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Key Points: 

 The convection intensity in each of the three convective areas of the Subpolar Gyre can 

be estimated with a minimum of 10 to 50 vertical casts 

 A sufficient number of casts was collected only since the mid-2000s  

 In the Subpolar Gyre, the convection intensity increased from the mid-2000s to the late 

2010s 

 

Abstract 

Deep convection in the Subpolar Gyre (SPG) forms a link between the upper and lower limbs of 

the Atlantic Meridional Overturning Circulation (AMOC). The intensity of convection in ocean 

studies is usually estimated using mixed layer depth (MLD). Here MLD is derived using vertical 

profiles of potential density from the gridded ARMOR3D dataset and from in situ observations 

of the EN4 dataset. Given limited areas of convective chimneys, the robustness of the estimates 
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from an available set of vertical profiles needs to be verified before accessing mechanisms of 

interannual variability of deep convection. For reaching this goal, we first outlined three 

convection domains in the SPG with a high frequency of deep convection events: the 

southwestern Labrador Sea (L-DC), the central Irminger Sea (I-DC), and the area south of Cape 

Farewell (F-DC). The minimum number of randomly scattered casts, required to be executed 

from January to April for a robust estimate of the maximum MLD, depends on the typical area of 

the convective regions within the domain and forms 50 casts for L-DC, 40 casts for I-DC and 10 

casts for F-DC. For the investigated convection domains, a sufficient number of casts were 

collected for several standalone winters of the late 1990s, while continuous time series of the 

convection intensity can be obtained only since the mid-2000s.  

 

Plain Language Summary 

In this study, we concentrate on the accuracy of our assessments of the interannual variability of 

the intensity of deep convection in the Subpolar Gyre. Deep convection forms deep water masses 

further spreading at the intermediate and deep ocean layers south throughout the Atlantic. These 

waters are replaced by warmer surface waters entering the subpolar regions in the ocean 

meridional overturning system. The transported heat strongly influences the state of climate at 

mid- and high latitudes. The intensity of deep convection is typically estimated in oceanography 

as the winter maximum of the mixed layer depth, which, in the study region, can exceed 2000 m. 

Winter in situ observations in the Subpolar Gyre are relatively scarce. This raises the question: 

how robust are the existing estimates of the interannual variability of the convection intensity 

derived from historical observations, provided the limited size of the areas of deep convection. In 

this study, we show that for three main convective domains of the Subpolar Gyre (the Labrador 

Sea, Irminger Sea, and Farewell domain), a minimum of 10 to 50 randomly scattered profiles 

(depending on the domain) is required for a confident estimate of the deep convection intensity.  

Keywords:  

intensity of deep convection, accuracy, Subpolar North Atlantic, mixed layer depth, number of 

vertical casts 

1 Introduction 

The Atlantic Ocean regulates meridional gradients of upper ocean heat content through a 

three-dimensional system of its circulation cells, often generalized as a meridional cell of the 

Atlantic Meridional Overturning Circulation (AMOC), a part of the Global Conveyor (Böning et 

al., 2006; Born et al., 2016; Broecker, 1991, 1987; Lappo, 1984). Deep convection, which links 

the upper and lower limbs of the Conveyor in the North Atlantic, is one of the key processes of 

this circulation pattern (Buckley and Marshall, 2016; Johnson et al., 2019; Kuznetsova and 

Bashmachnikov, 2021).  

In the Northern Hemisphere, regions of deep convection are the Nordic Seas and the 

North Atlantic Subpolar Gyre (SPG) (Gascard, 1991; Johannessen et al., 1991; Schott and 

Marshall, 1999). All convective areas are observed with cyclonic gyres by rising isopycnals over 

the weakly stratified intermediate waters in their central areas (the cold water dome), thus 

decreasing the thickness of the upper low-buoyancy layer. The interannual intensity of the deep-

water formation in the convection sites of the North Atlantic is primarily regulated by oceanic 

heat and salt advection and by intensive heat release from the sea surface to the atmosphere, 

Jo
ur

na
l P

re
-p

ro
of



 

 

among other factors (Bashmachnikov et al., 2021; Sarafanov et al., 2012). For the Greenland 

Sea, authors stress the importance of variability of the ice cover and the Atlantic water inflow for 

the development of convection, while for the Norwegian Sea the ocean-atmosphere heat 

exchange governs the intensity of convection  (Bashmachnikov et al., 2021; Böning et al., 2016; 

Fedorov et al., 2021; Fedorov and Bashmachnikov, 2020; Glessmer et al., 2014; Moore et al., 

2015). In the SPG the mechanisms shaping the interannual variability of deep convection are still 

under discussion. Here we concentrate on the robustness of our knowledge of the interannual 

variability of deep convection in the SPG, which forms the basis for further understanding of the 

mechanisms involved.  

Relatively warm and salty waters of the North Atlantic (NAC) and Irminger currents 

(IC), combined with fresh and cold waters of the East/West Greenland (EGC/WGC) and 

Labrador currents (LC), form the cyclonic circulation pattern around the Labrador and Irminger 

seas, which is called the SPG (Fig. 1). The topographically trapped jet-like West/East Greenland, 

and Labrador currents have a typical current velocity of about 25-40 cm s 
– 1

, while the relatively 

wide and weak Irminger current has a current velocity of about 15 cm s 
– 1

.  

The intensity of the SPG circulation varies in time, primarily linked to variations of the 

North Atlantic Oscillations (NAO), a principal pattern of atmospheric variability in the North 

Atlantic (Bakalian et al., 2007; Langehaug et al., 2012; Lohmann et al., 2009; Pickart et al., 

2002; Rhein et al., 2011), as well as to those of the East Atlantic Pattern (EAP), which is the 

second mode in EOF decomposition of spatio-temporal variability of the atmospheric pressure 

field in the region (Langehaug et al., 2012). The positive NAO phase leads to the cooling and 

strengthening of the SPG (Lohmann et al., 2009). As the NAO phase turns negative, a gradual 

weakening of the SPG circulation is observed, reaching its maximum at a 3.5-year lag 

(Gladyshev et al., 2018). During recent decades, the overall decrease of the SPG circulation 

(Belonenko et al., 2018) corresponds to an overall warming of the upper water layer during a 

gradual decrease of the NAO index observed until the mid-2010s (Iakovleva and 

Bashmachnikov, 2021, 2019). 

Variations in the transport of the warmer (saltier) near-surface subtropical water in the 

SPG trigger a negative (positive) feedback in the deep convection – upper-ocean advection 

dynamic system. Growth in the upper-ocean salinity increases water density in the central parts 

of the Irminger and/or Labrador gyres (partly driven by eddy transport), which results in a more 

intense deep convection and SPG circulation (Born et al., 2016; Levermann and Born, 2007). An 

intensified convection drives a further intensification of the SPG circulation. On the longer time 

scales, a related increase in the deep-water formation rate (Belonenko et al., 2018; Gelderloos et 

al., 2013) intensifies the AMOC and increases the upper ocean northward transport of 

subtropical water with a decadal time lag (Kuznetsova and Bashmachnikov, 2021; Lozier et al., 

2019). An increase in the upper ocean temperature with advection of the warm subtropical water, 

on the opposite, decreases water density in the SPG and drives similar negative feedback. Acting 

in parallel, the integral effect depends on the relative importance of temperature (salinity) 

anomalies in stabilizing (destabilizing) the water column in the convection regions. 

 

Jo
ur

na
l P

re
-p

ro
of



 

 

  

Figure 1. The study region. The mean current velocity (cm s
-1

) is shown in color; arrows 

demonstrate the current direction, derived from long-term averaged AVISO altimetry sea-surface 

height [https://resources.marine.copernicus.eu/product-

detail/SEALEVEL_GLO_PHY_L4_MY_008_047/DATA-ACCESS]. Three regions where 

convection at least once over winters 1993-2019 exceeded 800 m are marked with three solid 

contours: the convection domain in the Irminger Sea (I) is shown in blue, that of Cape Farewell 

(F) is shown in black, and that in the Labrador Sea (L) is shown in red. Surface currents: NAC is 

the North Atlantic Current, IC is the Irminger Current, WGC is the West Greenland Current, 

EGC is the East Greenland Current and LC is the Labrador Current. 

 

The most frequent development of deep convection in the SPG is observed in three 

regions (Bashmachnikov et al., 2018; Fedorov et al., 2018): the central Labrador Sea (L-DC), the 

Irminger Sea (I-DC), and the domain south of Cape Farewell (F-DC) (Fig. 1). These are evident 

in the animation of the monthly mean mixed layer depth (MLD) (see Supplement S1). This 

animation suggests that the spatial variability of MLD in each of the selected domains has 

relatively independent dynamics.  
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Spatial and temporal variability of deep convection in the Labrador Sea is investigated in 

a number of publications (Bashmachnikov et al., 2018; Fedorov et al., 2018; Georgiou et al., 

2019; Johannessen et al., 1991; Lazier et al., 2002; Schott and Marshall, 1999; Yashayaev, 2007; 

Yashayaev and Loder, 2017). These in situ and model studies showed that the area of the most 

frequent convection is situated in the southeastern part of the basin, where, during some winters, 

the convection depth exceeds 2000 m. However, deep convection over 1000 m was episodically 

observed to spread almost the whole deep area of the basin. At long time scales, there were 

obtained some moderate links of the convection intensity with the NAO (Pickart et al., 2002; 

Rhein et al., 2011) and EAP (Langehaug et al., 2012) atmospheric indices. It was also noted in 

numerical models that high-frequency atmospheric cooling events can increase the convection 

intensity during moderate or warm winters (Holdsworth and Myers, 2015). Once formed, the 

Labrador Sea Water (LSW) is spread over the whole Subpolar Gyre, including the Irminger Sea, 

at lower mid-depth levels within a year or so (Våge et al., 2011; Yashayaev et al., 2007).  

Several decades ago, convection in the Irminger Sea was considered to be of minor 

importance compared to that in the Labrador Sea. One of the first pieces of evidence of MLD 

over 1000 m in the Irminger Sea was provided by Bacon et al. (2003), while Pickart et al. (2003) 

observed a winter MLD of 1500-2000 m. Regular development of deep ocean convection in the 

I-DC domain was later confirmed in several studies (Bashmachnikov et al., 2019; Fedorov et al., 

2018; Fröb et al., 2016; Gladyshev et al., 2016). It was suggested that a certain fraction of the 

“upper Labrador Sea Water” is formed in the Irminger Sea (Pickart et al., 2003). 

Deep convection in the F-DC domain is not that regular and this domain is often (but not 

always) merged with either L-DC or I-DC (see animation in S1). In the F-DC domain the winter 

MLDs can reach 1700 m, while an anomalously low stratification of deep waters suggests that 

this happens relatively regular (Bashmachnikov et al., 2018; Falina et al., 2017; Fedorov et al., 

2018; Piron et al., 2017; Rühs et al., 2021; Zunino et al., 2020). However, interannual variability 

of the convection intensity in this region has never been described. Our analysis below 

demonstrates that despite a similar decadal variability, in the interannual variability of F-DC we 

observe notable differences between I-DC and L-DC domains. The reasons for these differences 

remain to be explored. 

In ocean studies, the most common measure of the intensity of convection is the 

maximum mixed layer depth (MMLD) over the convective season (Kantha and Clayson, 2000). 

The robustness of this measure is questionable given the limited number of available in situ casts 

(Fedorov and Bashmachnikov, 2020; Våge et al., 2009). Thus, in 2014/2015, the MMLD in the 

Irminger Sea from all publicly available in situ data was estimated at 1600 m (Bashmachnikov et 

al., 2019; de Jong et al., 2018). For the same winter, using a smaller subset of casts from Argo 

floats, Fröb et al. (2016) estimated the MMLD as 1400 m, while Gladyshev et al. (2016), added 

their own in situ observations in I-DC (not publically available), estimated the MMLD as 1800 in 

the central part of the convective domain and 1300 m on its periphery. Similar inconsistencies 

can be found in various estimates of the convection intensity in the Labrador Sea. The MMLD of 

1150 m derived during the winter of 1997 by Lazier et al. (2002) versus 1400 m derived by 

Pickart et al. (2002) for the same year is a result of using different datasets. During winter 2014, 

the maximum winter MLD estimated from Argo floats was 1500 m (Holte et al., 2017), 300 m 

shallower than another estimate of 1800 m from a larger dataset (Yashayaev and Loder, 2017). 

These inconsistencies mostly do not affect long-term tendencies in the convection intensity 
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(Holdsworth and Myers, 2015; Våge et al., 2009; Yashayaev and Loder, 2017), but they may 

become important when analyzing possible mechanisms of year-to-year variations.  

The present study primarily aims to answer the following question: how many 

measurements during the convective season are needed to estimate the year-to-year variability of 

the deep convection intensity, derived from the maximum MLD, in each of three main deep 

convection regions of the Subpolar Gyre? Based on these results, we list the range of years when 

winter measurements available from the open sources provide a sufficiently robust estimate of 

the intensity of convection in these areas.  

 

2 Data and Methods 

The accuracy of the convection intensity derived from estimates of the MMLD naturally 

depends on the number of available in situ temperature and salinity profiles in the region. These 

profiles are downloaded from the EN4 dataset (version 2.1, 

https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html). The dataset contains quality-

controlled vertical profiles since 1900, derived from several databases: Argo; World Ocean 

Database (WOD); Arctic Synoptic Basin Wide Oceanography (ASBO); Global Temperature and 

Salinity Profile Program (GTSPP). We collected only the profiles with both temperature and 

salinity which permits the computation of water density profiles used for MLD detection 

(Bakalian et al., 2007; Born et al., 2016). Raw profiles of temperature and salinity are measured 

in situ by various instruments including shipboard XCTD, CTD, Argo profiles, and ocean 

gliders. All casts are quality controlled, duplicates and profiles with unrealistic values of 

temperature and salinity are filtered out, and the resulting data are interpolated (decimated) to 

standard ocean levels (Good et al., 2013).  

For estimates of typical distributions of the MLD during the convective season, as well as 

for computation of an alternative measure of convection intensity, the total area with MLD over 

a predefined threshold (SMLD) (Bashmachnikov et al., 2021; Fedorov and Bashmachnikov, 

2020), we use gridded three-dimensional monthly mean ocean temperature and salinity fields 

from ARMOR3D dataset [https://resources.marine.copernicus.eu/product-

detail/MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012]. The data is available since 

1993 and has a spatial resolution of ¼° x ¼°. The dataset combines all observed in situ 

temperature and salinity profiles (from Argo, XCTD, CTD, and moorings) with “synthetic” 

profiles obtained on a regular grid from remote sensing data (SLA from CMEMS Sea Level, SST 

from Ostia analyses, SSS from CMEMS MOB). The “synthetic” profiles are obtained by an 

extrapolation of the sea-surface signals down to 1500 m, using previously derived regional 

regression equations that link the in situ measured temperature and salinity at different depth 

levels with the sea surface parameters from the remote sensing data. The final gridded 3D fields 

combine all available in situ profiles with the “synthetic” profiles in an optimal interpolation 

procedure (Guinehut et al., 2012). In our previous studies, we cross-validated the interannual 

variability of the deep convection intensity, measured as the winter MMLD from ARMOR3D, 

with the MMLD obtained from various ocean reanalyses, as well as convection accesses from 

various alternative measures (Bashmachnikov et al., 2021, 2019, 2018; Fedorov et al., 2021). 

The results showed that the long-term tendencies of the MMLD measure using ARMOR3D are 

consistent between the alternative measures, as well as between the datasets.  
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The MLD is calculated based on a method suggested by Dukhovskoy (Bashmachnikov et 

al., 2018; Fedorov et al., 2018). It was found to perform better than the commonly used methods 

by (Kara, 2003)or (de Boyer Montégut, 2004), especially in the subpolar regions with a weak 

pycnocline (see, for example, Fig. 3 in Fedorov and Bashmachnikov (2020)). Dukhovskoy’s 

method does not use a predefined threshold, but the MLD is fixed at a depth z where the local 

vertical potential density gradient |
  

  
| exceeds by more than two local standard deviations the 

mean value of the gradient. Following previous studies, we estimated the statistics using the 

window [                ]. Before implementing this analysis, we filtered the small-scale 

noise by applying the moving average with a 10 m window and artificially mixed the sections of 

the profiles with unstable stratification. The final step was a visual control of the algorithm's 

performance.  

 

3 Results 

3.1. Interannual variability of the maximum MLD (MMLD) in the Subpolar Gyre during 

the convective season 

Deep convection in different domains of the SPG occurs during January-May (JFMAM), 

which is further referred to as the convective season. The peak development of DC is typically in 

March (Bashmachnikov et al., 2018; Fedorov et al., 2018; Holdsworth and Myers, 2015; 

Lohmann et al., 2009). For all three convection domains of the SPG (Fig. 1), estimated using the 

ARMOR 3D dataset, the MMLD shows a similar long-term variability (solid lines in Fig.2), with 

regular intensive convection reaching 1500-2000 m in the beginning (1993-1996) and at the end 

(2015-2018) of the study period, and convection of a lower intensity in-between. The weakening 

of the convection from the 1990s to the 2000s in the Labrador Sea has been previously derived 

using a relatively independent methodology of analysis of the characteristics and thickness of the 

LSW at mid-depths (Yashayaev et al., 2007; Yashayaev and Loder, 2017). In particular, it has 

been shown that a denser Classical LSW, dominating at mid-depths during the 1990s, in the 

early 2000s was replaced with a lighter Upper LSW. It was also noted, that an episodic bit of 

deep convection in 2008-2009 did not result in an increase of the Classical LSW at the deep 

layers, presumably due to a limited period of intensified vertical mixing (Yashayaev and Loder, 

2009).  
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Figure 2. Interannual variability of the MMLD [m] is presented as solid lines (left axis). 

Interannual variability of the areas with the MLD over 800 m (SMLD), averaged over JFMAM, 

is presented in [%] of the convection area as vertical bars (right axis). ARMOR 3D data are used. 

Blue color marks the variables of the I-DC domain; red – for the L-DC domain; black – for the 

F-DC domain. RI, RL, RF are the correlation coefficients between MMLD and JFMAM mean 

NAO index in the I-DC, L-DC, and F-DC domains, respectively. 

 

Despite an overall common variability in all three domains of the SPG (for example, the 

intensified convection during 1993-1996, 2008-2009, 2012, 2014-2018), some years show 

differences between the domains. During 1999-2000 convection in the F-DC domain was 

anomalously weak (an MMLD of 200 m), while in L-DC the MMLD reached 800-1200 m, and 

in I-DC it reached 1400 m. Similarly, during the winters of 2001-2007, the MMLD in the I-DC 

ranged between 400 and 700 m, notably weaker than that in F-DC during the winters of 2001 and 

2005, and significantly weaker than in L-DC during the winters of 2002-2007 (800-1600 m).  

Following Fedorov and Bashmachnikov (2020), here we also use a complementary 

measure of the DC intensity of the total area with MLD over a predefined threshold (SMLD, bars 

in Fig. 2). This measure can be obtained only from gridded datasets (ARMOR3D data) and 

compliments the MMLD metrics (see for details Bashmachnikov et al., 2021). In the study 

region, we define the threshold to be 800 m. This value of this threshold is chosen to be close to 

the upper limit of the LSW core (Yashayaev and Loder, 2017, 2009). The long-term tendencies 

in the SMLD (bars in Fig. 2) closely follow those of the MMLD, which supports the robustness 

of the results.  

At the beginning of the study period with deep MMLD (1993-1996), the seasonally 

averaged SMLD covers 40-65% of the I-DC domain; 35-50% of the F-DC domain; 5-25% of the 

L-DC domain (Fig. 2). The relatively small percentage of the SMLD in the L-DC domain, 

compared to that in I-DC and F-DC, is a consequence of a complicated spatial structure of deep 

convection development in L-DC. Convection during winter was mostly observed in relatively 

small, isolated regions, the locations of which change from one year to another (Animation S1).  

During the following period of 1998-2011, characterized by a relatively shallow MMLD, 

the SMLD is often close to zero and never exceeds 10% of the outlined convection domains (Fig. 

2). During this period, convection, even if occasionally reached big depths, developed as isolated 

convective chimneys of a relatively small size. The resulting ventilation of the deep water was 

not intensive and the less dense Upper LSW starts dominating the mid-depths (Yashayaev and 

Loder, 2017).  

For 2015-2018, with the consistent increase of the MMLD in all three domains of the 

SPG, an increase in the SMLD is also observed. Still, though the MMLD reached the same range 

of values as in the early 1990s, the SMLD is consistently smaller than at the beginning of the 

study period: around 5-17% of the I-DC domain, 10-30% of the F-DC domain and 7-12% of the 

L-DC domains.  

Summarizing the results, we see that, in the western SPG (L-DC domain), after 

weakening during the late 1990s - 2000s, convection practically restore its intensity of the early 

1990s. In the eastern SPG (I-DC and F-DC domains), after its weakening in the late 1990s-

2000s, convection during the 2010s remains weaker than in the early 1990s. Therefore, there is a 
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certain long-term tendency for convection in the Irminger Sea and the F-DC domain of the 

eastern SPG to decrease, which is not the case for the Labrador Sea.  

 

3.2. How many casts do we need? 

The intensity of deep convection may be regulated by a number of different mechanisms 

(Bashmachnikov et al., 2021; Chu and Gascard, 1991; Schott and Marshall, 1999). It is difficult 

to correctly estimate the contribution of different factors, especially when it is not clear how 

confident the evaluations of the convection intensity are. Keeping in mind possible biases in 

estimating the intensity of deep convection from numerical models (Timmermann and 

Beckmann, 2004), as well as typically limited areas of development of deep convection 

(Johannessen et al., 1991; Kovalevsky et al., 2020; Yashayaev, 2007), the availability of in situ 

data remains critical (Fedorov and Bashmachnikov, 2020; van Haren, 2018).  

In this section, following Fedorov & Bashmachnikov (2020), we estimate the minimum 

number of randomly scattered measurements which allows a confident estimate of the MMLD, 

as a measure of convection intensity, in three SPG domains (Fig. 1). First, using the ARMOR3D 

dataset, we classify month-to-month variations of the convection development during the 

JFMAM in the SMLD-MMLD parameter space. For all three domains, the dependencies 

between SMLD-MMLD parameters are well approximated by the natural logarithmic functions 

with very similar regression coefficients (Fig. 3 a-c). Using k-means cluster analysis (Arthur and 

Vassilvitskii, 2007), these results can be split into two clusters. The first one is mostly 

characterized by variations of the MMLD, while variations of the SMLD in this cluster are small 

(cluster 1, red dots in Fig 3 a-c). This cluster is typical for situations when deep convection is just 

developing as one or a few isolated convective chimneys. An example (Fig. 2) is the 

development of convection in the Labrador Sea during the winters of 2008-2009 (Yashayaev and 

Loder, 2009). The second cluster is characterized by a gradually varying deep MMLD (1200-

2000 m) and a strongly varying SMLD (cluster 2, blue dots in Fig 3 a-c). The k-mean analysis 

further splits this cluster into two sub-clusters 2a and 2b, with a moderate and large SMLD, 

respectively. This cluster 2 represents the fully developed convection, which is observed after the 

merging of isolated chimneys into relatively vast deep convection regions. This was observed 

during the winters of 1993-1996 and 2015-2018 (see Supplement Fig.S1). To these two types, 

we should add the third cluster of weak convection (with the MMLD below 800 m), which does 

not separate in the SMLD-MMLD parameter space since its SMLD is identically zero (by 

definition). The identified convection types and the SMLD-MMLD dependencies are similar to 

those obtained earlier for the Greenland Sea (Fedorov and Bashmachnikov, 2020). These 

dependencies are well described by the logarithmic approximation in the MMLD-SMLD space. 

Regression equations are the following: 

        (          )
    

 for the Irminger convective domain (Fig. 3a),  

        (          )
    

 for the Labrador convective domain (Fig. 3b), and 

        (          )
    

 for the Farewell convective domain (Fig. 3c).  
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Figure 3. a)-c) The monthly MLD [m] versus the area [m
2
] with MLD over 800 m (SMLD) for 

the JFMAM period. From left to right: the I-DC domain (a); the L-DC domain (b); the F-DC 

domain (c). Red dots show cluster 1; blue -show cluster 2a, and blue dots with purple rings show 

cluster 2b. Black lines represent the logarithmic approximation in the MMLD-SMLD space. 

Black crosses reveal the centers of each cluster. d)-f) Errors [%] between the MMLD derived 

from a random sample of casts (average of 100 experiments) and the real MMLD: black for 

cluster 1; blue for cluster 2a; red for cluster 2b. From left to right: the I-DC domain (d); the L-

DC domain (e); the F-DC domain (f). ARMOR 3D data is used. 

 

For each of the convection domains (Fig. 1) and each cluster (Fig. 3), we constructed 

artificial MLD distributions (Supplement Fig. S2a-c). Such distributions represent a two-sided 

hypsographic curve of the derived MLD values, so that the deepest MLD is in the middle and the 

shallower MLD is shifted towards the periphery. Along X-axis we accumulate the area of the 

plotted MLD (binned in 100-m bins) averaged over all MLD distributions within a particular 

cluster. This artificial distribution is an idealized view of the MLD distributions where all the 

convection domains are merged into a single convective chimney. Over each of these artificial 

MLD distributions, we randomly scattered a set of a fixed number of casts ranging from 10 to 

100 (with an increment of 10). The MMLD error is the difference between the MMLD derived 

from each of these limited sets and the real MMLD of this particular artificial distribution. 

Experiments for each fixed number of casts are repeated 100 times to get a representative 

statistic. The mean (over 100 experiments) MMLD errors are normalized by the real MMLD 

values and are presented in Figure 3 (d-f) versus the number of casts for clusters 1, 2a, and 2b. 
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Further, we have chosen the maximum 25% error in the MMLD value as an acceptable threshold 

accuracy of the MMLD estimate for deriving its interannual variability. Thus, for the MMLD of 

1000 m, the error is 250 m. 

The analysis showed that 10 casts are sufficient for estimating the MMLD with the 25% 

error for the developed convection (clusters 2a and 2b, blue and red bars on Fig. 3,e-f). The 

highest number of casts is naturally needed for narrow chimneys of cluster 1, which is further 

taken as the threshold for confident MLD estimates. In this case, a 25% error is reached with at 

least 40 casts scattered over the I-DC domain, 50 casts – over the L-DC domain, and 10 casts – 

over the F-DC domain. The significantly lower number of casts required in F-DC is explained by 

the relatively small size of this domain. Provided that during some years the convection may 

cover large areas (as for convective areas of cluster 2), this minimum number of casts is a certain 

overestimate. Otherwise, if convection is well developed (cluster 2), 10 randomly scattered casts 

will be sufficient to reach the 25% accuracy of the MMLD estimate, while when 50 casts are 

available the MMLD error lowers to 6% of the MMLD value. For example, for 1500 m MMLD 

this forms around 100 m.  

 

3.3. How many casts do we have? 

Based on the criteria derived in the previous section, it is possible to evaluate the 

potential robustness of the MMLD estimates from the available number of casts during the 

JFMAM. EN4 dataset provides a relatively complete list of freely available contact 

measurements, derived from various sources. The total number of EN4 temperature and salinity 

profiles over the JFMAM period for each of the convection domains (outlined in Fig. 1) are 

presented in Table 1. The results show that assessing the MMLD in the SPG before 1996 

potentially contains large errors, except for 5 years (1968-1972) for the L-DC domain and the 

year 1963 for the I-DC domain (see Supplement, Table S3). For the altimetry era (after 1993), 

the MMLD cannot be estimated confidently for 7 years for the I-DC domain, 4 years for the L-

DC domain, and 10 years for the F-DC domain (Table 1). The F-DC domain is the least covered 

with measurements. Noticeable growth in the number of profiles after 2005 is due to the Argo 

drifter program expansion into the SPG.  

 

Table 1. The number of profiles measured inside deep convection domains annually, based on 

the EN4 dataset. Red cells show winters (JFMAM) where the criterion of 40 casts is reached in 

the I-DC domain, 50 casts – in the L-DC domain, and 10 casts – in the F-DC domain. Green cells 

mark winters when a robust MMLD estimate is possible only if the MLD distribution belongs to 

cluster 2 (Fig. 3). White cells marked the years when there was an insufficient number of casts 

for a robust estimate of the MMLD with at least 25% accuracy. 

 

DC 

domain 

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 

I (40) - - - - 28 84 21 21 37 52 85 24 30 123 74 86 151 550 282 326 1123 776 214 144 228 203 279 

L (50) - - - 31 197 230 56 53 16 - 37 332 505 127 98 100 140 188 218 209 295 204 238 217 143 182 160 

F (10) - - - - - 9 42 - - - 16 13 74 - 25 23 24 47 48 74 30 55 32 49 92 36 35 
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4 Conclusions  

The intensity of deep convection is typically estimated using the MMLD derived from in 

situ data. Model simulations, even the high-resolution ones, are known to mostly overestimate 

the MMLD (Koenigk et al., 2021; Timmermann and Beckmann, 2004). Our analysis of the 

accuracy of the convection intensity in three convective domains of the SPG (Fig. 1) shows that 

40 casts would be sufficient for providing the MMLD measure with at least 25% accuracy for the 

Irminger domain (I-DC), 50 casts – for the Labrador domain (L-DC), and 10 casts – for the 

Farewell domain (F-DC). Considering the available number of casts during the convective 

season (January to May) in the EN4 dataset, we found that relatively confident estimates of the 

convection intensity from the MMLD measure in the SPG cannot be obtained earlier than 1996. 

The amount of data in the SPG increased drastically and become more evenly distributed in time 

after the mid-2000s, providing robust estimates of the deep convection intensity with the MMLD 

measure during this modern period. This is a result of the development of the Argo profiling 

drifter program. The years, when the MMLD measure can be considered robust (Table 1), could 

be used for further analysis of the mechanisms of the interannual variability of deep convection 

in the SPG.  

The MMLD measure, together with the complementary SMLD measure first introduced 

by Fedorov and Bashmachnikov (2020), suggest the convection intensity decrease from the 

1990s to the 2000s, and a further increase up to the late 2010s, observed in all convective 

domains of the SPG. These tendencies, derived here using the ARMOR3D dataset, go well with 

the variability of the convection intensity derived using other methods (Fedorov et al., 2018; 

Yashayaev and Seidov, 2015).  

The joint analysis of MMLD and SMLD variability (Fig. 3), showed that the latter is a 

more adequate measure of the convection intensity for the fully developed convection, i.e. when 

individual chimneys expand horizontally and merge into large convective areas (Kovalevsky et 

al., 2020). At the same time, the winters, when the MMLD was high only locally, i.e. when the 

SMLD was low, did not result in significant changes in the properties of intermediate and deep 

waters. Thus, after episodically high MMLD during the winter of 2008-2009, the dominating 

Upper LSW was not replaced with the Classical LSW, though the latter was observed to 

dominate the Labrador Sea earlier when such deep mixing was observed over several 

consecutive winters (Yashayaev and Loder, 2009). This suggests that convection in a limited 

number of narrow convective chimneys does not have a significant impact on deep-water 

formation. Therefore, when a gridded dataset is available, the SMLD is a more adequate measure 

of the intensity of deep convection, keeping in mind that its main dynamic effect is a renewal of 

intermediate and deep waters. 
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