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ABSTRACT 15 

Previous studies have shown that heterocyst glycolipids (HGs) are unique markers for N2-fixing 16 

heterocystous cyanobacteria. In this study, the HGs of a marine pelagic Calothrix sp. CCY1611 17 

isolated from the tropical western North Atlantic were analyzed by ultra-high pressure liquid 18 

chromatography–high resolution mass spectrometry and it was shown that this organism contains 19 

an unusual C28 triol HG with a methylated C6 sugar (methyl-HG28 triol) head group. Gas 20 

chromatography–mass spectrometry analysis of the sugar released from the novel HG by acid 21 

methanolysis revealed that the sugar is likely 6-O-methyl-β-D-glucopyranose. We propose that 22 

this methyl-HG28 triol is a potential biomarker for pelagic members of the genus Calothrix. 23 

 24 

1. Introduction 25 

In all heterocystous cyanobacteria studied to date, the heterocyst cell wall contains 26 

heterocyst glycolipids (HGs) (Nichols and Wood, 1968; Abreu-Grobois et al., 1977; Gambacorta 27 

et al., 1995; Bauersachs et al., 2009a; 2014). These HGs almost universally comprise a hexose 28 

head group (hereafter C6) glycosidically bound to long-chain diols, triols, or hydroxyketones 29 

(Bryce et al., 1972; Gambacorta et al., 1998; Bauersachs et al., 2009b; 2011), except for some 30 

marine endosymbiotic cyanobacteria which contain pentose head groups (Schouten et al., 2013; 31 

Bale et al., 2015; 2018). Previous studies reported that HGs show structural diversity depending 32 

on the family level within the cyanobacteria divisions (Bauersachs et al., 2009a; 2014; 2017). The 33 

heterocystous cyanobacteria of the genus Calothrix are characterized by the presence of the 1-(O-34 

hexose)-3,25,27-octacosanetriol (C6 HG28 triol) and 1-(O-hexose)-27-keto-3,25-octacosanediol 35 

(C6 HG28 keto-diol) (Gambacorta et al., 1998; Bauersachs et al., 2009a; Wörmer et al., 2012). 36 

However, these studies on Calothrix focused predominantly on benthic strains, while this genus 37 

is also known from the pelagic where it occurs as a symbiont of marine diatoms, specifically of 38 



Chaetoceros (Foster et al., 2010; 2011). These symbioses are known as diatom-diazotroph 39 

associations. Previously, while analyzing the HG content of Calothrix sp. UTEX 2589, Schouten 40 

et al. (2013) found that alongside the C6 HG28 triol and C6 HG28 keto-diol there was also an 41 

unknown glycolipid eluting several minutes earlier than the known glycolipids. Based on mass 42 

spectral fragmentation patterns and molecular weight, this novel glycolipid was tentatively 43 

described as a HG28 triol containing a C6 sugar moiety which contained either an additional keto 44 

group, e.g. glucuronic acid instead of glucose, or an additional methyl group, e.g. by methylation 45 

of one of the hydroxyl groups (Schouten et al., 2013). This novel glycolipid was not present in 46 

the majority of benthic Calothrix species examined to date, but was present in a Calothrix 47 

isolated from an intertidal microbial mat (CCY0202; Schouten et al., 2013). Here, we identified 48 

this novel HG in a pelagic Calothrix sp. CCY1611 that was isolated from the surface water of the 49 

tropical western North Atlantic using ultra-high pressure liquid chromatography–high resolution 50 

mass spectrometry (UHPLC–HRMS) and acid methanolysis. 51 

 52 

2. Methods 53 

2.1. Isolation and culturing 54 

Calothrix sp. CCY1611 was isolated from surface water from the tropical North Atlantic 55 

Ocean collected during a research cruise onboard the R/V Pelagia in 2014 (Station 20, 64PE393, 56 

cf. Bale et al., 2018). A surface water sample (1.5 L) was filtered over a 47 mm GFF (Whatman, 57 

Maidstone, UK). The filter was placed in a disk filled with agarose (0.6%) solidified seawater 58 

from the same location and subsequently stored at –80 °C until transport to the laboratory at 59 

NIOZ. Isolation of diazotrophic cyanobacteria was performed by transferring the GFF filter to a 60 

Petri dish with a solidified artificial seawater T
0
 medium (modified from Chen et al., 1996) with 61 

agarose (7 g L
-1

) as the solidifying agent. The medium was supplemented with glucose (2 g L
-1

) 62 



and the incubation was carried out in an incubator (model MLR-350, SANYO, Osaka, Japan) at 63 

27 °C, with a 12-12 h light-dark cycle and a light intensity (photon density) of 20–30 µmol m
-2

 s
-64 

1
. Once colonies appeared on the filter, they were transferred to new agarose medium without 65 

glucose, and a pure culture was obtained after repeated transfers of single trichomes using 66 

standard microbiological techniques. The isolate was identified as a Calothrix sp. based on its 67 

morphology using a light microscopy and sequencing of the 16S rRNA gene (GenBank accession 68 

number MH364376). In order to characterize its HGs, the strain was grown for 40 days in T
0
 69 

liquid medium at 27 °C and harvested at stationary phase and stored at –20 °C until analysis.  70 

 71 

2.2. Lipid extraction and analysis 72 

The extraction of lipids from freeze dried biomass was carried out using a modified 73 

Bligh-Dyer extraction as described previously (Bale et al., 2013). UHPLC–HRMS was carried 74 

out as described by Bale et al. (2017) using an Agilent 1290 Infinity UHPLC was used, equipped 75 

with thermostatic auto-injector and column oven, coupled to a Q Exactive Orbitrap MS with Ion 76 

Max source with heated electrospray ionization (HESI) probe (Thermo Fisher Scientific, 77 

Waltham, MA, USA).  78 

To confirm the structure of the sugar in the novel HG, it was isolated using semi-79 

preparative HPLC and the normal phase system as described by Bale et al. (2017). The column 80 

effluent was collected in 1 min fractions and the fractions containing the novel HG were pooled. 81 

Acid methanolysis was performed on the isolated compound and hydroxyl groups were converted 82 

into trimethylsilyl (TMS) ester derivatives using N,O-bis(trimethylsilyl)trifluoroacetamide 83 

(BSTFA) and pyridine (1:1; 20 min at 60 °C) before analysis by GC–MS using a Thermo Trace 84 

DSQ as described in Schouten et al. (2013). The sugar was identified by comparison of its mass 85 

spectrum with library mass spectra (NIST Mass Spectral Library, Version 2.0, 2012) and three 86 



standards (methyl α-D-glucopyranoside, methyl-β-D-galactopyranoside and 3-O-methyl-D-87 

glucopyranose, Sigma-Aldrich, St. Louis, USA).  88 

 89 

3. Results and discussion 90 

Analysis of Calothrix strain CCY1611 by UHPLC–HRMS (Fig. 1a) indicated the 91 

presence of a C6 HG28 triol ([M+H]
+
 m/z 621.493) and a C6 HG28 keto-diol ([M+H]

+
 m/z 92 

619.478) and a novel HG ([M+H]
+
 m/z 635.508), previously reported by Schouten et al. (2013) in 93 

two other Calothrix species. Initial structural identification was based on the HRMS
2
 spectrum 94 

generated from the protonated molecule (Fig. 1b). The spectrum contained the same five ions as 95 

described in the MS
2
 spectrum of the C6 HG28 triol (Bauersachs et al., 2009b), at m/z 459.441, 96 

441.430, 423.420, 405.409 and 387.398, suggesting that the alkyl chain is also a 3,25,27-97 

octacosanetriol. The product ion at m/z 459.441 corresponded to a neutral loss of a head group of 98 

mass 176.067 Da (C7H12O5). The accurate mass of the unknown HG [M+H]
+
 ion (m/z 635.508) 99 

allowed us to distinguish between the two hypothesized structures for the head group by 100 

Schouten et al. (2013) since the accurate mass of the HG with an additional keto group on the C6 101 

sugar, e.g. glucuronic acid, (C34O10H66) is 635.473, whereas accurate mass of the HG with an 102 

additional methyl group on the C6 sugar (C35O9H70) is 635.509. This demonstrates that the 103 

unknown HG compound is a methylated C6 HG with a C28 triol core (methyl-HG28 triol). This 104 

was confirmed by GC–MS analysis of the sugar released by acid methanolysis of the isolated (by 105 

preparative HPLC) novel HG. The mass spectrum (Fig. 2) provided evidence that there was no 106 

methylation at the C-2, C-3 or C-4 position and that, due to the methanolysis of the alcohol chain, 107 

there was a methylation at the C-1 position (Petersson and Samuelson, 1968). The additional 108 

methylation was therefore determined to be at the C-6 position. Furthermore, the spectrum was 109 

similar to the reported mass spectrum to 6-O-methyl-β-D-glucopyranose (NIST Mass Spectral 110 



Library, Version 2.0, 2012), while its retention time and mass spectrum was different from our 111 

analysis of sugars with single methylations at the 1-O and 3-O position. Therefore, the novel HG 112 

was identified as 1-(O-6-O-methyl-β-D-glucopyranose)-3,25,27-octacosanetriol, a potential novel 113 

biomarker for cyanobacteria in the genus Calothrix. 114 

To date, there have been no environmental reports of the methyl-HG28 triol, likely due to 115 

limitations of previous analytical methods such as selective reaction monitoring (SRM) 116 

(Bauersachs et al., 2009b; Bale et al., 2015), which did not include the transition of the methyl-117 

HG28 triol. Further research examining more species of pelagic and benthic Calothrix should 118 

reveal if this novel HG is associated with pelagic strains of Calothrix or whether it has a wider 119 

distribution within the genus. 120 

 121 
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Figure 1. (a) UHPLC-HRMS partial base peak chromatogram (Gaussian smoothed) showing the 
distribution of heterocyst glycolipids (filled peaks) in the Bligh and Dyer extract of Calothrix sp. 
CCY1611. Insert: proposed structure of the novel methyl-C6 HG28 triol, 1-(O-6-O-methyl-β-D-
-glucopyranose)-3,25,27-octacosanetriol. (b) MS2 spectrum of the novel methyl-C6 HG28 triol 
with [M+H]+ 635.508. For interpretation of the acyl chain fragments see Bauersachs et al. (2009b).
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