Methodology and the aerobic scope of fish was measured based on the difference between their 39 

maximal and standard rates determined from intermittent flow respirometry. Lipid peroxidation and 40 

the antioxidant capacity were also quantified to estimate the oxidative damage potentially caused to 41 

gill and liver tissue. Although CTmax and CTmin were higher in individuals acclimated to summer 42 

versus winter temperatures, the increase in CTmax was minimal in juveniles exposed to the near-future 43 

compared to present-day pCO2 levels (there was a significant interaction between temperature and 44 

pCO2 on CTmax). The reduction in the thermal tolerance range under summer temperatures and near-45 

future OA conditions was associated with a reduction in the aerobic scope observed at the elevated 46 

pCO2 level. Moreover, an oxidative stress condition was detected in the gill and liver tissues. Thus, 47 

chronic exposure to OA and the current summer temperatures pose limits to the thermal performance 48 

of juvenile E. maclovinus at the organismal and sub-organismal levels, making this species vulnerable 49 

to projected climate-driven warming.  50 

 51 

 52 

 53 

Keywords: Eleginops maclovinus, thermal tolerance, aerobic scope, oxidative metabolism, multiple 54 

stressors, climate change biology.  55 
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1. Introduction 56 

The Beagle Channel is a unique subpolar marine ecosystem located in the southern extreme of 57 

South America, connecting the Pacific and the Atlantic Oceans (Flores Melo et al., 2020). Due to its 58 

location, this area hosts a mixture of marine ichthyofauna with different origins that have experienced 59 

distinct evolutionary histories (Fernández et al., 2019). Fishes of the suborder Notothenioidei are the 60 

most dominant component of the ichthyofauna in the Beagle Channel (Lloris and Rucabado, 1991; 61 

Vanella et al., 2007). The 'róbalo' or Patagonian blenny, Eleginops maclovinus (Cuvier, 1830) is an 62 

endemic notothenioidei species that has an extended bioceanic distribution in temperate and 63 

subantarctic waters from Valparaíso in the Pacific Ocean (33°S) to San Matías Gulf in the Atlantic 64 

Ocean (40°S) down to the Beagle Channel (55°S) and Malvinas/Falklands Islands (López, 1963; 65 

Guzmán and Campodonico, 1973; Pequeño, 1989; Eastman, 1993). This species inhabits shallow 66 

coastal waters, estuaries, and rivers throughout their geographic distribution and is a key component 67 

of many food webs, both as prey and predator (Riccialdelli et al., 2017; 2020). In the Atlantic Ocean 68 

and the Beagle Channel, E. maclovinus is also targeted by recreational (sport) and artisanal fisheries 69 

(Lattuca et al., 2018). 70 

Climate change represents one of the main threats to biodiversity (Heller and Zavaleta, 2009; 71 

IPBES, 2019) and its effects are appearing more rapidly and with greater impacts at high latitudes 72 

(Fabry et al., 2009; IPCC, 2022). When studying the effects of climate change in marine ecosystems, 73 

the roles of temperatures and carbon dioxide (CO2) are invariably linked (Enzor et al., 2013). The 74 

increase in atmospheric CO2 observed since the beginning of the industrial revolution has caused not 75 

only ocean warming but also a decrease in seawater pH, known as ocean acidification (OA; Levitus et 76 

al., 2005; Caldeira and Wickett, 2003). 77 

Temperature is the most pervasive abiotic factor governing the biology of organisms (Beitinger 78 

and Lutterrschmidt, 2011). Thus, the organism's thermal sensitivity is a fundamental factor in climate-79 

induced changes in marine ecosystems (Pörtner and Farrell, 2008). It has been hypothesized that 80 

temperature sets important limitations for aquatic ectotherms mainly by reducing their aerobic scope, 81 

caused by the limited capacity of the circulatory and ventilatory systems to match oxygen demand 82 

[Oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis], in fully oxygenated waters 83 

(Pörtner, 2002; 2010; Pörtner and Farrell, 2008). Within their thermal tolerance limits or thermal 84 

windows, at the sub-organismal level, the organisms progressively enhance the exploitation of 85 

protective mechanisms, such as the capacity of anaerobic metabolism, antioxidant defenses, and the 86 

heat-shock response, as oxygen limitations are set during warming and cooling (Pörtner, 2002). The 87 

thermal tolerance limits or thermal windows of fishes are generally assessed by determining the 88 
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Critical Thermal Maximum (CTmax) and Minimum (CTmin) and represent a useful relative proxy for 89 

the temperatures at which fishes are unable to escape conditions that will ultimately lead to thermal 90 

death (Becker and Genoway, 1979; Beitinger et al., 2000; Beitinger and Lutterschmidt, 2011, Åsheim 91 

et al., 2020). Several works have highlighted the importance of determining physiological limits to 92 

different environmental drivers in order to develop predictions for the future geographical distribution 93 

or productivity of species based on future climate scenarios (Pörtner and Peck, 2010; Burrows et al., 94 

2011; Deutsch et al., 2015; Marras et al., 2015). In this regard, Lattuca et al. (2018) showed that under 95 

laboratory conditions, juvenile E. maclovinus inhabiting coastal areas of the Beagle Channel is a 96 

eurythermic species that can acclimate well to different temperatures and has a broad thermal window 97 

and a positive relationship between preferred and acclimation temperatures. To understand the effects 98 

of global warming on the thermal tolerance of a given ectotherm organism, it is critical to understand 99 

how they respond to seasonal temperature extremes and identify the mechanisms involved in the 100 

responses. Since E. maclovinus lives in much cooler environments than their maximum thermal 101 

tolerance, Lattuca et al. (2018) proposed that E. maclovinus populations from Tierra del Fuego could 102 

experience enhanced performances in response to ocean warming. 103 

OA has been recognized as a critical process impacting marine life (Hendriks et al., 2010; 104 

Kroeker et al., 2010), and its effects are fundamentally linked to the ecology and physiology of the 105 

organisms (Pörtner, 2008). In particular, fish were initially thought to be resilient to OA as they can 106 

maintain a constant internal pH through increased buffering capacity and net acid excretion (Claiborne 107 

et al., 2002; Melzner et al., 2009; Cattano et al., 2018). However, these compensation responses have 108 

additional energetic costs and, thus, potential consequences on other fitness-related traits (Ishimatsu et 109 

al., 2008; Heuer and Grosell, 2014). Accordingly, increased pCO2 levels can affect fish metabolism, 110 

internal calcification, yolk consumption, and behavioral performance along with increased predation 111 

risk and decreased foraging efficiency, particularly for larvae (Cattano et al., 2018). Furthermore, 112 

several fitness-related traits in fish are suggested to be modulated by the combined effect of pCO2 and 113 

temperature levels (Pörtner et al., 2005).  114 

Predicting and understanding the potential impacts of interacting climate change stressors, such 115 

as changes in temperature and pCO2 levels, on marine organisms is one of the most urgent challenges 116 

that environmental scientists face. Interacting stressors may cause either additive, synergistic, or 117 

antagonistic impacts on marine organisms (Vinebrooke et al., 2004). Several studies have reported on 118 

physiological responses of notothenioid species to increased temperature and elevated pCO2 levels 119 

(Strobel et al., 2012; Strobel et al., 2013a,b; Enzor et al., 2013; Enzor and Place, 2014). For example, 120 

by measuring the routine metabolic rate, mitochondrial capacity, and the intra- and extracellular acid-121 
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base status, Strobel et al. (2012) reported that Notothenia rossii could, in part, acclimate to ocean 122 

warming and OA. However, Strobel et al. (2013a) demonstrated the existence of different tissue 123 

capacities to compensate for such conditions in terms of energy metabolism and mitochondrial 124 

enzymes. Compared to N. rossii, the sub-Antarctic Lepidonotothen squamifrons exhibited higher 125 

plasticity in energy usage in response to changing temperature and hypercapnia (Strobel et al., 2013b). 126 

Moreover, Enzor et al. (2013) demonstrated that Trematomus bernacchii, Trematomus hansoni, 127 

Trematomus newnesi and Pagothenia borchgrevinki were capable of rapidly acclimating to increased 128 

pCO2 levels but that warmer temperature continued to impact their routine metabolic rates for at least 129 

28 days. Enzor and Place (2014) also documented that T. bernacchii, P. borchgrevinki and T. newnesi 130 

maintained an antioxidant capacity necessary to offset predicted warming and OA. 131 

Most of the notothenioid fish in southern South America can be found in coastal waters. These 132 

shallow-water environments have little thermal inertia, so they are expected to be the first to reflect a 133 

rise in atmospheric temperature (Madeira et al., 2012). Moreover, these waters are subjected to a wide 134 

range of CO2 concentrations across different time scales (Waldbusser and Salisbury, 2014). In 135 

particular, fish inhabiting the coasts of the Beagle Channel are naturally exposed to fluctuations in 136 

temperature and CO2 due to the freshwater input from rivers, coastal runoff and the thawing of glaciers 137 

(Giesecke et al., 2021). Thus, fish in the Beagle Channel are exposed to higher pCO2 levels than fish 138 

living in pelagic environments where CO2 levels are more stable. Waldbusser and Salisbury (2014) 139 

noted that such varying conditions should not prevent scientists from studying how the processes 140 

modifying coastal conditions interact to affect organisms, nor does it mean that they are better adapted 141 

to higher CO2 levels. Despite being the most prominent channel of the South American continent, to 142 

our knowledge, no studies have documented the impacts of climate change stressors on fish inhabiting 143 

these waters. 144 

We measured the response of thermal tolerance, aerobic scope, and oxidative metabolism of 145 

juvenile E. maclovinus from coastal Channel waters exposed to two temperatures (4 and 10 ºC) at both 146 

present-day and near-future pCO2 levels (~500 and ~1800 μatm). The temperatures used here match 147 

the mean winter and mean summer sea surface temperatures in the Beagle Channel (Lattuca et al., 148 

2018). The pCO2 levels correspond to present-day pCO2 measured in coastal areas in this region and 149 

to future levels projected for the end of 2200, respectively (Caldeira and Wickett, 2003; IPCC, 2014). 150 

We hypothesized that the combined effect of chronic exposure to OA at the mean summer temperature 151 

would reduce the thermal performance of the fish at organismal and sub-organismal levels and that 152 

climate change will cause negative impacts on these fish. At the organismal level, we expected that 153 

the interaction between temperature and pCO2 would lower the aerobic scope of juvenile E. maclovinus 154 
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and, hence, its thermal tolerance range. At the sub-organismal level, we expected an oxidative stress 155 

response. To our knowledge, this is the first study to investigate the interactive effects of OA levels 156 

and temperature on functional traits linked with the thermal performance of a notothenioid fish 157 

inhabiting coastal waters surrounding the tip of South America. 158 

 159 

2. Materials and methods 160 

Ethics statement 161 

The methods described in this study were reviewed and approved by the Bioethics Institutional 162 

Committee of the Austral Centre for Scientific Research (CIB-CADIC), which assesses animal care in 163 

research activities. 164 

 165 

2.1. Fish collection and habituation to captivity 166 

Juvenile E. maclovinus were collected during the austral autumn 2019 at Golondrina Bay (54° 167 

50'S, 68° 20'W), located on the Beagle Channel (Tierra del Fuego, Argentina) close to Ushuaia city, 168 

where all the laboratory experiments were conducted. Fish were captured using a seine net (25 m long, 169 

1.5 m high, and 12 mm stretch mesh) and then transported to the laboratory in 50-L tanks equipped 170 

with aeration. The temperature at the capture site was ⁓5 °C. Once in the laboratory, fish were 171 

habituated to captivity for one month in 120-L aquaria containing seawater at 4 ± 0.5 °C, with a salinity 172 

of 24.6 ± 0.2 and dissolved oxygen concentrations of 9 ± 0.3 mg L-1. During this period, fish were fed 173 

to satiation (⁓10% body mass) with chopped hake (Merluccius hubbsi) muscle every other day and 174 

held under a 12:12-h (light:dark) light regime with light-emitting diodes (LEDs) as the light source 175 

(250 lx). Water quality was maintained by daily partial water changes (20–25% of total volume). 176 

2.2. CO2 mixing system and carbonate system determination 177 

A flow-through CO2 mixing system similar in design to that described by Manríquez et al. 178 

(2019; 2020) was built to manipulate pCO2 levels inside the rearing containers (experimental units). 179 

This system consisted of three mass flow controllers (model GdFC, Aalborg, New York, USA) used 180 

to blend pure CO2 gas with the (ambient) air provided by an oil-free compressor (MSV 12/100, Schulz, 181 

Sao Paulo, Brazil) to obtain CO2-enriched air (Torres et al., 2013). This procedure allowed to obtain 182 

CO2-enriched air of ~1800 μatm for the future pCO2 condition and CO2-enriched air of ~500 μatm for 183 

the present-day condition. The enriched air was bubbled into four 230-L plastic reservoirs (mixing 184 

tanks, n = 2 for each pCO2 condition) filled with 1 µm filtered seawater (Hidroquil, Buenos Aires, 185 
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Argentina). The filtered and pCO2-treated seawater was delivered to the different rearing containers 186 

by electrical submersible pumps located inside the mixing tanks. The delivery of the treated seawater 187 

was controlled automatically by solenoid valves to achieve a flow rate of ~250 mL min-1, which 188 

renewed one-third of the total volume of each rearing container (750 mL) six times a day. During the 189 

entire experimental period, all rearing containers were semi-immersed in four large fiberglass water 190 

baths maintained thermally stable at the two experimental temperatures (two at 4 ºC and two at 10 ºC). 191 

The two temperature treatments were achieved using two independent seawater recirculating systems 192 

that connected the water baths to aquarium chillers (C-2500, Pacific Coast Imports, Oregon, USA) set 193 

at the corresponding temperatures. The rearing container had two holes in the lid (for plastic water and 194 

air tubing) and a third hole located on the side and above the thermal bath's water level as a seawater 195 

overflow. Filtered and treated seawater flowed from the mixing tanks into each rearing container, as 196 

did a stream of air with the appropriate pCO2 (~500 or 1800 μatm). 197 

The carbonate system parameters, total alkalinity, temperature, pH, and salinity were quantified 198 

weekly in seawater samples taken from three randomly chosen rearing containers per treatment (Table 199 

1). Total alkalinity was measured using an automated, open-cell titration system (Haraldsson et al., 200 

1997), and its accuracy was verified using certified reference material (CRM) supplied by Andrew 201 

Dickson (Scripps Institution of Oceanography, San Diego, USA). The correction factor was 202 

approximately 1.002, corresponding to a difference of ~5 μmol kg−1. The pH was measured in a closed 203 

60 mL cell, at 25.0 °C, with a Hanna Edge pH meter provided with a HI11310 digital glass pH-204 

electrode (Hanna Instruments, Inc., Rhode Island, USA) calibrated with standard Tris buffer in 205 

synthetic seawater. The buffer was prepared following the standard operating procedures outlined by 206 

Dickson and Goyet (1994), with a nominal pH value of 8.063 pH units at 25.0 °C and a salinity of 26 207 

on the total hydrogen ion scale. The pH values were reported using the total hydrogen ion scale 208 

(Dickson and Goyet, 1994). Temperature and salinity were measured using a multiparameter meter 209 

HANNA HI9828 (Hanna Instruments, Inc., Rhode Island, USA). Finally, the temperature, pH, salinity, 210 

and total alkalinity data were used to calculate pCO2 and CO3
2– and seawater saturation stages for 211 

calcite and aragonite using the CO2SYS program for Microsoft Excel (Lewis and Wallace, 1998) set 212 

with Mehrbach solubility constants (Mehrbach et al., 1973) refitted by Dickson and Millero (1987). 213 

 214 

2.3. Experimental rearing 215 

The experimental setup included two different exposure temperatures (4 and 10 °C) at each of 216 

two pCO2 levels (P: ~500 and F: ~1800 μatm). At the end of the habituation phase, four groups of 40 217 
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similar-sized fish (total n = 160) were randomly assigned to one of the four treatments (4P, 4F, 10P 218 

and 10F) and were kept in pairs in each rearing container (n = 20 replicates per treatment, two fish per 219 

replicate). Pilot tests indicated that this density was not stressful for this shoaling species. The 220 

temperature for fish in the 10P and 10F treatments was increased from 4 to 10 °C at a rate of 1 °C 221 

day−1 as suggested in the literature (Beitinger and Lutterschmidt, 2011). As in most OA studies, the 222 

pCO2 exposure occurred acutely, directly after the treatment temperatures were reached (Manríquez 223 

et al., 2019). 224 

Fish were exposed to the different treatments (4P, 4F, 10P and 10F) for one month, 225 

experiencing the same light and feeding regime used during the habituation phase. Once a week, fish 226 

were transferred into a new and clean rearing container filled with fresh filtered and treated seawater 227 

at the corresponding temperature and pCO2 level. At the end of the exposure period, the fish were 228 

anesthetized with 0.5 g L-1 tricaine methano-sulphonate (MS-222), and the total length (TL, ± 0.1 mm) 229 

and body mass (BM, ± 10-2 g) were measured using a digital caliper (Sylvac, S 235 PAT, Yverdon, 230 

Switzerland) and a digital balance (Ohaus, TA302, NJ, USA), respectively. After a recovery time of 231 

~1 h, they were randomly assigned to thermal, metabolic or biochemical measurements. 232 

 233 

2.4. Thermal tolerance 234 

The Critical Thermal Maximum (CTmax) and the Critical Thermal Minimum (CTmin) were 235 

estimated using the Critical Thermal Methodology (CTM, Becker and Genoway, 1979; Paladino et al., 236 

1980; Beitinger et al., 2000). Fish initially acclimated to a specific temperature were subjected to a 237 

constant temperature change until the temperature at which a predefined sub-lethal endpoint was 238 

reached (Lutterschmidt and Hutchison, 1997; Beitinger and Lutterschmidt, 2011).  239 

After 24 h of fasting, 80 fish were chosen at random for CTmax (n = 10 per treatment, total n 240 

= 40, Table 2) or CTmin (n = 10 per treatment, total n = 40, Table S1) trials and placed individually 241 

into 300 mL plastic beakers filled with seawater at the corresponding temperature and pCO2 levels. 242 

For CTmax trials, the beakers were suspended within a 50-L plastic test chamber, and the temperature 243 

inside them was increased at a constant rate of 3 °C h−1 by heating the water in the test chamber with 244 

a thermoregulator Techne TU-20D (Bibby Scientific Limited, Stone, Staffordshire, UK). For CTmin 245 

trials, a constant cooling rate of 3 °C h−1 was achieved inside the beakers by placing them inside a 246 

cooling chamber. The selected rate of temperature change was chosen to address relevant physiological 247 

responses to experimental temperatures and pCO2 levels and can also be considered ecologically 248 

relevant, even when it is beyond rates predicted to occur in the context of climate change (Åsheim et 249 
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al., 2020). During the trials, water temperature change continued until fish reached a sub-lethal 250 

endpoint, the loss of equilibrium (LOE), defined as the inability of fish to maintain dorso-ventral 251 

orientation for at least 1 min (Beitinger et al., 2000). When LOE was observed, the corresponding 252 

water temperature was recorded with a digital thermometer Lutron TM-917 provided with a Pt100 253 

thermoresistance Luftman 3636 (Lutron Electronic Enterprise Co., Ltd., Taipei, Taiwan) and then fish 254 

were returned to the initial experimental conditions to allow recovery.  255 

The CTmax and CTmin of fish at each experimental condition were calculated as the mean 256 

temperature at which LOE was observed (Becker and Genoway, 1979; Beitinger et al., 2000). The 257 

thermal tolerance window (TTW) at each pCO2 level was calculated as the difference between CTmax 258 

and CTmin. 259 

 260 

2.5. Aerobic scope 261 

Forty-eight fish (n = 12 per treatment, Table S1) were tested to estimate the aerobic scope (AS) 262 

by measuring their standard (SMR) and maximal (MMR) metabolic rates. Before the measurements, 263 

fish were fasted for 72 h to ensure a post-absorptive state. Then, they were introduced individually into 264 

a circular 2-L tank and chased until exhaustion for MMR determinations (Clark et al., 2013, Roche et 265 

al., 2013). Fish were considered exhausted when they did not respond to mechanical stimulation 266 

(Roche et al., 2013). After the chasing protocol, each fish was immediately transferred to a 100-mL 267 

static respirometry chamber, provided with a Strathkelvin 1302 Clark-type polarographic O2 electrode 268 

connected to a Strathkelvin 928 6-channel O2 system (Strathkelvin Instruments Limited, North 269 

Lanarkshire, Scotland). Each respirometry chamber was immersed in a water bath, and temperature 270 

and pCO2 levels inside the chamber and the water bath were kept constant at the respective treatment 271 

condition throughout the measurements.  272 

The instantaneous O2 uptake was measured by intermittent flow respirometry (Steffensen, 1989; 273 

Svendsen et al., 2016) for 24 cycles (120 min each) that lasted 48 h. During each cycle, chambers were 274 

sequentially closed (105 min) and flushed (15 min) with clean and aerated treated seawater to prevent 275 

O2 saturation levels from falling below 70% and also to eliminate potential hypercapnia and 276 

nitrogenous waste buildup in the chamber (Steffensen, 1989). An electrical submersible pump 277 

achieved the flush of water from the bath through the respirometry chamber. After 48 h, fish were 278 

removed and the background microbial respiration was measured for 24 h. The fish O2 consumption 279 

rate was then calculated using linear least-squares regressions, excluding the first and last 2 min of 280 
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each closed phase. The background (water only) O2 consumption rates were then subtracted from fish 281 

O2 consumption rates, following Svendsen et al. (2016).  282 

The MMR, corresponding to the maximal rate of aerobic metabolism of the fish in non-limiting 283 

conditions, was calculated using only the first 15 min (excluding the first 2 min) of measurements 284 

immediately after closing each respirometry chamber (Marras et al., 2015). The SMR, corresponding 285 

to the minimal cost of living measured in an inactive, post-absorptive fish, was calculated using the 286 

15th percentile method in the last 12 measurement cycles (Chabot et al., 2016). The AS, corresponding 287 

to the energy available for activities above maintenance, such as muscular exercise, growth, or 288 

reproduction (Pörtner and Peck, 2010), was calculated as the difference between MMR and SMR. 289 

 290 

2.6. Oxidative metabolism 291 

Fish were euthanized following deep anesthesia with 0.5 g L-1 MS-222, and the gills and liver of 292 

24 individuals (n = 6 per treatment, Table S1) were dissected, weighed ( 10-5 g), and stored at -80 ºC 293 

for two weeks until biochemical analyses were performed (see below). All the measurements were 294 

quantified in the gill and liver tissues. Even when the gills are the first organ to contact the 295 

environment, becoming a target for a more significant oxidative disruption, the liver, characterized by 296 

high metabolic activity, is a primary site for lipid peroxidation (Pörtner et al., 2005). 297 

2.6.1. Oxidative damage 298 

The lipid peroxidation of fish was quantified as the content of 2-thiobarbituric acid reactive 299 

substances (TBARS). Gill and liver tissues were homogenated in 50 mM potassium phosphate buffer 300 

(pH 7.0) and 30% (w/v) trichloroacetic acid, in a 1:4 (w/v) ratio. After centrifugation (4000 rpm for 301 

10 min at 4 °C), the content of TBARS was determined in the supernatant, according to Malanga et al. 302 

(2004).  303 

2.6.2. Antioxidant capacity 304 

The activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase 305 

(GST) enzymes were measured to quantify the effects of temperature and pCO2 on the antioxidant 306 

capacity of fish. Homogenates from gill and liver tissues were prepared in 50 mM potassium phosphate 307 

120 mM KCl (pH = 7.4). After centrifugation (2500 rpm for 10 min at 4 °C), the supernatants were 308 

stored at -80 °C until enzymes activities were determined. CAT activity was evaluated 309 

spectrophotometrically at 25 °C by the decomposition rate of H2O2 at λ = 240 nm in a reaction mixture 310 

consisting of the supernatant, 50 mM potassium phosphate buffer (pH 7.0) containing 1% Triton-311 
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X100, 1:9 (w/v) and 12.5 mM H2O2 (Aebi, 1984). One CAT unit was defined as the amount of enzyme 312 

catalyzing the elimination of 1 mmol of H2O2 per minute. 313 

SOD activity was measured by the epinephrine method (Misra and Fridovich, 1972), based on 314 

the capability of SOD to inhibit the autooxidation of epinephrine to adrenochrome at 480 nm at 30 ºC. 315 

One SOD unit was defined as the amount of enzyme that inhibits the rate of adrenochrome formation 316 

by 50% under the assay conditions. 317 

GST activity was determined by incubating reduced glutathione with 1-chloro-2,4-318 

dinitrobenzene as a substrate at 25 °C and measuring the absorbance increase at 340 nm (Habig et al. 319 

1974). One GST unit was defined as the amount of enzyme catalyzing the formation of 1 µmol of 2,4 320 

dinitrophenyl-S-glutathione per min. 321 

 322 

2.7. Statistics 323 

A one-way ANOVA or Kruskal-Wallis was used to test for differences among treatments in 324 

the TL and BM of juvenile E. maclovinus selected for thermal tolerance (Ctmax/Ctmin), metabolic 325 

(AS) or oxidative metabolism (lipid damage and antioxidant capacity). Assumptions of normality and 326 

homoscedasticity of residuals were evaluated through Shapiro–Wilks and Levene tests, respectively. 327 

A two-way ANOVA followed by a pairwise multiple comparison procedure (Tukey test) was then 328 

used to evaluate the effect of temperature and pCO2 on the measured traits. If normality and/or 329 

homoscedasticity were not met, the effect of temperature and pCO2 was examined after an aligned 330 

rank transformation (ART Analysis, Wobbrock et al., 2011). Statistical determinations were performed 331 

at a significance level of 5% (Zar, 1984; Sokal and Rohlf, 2011). All the analyses were performed 332 

using R software (version 3.6.1, R Core Team, 2019). 333 

 334 

3. Results 335 

At the end of the exposure period, the different groups of juvenile E. maclovinus selected for 336 

thermal tolerance (CTmax and CTmin), metabolic (AS) or oxidative metabolism (lipid damage and 337 

antioxidant capacity) determinations were not significantly different in mean total length or mean body 338 

mass among treatments (Table S1). 339 

 340 

3.1. Thermal tolerance 341 
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Across all treatments, CTmax values ranged between 24.61 and 28.52 °C (Fig. 1a). Temperature, 342 

pCO2 and the interaction between these factors significantly affected CTmax (all p < 0.001, Table 2). 343 

Across all treatments, CTmin values ranged between -1.94 °C and -1.50 °C (Fig. 1b). CTmin was 344 

significantly affected by temperature (p < 0.001) and pCO2 (p < 0.001) but not by their interaction (p 345 

= 0.1338) (Table 2). At the present-day pCO2 level, the TTW increased on average from 26.87 to 30.15 346 

ºC between 4 and 10 °C, respectively. In contrast, at the future pCO2 level, the increase in TTW from 347 

4 to 10 °C was much more modest (26.31 to 27.53 ºC). 348 

 349 

3.2. Aerobic scope 350 

The SMR of fish was significantly affected by temperature (p < 0.001) but not by pCO2 level (p 351 

= 0.958) and there was a significant interaction between the two factors (p = 0.023) (Table 3). The 352 

SMR of fish exposed to 4 and 10 °C, regardless of pCO2 level, was on average 0.04 and 0.11 mg O2 g 353 

BM-1 h-1, respectively (Fig. 2a). At both experimental temperatures, the MMR and the AS significantly 354 

decreased with increasing pCO2 (MMR: p = 0.035, AS: p = 0.039; Table 3). Compared to the present-355 

day level, MMR (Fig. 2b) and AS (Fig. 2c) were 34 and 49% lower, respectively at the near-future 356 

pCO2 level. MMR was not significantly affected by temperature (p = 0.867) or the interaction between 357 

temperature and pCO2 (p = 0.851) and the same was found for AS (temperature: p = 0.093; temperature 358 

× pCO2: p = 0.750) (Table 3). 359 

 360 

3.3. Oxidative metabolism 361 

Acclimation to different temperatures and pCO2 levels revealed lipid damage in the liver and the 362 

gills of juvenile E. maclovinus. The TBARS content showed tissue-specific differences in magnitude, 363 

with the liver displaying values around 6-fold higher than in the gills (Fig. 3a,b). Neither the 364 

temperature (p = 0.607) nor the pCO2 (p = 0.741) or their interaction (p = 0.138) affected the TBARS 365 

content in the liver (Table 4). On the other hand, a significant effect of temperature (p = 0.027) was 366 

detected in the gills, resulting in higher TBARS contents at 10 °C than at 4 °C (Fig. 3a,b; Table 4). 367 

The CAT activity of the liver tissue was significantly affected by temperature (p = 0.022) and 368 

pCO2 (p < 0.001) but not by their interaction (p = 0.507) (Fig. 4a; Table 4). It increased with summer 369 

temperatures, resulting in 1.56-fold higher at present-day pCO2 levels and 2.19 higher at near-future 370 

pCO2 levels. On the contrary, near-future pCO2 levels reduced CAT activity to values ranging from 371 

600.78 at 4ºC to 1313.27 U mg FW -1 at 10 ºC (Fig. 4a; Table 4). The CAT activity of the gill tissue 372 
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was affected by pCO2 levels (p = 0.044), showing lower values at near-future pCO2 levels, but not by 373 

temperature (p = 0.640) or the interaction between both factors (p = 0.983) (Fig. 4b; Table 4). 374 

The SOD activity in the liver tissue was significantly affected by temperature (p < 0.001) but not 375 

by pCO2 level (p = 0.117), and there was a significant interaction between the two factors (p = 0.020). 376 

Regardless of pCO2 levels, activity levels ranged from 40.22 (4 °C) to 91.80 U mg FW -1 (10 °C) (Fig. 377 

4c; Table 4). The SOD activity in the gill tissue was not affected by temperature (p = 0.094), but it was 378 

significantly affected by pCO2 levels (p < 0.001) and by the interaction between both factors (p = 379 

0.005). Activity levels in the gills ranged from 32.23 and 141.84 mg FW -1 in fish exposed to present-380 

day and near-future pCO2, respectively (Fig. 4d; Table 4). 381 

The activity of GST in the liver differed significantly with temperature (1.15-fold increase 382 

between 4 and 10 °C, p = 0.010) and pCO2 (1.26-fold increase from present-day to near-future pCO2 383 

levels, p = 0.038) but not by the interaction between them (p = 0.348) (Fig. 4e, Table 4). Conversely, 384 

in the gill tissue no effects of temperature (p = 0.060), pCO2 (p = 0.415) or their interaction (p = 0.424) 385 

were detected in the GST activity (Fig. 4f; Table 4). 386 

 387 

4. Discussion 388 

The present study is, to our knowledge, the first report of the combined effects of seasonal 389 

seawater temperature extremes (summer and winter) and OA on functional traits linked with the 390 

thermal performance of a notothenioid fish inhabiting the Beagle Channel at the southern tip of South 391 

America. By examining both organismal and sub-organismal responses in juvenile E. maclovinus, we 392 

found a reduction in the thermal tolerance range under summer temperatures and near-future OA 393 

conditions associated with a reduction in the AS, registered at the elevated pCO2 level. An oxidative 394 

stress condition was also detected in the gill and liver tissues. Such responses may have significant 395 

consequences under the present trajectories of climate change.  396 

The critical thermal limits measured for juvenile E. maclovinus were typical of temperate species 397 

inhabiting a wide range of temperatures, both seasonally and spatially (Nati et al., 2021). Furthermore, 398 

the upper thermal tolerance limits (average CTmax: 26.73 ºC) of E. maclovinus were higher than that 399 

reported for other notothenioid fish from the high Antarctic at McMurdo Sound and the maritime 400 

Antarctic on the Antarctic Peninsula (Bilyk and DeVries, 2011). Under present-day pCO2 levels, fish 401 

exhibited broad TTWs (26.87 to 30.15 °C, at 4 and 10 °C, respectively), with values for both CTmax 402 

and CTmin increasing with increasing temperature exposure, which is in accordance with Beitinger 403 

and Bennett (2000). However, such TTWs were narrower than those previously estimated for juvenile 404 
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E. maclovinus from the Beagle Channel (29.31 and 32ºC at 4 and 10 °C, respectively; Lattuca et al., 405 

2018). The broader thermal tolerance limits previously reported for this species may be due to a 406 

methodological difference; CTM trials conducted by Lattuca et al. (2018) applied a different 407 

warming/cooling rate (18 °C h−1) compared with the present study (3 °C h−1). The rate of temperature 408 

change used here was chosen to be the same as other studies conducted in the “CLIMAR” research 409 

program examining the effects of warming and ocean acidification on the thermal tolerance of a range 410 

of species living in different marine habitats (e.g. Manríquez et al., 2020; Alter and Peck, 2021). Fast 411 

heating rates tend to produce higher CTmax values, though the same is not necessarily valid for cooling 412 

rates and CTmin (Kovacevic et al., 2019). Moreover, E. maclovinus had a wider thermal tolerance than 413 

the sub-Antarctic notothenioids Harpagifer bispinis and Patagonotothen tessellata, also inhabiting the 414 

coastal waters of the Beagle Channel. According to Giménez et al. (2021), TTWs of H. bispinis range 415 

between 25.57 and 27.02 ºC and those of P. tessellata range between 24.99 and 25.88 ºC in fish 416 

acclimated at 4 and 10 ºC, respectively. 417 

The TTWs of juvenile E. maclovinus were reduced by future pCO2 levels, with values ranging 418 

between ~26 and ~28 °C at 4 and 10 °C, respectively. Furthermore, a more significant influence of 419 

high pCO2 was observed on the upper than on the lower thermal tolerance limit since CTmax values 420 

at summer temperatures were much lower (5.44%) than those registered under the present-day pCO2 421 

level. This significant difference suggests that, under near-future pCO2 levels, juvenile fish may not 422 

fully acclimate to seasonal changes in temperature. Despite the reduction in TTW measured at near-423 

future pCO2 levels and summer temperatures, thermal tolerance could still be broad enough to allow 424 

this fish species to cope in near-future increases in temperatures at cold-temperate latitudes.  425 

Quantifying the TTW of a species is central to understanding how present-day distributions can 426 

potentially change in response to variations in environmental conditions projected for specific 427 

ecosystems. In this regard, a strong surface warming has already been observed in the southwest South 428 

Atlantic Ocean over the last two decades due to a southward displacement of the Brazil Current (Goni 429 

et al., 2011; Yang et al., 2020). This warming allows marine fish and other species to colonize higher 430 

latitudes and/or for migratory species to display a more extended residency in regions sub-optimally 431 

cold in the winter (Franco et al., 2020). For example, an increase in fish richness was driven by an 432 

influx of species from warmer waters in Northern and Central Patagonia (Galván et al., 2021). The 433 

tropicalization of temperate waters is an ongoing global phenomenon that has impacted sea surface 434 

temperatures to 48ºS latitude (Galván et al., 2021). Furthermore, in the last five decades, increased 435 

anthropogenic CO2 has altered the chemical conditions of the Argentine Basin, with all depths 436 

displaying ocean acidification (Fontela et al., 2021). According to Pörtner (2008), organisms exposed 437 
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to increased pCO2 levels will have reduced tolerance to thermal extremes. In line with this idea, the 438 

narrowest TTW of juvenile E. maclovinus in the present study occurred under future pCO2 levels at a 439 

high summer temperature. 440 

Temperature-induced limitations on the capacity of the cardiorespiratory system to transport 441 

oxygen from the environment reduce AS and have been proposed as the main factor determining the 442 

critical thermal limits of fish and other water-breathing ectotherms (Pörtner, 2002; Pörtner and Knust, 443 

2007). However, varying responses have been documented concerning the effect of OA on fish 444 

metabolism, depending on their life stages, physiological types (i.e., stenohaline or euryhaline), 445 

climatic zones or habitats. Furthermore, the directionality of each metabolic response (SMR, MMR or 446 

AS) of fish may differ under the same OA conditions (Cattano et al., 2018). In the present study, 447 

juvenile E. maclovinus showed an AS decrease following a one-month acclimation to near-future pCO2 448 

levels. Reductions in AS are expected when increasing temperatures raise the standard metabolism in 449 

ectothermic animals, while maximum oxygen supply fails to increase correspondingly (Melzner et al., 450 

2009; Pörtner and Farrell, 2008). Accordingly, and in good agreement with expected responses for 451 

ectotherm organisms with broad latitudinal distributions (Markle and Kozak, 2018), the SMR of 452 

juvenile E. maclovinus was significantly affected by increasing exposure temperature and by the 453 

interactive effect of temperature and pCO2. The SMR at 10 °C and present-day pCO2 levels in this 454 

study were slightly higher than rates previously measured in E. maclovinus by Vanella et al. (2012, 455 

2017). Such differences could result from different fish body masses between studies. On the other 456 

hand, the MMR significantly decreased with increasing pCO2 levels, with a consequent reduction of 457 

the AS. Therefore, within the narrow temperature range explored in this study (4-10 °C), this reduction 458 

could explain the reduction of the TTW of juvenile E. maclovinus at austral summer temperatures and 459 

near-future pCO2 levels. 460 

The effects of elevated pCO2 levels on MMR, and consequently the AS, could have been due to 461 

either direct disturbances or costs associated with compensatory mechanisms. Physiological effects of 462 

CO2 are mediated through low pH in acidified water and diffusive CO2 entry into the organism. 463 

Elevated CO2 elicits an acidosis in tissues and body fluids; acute effects may occur when plasma pH 464 

is rapidly lowered, and oxygen transport by pH-sensitive blood pigments is disrupted (Pörtner et al. 465 

2005). Even under normal (present-day) pCO2 levels, work by Brauner et al. (2000) on rainbow trout 466 

(Oncorhynchus mykiss) indicated that arterial CO2 may build-up during exercize due to diffusion 467 

limitations of CO2 causing the onset of respiratory acidosis. Bicarbonate accumulation and active ion 468 

transport are used by fish to compensate for increasing acidosis and to regulate their acid-base balance 469 

(Claiborne et al. 2002). Such ATP-demanding compensation activities for acid-base balance and 470 
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enhanced transport of ions may incur elevated energetic costs (Heuer and Grosell 2014). Pörtner (2004) 471 

indicated that temperature effects lead to higher costs for pH regulation in cold-adapted eurytherms 472 

(as E. maclovinus) compared to polar stenotherms; however, knowledge of high pCO2 levels' effects 473 

on the metabolism of cold environment fish is scarce (Cattano et al., 2018).  474 

According to the OCLTT hypothesis, the physiological performance of ectothermic animals 475 

should decline with the decline of the AS (Pörtner 2008, 2010). However, Gräns et al. (2014) reported 476 

that an increased AS of Atlantic halibut (Hippoglossus hippoglossus) did not translate into improved 477 

growth when exposed to elevated temperatures and pCO2 levels, suggesting that oxygen uptake was 478 

not the factor limiting growth performance. Therefore, future studies should consider moving beyond 479 

seasonal temperature changes and include the effect of a broader range of temperatures and pCO2 480 

levels to test whether the response of E. maclovinus agrees with the OCLTT hypothesis. This will 481 

allow more robust predictions of how this species will respond under near-future climate change 482 

scenarios to ocean warming and acidification. 483 

As seen with ecologically relevant increases in temperatures (Abele and Puntarulo, 2004; Lesser, 484 

2006), increases in pCO2 levels can also disrupt the oxidative metabolism of marine organisms 485 

(Pimentel et al., 2015; Carney Almroth et al., 2019). Therefore, the combined effect of these two 486 

environmental drivers may exacerbate decrements in cellular homeostasis (Pörtner, 2008). After a one-487 

month exposure period to different pCO2 levels coupled with seasonal temperature extremes, juvenile 488 

E. maclovinus showed different levels of oxidative damage (i.e., lipid peroxidation) in the liver and 489 

gill tissues. These results could be grounded in the different functional capacities of both organs and 490 

susceptibility to ROS (Oliveira et al., 2008; Nahrgang et al., 2010). Similarly, Enzor and Place (2014) 491 

found higher levels of oxidative damage in the liver than in the gills of the Antarctic notothenioid 492 

Trematomus bernacchi, Pagothenia borchgrevinski and Trematomus newnesi exposed to elevated 493 

temperature and pCO2 levels in a 56-day exposure period. Additionally, summer temperatures in the 494 

present study caused an increase in gills' lipid peroxidation that might be influenced by the increase in 495 

the SMR of juvenile E. maclovinus under similar acclimation conditions. Different works have shown 496 

that an increase in the metabolic rate causes an increase in radical production and, consequently, in 497 

oxidative damage (Sohal et al., 1989; Zielinski and Pörtner, 2000). Thus, present data could indicate 498 

that lipid peroxidation is possibly linked to the metabolic production of ROS in E. maclovinus and that 499 

metabolic capacity could play a significant role in adapting to elevated temperatures in this species. 500 

Oxidative damage is counteracted by the antioxidant defence systems and repair mechanisms 501 

(Lushchak, 2011). Particularly SOD and CAT, catalyzing the breakdown of oxygen radicals and H2O2, 502 

respectively, serve as primary antioxidants (Lushchak, 2011), and GST is responsible for the metabolic 503 
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inactivation of electrophilic compounds and toxic substrates (Habig et al., 1974). In juvenile E. 504 

maclovinus, the activity of these enzymatic antioxidants varied between tissues. While changes in the 505 

antioxidant enzyme defenses in response to different temperatures were restricted to the liver tissue, 506 

changes in response to different pCO2 levels were detected in both organs. Specifically, the increase 507 

in SOD, CAT and GST activities in the liver tissue translated into an absence of significant changes in 508 

lipid peroxidation. However, the increase of SOD and the decrease of CAT activities in the gills were 509 

insufficient to neutralize the effects of potentially higher ROS generated under changing 510 

environmental conditions. Overall, these results indicate the generation of an oxidative stress condition 511 

(Lushchak, 2014) in the liver and gills of the sub-Antarctic E. maclovinus exposed to OA and warmer 512 

temperatures. These findings also suggest that this species does not maintain a constant high 513 

antioxidant defence level, as the Antarctic T. bernacchi, P. borchgrevinski and T. newnesi do to 514 

compensate for predicted temperature and pCO2 increases in the Southern Ocean (Enzor and Place, 515 

2014). 516 

Taken together, the results of the present study suggest that the combined effect of chronic 517 

exposure to OA and the current summer temperatures pose limits to the thermal performance of 518 

juvenile E. maclovinus at the organismal (thermal tolerance and aerobic scope) and sub-organismal 519 

(oxidative metabolism) levels, making this species vulnerable to projected climate-driven warming. 520 

Following the general expectations for biological and ecological responses to warming (Poloczanka et 521 

al., 2016), E. maclovinus is expected to shift its distribution poleward under projected near-future 522 

warming. Distribution shifts often track the same trajectories as the species' optimal climates (Flanagan 523 

et al., 2019). However, in the southern hemisphere, there is a limit to how far poleward temperate 524 

species will be able to shift before they are blocked by the Southern Ocean (Fraser et al., 2012). 525 

Future studies are needed to evaluate the potential consequences of the combined direct effect 526 

of OA and projected warming (+1 to 3 °C) on the same and other important fitness-related traits of E. 527 

maclovinus. We suggest using physiological data, such as those obtained here, to forecast shifts in 528 

habitat suitability across the distribution range of E. maclovinus in the context of climate change, which 529 

could be a valuable tool for management and conservation.  530 
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Captions  847 

Fig. 1. (a) Critical thermal maximum (CTmax) and (b) minimum (CTmin) of juvenile Eleginops 848 

maclovinus exposed to a combination of temperatures (4 and 10 °C) and pCO2 levels (500, open box, 849 

and 1800 µatm, filled box) for one month. Box plots display the 25th and 75th percentiles, the median 850 

(solid lines), the mean (dotted lines), the 10th and 90th percentiles (whiskers) and outliers (dots). n = 851 

10 is the sample size for each box plot. Different letters above the box plots represent significant 852 

differences (P ≤ 0.05) between temperatures (uppercase) and pCO2 levels (lowercase) in Tukey post 853 

hoc tests. 854 

 855 

Fig. 2. (a) Standard metabolic rates (SMR), (b) maximal metabolic rates and (c) aerobic scope (AS) of 856 

juvenile Eleginops maclovinus exposed to a combination of temperatures (4 and 10 °C) and pCO2 857 

levels (500, open box, and 1800 µatm, filled box) for one month. Box plots display the 25th and 75th 858 

percentiles, the median (solid lines), the mean (dotted lines), the 10th and 90th percentiles (whiskers) 859 

and outliers (dots). n = 11 (present-day pCO2 at 4 °C), n = 8 (future pCO2 at 4 °C), n= 10 (present-day 860 

pCO2 at 10 °C) and n = 10 (future pCO2 at 10 °C) are the sample sizes for corresponding box plots. 861 

Different letters above the box plots represent significant differences (P ≤ 0.05) between temperatures 862 

(uppercase) and pCO2 levels (lowercase) in Tukey post hoc tests. 863 

 864 

Fig. 3. Lipid damage, measured as TBARS contents in (a) the liver and (b) gills of juvenile Eleginops 865 

maclovinus from the Beagle Channel exposed to a combination of temperatures (4 and 10 °C) and 866 

pCO2 levels (500, open box, and 1800 µatm, filled box) for one month. Box plots display the 25th and 867 

75th percentiles, the median (solid lines), the mean (dotted lines). n = 6 is the sample size for each box 868 

plot. Different letters above the box plots represent significant differences (P ≤ 0.05) between 869 

temperatures (uppercase) and pCO2 levels (lowercase) in Tukey post hoc tests. Note the difference in 870 

the y-axis scale between results for liver and gills. 871 

 872 

Fig. 4. Antioxidant capacity, quantified as (a, b) catalase (CAT), (c, d) superoxide dismutase (SOD) 873 

and (e, f) glutathione S-transferase (GST) enzymes activities in the liver and gills of juvenile Eleginops 874 

maclovinus exposed to a combination of temperatures (4 and 10 ºC) and pCO2 levels (500, open box, 875 

and 1800 µatm, filled box) for one month. Box plots display the 25th and 75th percentiles, the median 876 

(solid lines), the mean (dotted lines). n = 6 is the sample size for each box plot. Different letters above 877 

the box plots represent significant differences (P ≤ 0.05) between temperatures (uppercase) and pCO2 878 

levels (lowercase) in Tukey post hoc tests. Note the difference in the y-axis scale between results for 879 

liver and gills.880 
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Table 1. Seawater parameters (mean ± SE) throughout the experiment with juvenile Eleginops maclovinus. 4P: present-day pCO2 at 4 °C, 4F: future pCO2 881 

at 4 °C, 10P: present-day pCO2 at 10 °C, 10F: future pCO2 at 10 °C. 882 

 883 

Treatments pH at 25ºC  

(pH units) 

Temperature  

(º C) 

Total alkalinity 

(µmol kg–1 SW) 

pCO2 in situ 

(µatm) 

[CO3
2–] in situ 

(µmol kg SW –1) 

Salinity 

 

Ω calcite 

 

Ω aragonite 

 

Natural seawater 8.03 ± 0.01 6.98 ± 1.02 2056 ± 6 536 ± 9 65 ± 3 24.63 ± 0.06 1.64 ± 0.08 1.01 ± 0.05 

4P 8.04 ± 0.02 4.51 ± 0.04 1960 ± 18 502 ± 32 58 ± 2 24.58 ± 0.07 1.45 ± 0.06 0.88 ± 0.04 

4F 7.47 ± 0.01 4.47 ± 0.03 1934 ± 16 1887 ± 28 16 ± 1 24.62 ± 0.06 0.41 ± 0.01 0.25 ± 0.01 

10P 8.02 ± 0.01 10.56 ± 0.13 1929 ± 25 536 ± 11 67 ± 2 24.74 ± 0.07 1.69 ± 0.04 1.04 ± 0.01 

10F 7.48 ± 0.01 10.56 ± 0.13 1871 ± 32 1886 ± 40 20 ± 1 24.78 ± 0.06 0.51 ± 0.01 0.31 ± 0.01 

 884 
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Table 2. Two-way ANOVA or ART Analysis followed by two-way ANOVA for the critical thermal 885 

maximum/minimum (CTmax/CTmin) of juvenile Eleginops maclovinus after a one-month exposure 886 

to a combination of temperatures (4 and 10 °C) and pCO2 levels (⁓500 and 1800 µatm). Asterisks 887 

indicate statistically significant differences (P ≤ 0.05).  888 

 889 

Source of variation Degrees of freedom F values P Comparisons 

CTmax (Two-way ANOVA) 

Temperature 1 675.93 < 0.001*  

pCO2 1 213.72 < 0.001*  

Temperature × pCO2 1 127.61 < 0.001*  

Residual 36    

CTmin (ART + Two-way ANOVA) 

Temperature 1 32.77 1.623 × 10-6* 4 < 10 

pCO2 1 16.86 0.0002* P < F 

Temperature × pCO2 1 2.35 0.1338  

Residual 36    

 890 

  891 
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Table 3. Summary of two-way ANOVA for the standard (SMR) and maximum metabolic rates (MMR) 892 

and aerobic scope (AS) of juvenile Eleginops maclovinus after a one-month exposure to a combination 893 

of temperatures (4 and 10 °C) and pCO2 levels (⁓500 and 1800 µatm). Asterisks indicate statistically 894 

significant differences (P ≤ 0.05). 895 

 896 

Source of variation Degrees of freedom F values P Comparisons 

SMR (Two-way ANOVA) 

Temperature 1 76.45 < 0.001*  

pCO2 1 0.01 0.958  

Temperature × pCO2 1 5.67 0.023*  

Residual 34    

MMR (Two-way ANOVA) 

Temperature 1 0.03 0.867  

pCO2 1 4.83 0.035* P > F 

Temperature × pCO2 1 0.04 0.851  

Residual 33    

AS (Two-way ANOVA) 

Temperature 1 2.99 0.093  

pCO2 1 4.63 0.039* P > F 

Temperature × pCO2 1 0.10 0.750  

Residual 33    

 897 

  898 
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Table 4. Two-way ANOVA or ART Analysis followed by two-way ANOVA for the lipid damage and 899 

the antioxidant capacity in the liver and gills of juvenile Eleginops maclovinus after a one-month 900 

exposure to a combination of temperatures (4 and 10 °C) and pCO2 levels (⁓500 and 1800 µatm). 901 

Asterisks indicate statistically significant differences (P ≤ 0.05). 902 

Source of variation Degrees of freedom F values P Comparisons 

Lipid damage 

TBARS liver (Two-way ANOVA) 

Temperature 1 0.273 0.607  

pCO2 1 0.112 0.741  

Temperature × pCO2 1 2.392 0.138  

Residual 20    

TBARS gills (ART + Two-way ANOVA) 

Temperature 1 5.950 0.027* 4 < 10 

pCO2 1 1.497 0.239  

Temperature × pCO2 1 0.049 0.828  

Residual 16    

Antioxidant capacity 

CAT liver (ART + Two-way ANOVA) 

Temperature 1 6.14 0.022* 4 < 10 

pCO2 1 21.264 1.68 × 10-4* P > F 

Temperature × pCO2 1 0.456 0.507  

Residual 20    

CAT gills (Two-way ANOVA) 

Temperature 1 0.225 0.64  

pCO2 1 4.644 0.044* P > F 

Temperature × pCO2 1 0.000486 0.983  

Residual 20    

SOD liver (ART + Two-way ANOVA) 

Temperature 1 48.544 3.17 x 10-6*  

pCO2 1 2.742 0.117  

Temperature × pCO2 1 6.616 0.020*  

Residual 16    

SOD gills (ART + Two-way ANOVA) 

Temperature 1 3.082 0.094  

pCO2 1 37.691 5.34 × 10-6*  

Temperature × pCO2 1 9.981 0.005*  

Residual 20    

GST liver (ART + Two-way ANOVA) 

Temperature 1 7.993 0.010* 4 < 10 

pCO2 1 4.942 0.038* P < F 

Temperature × pCO2 1 0.922 0.348  

Residual 20    

GST gills (Two-way ANOVA) 

Temperature 1 3.982 0.060  

pCO2 1 0.694 0.415  

Temperature × pCO2 1 0.667 0.424  

Residual 20    
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Figure 1. 903 
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Figure 2. 906 
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Figure 3. 909 
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Figure 4. 913 
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Graphical abstract 916 
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Highlights 919 

1. Climate change stressors impaired the thermal physiology of Eleginops maclovinus 920 

2. Summer temperature and near-future pCO2 levels reduced its thermal tolerance 921 

3. Concomitant reductions occurred in fish aerobic scope at near-future pCO2 922 

4. An oxidative stress condition was detected in the gills and liver tissues 923 

 924 

 925 

 926 



Table S1. One-way ANOVA or Kruskal-Wallis testing for differences among treatments in the total length (mm) and body mass (g) of juvenile 

Eleginops maclovinus selected for the critical thermal maximum/minimum (Ctmax/Ctmin), aerobic scope (AS) or oxidative metabolism (lipid 

damage and antioxidant capacity) determinations after a one-month exposure to a combination of temperatures (4 and 10 °C) and pCO2 levels (500 

and 1800 µatm).  

 

Source Body parameter Average ± SE n Test Degrees of freedom F/H values P 

CTmax Total length 55.87 ± 0.76 40 One-way ANOVA 3 0.327 0.806 

 Body mass 1.01 ± 0.05 40 Kruskal-Wallis 3 3.854 0.278 

CTmin Total length 54.98 ±0.86 40 Kruskal-Wallis 3 4.302 0.231 

 Body mass 1.11 ± 0.05 40 Kruskal-Wallis 3 6.667 0.083 

AS Total length 66.26 ± 1 48 One-way ANOVA 3 2.194 0.106 

 Body mass 1.80 ± 0.07 48 Kruskal-Wallis 3 2.868 0.412 

Oxidative metabolism Total length 67.42 ± 0.89 24 One-way ANOVA 3 1.633 0.213 

 Body mass 2.07 ± 0.08 24 One-way ANOVA 3 0.978 0.423 
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