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Abstract Results from three hydrographic surveys across the East Greenland Current between 2011 and
2013 are presented with focus on the freshwater sources. End-member analysis using salinity, 6'80, and
nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of
Pacific freshwater was present near Denmark Strait with a maximum in August 2013. While in 2011 and
2012 the net sea ice melt was dominated by brine, in 2013 it became close to zero. The amount of Pacific
freshwater observed near Denmark Strait in 2013 is as large as the previous maximum in 1998. This, together
with the decrease in meteoric water and brine, suggests a larger contribution from the Canadian Basin. We
hypothesize that the increase of Pacific freshwater is the result of enhanced flux through Bering Strait and a
shorter pathway of Pacific water through the interior Arctic to Fram Strait.

1. Introduction

Freshwater in the upper layer of the Arctic Ocean has increased significantly during the last decade [Giles
et al., 2012; Morison et al., 2012]. Enhanced amounts of freshwater have been observed in the Beaufort
Gyre since 2003 [Proshutinsky et al., 2009], and a total of 8400 km3 of freshwater had accumulated in the
Arctic between the 1990s and 2008 [Rabe et al., 2011]. Between 2007 and 2011 a fresh anomaly was
observed to pass through the Lincoln Sea, north of Greenland, likely exiting the Arctic through Fram Strait
and/or Nares Strait [de Steur et al., 2013]. An anomalous release of freshwater from the Arctic into the Nordic
Seas or subpolar Atlantic could modify stratification and inhibit vertical mixing, with possible consequences
for dense water formation [Dickson et al., 2007]. Arctic freshwater derives mainly from three sources:
meteoric water (MW), Pacific water (PW), and sea ice melt (SIM) [Bauch et al., 1995; Jones et al., 1998]. Of
these sources, MW (composed roughly of two thirds Siberian river water and one third net precipitation)

is the largest contributor [see, e.g., Serreze et al., 2006]. Low-salinity PW enters the Arctic through Bering
Strait and is found mostly in the Canada Basin but is also advected across the Arctic with the Transpolar
Drift Stream depending on the atmospheric circulation [Steele et al., 2004]. Apart from summer meltwater
found at the surface, SIM in the Arctic has generally been negative since brine input associated with freezing
dominates over melting [Aagaard et al., 1985].

The recent increase of freshwater in the central Arctic has been attributed mainly to an accumulation of
MW [Morison et al., 2012]. However, the inflow through Bering Strait has increased by 50% between 2001
and 2011 [Woodgate et al., 2012], and Arctic sea ice cover has continued to decline since 1979, with a record
minimum in 2012 [Perovich et al., 2012]. In Fram Strait, through which the largest export of Arctic liquid
freshwater takes place, indicators of Arctic change have also been observed. Since 2009, positive SIM
fractions have been found and Pacific water was again observed in 2011 [Dodd et al., 2012], after having
been absent since the late 1990s [Falck et al., 2005]. In addition, a significant reduction of sea ice thickness
has been observed, most notably since 2006 [Hansen et al., 2013]. Here we investigate the sources and the
southward progression of Arctic freshwater found on sections that cross the East Greenland Current (EGC)
and extend into the basin, between Denmark Strait and Fram Strait. The composition of the freshwater

is established using an end-member analysis of recently collected shipboard data. Particular attention is
given to a section across the EGC roughly 350 km north of Denmark Strait, known as the Kégur section,
for which data are available from 2011, 2012, and 2013. These observations are then compared to earlier
measurements from the 1990s and mid-2000s.
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2. Data and Methods

Most of the hydrographic, tracer, and velocity data used in the
study come from four sections occupied by RRS James Clark Ross
from 28 July to 25 August 2012, between the Denmark and Fram
S Tn Straits (Figure 1). The sections are referred to as K (Kégur), JM
Sea (Jan Mayen), GS (Greenland Sea), and F (Fram Strait). All of the

{ transects crossed the shelf break EGC but had variable coverage
on the shelf and into the basin. Data from section K were also
Iceland obtained in late August 2011 (R/V Knorr) and in early August

L 2013 (R/V Bjarni Seemundsson). Only in 2012 did section K extend
far enough to sample the northward flowing North Icelandic
Irminger Current (NIIC). In 2012 sea ice was present on section GS
(moderate ice cover) and on section F (heavy ice cover). Section K
was ice free in all years.

Latitude

T 10°W
Longitude

Figure 1. Map of the study region showing
the hydrographic sections Kogur (K), Jan
Mayen (JM), Greenland Sea (GS), and Fram The salinity (S) and temperature (T) data were collected with a
(F) occupied in August 2012 between Sea-Bird 911+ conductivity-temperature-depth (CTD) system
TD::?;;kGSrEZ:ISzZ) CT:;??; nga:ngslj'orth and avejraged into 2 db bins. Freshwater conte.nt (FWC) was
Icelandic Irminger Current (NIIC) are shown determined as FWC = [ (S,.¢—S)/S,f - dz, relative to a reference
with black and yellow arrows, respectively. salinity S,.s =34.9, the mean salinity in Fram Strait [Holfort et al.,
Bathymetric contours are shown every 2008]. Velocity profiles were collected in 2011 and 2012 using
700 m. a Lowered Acoustic Doppler Current Profiler (LADCP), which

were detided using a 1/60° North Atlantic Ocean tidal model
(see http://volkov.oce.orst.edu/tides/Ice.html) based on the original model of Egbert and Erofeeva [2002]. To
compute freshwater fluxes (FWF), absolute geostrophic velocities (V) perpendicular to each section were
calculated by referencing the thermal wind shear to the vertically averaged LADCP velocities in the upper
100-500 m for 2011 and 2012. No LADCP data were obtained in 2013; hence, absolute surface geostrophic
velocities from Ssalto/Duacs gridded Mean Absolute Dynamic Topography (MADT) were used to reference
the thermal wind shear. All S and V data were interpolated on a grid with 1 km horizontal spacing, 5 m
vertical spacing in the upper 150 m, and, below that, on bottom-following contours.

To determine the contributions of source waters, water samples were taken for phosphate (PO,), nitrate
(NO,), and oxygen isotope ratio (§'80) at sampling depths of 5, 20, 50, 75, 100, 150, 200, and 300 m. Pacific
water (PW) can be distinguished from Atlantic water (AW) because of their distinct NO;-PO, relationship
[Jones et al., 1998]. Here we use the same PW source line as Jones et al. [2008a] and Dodd et al. [2012]
(referred to as DO12 hereafter) to determine POZW. The AW source line is also adopted from DO12 in order
to determine PO4AW* where AW* includes AW, river water, and sea ice meltwater [Jones et al., 2008a, 2008b].
The fraction of PW is then determined according to

POy — POV

o = o pop

where subscript m indicates the measured value. Fractions of AW, MW, and SIM are found solving
end-member equations for mass, §'80, and S:

faw + faw + fom = 1= Fop
O3 faw + Opsfinw + Odufsim = O — OF3 fouy
Sawfaw + Suwuaw + Ssimfsim = Sm — Sewfews

with end-member values for 580 chosen as 0% = 0.35%o, O}, = —18.4%o, O3 = +0.5%o, and

Op5, = —1.3%o and for salinity Sy, = 34.9, Sy =0, Sgyy = 4, and Spy, = 32.0. These values follow DO12 with
the exception that we adopted our observed value of 01\3\, which was on average 0.05%o larger than DO12.
If the lower end-member of DO12 was used, positive netSIM values at 200 m depth were obtained, which

is nonphysical.

Since PW and SIM have a salinity value distinct from zero, their contributions to the freshwater are
determined as Pacific freshwater PFW = fi - (Saw — Spw)/Saw and the net fraction of SIM netSIM = £,
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Figure 2. Freshwater fractions of (left column) MW, (middle column) PFW, and (right column) netSIM on sections F, GS, JM, and K going from top to bottom. The
quantities are plotted relative to the shelf break at 0 km distance on each section. The black dots show sampling locations. Above each section the vertically
integrated value of the inventory is given in meters. The EGPF is indicated with the 0.5° isotherm (magenta line) but is only shown below 50 m on sections JM
and K because of the presence of a warm surface layer.

(Saw — Ssim)/Saw» While MW = fy,.. The largest uncertainties in these fractions are associated with the choice
of the PW source line. Following either Jones et al. [2008a] or Jones et al. [1998] leads to differences of 15%
in PFW. Second, the error in O:\/?w results in differences up to 11% in MW. The column freshwater inventories
were determined on each section by interpolating the fractions on 2 m bins and integrating vertically to the
Syef isohaline or to the bottom of the shelf when S was not present. We also calculated the Pacific freshwa-
ter inventory using the end-member values used by Sutherland et al. [2009] (referred to as SU09) to compare
our results with earlier estimates of PFW.

3. Results

Vertical sections of freshwater fractions of MW, PFW, and netSIM are shown for the four transects occupied
in 2012 (Figure 2). Distances along each section are relative to the shelf break (at 0 km). In addition, the
0.5° isotherm is added in magenta to highlight the East Greenland Polar Front (EGPF) which marks the
seaward boundary of the EGC. Note that only the two southern sections, JM and K, spanned the entire
shelf (Figure 1), while the two northern sections, GS and F, covered only 40% and less than 10% of the
shelf, respectively.

The largest FW constituent on all of the sections was MW, with fractions up to 0.1. Progressing southward
from Fram Strait to Kdgur, MW becomes larger and extends deeper from 50 m at section F to 100 m at

section K. Small amounts of MW were also present east of the EGPF in contrast to PFW which was mostly
confined to the low-salinity waters on the shelf and upper slope. The core of PFW becomes weaker to the
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Figure 3. As in Figure 2 but for freshwater fractions of (left column) PFW and (right column) netSIM on section K in
(top row) 2011, (middle row) 2012, and (bottom row) 2013.

south and is found at greater depths, particularly on section K. NetSIM had a different distribution. Namely,
distinct positive values were observed mostly seaward of the EGPF in the upper 50 m on all four sections
and also on the shelf at section GS in a thin (20 m thick) layer. Increasingly negative netSIM, i.e., brine
originating from freezing, was seen on the shelf progressing equatorward from section GS to section K
(reaching 120 m depth on section K). Tracer data were also obtained at the Kdgur section in 2011 (between
the Greenland coast to the Iceland slope; —60 to 90 km) and in 2013 (from the inner Greenland shelf to
higher up the Iceland slope; —40 to 120 km) (Figure 3). This shows that the distributions of PFW and netSIM
are highly variable. For instance, PFW is present much farther east in 2011 and is visible as a strong core over
the slope in 2013 and netSIM is positive near the surface across the entire section in 2011.

The water column FW inventory (i.e., the vertical integral) and its components—MW, PFW, and
netSIM—were computed for the four sections in 2012 (Figure 4, left column). (The nearshore regions on
sections JM and K are excluded because the inventories there are biased low due to the shallow shelf.) The
largest freshwater contribution on all four sections was from MW which was largest inshore of the shelf
break and increasing going south. For section JM, the FW curve was extended eastward beyond the region
of water samples using the CTD data (dashed red line). This shows a small second peak in FW 90 km east

of the shelf break. PFW was the second largest contributor, also with maxima on the shelf and nearly zero
contribution east of the EGPF. Negative netSIM (brine) dominates on the shelf, while netSIM accumulated up
to +2 m on the eastern end of the sections.

The inventories for section K are compared for 2011-2013 (Figure 4, right column). Since CTD measurements
were taken farther east, the total FWC up to the Iceland shelf break could be included (dashed lines in
Figure 4, top right). There are significant differences between the years. In 2011 the total freshwater and MW
inventories were particularly large on the Greenland shelf. In addition, there was a second peak in FWC at
~80 km. Another offshore peak in freshwater content was present in 2013 closer to Iceland. While maximum
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Figure 4. (left column) Column inventories of FW, MW, PFW, and netSIM of the sections F, GS, JM, and K in 2012.
(right column) Column inventories of FW, MW, PFW, and netSIM on just the Kogur section in 2011, 2012, and 2013. All
inventories are plotted relative to the shelf break at 0 km distance on each section.

PFW was present on the shelf in 2012, in 2013 it was located near the shelf break (10-20 km), and in 2011 it
was even farther offshore (50 km). Negative netSIM (large brine content) was observed on the shelf in 2011
and 2012. Maximum netSIM occurred mostly on the eastern end of the EGPF and east of that in all 3 years.
In 2013, however, there was more positive SIM present in the near-surface layer across the entire section
leading to a secondary maximum of netSIM on the shelf at —30 km distance.

The section-mean inventories for 2011, 2012, and 2013 on the Kogur section were determined by
integrating between —40 km and 90 km, i.e., where data existed in all 3 years (Figure 5a). The maximum in
total freshwater occurred in 2013, yet the MW signal was lowest that year. Notably, both the PFW and netSIM
constituents were largest in 2013. In fact, netSIM was zero in 2013, suggesting that brine was fully com-
pensated by positive SIM in 2013, in contrast to the other 2 years when brine still dominated over SIM. The
freshwater fluxes integrated over the same distance are shown in Figure 5b given in mSv (1 mSy = 103 m3/s,
and negative = southward flux). The net flux was —105 + 22 mSvin 2011, =81 + 18 mSv in 2012, and
—104 + 41 mSv in 2013. Since there were no LADCP data in 2013, root-mean-square errors obtained from
the difference between thermal wind shear at the surface and absolute surface geostrophic velocities
obtained from MADT in 2013 lead to a larger error estimate. We note that the fluxes of FW and MW varied
similarly as the inventories, but this was not the case for the flux of netSIM. Even though the normalized
netSIM on the section was zero, a net positive flux of netSIM was found in 2013 since the minimum netSIM
(brine (negative)) was found in the (southward (negative)) core of the EGC. The flux of PW was largest in
2013 and made up one third to the total FWF.

The normalized amount of PFW (in meters) between —60 km (the coast) and 90 km on the Kégur section
was determined following SU09 who quantified PFW over that same 150 km distance on this section.

(Inventories in 2013 were extrapolated to the coast assuming a similar distribution at —60 km relative to
—40 km as in earlier years.) The calculation was done based on our choice of end-members, as well as for
the end-members used by SUQ9 (Figure 5c). Results for the late-1990s and 2000s adopted from SUQ9 are
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Figure 5. (a) Integrated inventories of FW, MW, PFW, and netSIM calculated between —40 km and 90 km distance on
section K for 2011, 2012, and 2013 and (b) net fluxes of the inventories on section K integrated over the same distance.
(c) Normalized Pacific freshwater in meters between —60 km and 90 km distance with end-members used in this study,
with end-members of SU09, and pre-2005 data from SU0Q9.

also included. For the years considered here, using the end-members based on our study, there were large
amounts of PFW with a section-mean value varying from 2.3 to 3.3 m (black line/diamonds). These represent
a lower bound of PFW, while the end-members of SU09 result in larger values up to 3.8 m (gray line/squares).
Regardless of the end-members used, the PFW on the Kdgur section in recent years is larger compared to
earlier data, and in 2013 the PFW value is comparable to the previous maximum in 1998.

4, Discussion

In the data presented here, collected between 2011 and 2013, the largest contributor to the FWC on the
shelf and in core of the EGC west of the EGPF was MW, followed by a significant amount of PFW in all 3 years.
We note that the complete FWC across the shelf was captured only on the southern two sections JM and K.
Between these two transects the integrated inventories show a small increase in total FWC and MW, which
can be attributed to runoff from Greenland. The lateral distribution of PFW on the Kégur section was most
variable between the occupations. In 2011 PFW dominated the FWC seaward of the shelf break while still
being inshore of the EGPF. The reason for this eastward shift in 2011 is unclear, but it may be due to the
sporadic occurrence of eddies spawned from the EGC farther upstream [Vdge et al., 2013]. Such a turbulent
flux may be an effective mechanism for removing FW from the shelf break EGC in this area.

Near the EGPF and seaward of this—in the Greenland and Iceland seas—the FWC was dominated by SIM
as far north as Fram Strait. Since PFW and negative netSIM (a surplus of brine) are not seen east of the EGPF
on sections F, GS, and K, we assume that the FWC east of 50 km distance on section JM also consists of
SIM. Under this assumption there is a small increase in total SIM between sections JM and K progressing
southward. However, this is not associated with an increase in netSIM flux at section K. On the contrary, the
maximum SIM on that section occurs in the northward flowing NIIC located east of 140 km. This leads to

a northward transport of 11 & 2.4 mSv of SIM here, while the transport of MW and PFW are 2 + 0.44 mSv
and 0.5 + 0.12 mSy, respectively. From these observations in 2012 we surmise that sea ice is more easily lost
from the EGC into the Nordic Seas, where it subsequently melts in summer as it meets warmer waters. There
appears to be hardly any loss of the liquid components of FW into the Nordic Seas, which is in agreement
with results of Dodd et al. [2009].

The large amounts of PFW observed here suggest a change in the pathway of this water toward Fram Strait
and likely a temporal release of FW from the Arctic. The presence of large amounts of PFW in 2011 is consis-
tent with DO12, who showed that PFW was first observed again in Fram Strait in 2011, which was preceded
by a freshwater anomaly in the Lincoln Sea between 2007 and 2010 [de Steur et al., 2013]. The PFW value
measured in 2013 on the Kdgur section is as large as the previous maximum observed in 1998 (SU12).
Despite the large gap in observations between 2004 and 2011 near Denmark Strait, and the fact that the
occurrence of Pacific water in the EGC is intermittent [Taylor et al., 2003], we surmise that the PFW over that
time period was small, considering the fact that it was not observed in Fram Strait (DO12).
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While large amounts of PFW were observed during all three occupations of the Kégur section—with a
maximum in 2013—we found that the MW inventory decreased and that netSIM increased due to a
reduction in brine. These observations imply a slightly weaker contribution of Siberian shelf water to the
EGC during recent years and an increased contribution from Canadian Basin freshwater. This is consistent
with significant changes in PFW that have occurred in the Pacific Arctic during the last decade. In particular,
the influx of Pacific water through Bering Strait increased since 2001, with a high record in 2011 [Woodgate
et al., 2012], while the eastward flux of PFW in the Beaufort shelf break jet has diminished over the same
time period due to enhanced easterly winds [Brugler et al., 2014]. As such, more PFW has been available

to enter the Beaufort Gyre and extend farther north into the Canadian Basin, providing a shorter pathway
to Fram Strait. This suggests that the combination of enhanced Pacific water inflow and a change in the
pathway of PFW into the central Arctic likely caused the recent large amounts of PFW near Denmark Strait
documented here.
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