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About the IAHRWater Monograph Series

The Water Monograph Series joins IAHR’s portfolio of publications, which includes journals, maga-

zines, conference proceedings, whitepapers, and books. Since its start in 1935, IAHR has been dedi-

cated to supporting the development and dissemination of knowledge that aids hydro-environment

engineering and research.

The Water Monographs aremid-sized publications (about 50–150 pages long) that bridge knowledge

gaps, summarize existing knowledge, and publicize recent advances in technologies and methods.

More narrowly focused than a book, the Water Monographs occupy the publication space between a

journal paper and a book. They concisely present information on physical processes, measurement

techniques, theoretical material, numerical modeling techniques, engineering applications, and his-

torical and cultural matters, doing so in an appealingly readable and well-illustratedmanner.

IAHR intends that the Water Monograph Series helps people understand specific longstanding,

current, or emerging topics in hydro-environment engineering and research.

A specific IAHR Task Force on Water Monographs is responsible for making calls for proposals,

receiving proposals and evaluating proposals. This Task Force is composed by:

Damien Violeau, EDF, France (Chair)

Claudia Adduce, Roma Tre University, Italy

Ioan Nistor, University of Ottawa, Canada

Robert Ettema, Colorado State University, USA

Vlad Nikora, University of Aberdeen, UK

Pengzhi Lin, Sichuan University, China

Massimo Guerrero, Università di Bologna-DICAM, Italy

Donatella Termini, University of Palermo, Italy

Once a proposal is approved by themajority of themembers, an Editor is assigned to the draftmono-

graphe. The Editor is in charge of communications with the author(s) until the manuscript is ready.

When the draftmanuscript is ready for review, the Editor selects three reviewers - independent, with

expertise in the field and external to IAHR staff. The reviewers conduct the review process When all
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the reviews are received, they are sent to the author(s) and once they are addressed the Editormakes

the final decision to accept the updated draft for publication. At that time, the names of the reviewers

are shared with the author(s) and the reviewers are acknowledged in the Water Monograph.

IAHRWater Monographs are sponsoredmainly by third institutions with the interest of spreading the

knowledge in a specific field and by IAHR; sponsors receive visibility in exchange placing the logo in

the cover.

Damien Violeau

Chair of IAHR Water Monograph Series
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Foreword

The realisation that variational principlesmightbeuseful in the theoryofwaterwaves appears tohave

been first noticed by Purser and Synge [191] in a 1962 letter to the Editor of Nature, with the detailed

mathematics appearing inSynge [217]. Their observationwas that “oceanwavesapproachingabeach

may be discussed by the method of geometrical optics. . .”, and it had already been noted by Hamilton

over a century earlier that the rays in geometric optics theory could be characterized as aHamiltonian

system. Synge [217] adapted this theory to derive the Hamiltonian system for water wave rays.

Purser andSynge go further andwrite “Itmaybe useful to have aword, analogous to ‘photon’, ‘phonon’

and ‘graviton’, for a fictitious particle that travels with the ray (or group) velocity and carries energy: we

suggest the name ‘hydron’.” However, neither the Hamiltonian theory of Synge nor the name hydron

ever tookoff. Although ray theory is todaya central part of coastal engineeringand the theoryof shoal-

ing water waves, reference to Synge’s Hamiltonian approach is almost nowhere to be found. Unfor-

tunately, the word “hydron” was never taken up either. However, a few years later, using the same

logic, Kruskal and Zabusky coined the term “solitron”, eventually shortening it to “soliton”, which did

indeed take off.

It is the discoveries, just a few short years later, of Luke [155] (the Lagrangian theory) and Zakharov

[243] (the Hamiltonian theory), of variational principles for the full, albeit irrotational, water wave

problem, that firmly established the importance of variational principles in every aspect of the theory

ofwaterwaves. Today, variational principles are a central part of the theory ofwater waves across the

spectrum from pure to appliedmathematics through to applications.

Thismonograph takes the subject of variational principles forwaterwaves toanew level. Lagrangians

such as Luke’s are improved via relaxation where a sequence of constraints are added, enforced by

Lagrange multipliers, that may be exact or approximate and, in the latter case, a range of new and

surprisingmodel equations forwaterwaves emerge,without theneed to introducea small parameter.

It is a highly effective strategy and produces Lagrangian, Hamiltonian andmultisymplectic structures

with equal ease.

IAHR.org #WaterMonographs vii
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The strategy recovers known equations andmany new ones. It allows for the enforcement of bound-

ary conditions, thereby including bottom topography without restriction on size, as well as time-

dependent boundary conditions. The latter case, applied to time-varying topography, is shown to

have great practical value in the modelling of tsunami waves, with the emergent models capturing

the Synolakis mechanism of tsunami slowdown followed by acceleration nearshore. The heart of

the monograph is chapter 4, which is a theme and variations on the Serre equations, re-deriving,

re-interpreting the classical versions, and then taking Serre equations in new directions. A triumph

here is the discovery via relaxation of a multisymplectic formation. Chapter 4 segues into chapter 5

with the dual problem ofmodel equations in deepwater. A range of newmodels PDEs are discovered,

building on the authors’ previous discovery of a generalised Klein–Gordon equation for deep water

waves, with new and surprising Hamiltonian andmultisymplectic structures emerging.

A strength of thismonograph is that the newmodels are testedwith high-quality numerical schemes.

For simulations, finite-volume methods and pseudo-spectral methods are used. Variational princi-

ples feed into numerics in the improved preservation of local and global invariants like energy and

momentum, as well as symplecticity. Variationally-designed numerical schemes also appear to pre-

serve the properties of the dispersion relation.

Multisymplectic structures are a much more recent addition to the panoply of variational structures

for water waves, first appearing in the 1990s [32, 33, 162]. In its simplest form, multisymplecticity

is a collection of pre-symplectic forms (one for each space direction and time) and a scalar-valued

function (serving the role of Hamiltonian function). The subject has a rich history with many vari-

ants. Historically, the concept emerged from a multidirectional Legendre transform, whereby each

space direction as well as the time direction are transformed. However, this approach is limiting, and

the modern approach is to define multisymplecticity axiomatically: a manifold or phase spaceM on

which there is one (classical case) or many closed, but not necessarily non-degenerate, two forms.

A pull-back of each two-forms by a vector field onM defines a scalar-valued function, the Hamilto-

nian. This axiomatic approach was initiated in [33]. A multisymplectic structure for Lagrangians on

manifolds was developed in [162], with the restriction of first-order fields. In [35], a coordinate-free

approach for multisymplectic structures on abstract manifolds was presented without recourse to a

Lagrangian. The introduction to [35] also gives a history of multisymplecticity and its many variants

(Dedonder–Weyl theory, Norris’ soldering form, k−symplectic structures, Cartan form, polysymplec-

ticity, the TEA bundle). Hamiltonian systems on a multisymplectic structure have been found to be

important in a wide range of applications.

viii #WaterMonographs IAHR.org
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In this monograph, the authors takemultisymplecticity in a new direction, showing how relaxed vari-

ational principles provide an efficient strategy for deriving newmultisymplectic formulations, even in

caseswhere it is by nomeans obvious. Two successes of this strategy are the discovery of amultisym-

plectic formulation of the Serre equation in shallow water and the construction of a multisymplectic

structure for the generalized Klein–Gordon equations (gKG) equations in deep water.

This monograph is more of a starting point than a complete story. It paves the way for new research

directions. For example, there is a wide open area of models for parametrically defined free surfaces,

opening the door to themodelling of wave breaking, and there is a need for models that include vor-

ticity and, most importantly, new models that capture the three-dimensionality of water waves.

Prof. Tom Bridges Surrey, UK

November 2021
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Preface

Surface water waves represent an exceedingly complex field of physical study, characterized by a rich

tapestry of underlying mechanisms and a long-standing history of scholarly investigation, see e.g.

[65, 232]. Water waves serve as a distinct subclass within the broader category of fluid mechanical

waves, uniquely characterized by their propagation along the interface that separates aqueous and

atmosphericmediums. Theyplay a central rôle in the interactions takingplacebetween theoceanand

atmosphere [138, 221]. In addition to their fundamental physical importance, understanding water

waves is also important for many applications related to human safety and the economy, such as

tsunamis, freak waves, harbour protections, and beach nourishment/erosion, just to mention a few

examples. Water waves function as a paradigmatic example that encapsulates a wide array of nonlin-

earwavephenomenamanifesting indiversephysicalmedia. The famousphysicistRichardP. Feynman

wrote in his celebrated lectures [100]:

“Now, the next waves of interest, that are easily seen by everyone, andwhich are usu-

ally used as an example of waves in elementary courses, are water waves. As we shall

soon see, they are the worst possible example, because they are in no respects like

sound and light; they have all the complications that waves can have.”

It is precisely these intricate complexities that contribute to the richness and intellectual allure of the

study ofwater waves. Indeed, despite numerous studies, newwaves and newwave behaviour are still

discovered (e.g., [193, 194]), andwavedynamicsarestill far frombeing fullyunderstood.Thecomplete

mathematical formulation describing the propagation of water waves is quite complex to deal with.

The mathematical formulation cannot be solved analytically (unless in some asymptotic sense), and

thus, efficient numerical algorithms have been developed since the 1970’s [43].

The use of mathematical and numerical models is unavoidable for understanding water waves.

Despite the apparent simplicity in formulating the foundational equations governing these waves,

specifically the Navier–Stokes equations, the mathematical analysis required to solve them is excep-

tionally intricate. Furthermore, even the computational approaches aimed at their numerical resolu-

tion present significant challenges, demanding considerable computational resources and expertise.
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Therefore, simplified models are crucial to gain insight and to derive operational numerical models.

Moreover, the water wave theory has always been developed by constructing convenient and phys-

ically sound approximations [65]. Most of the time, simplified models are derived via some asymp-

totic expansions, exploiting a small parameter in the problem at hand. This approach is very

effective leading to well-known equations, such as the Saint-Venant [68, 212, 232], Boussinesq [29],

Serre–Green–Naghdi equations (SGN) [115, 203], Korteweg–deVries equation (KdV) [140] equations

in shallow water and the Nonlinear Schrödinger equation (NSE) [165], Dysthe [98] equations in deep

water. These governing equations are frequently derived through the application of various pertur-

bation techniques. Such techniques generally yield models that are applicable primarily to waves

characterized by small amplitude and/or a low ratio of wavelength to water depth. However, for a

broad range of practical applications, it becomes imperative to employ models that are uniformly

valid across all depths and that offer a high degree of accuracy even for waves with large amplitudes.

It is worth noting that our understanding of the shallow water regime has significantly advanced in

recent years.Within the context of shallowwater, awell-structuredhierarchyofhydrodynamicmodels

has been firmly established:

• Nonlinear shallow water (Saint-Venant or Airy (especially in the UK) or fully nonlinear non-

dispersive) equations [2, 68].

• Boussinesq-type (or weakly nonlinear weakly dispersive) equations [30, 196].

• Fully nonlinear weakly dispersive equations [134, 204].

• Fully nonlinear strongly dispersive equations [125, 233].

• Fully nonlinear fully dispersive Euler equations [159].

The deep water case is much less organised. The main difference between these two regimes comes

from the dimensionless numberswhich characterize the flow.When the depth d is finite, we haveone

parameter ¸0=d which characterizes the wave non-linearity and another parameter d=– to describe

the flow ‘shallowness’. Here ¸0 refers to the typical wave amplitude, and – is the typical wavelength.

By applying asymptotic expansions in one or even two parameters, we can obtain various approxi-

mate models. Now, if we take the limit d → ∞, both these parameters lose their sense in the deep

water, making this case somehow special. Traditionally, deep water waves have been described as

perturbations of a certain carrier wave. In this way, the wave field has been conveniently described

usingwave envelopes [21]. Then, the envelope function is shown to satisfy the nonlinear Schrödinger

[243] or Dysthe-type [98] equations depending on the desired asymptotic order of accuracy. These

equations can be also recast into the Hamiltonian framework [112]. In the present monograph, we

xii #WaterMonographs IAHR.org
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take an alternative route without appealing to wave envelope techniques. Moreover, some phenom-

ena (see e.g. [193, 194]) do not involve any small parameter and do not bifurcate from rest. The prob-

lem is then to derivemodels without relying on a small parameter.

It is well-known in theoretical physics that variational formulations are tools of choice to derive

approximationswhen small parameter expansions are inefficient. Fortunately, a variational principle

is available forwaterwaves that canbe exploited toderive approximations. There aremainly twovari-

ational formulations for irrotational surface waves that are commonly used, namely the Lagrangian

of Luke [155] and the Hamiltonian of Broer, Petrov and Zakharov [39, 190, 243]. Details on the varia-

tional formulations for surface waves can be found in review papers, e.g. [192, 197, 245]. The paper

[34] gives variational formulations for water waves in curvilinear coordinates. A variational principle

for fluid sloshing with vorticity was recently proposed in [7] in terms of the stream function. It also

includes coupling to body motion.

In water wave theory, variational formulations are generally used together with a small parame-

ter expansion. This is not necessary, however, because variational methods can also be fruitfully

used without small parameters, as it is well-known in Quantum Mechanics, for example. This will

be demonstrated in the present monograph. Here, only elementary knowledge in vector calculus is

assumed, as well as some familiarity with the Euler–Lagrange equations and variational principles in

Mechanics [110, 147].

Through the utilization of straightforward examples, we aim to elucidate the merits of employing

relaxed variational principles, among other variational approaches. The benefits of adopting this par-

ticularmethodology become evenmore pronounced in scenarios involving variable water depths. In

such cases, this approach facilitates the derivation of simplified approximations that are not readily

obtainable through the use of asymptotic expansions (see e.g. [83]). The relaxed variational princi-

ple provides a common platform for deriving several approximate equations from the same Ansatz in

changingonly the constraints. Besides theAnsätzeand the subordinate conditions, no further approx-

imations are needed to derive the equations. Using more general assumptions (i.e., involving more

free functions and parameters) and well-chosen constraints, one can hopefully derivemore accurate

approximations.

Although the possibility of using the variational methods without a small-parameter expansion has

been overlooked in the context of water waves, it has long been recognized as a powerful tool in

Theoretical Physics, in particular inQuantumMechanics. This approach is even taught in someunder-

graduate lectures. For instance, from Berkeley’s course on Quantum Mechanics [179]:

IAHR.org #WaterMonographs xiii
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• The perturbation theory is useful when there is a small dimensionless parameter in the prob-

lem, and the system is exactly solvable when the small parameter is sent to zero.

• [ . . . ] it is not required that the system has a small parameter, nor that the system is exactly

solvable in a certain limit. Therefore, it has been useful in studying strongly correlated sys-

tems, such as the fractional quantum Hall effect.

However, in order to be successful, the great power of the variationalmethod needs to be harnessed

with skill and care, as it is well-known in Theoretical Physics. Indeed, as quoted in the same lecture

on QuantumMechanics:

• [ . . . ] there is no way to judge how close your result is to the true result. The only thing you

can do is to try out many Ansätze and compare them.

• [ . . . ] the success of the variationalmethod depends on the initial “guess” [ . . . ] and an excel-

lent physical intuition is required for a successful application.

But it is also well-known that this approach can be very rewarding:

• For example, R.B. Laughlin [148] proposed a trial wave function that beat other wave func-

tions that had been proposed earlier, such as “Wigner crystal”.

• Once your wave function gives a lower energy than your rival’s, you won the race∗.

Thus, despite its “dangers,” the variational approach is a tool of choice for modelling water waves,

especially for problems when there are no obvious small parameters or if approximations valid for a

broad range are needed. We shall illustrate these claims in this monograph.

Prof. Didier Clamond Nice, France

Assoc. Prof. Denys Dutykh Abu Dhabi, UAE

Assoc. Prof. DimitriosMitsotakis Wellington, New Zealand

October 2023

∗R.B. Laughlin et al. earned the 1998 Physics Nobel prize.
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C H A P T E R 1

Introduction

The water wave problem in fluid mechanics has been known for more than two hundred years [65].

The classical mathematical formulation of surface gravity waves involves five equations: the irrota-

tionality of the fluid motion, the incompressibility of the fluid, the bottom and the surface imperme-

abilities, and the surface isobarity [165]. This system of equations cannot generally be solved exactly,

and historically, water wave theory has been developed by constructing various approximations. In

shallowwater, wehave the equations of Korteweg and de Vries [140], Boussinesq [29], Benjamin et al.

[19], Serre [203], GreenandNaghdi [115], Camassa andHolm [40], Degasperis–Procesi [69], andmany

other model equations. In finite depth and deep water, there is the celebrated nonlinear Schrödinger

equation [165] and the equations of Dysthe [98], Trulsen et al. [225], Kraenkel et al. [141], among

others. These equations are most often derived via some perturbation techniques and are thus valid

for waves of small amplitude. Moreover, these equations are generally valid for a very limited range of

the ratiowavelength/water-depth and for narrow-banded wave spectra. However, for many applica-

tions, it is necessary to use models uniformly valid for all depths, which are accurate for large ampli-

tudes. In the domain of theoretical physics, it is widely acknowledged that when the endeavour is

to derive approximations, especially in scenarios where expansions predicated on small parameters

prove to be inefficient, variational formulations are often the methodologies of choice. These for-

mulations, characterised by their flexibility and robustness, provide a structured approach towards

obtaining approximate solutions. Byminimising ormaximising a functional1, they allow for the explo-

ration of system dynamics under various conditions, thereby often yieldingmore accurate or insight-

ful approximations compared to traditional small parameter expansion techniques. Furthermore, the

variational approach often unveils underlying geometric or topological properties of the physical sys-

tem under consideration, which can be instrumental in fostering a deeper understanding of the phe-

nomena at hand.

There aremainly two variational formulations for irrotational surface waves that are commonly used,

namely the Lagrangian of Luke [155] and the Hamiltonian of Petrov [190] and Zakharov [243]. Details

on the variational formulations for surface waves can be found in review papers, e.g., [192, 197, 245].

1In practice, we always look at stationary points of a given functional.
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In tracing the lineage of such variational methodologies, it is intriguing to note the historical evolu-

tion of related formulations in theoretical physics. Specifically, the development of multi-symplectic

formulations emerged as a significant stride towards a more comprehensive understanding of vari-

ational problems involving multiple variables. The history of multi-symplectic formulations can be

traced back to V. Volterra (1890), who generalised Hamiltonian equations for variational problems

involving several variables [229, 230]. Later, these ideas were developed in the 1930s [67, 150, 235].

Finally, in the 1970s, the multivariable Hamiltonian formulation was geometrised by several mathe-

matical physicists [109, 135, 142, 143] similarly to the evolution of symplectic geometry originating

from the ideas of J.-L. Lagrange [146, 211]. In our study, we have been inspired by modern works on

multi-symplectic PDEs [33, 161]. Recently, the multisymplectic geometry has found many applica-

tions to the development of structure-preserving integrators [37, 47, 82, 174]. These variational prin-

ciples have been exploited, in different variants, to build analytical and numerical approximations,

e.g., [11, 136] just tomention a few references. Thewater wave problem is also known to have amulti-

symplectic structure [32].

Luke’s Lagrangian is predicated on the assumption that the fluid flow under consideration is strictly

irrotational; that is to say, the Lagrangian encapsulates a velocity potential while abstaining from

direct incorporation of the velocity components. This formulation aligns with the theoretical under-

pinning that in an irrotational flow, the velocity field is derivable from a scalar potential func-

tion, thereby rendering the explicit articulation of velocity components unnecessary within the

Lagrangian. Should the conditions of fluid incompressibility and bottom impermeability be satisfied

identically, it consequently facilitates the derivation of the equations pertinent to the surface from

Zakharov’s Hamiltonian, as delineated in [243]. This formulation elucidates the inherent relationships

and dynamics at play, particularly at the fluid-surface interface, thereby providing a robust analyti-

cal framework to explore the complex interactions therein. Zakharov’s Hamiltonian, in this context,

serves as a pivotal theoretical construct, linking the fundamental physical constraints of incompress-

ibility and impermeability to the observable phenomena at the fluid surface, thus enriching the dis-

course on fluid dynamics and surface wave behaviour.

In both Luke’s and Zakharov’s variational formulations, there is an inherent assumption of exact

irrotationality in the flow dynamics, a characteristic prominently featured in the water wave prob-

lem formulation. However, a discernible distinction arises in that Zakharov’s Hamiltonian exhibits a

more stringent constraint compared to Luke’s Lagrangian. These variational formulations necessitate

that either a portion or the entirety of the equations governing the fluid dynamics in the bulk of the

fluid and at the bottom are satisfied identically. Concurrently, any residual relations are subject to

2 #WaterMonographs IAHR.org
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approximation in the courseof constructinganapproximate variationalmodel, as expoundedupon in

[64]. The predilection towards satisfying irrotationality and incompressibility identically is attributed

to their mathematical tractability, making them relatively straightforward to fulfil. Yet, beyond this

allure of simplicity, there does not appear to be a compelling rationale to prioritize irrotationality

and/or incompressibility over other conditions, such as the impermeability or the isobarity of the free

surface. In the ensuing discourse of this monograph, we endeavour to underscore the advantages

of relinquishing the rigid adherence to exact irrotationality and incompressibility. As we shall

demonstrate, approximations of these relations suffice in a majority of practical scenarios, thereby

offering a pragmatic and flexible approach to exploring the dynamical behaviour of fluid flows and

surface waves.

Variational formulations involving as few dependent variables as possible are often regarded as sim-

pler [241]. It is understandably tempting to solve exactly (i.e., analytically) as many equations as pos-

sible inorder to ‘improve’ the solutionaccuracy.However, this is not always agood idea. Indeed, there

aremanyexamples innumerical analysis and scientific computingwhereefficient andwell-usedalgo-

rithms do exactly the opposite. These so-called relaxationmethods— e.g., pseudo-compressibility for

incompressible fluid flows [130] — have proven to be very efficient for stiff problems. When solving

numerically a systemof equations, theexact resolutionof a fewequationsdoesnotnecessarily ensure

that the overall error is reduced. What really matters is that the global error is minimized. A similar

idea of relaxation may also be applied to analytical approximations. The interplay between contin-

uous and discrete models has already been proven to be very fruitful. The paper [101] introduced

the idea of a numerical dispersion relation and how it approximates the exact dispersion relation. One

outcomeof this study is thatmulti-symplectic schemes, such as thePreissmann scheme, preserve the

monotonicity of the dispersion relation, thereby eliminating spurious group velocities in a numerical

scheme.

In this study, wewould like to elucidate the benefit of using relaxed variationalmethods for thewater

waves problem. In other words, we illustrate the advantage of using a variational principle involving

asmanydependent variables as possible.We emphasize that our primary purpose here is to provide a

generalized framework for derivingmodel equations for water waves. Thismethodology is explained

invarious examples, someof thembeingnew toour knowledge.However, thepotential of the present

approach is far from being fully exploited.

Our review would not be complete if we did not mention one less-known, but still remarkable varia-

tional model for shallow water waves. The Isobe-Kakinuma model was derived by M. Isobe and fur-

ther expanded by T. Kakinuma as a mathematical approximation for long water waves (see [125] for
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exact Japanese references). The Isobe-Kakinumamodel is also derived fromLuke’s variational formu-

lation of the full water wave problem. The Isobe-Kakinumamodel, which is the Euler-Lagrange equa-

tion for an approximated Lagrangian, is established by approximating the velocity potential in Luke’s

Lagrangian. Variousmodel systemscanbeobtaineddependingon the choiceof function systemused.

The strength of the Isobe-Kakinumamodel lies in its ability to provide a high-order approximation to

the water wave equations without containing high-order derivative terms, which can be computa-

tionally burdensome. Specifically, the Isobe-Kakinuma model is considered a superior higher-order

approximation to the water wave equations. However, this model did not gain much popularity in

the water wave community. Due to this model’s highly technical construction and approximations,

it is not without limitations. It requires specific initial conditions and involves a number of complex

calculations that may not be feasible for all practical applications. The variational structure of the

Isobe-Kakinuma model originates from its foundation in the Lagrangian framework established by

J.C. Luke for water wave problems.

The present manuscript is organized as follows. First, the water waves problem formulation is briefly

reviewed in chapter 2. In chapter 3, several variational formulations are presented. In chapter 4,

we present several examples in the shallow water regime, while chapter 5 focuses on the opposite,

i.e. deep water regime. We also provide some guidance on how to address the intermediate depths

in chapter 6. Some numerical methods and illustrations in shallow water regime are given in

chapter 4.6. Finally, in chapter 7, we outline the main conclusions and perspectives of this study.
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C H A P T E R 2

Water wave problem formulation

Consider an ideal incompressible fluid of constant density j. The horizontal independent variables

are denoted by x = (x1; x2) and the upward vertical one by y . The origin of the Cartesian coordinate

system is chosen such that the surface y = 0 corresponds to the still water level. The fluid is bounded

belowby thebottomat y = −d(x ; t)andaboveby the free surfaceat y = ”(x ; t). Usually,weassume

that the total depthh(x ; t)
def
= d(x ; t)+”(x ; t) remainspositiveh(x; t) > h0 > 0at all times t for some

constant h0. A sketch of the physical domain is shown in Figure 2.1.

Remark 2.1. In our analytical approach, we adhere to the classical assumption that the free sur-

face is represented as a graph y = ”(x ; t), derived from a single-valued function. This assumption,

while simplifying the analytical framework, inherently imposes a limitation on the scope of phenom-

ena that can be effectively capturedwithin this modelling approach. Specifically, by representing the

free surface in such a manner, we are essentially restricting our analysis to scenarios where the sur-

face profile can be described unambiguously at every spatial point for a given time. This simplifica-

tion, albeit useful for analytical tractability, precludes the explorationof certain complex phenomena,

notably wave breaking, which manifest beyond the confines of a single-valued function representa-

tion. Wave breaking, characterized by the overturning or steepening of wave crests to the point of

discontinuity, challenges the single-valued functiondepiction and, thus, falls outside the ambit of the

currentmodelling approach. This exclusion,whilenarrowing the scopeofour investigation, allows for

a more focused and manageable exploration within the defined analytical framework. Nevertheless,

it is important to acknowledge this limitation, as it delineates the boundary between the simplified

scenarios amenable to our analysis and the more intricate phenomena demanding a more nuanced

or alternativemodelling approach.

Wedenoteu = (u1; u2) thehorizontal velocityandv theverticalone.Thefluiddensity is constant, and

themass conservation implies an isochoricmotion, yielding the continuity equationvalid everywhere

in the fluid domain

∇ · u + @yv = 0; 2.1

where ∇ denotes the horizontal gradient and · denotes the standard scalar (inner) product of two-

dimensional Euclidean vectors. Here, @y denotes the usual partial derivative with respect to the
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Figure 2.1 Sketch of the fluid domain.

vertical variabley . Denotingwithover ‘tildes’ and ‘breves’ are thequantities computed2, respectively,

at the free surface y = ”(x ; t) and at the bottom y = −d(x ; t), the impermeabilities of these bound-

aries give the relations

@t” + ũ · ∇” = ṽ ; @td + ŭ · ∇d = −v̆ : 2.2

Traditionally, inwaterwavemodelling, the assumptionof flow irrotationality is also adopted because

it is relevant inmany situations, and it brings considerable simplifications. The zero-curl velocity field

condition can be written

∇v = @yu; ∇× u = 0; 2.3

where× is a two-dimensional analogue of the cross3 product. The irrotationality conditions (2.3) are

satisfied identically, introducing a (scalar) velocity potential ffi such that

u = ∇ffi; v = @yffi: 2.4

For irrotational motions of incompressible fluids, the Euler momentum equations can be integrated

into the scalar Lagrange–Cauchy equation

p + @tffi + gy + 1
2
|∇ffi|2 + 1

2
(@yffi)

2 = 0;

where p is the pressure divided by the density j and g > 0 is the acceleration due to gravity. At the

free surface, the pressure can be set to zero without any loss of generality — i.e., p̃ = 0—but surface

2For example ũ = u(y = ”), v̆ = v(y = −d).
3For two two-dimensional vectors a = (a1; a2) and b = (b1; b2), a × b = a1b2 − a2b1 is a scalar.
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tension or other effects could be taken into account. Note that for steady flows, i.e.when the velocity

field is independent of time, @tffi = constant = −B and the Lagrange–Cauchy equation becomes the

Bernoulli equation,B being a Bernoulli constant4.

In summary, with the hypotheses stated above, the governing equations of the classical (non-

overturning) surface water waves are [129, 212, 237]:

∇2ffi+ @ 2
y ffi = 0; −d(x ; t) < y < ”(x ; t); 2.5

@t” + (∇ffi) · (∇”)− @yffi = 0; y = ”(x ; t); 2.6

@tffi+ 1
2 |∇ffi|2 + 1

2 (@yffi)
2 + g” = 0; y = ”(x ; t); 2.7

@td + (∇d) · (∇ffi) + @yffi = 0; y = −d(x ; t): 2.8

Theassumptionsoffluid incompressibility andflow irrotationality lead to theLaplaceequation2.5 for

the velocity potential ffi(x ; y ; t). The main difficulty of the water wave problem is associatedwith the

boundary conditions. Equations 2.6 and 2.8 express the free-surface kinematic condition and bottom

impermeability, respectively, while the dynamic condition 2.7 expresses the free surface isobarity.

4Wewould like tomention that for unsteady flows, the ‘constant’ could actually be a function of time.
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C H A P T E R 3

Variational formulation

The water wave problem is known to encompass a multitude of variational structures as elucidated

in seminal works [155, 236, 243]. These variational structures provide a robust framework for delving

into the intricate dynamics of water waves, each offering a unique perspective and analytical tools

for investigating the underlying physics. In the ensuingmonograph, our discoursewill be significantly

channelled towards the exhaustive exploitation of the Lagrangian variational formalism. This partic-

ular formalism is revered for its profound ability to articulate the dynamics of water waves through a

potent mathematical apparatus. Through a meticulous exploration of the Lagrangian formalism, we

aim to contribute a nuanced understanding to the existing body of knowledge, thereby enriching the

discourse onwaterwavedynamics andpotentially unveiling novel facets or solutions pertinent to the

problem at hand.

Equations 2.5–2.8 can be derived from the “stationary point” (the point where the variation is zero5)

of the following functional

L =

Z t2

t1

Z
Ω

L j d2x dt

(Ω the horizontal domain), where the Lagrangian densityL is [155]:

L = −
Z ”

−d

ˆ
g y + @t ffi+ 1

2
|∇ffi|2 + 1

2
(@yffi)

2
˜
dy: 3.1

Upon examination, it becomes apparent that the Euler-Lagrange equations emanating from this

particular functional lead directly to the water wave equations, thereby establishing a coherent

mathematical bridge between the variational formalism and the governing equations of water wave

dynamics. The derivation of these equations, though succinct in its nature, unveils a structured

pathway connecting the variational principles to the fluid dynamics encapsulated in the water

wave problem. A meticulous derivation of these equations is provided in the seminal work by Luke

[155]. Furthermore, a more accessible exposition of this derivation is also available on Wikipedia6,

5For amore precise definition of a stationary point we refer to classical books on variationalmethods inMechan-
ics such as [15, 147, 177, 202].
6http://en.wikipedia.org/wiki/Luke’s_variational_principle.
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providing a platform for a broader audience to grasp the underlying principles and the consequential

Euler-Lagrange equations. The availability of these resources, ranging from scholarly articles tomore

publiclyaccessibleplatforms, facilitatesacomprehensiveunderstandingof thevariational framework

and its pivotal rôle in formulating the water wave equations.

If the fluid incompressibility and the bottom impermeability are satisfied identically, Luke’s

Lagrangian is reduced to a form leading directly to the Hamiltonian of Zakharov [243]. However, for

many practical applications, it is advantageous not to fulfil a maximum of relations, as advocated in

[52]. Note also that Luke’s Lagrangian 3.1 can be extended to the case where the bottom function

d(x ; t) is unknown if a condition at y = −d is added to the problem [220].

Integratingbyparts andneglecting the termsat thehorizontal and temporal boundaries because they

do not contribute to the functional variations (this will be done repeatedly below without explicit

mention), Luke’s variational formulation 3.1 can be rewritten with the following Lagrangian density:

L = ffĩ ”t + ffĭ dt − g ”2

2
+
g d2

2
−
Z ”

−d

"
|∇ffi|2
2

+
ffi 2
y

2

#
dy: 3.2

The alternative form 3.2 is somehowmore convenient. Note that:

• the term ffĩ”t , for example, can be replaced by−”ffĩt after integration by parts;

• the term gd2=2 canbeomittedbecaused being prescribed, it does not contribute to the variational

principle;

• the term g”2=2 can be replaced by gh2=2 via a change of definition of ffi.

Luke’s Lagrangian involves a velocity potential but not explicitly the velocity field. Thus, any approx-

imation derived from 3.1 has an irrotational velocity field because the latter is calculated from the

relations 2.4. The realm of water wave dynamics is characterized by a complex interplay of various

equations, each encapsulating distinct physical phenomena pertinent to fluid motion and surface

interactions. Within this intricate framework, there exists an array of conditions, namely irrotational-

ity, incompressibility, and surface isobarity, each offering unique perspectives and constraints on the

underlying fluid dynamics. The enforcement of irrotationality, in particular, is often seen as a conven-

tional choice, however, there are, a priori, no foundational rationales dictating the exclusive enforce-

ment of irrotationality over, say, incompressibility or surface isobarity or even a synthesis of these

conditions. Eachof these conditionsdelineates aunique facet of thefluiddynamics, and their enforce-

ment or relaxationwithin the analytical framework can profoundly impact the nature and accuracy of
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the resulting solutions to the water wave problem. For instance, the enforcement of incompressibil-

ity could shed light on the volume conservation aspects of fluid flow, while surface isobarity could

provide insights into the pressure dynamics at the fluid-surface interface. As it is well known in

numerical methods, enforcing an exact resolution of as many equations as possible is not always a

good idea. Indeed, numerical analysis and scientific computing know many examples of when effi-

cient and most-used algorithms do exactly the opposite. These so-called relaxation methods have

proven to be very efficient for stiff problems. When solving numerically a system of equations, the

exact resolution of a few equations does not necessarily ensure that the overall error is reduced.What

really matters is that the global error is minimized. A similar idea of relaxationmay also apply to ana-

lytical approximations, as advocated in [52].

Inorder togiveusmore freedom forbuildingapproximations,while keepinganexact formulation, the

variationalprinciple ismodified (relaxed)by introducingexplicitly thehorizontal velocityu = ∇ffiand
the vertical one v = ffiy . The variational formulation can thus be reformulated with the Lagrangian

density

L = ffĩ ”t + ffĭ dt − g ”2

2
−
Z ”

−d

»
u2 + v2

2
+—·(∇ffi− u) + �(ffiy − v)

–
dy; 3.3

where the Lagrangemultipliers— and � have to be determined. By variationswith respect of u and v ,

one finds at once the definition of the Lagrange multipliers:

— = u; � = v; 3.4

so (—; �) is another representationof the velocity field, in addition to (u; v) and (∇ffi; ffiy ). Using these
definitions, 3.3 becomes

L = ffĩ ”t + ffĭ dt − 1
2 g ”

2 +

Z ”

−d

ˆ
1
2 u

2 + 1
2 v

2 − u · ∇ffi− v ffiy
˜
dy: 3.5

TheLagrangiandensity 3.5wasusedbyKim et al. [136] toderive the ‘irrotational’ Green–Naghdi equa-

tions for long waves in shallow water.

However, it is advantageous to keep the most general form of the Lagrangian. Indeed, it allows

one to choose Ansätze for the Lagrange multipliers — and � that can be different from the velocity

field u and v . The Lagrangian density 3.3 involving six dependent variables {”; ffi;u; v ;—; �}—while

the original Lagrangian 3.2 only two (” and ffi) — it allowsmore and different subordinate relations to

be fulfilled.
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The connection of 3.3 with the variational formulation of the classical mechanics can be seen by

applying Green’s theorem to 3.3 that yields another equivalent variational formulation involving the

Lagrangian density

L = (@t” + —̃ · ∇” − �̃) ffĩ+ (@td + —̆ · ∇d + �̆) ffĭ− 1
2 g ”

2

+

Z ”

−d

ˆ
— · u − 1

2u
2 + �v − 1

2v
2 + (∇ ·—+ @y�)ffi

˜
dy: 3.6

We underline that the last Lagrangian is the most general (relaxed) form of Luke’s variational princi-

ple, including two Lagrange multipliers— and �. We remind also that —̃, �̃, —̆ and �̆ denote the traces

of these Lagrange multipliers at the free surface and bottom, respectively. Perhaps other generaliza-

tions of Luke’s variational principle are possible (see e.g. [61]). However, at the current stage, we are

completely satisfied with 3.6.

If the relations 3.4 are used, the Lagrangian density 3.6 can be reduced to

L = (@t” + ũ · ∇” − ṽ) ffĩ+ (@td + ŭ · ∇d + v̆) ffĭ− 1
2 g ”

2

+

Z ”

−d

ˆ
1
2u

2 + 1
2v

2 + (∇ · u + @yv)ffi
˜
dy: 3.7

Thus, the classical Hamilton principle is recovered, i.e., the Lagrangian is the kinetic energy minus

the potential energy plus constraints for the incompressibility and the boundary impermeabilities, as

alreadypointedoutbyMiles [166]. Inotherwords, theLagrangiandensity 3.6 is theHamiltonprinciple

in its most general form for irrotational surface gravity waves. Note finally that extensions of 3.3 and

3.6 including, e.g., obstacles, surface tensions and stratifications in several homogeneous layers are

straightforward generalizations. For instance, to include the surface tension, it is sufficient to add the

term −ff
“p

1 + (∇”)2 − 1
”
into the definition of the Lagrangian density 3.6, the constant ff being

the surface tension coefficient. The applicationof variational principles to capillary-gravitywaves can

be found in e.g. [55, 56, 103].

The Lagrangians 3.1, 3.2, 3.3, 3.6 and 3.7 yield the same exact relations. However, 3.3, 3.6 and 3.7

allow the constructions of approximations that are not exactly irrotational, that is not the case of

Lagrangians 3.1 and 3.2. This advantage is illustrated below via some straightforward examples.
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C H A P T E R 4

Shallowwater examples

If – is a characteristic wavelength and h is an average water depth, the shallow water approximation

consists of assuming that h=– � 1 or, in other words, the water depth is much smaller compared to

the typical wavelength. This regime is relevant in coastal engineering problems [156, 210, 238]. In the

open ocean, only tsunami and tidal waves are in this regime [71, 133].

In this Section, we are going to derive various approximate water wave models in shallow waters.

Some of these models are well-known7 and some of themwill be totally new.

4.1 Serre equations: the first derivation

For surfacewavespropagating in shallowwater, it iswell known that the velocity fieldsvary little along

the vertical. A reasonable Ansatz for the horizontal velocity is thus one such that u is independent of

y , i.e., and one can consider the approximation

u(x; y ; t) ≈ ū(x; t); 4.1

meaning that u is assumed to be close to its depth-averaged value.8

In order to introduce a suitable Ansatz for the vertical velocity, one can assume, for example, that the

fluid incompressibility 2.1 and the bottom impermeability (2.2b) are fulfilled. These choices lead to

the Ansatz

v(x; y ; t) ≈ −(y + d) ūx : 4.2

Notice that, with this Ansatz, the velocity field is not exactly irrotational, i.e.

vx − uy ≈ −(y + d) ūxx :

7In this case, we just provide an alternative derivation procedure.
8ū = 1

h

R ”
−d u dy .
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This does notmean thatwe aremodelling a vorticalmotion but, instead, we aremodelling a potential

flow via a velocity field that is not exactly irrotational. This should not be more surprising than, e.g.,

using an approximation such that the pressure at the free surface is not exactly zero.

With the Ansätze 4.1–4.2, the vertical acceleration (withD=Dt being the temporal derivative following

the motion) is

D v

Dt
=

@ v

@t
+ u

@ v

@x
+ v

@ v

@y
≈ − v ūx − (y + d)

D ūx
Dt

= ‚
y + d

h
;

where ‚ is the vertical acceleration at the free surface:

‚ ≡ D v

Dt

˛̨̨
˛
y=”

≈ h
ˆ
ū 2
x − ūxt − ū ūxx

˜
:

The kinetic energy per water column K is similarly easily derived9

K

j
=

Z ”

−d

u2 + v2

2
dy ≈ h ū2

2
+
h3 ū 2

x

6
:

TheHamilton principle 3.7— i.e., kineticminus potential energies plus constraints for incompressibil-

ity and boundary impermeabilities — yields, for this Ansatz and after some elementary algebra, the

Lagrangian density

L = 1
2 h ū

2 + 1
6 h

3 ū 2
x − 1

2 g h
2 + { ht + [ h ū ]x } ffĩ :

The Euler–Lagrange equations for this functional are

‹ffĩ : 0 = ht + [ h ū ]x ; 4.3

‹ū : 0 = ffĩ hx − [ h ffĩ ]x − 1
3 [ h

3 ūx ]x + h ū; 4.4

‹h : 0 = 1
2 ū

2 − g h + 1
2 h

2 ū 2
x − ffĩt + ffĩ ūx − [ ū ffĩ ]x ; 4.5

thence

ffĩx = ū − 1
3 h

−1 [ h3 ūx ]x ; 4.6

ffĩt = 1
2
h2 ū 2

x − 1
2
ū2 − g h+ 1

3
ū h−1 [ h3 ūx ]x : 4.7

9This computation is straightforward and does not involve any approximations beyond the ones stated in the
chosen Ansatz.
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Differentiation of 4.7 with respect to x and differentiation of 4.6 with respect to t yield, after some

algebra10, the equation

ˆ
ū − 1

3 h
−1(h3ūx)x

˜
t
+
ˆ

1
2 ū

2 + g h− 1
2 h

2 ū 2
x − 1

3 ū h
−1(h3ūx)x

˜
x
= 0;

that can be rewritten in the non-conservative form

ūt + ū ūx + g hx +
1
3 h

−1 @x
ˆ
h2 ‚

˜
= 0:

After multiplication by h and exploiting 4.3, we also derive the conservative equation

[ h ū ]t +
ˆ
h ū2 + 1

2 g h
2 + 1

3 h
2 ‚
˜
x
= 0:

In summary, we have derived the system of equations

ht + @x [ h ū ] = 0;

@t [ h ū ] + @x
ˆ
h ū2 + 1

2 g h
2 + 1

3 h
2 ‚
˜
= 0;

h ū 2
x − h ūxt − h ū ūxx = ‚;

that are the Serre–Green–Naghdi equations (SGN). With the SGN equations, the irrotationality is not

exactly satisfied, and thus, these equations cannot be derived from Luke’s variational principle.

Assuming small derivatives (i.e., long waves) but not small amplitudes, these equations were first

derived by Serre [204] via a different route. They were independently rediscovered by Su and

Gardner [215], and again by Green, Laws and Naghdi [114]. Another variational derivation based on

the Lagrangian (fluid particle) formulation was given by Salmon [197]. These approximations are

valid in shallow water without assuming small amplitude waves, and they are therefore sometimes

called weakly-dispersive fully-nonlinear approximation [134, 239] and are a generalization of the

10The elimination of the variable ffĩ aligns with expectations, given its designation as a Lagrange multiplier–a
mathematical entity introduced to enforce certain constraints–rather than a variable fundamentally rooted in
the physical essence of the problem at hand. This characteristic of ffĩ is emblematic of the rôle of Lagrangemulti-
pliers, which serve as auxiliary constructs to ensure the satisfaction of specified conditions within the analytical
framework yet do not carry intrinsic physical significance pertaining to the core dynamics of the problem. Their
introduction facilitates a structured approach to navigating the constraints inherent in the system, allowing for a
more disciplined exploration of the solution space. However, once these constraints are adequately addressed,
the retention of suchmultipliers, including ffĩ, becomes superfluous, warranting their elimination from the ensu-
ing analysis. This process of elimination, far from being arbitrary, underscores the transient utility of Lagrange
multipliers in bridging the mathematical formulation with the physical constraints, while also delineating the
boundary between auxiliary mathematical constructs and variables of core physical relevance.
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Saint-Venant [212, 232] and of the Boussinesq equations. The variational derivation above is obvious

and straightforward. Further details on the SGN equations concerning their properties and numerical

resolutions can be easily found in the literature, e.g., [87, 153, 216].

4.2 Serre equations: the relaxed variational principle

For a longwave in shallowwater, in potentialmotiononahorizontal impermeable sea bed at y = −d ,
it has long been noticed that the velocity field can be well approximated by truncating the following

expansion11 due to Lagrange [145]:

u = ǔ − 1
2 (y + d)2 ∇2ǔ + 1

24 (y + d)4 ∇4ǔ + · · · : 4.8

The methodological legacy of Lagrange, particularly his approach to expansion, found resonance

among a myriad of subsequent scholars, including, but not limited to, notable figures such as Airy,

Boussinesq, and Rayleigh. These scholars, inspired by Lagrange’s pioneering work, embraced this

genre of expansion as a potent tool in their analytical arsenal, employing it judiciously to derive their

individual approximations tailored to address specific problems in the realm of fluid dynamics and

wave theory. Each scholar, while drawing upon the foundational insights from Lagrange’s expansion

methodology, contributed their own nuanced understanding and refinements, thereby enriching the

collective body of knowledge in the field. This tradition of methodological evolution, as chronicled

in [65], not only pays homage to Lagrange’s seminal contributions but also epitomizes the vibrant

scholarly exchange and cumulative knowledge advancement emblematic of the scientific discourse

in this domain.

We consider here a simple Ansatz of polynomial type, that is, a zeroth-order polynomial in y for ffi and

for u, and a first-order one for v , i.e., we approximate flows that are nearly uniform along the vertical

direction. Our Ansatz thus reads

ffi ≈ ffī(x ; t); u ≈ ū(x ; t); v ≈ (y + d) (” + d)−1 ṽ(x ; t): 4.9

Such Ansätze are the basis of most shallowwater approximations. We have also to introduce suitable

Ansätze for the Lagrange multiplier— and �. Since— = u and � = v for the exact solution, a natural

Ansatz for the multipliers is

— ≈ —̄(x ; t); � ≈ (y + d) (” + d)−1 �̃(x ; t): 4.10

11Weremind that in this expansion, the variable ǔ denotes the traceof thehorizontal velocity at the solid bottom.
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With the Ansätze 4.9 and 4.10, the Lagrangian density 3.6 becomes

L = (”t + —̄ · ∇”) ffī− 1
2 g ”

2 + (” + d)
ˆ
—̄ · ū − 1

2 ū
2 + 1

3 �̃ ṽ − 1
6 ṽ

2 + ffī∇ · —̄ ˜ : 4.11

Using theGreen formula, the variational problemcanalso bewritten such that the Lagrangiandensity

is in the following simpler form

L = ffī ”t − 1
2 g”

2 + (” + d)
ˆ
—̄ · ū − 1

2 ū
2 + 1

3 �̃ṽ − 1
6 ṽ

2 − —̄ · ∇ffī ˜ : 4.12

The two Lagrangian densities 4.11 and 4.12 differing by a divergence term yield exactly the same

equations. Thus, depending on the constraints, we use the Lagrangian density, leading to the simpler

expression.We now investigate equations led by this shallowwatermodel under various subordinate

relations.

4.2.1 Unconstrained approximation

Without further constraints, the Euler–Lagrange equations of 4.12 yield

‹ ū : 0 = —̄ − ū; 4.13

‹ ṽ : 0 = �̃ − ṽ ; 4.14

‹ —̄ : 0 = ū −∇ffī; 4.15

‹ �̃ : 0 = ṽ ; 4.16

‹ ffī : 0 = ”t +∇ · [ (” + d) —̄ ] ; 4.17

‹ ” : 0 = —̄ · ū − 1
2 ū

2 + 1
3 �̃ ṽ − 1

6 ṽ
2 − —̄ · ∇ffī− ffīt − g ”: 4.18

The relations 4.13–4.16 imply that the motion is exactly irrotational, but the fluid incompressibility is

not satisfied identically. With these four relations, the last two equations can be rewritten in the form:

ht +∇ · [ h ū ] = 0; 4.19

ūt +
1
2 ∇ |ū|2 + g ∇ h = 0; 4.20

where h = ” + d is the total water depth. Equations 4.19–4.20 are the very well-known nonlinear

shallow water equations, also known as Airy or Saint-Venant equations (Wehausen & Laitone [232,

§28]). They are sometimes called non-dispersive fully nonlinear approximation because their classical
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derivation assumes long waves without the extra hypothesis of small amplitudes. These equations

have a canonical12 Hamiltonian structure for the conjugate variables ” and ffīwith the HamiltonianZ
Ω

n
1
2
g ”2 + 1

2
(” + d)

˛̨∇ffī ˛̨2 o d2x :

The Saint-Venant equations do not admit smooth progressive wave solutions. They are nevertheless

widely used because they can be solved locally analytically by the method of characteristics [212].

This analytical method translates into the celebrated Finite Volume method [13, 108] in the realm of

numerical techniques.

4.2.2 Constraining with free surface impermeability

We now constrain the Ansatz 4.9, 4.10, imposing that the impermeability of the free surface is satis-

fied identically. Since the surface impermeability is expressed through the velocity (—; �) in 3.6, we

substitute

�̃ = ”t + —̄ · ∇”; 4.21

into the Lagrangian density 4.11, and the subsequent Euler–Lagrange equations are

‹ ū : 0 = —̄ − ū; 4.22

‹ ṽ : 0 = ”t + —̄ · ∇” − ṽ ; 4.23

‹ —̄ : 0 = ū + 1
3 ṽ∇” −∇ffī; 4.24

‹ ffī : 0 = ”t +∇ · [ (” + d) —̄ ] ; 4.25

‹ ” : 0 = —̄ · ū − 1
2
ū2 − 1

6
ṽ2 − —̄ · ∇ffī− ffīt − g ”

− 1
3 (” + d) [ ṽt + —̄ · ∇ṽ + ṽ∇ · —̄ ] : 4.26

The relations 4.22 and 4.24 link the velocity potential and thehorizontal velocity as∇ffī �= ū = —̄ and,

therefore, equations 4.22–4.26 cannot bederived fromLuke’s variational principle. Relations 4.22 and

4.25 provide the mass conservation, and hence, with 4.21, the approximation 4.22–4.26 implies that

the fluid incompressibility is fulfilled identically.

12Along with amultitude of non-canonical Hamiltonian structures as well.
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Eliminating ffī, —̄ and ṽ from the horizontal gradient of 4.26, the system 4.22–4.26 becomes

ht +∇ · [ h ū ] = 0; 4.27

ūt +
1
2 ∇|ū |2 + g ∇h + 1

3 h
−1 ∇[ h2 ‚̃ ] = 1

3 (ū · ∇h)∇(h∇ · ū)− 1
3 [ ū · ∇(h∇ · ū) ]∇h;

4.28

and where

‚̃ = ṽt + ū · ∇ṽ = h
˘
(∇ · ū)2 −∇ · ūt − ū · ∇ [∇ · ū ]

¯
; 4.29

is the fluid vertical acceleration at the free surface.

In the two-dimensional case (one horizontal dimension), the right-hand side of 4.28 vanishes, and the

system 4.27, 4.28 reduces to the equations first derived by Serre [203], independently rediscovered

by Su and Gardner [215] and again by Green, Laws and Naghdi [114]. It is sometimes called weakly-

dispersive fully-nonlinear approximation [239]. These equations admit a travelling solitary wave solu-

tion propagating along the horizontal dimension

” = a sech2 1
2{(x1 − ct); c2 = g (d + a); ({d)2 = 3 a (d + a)−1;

which is linearly stable [153]. Note that this solution does not impose any limitation on the wave

amplitude, meaning that the Serre equations are physically inconsistent with the existence of the

highest wave in the full Euler equations as it has been known since the brilliant argument by Stokes

[214]. Note also that the Serre equations have a non-canonicalHamiltonian structure [153] alongwith

the multi-symplectic structure [48].

In three dimensions, equations 4.27–4.28 were called by Kim et al. [136] ‘irrotational’ Green–Naghdi

equations13. If the right-hand side of (4.28) is neglected, we recover the classical Green–Naghdi

equations [115].

Remark 4.1. Craig and Grooves, as documented in [62], alongside a host of other scholars, have

ventured into the derivation of various shallow water models, anchoring their efforts in a variational

principle. Their approaches predominantly hingeon the introductionof small parameters to facilitate

thederivationprocess. This iswhereourmethodologydivergesmarkedly. Inourapproach,weeschew

13See the original work [136] to see why this term was coined.
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the incorporation of small parameters; instead, we channel our focus towards making well-founded

assumptions regarding the vertical structure of the flow.

4.2.3 Constraining with incompressibility and partial potential flow I

Here,we restrict the freedomby imposing that the velocity potential is related to thehorizontal veloc-

ity asu = ∇ffi, and that thefluid incompressibility∇·u+vy = 0 is fulfilled, togetherwith the relations

— = u and � = v , i.e., we take the subordinate conditions

—̄ = ū; �̃ = ṽ ; ū = ∇ffī; ṽ = −(” + d)∇2ffī:

These constraints do not impose exact irrotationality because v �= ffiy . Undoubtedly, we aim to derive

an approximation that resides intermediate to the Saint-Venant and Serre–Green–Naghdi equations

(SGN) equations, potentially encapsulating aspects of both, thereby fostering a broader understand-

ing of the fluid dynamics under investigation.

Thus, the Lagrangian density 4.12 becomes

L = ffī ”t − 1
2
g ”2 − 1

2
(” + d)

`∇ffī´2 + 1
6
(” + d)3

`∇2ffī
´2
; 4.30

and its Euler–Lagrange equations yield

‹ ffī : 0 = ”t +∇ · ˆ (” + d)∇ffī ˜+ 1
3 ∇2

ˆ
(” + d)3

`∇2ffī
´ ˜
;

‹ ” : 0 = ffīt + g ” + 1
2

`∇ffī´2 − 1
2 (” + d)2

`∇2ffī
´2
:

It seems that these equations have never appeared before in the literature before our study [52]. They

are a generalization of the so-called Kaup–Boussinesq (or canonical Boussinesq) equations [131, 144]

and are thus referred to as the gKB equations. This canbe seenby noticing that the gKB equations can

be derived from the canonical HamiltonianZ
Ω

n
1
2 g ”

2 + 1
2 (” + d)

˛̨∇ffī ˛̨2 − 1
6 (” + d)3

`∇2ffī
´2 o

d2x ; 4.31

while the classical Kaup–Boussinesq equations (cKB) equations are obtained replacing (” + d)3

by d3 in 4.31 and restricting the resulting Hamiltonian to one horizontal dimension. Note that the

Lagrangian 4.30 is cubic in ”, meaning that it has (at most) one local minimum in ” and not a global

one.

The linearized gKB and cKB systems admit the special travelling wave solution

” = a cos k(x1 − ct); c2 = gd (1− 1
3k

2d2); 4.32
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implying that these equations are linearly ill-conditioned (c2 < 0 for kd >
√
3). Nevertheless, should

the generalized Kaup–Boussinesq equations (gKB) equations exhibit integrability akin to that of the

cKB equations, they may emerge as a somewhat intriguing model for investigating gravity waves in

shallow water scenarios. The allure of integrability holds promise for facilitating a structured explo-

ration of the complex wave dynamics inherent in shallowwater environments. Despite this potential,

it is important to note that a comprehensive study of these equations, to fully elucidate their applica-

bility and the insights they might offer, remains an endeavor yet to be undertaken.

4.3 Constraining with incompressibility and partial potential flow II

So far, all the approximations derived turned out to be such that— = u and � = v . We propose here

a novel approximation that does not satisfy one of these identities, and that is an interesting variant

of the previous models.

We impose a partially potential flow such that— = ∇ffi and � = ffiy , together with the incompress-

ibility condition∇ · u + vy = 0 and the condition u = —. Thus, substituting the constraints

—̄ = ū = ∇ffī; �̃ = 0; ṽ = −(” + d)∇2ffī;

into the Lagrangian density 4.12 yields

L = ffī ”t − 1
2 g ”

2 − 1
2 (” + d)

`∇ffī´2 − 1
6 (” + d)3

`∇2ffī
´2
;

and the corresponding Euler–Lagrange equations are

‹ ffī : 0 = ”t +∇ · ˆ (” + d)∇ffī ˜− 1
3 ∇2

ˆ
(” + d)3

`∇2ffī
´ ˜
; 4.33

‹ ” : 0 = ffīt + g ” + 1
2

`∇ffī´2 + 1
2 (” + d)2

`∇2ffī
´2
: 4.34

These equations can be derived from the canonical HamiltonianZ
Ω

n
1
2
g ”2 + 1

2
(” + d)

˛̨∇ffī ˛̨2 + 1
6
(” + d)3

`∇2ffī
´2 o

d2x ;

which is always positive (an interesting feature for modelling water waves). To the linear approxima-

tion, equations 4.33, 4.34 have the progressive wave solution

” = a cos k (x1 − ct); c2 = gd (1 + 1
3
k2d2); 4.35

which is well-behaved (i.e., c2 is never negative). Comparisons with the gKB equations sug-

gest to refer to equations 4.33–4.34 as regularized general Kaup–Boussinesq equations (rgKB).
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However, the linear dispersion relation 4.35 approximates the dispersion relation of linear waves —

i.e., c2 = g tanh(kd)=k — only to the orderO(k2), while the dispersion relation 4.32 to rgKB model

isO(k4). Therefore, the rgKB equations are not very interesting for modelling water waves, but these

equations may be of interest inmodelling other physical processes.

4.3.1 Constraining with incompressibility and potential flow I

In the previous example, we have constructed an approximation such that— = u but � �= v . Now,we

release the constraint— = u and keep the other constraints. Thus, we impose

—̄ = ∇ffī; �̃ = 0; ṽ = −(” + d)∇ · ū;

so that the pseudo velocity field (—; �) is irrotational while the velocity field (u; v ) is incompressible.

After some elementary algebra, the Lagrangian density becomes

L = ffī ht − 1
2 g ”

2 + h ū · ∇ffī− 1
2 h ū

2 − 1
6 h

3 (∇ · ū)2 − h
`∇ffī´2 ;

The corresponding Euler–Lagrange equations read

‹ ū : 0 = h∇ffī− h ū + 1
3 ∇

ˆ
h3 ∇ · ū ˜ ;

‹ ffī : 0 = ht −∇ · [ h ū ] + 2∇ · ˆ h∇ffī ˜ ;
‹ ” : 0 = ffīt + g ” + 1

2
ū2 +

`∇ffī´2 − ū · ∇ffī+ 1
2
h2 (∇ · ū)2 :

The linearizationof this systemof equationshas a (2ı=k)-periodic sinusoidal travellingwave solution

with the dispersion relation

c2 = gd (1 + 2
3k

2d2) (1 + 1
3k

2d2)−1 = gd (1 + 1
3k

2d2) +O (k4);

which, like the previous example, is not satisfactory for water waves. However, these equations may

be of someMathematical interest nevertheless.

4.3.2 Constraining with incompressibility and potential flow II

We now assume that the pseudo velocity field (—; �) is divergence-free, while the velocity field (u; v )

is irrotational, i.e., we impose the constraints

ū = ∇ffī; ṽ = 0; �̃ = −(” + d)∇ · —̄:

The Lagrangian density becomes

L = ffī ”t − 1
2 g ”

2 − 1
2 (” + d)

`∇ffī´2 ;
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which yields the Saint-Venant equations. Thus, these constraints do not bring anything new. It should

be emphasized that this is the case for the special shallow water Ansatz we are considering here, but

this is not necessarily the case for other Ansätze.

4.4 Further possibilities

The constraints of sections 4.2.3 to 4.3.2 can be unified into a single formalism considering combi-

nations. Indeed, the velocity field (u; v ) being not more (nor less) physical than the pseudo-velocity

field (—; �) and the potential velocity field (∇ffi; ffiy ), the constraints can be imposed by combinations

of these three fields. For instance, we could impose irrotationality on the field

( c1u + c2— + (1− c1 − c2)∇ffi ; c1v + c2� + (1− c1 − c2)ffiy );

the fluid incompressibility for the field

( c3u + c4— + (1− c3 − c4)∇ffi ; c3v + c4� + (1− c3 − c4)ffiy );

and so on for any other constraint or field wemay think of. The { cn } ⊂ R are parameters at our dis-

posal. We can choose them in a convenient way based on some mathematical and physical consid-

erations. For example, imposing that the approximate equations derivedmust be linearly well-posed

and/or have better dispersion relation properties.

In the examples above, only some kinematic constraints (irrotationality, incompressibility, imperme-

ability) were used. We could have also considered dynamical constraints based on, e.g., the Bernoulli

equation, or other relevant dynamical equations.

The relaxed variational principle provided a common platform for deriving several shallow water

equations from the same Ansatz in changing only the constraints. Besides the Ansatz, no further

approximationsweremade, and the derivations required only some elementary algebra. Usingmore

general Ansätze — i.e., involvingmore free functions and parameters — one can introduce more con-

straints, if desired, and derivesmore accurate approximations.

4.5 Modified Serre’s equations

The Serre equations are named after François Serre, an engineer at École Nationale des Ponts

et Chaussées, who derived this model for the first time in 1953 in his prominent paper entitled

“Contribution à l’étude des écoulements permanents et variables dans les canaux” (see [203]). Later,

these equations were independently rediscovered by Su and Gardner [215] and by Green, Laws and
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Naghdi [114]. The extension of Serre equations for general uneven bathymetries was derived by

Seabra-Santos et al. [201]. In the Soviet literature, these equations were known as the Zheleznyak–

Pelinovskymodel [249].

For the sake of simplicity, we consider here only one horizontal dimension, say x1, and we set x1 = x

andu1 = u, forbrevity.Wealsoconsider thespecial case— = u and� = v togetherwith theconstraint

ṽ = ”t + ũ”x (free surface’s impermeability). The generalized shallow water Ansatz reads

ffi ≈ ffī(x; t); u ≈ ū(x; t); v ≈
»
y + d

” + d

––
ṽ (x; t):

Thus, the Lagrangian density 3.6 yields

L = (”t + [(” + d)ū]x) ffĩ− 1
2g”

2 + 1
2 (” + d)ū2 + 1

2˛
2(” + d) [”t + ū”x ]

2
; 4.36

where ˛2 = (2–+ 1)−1.

After some algebra, the Euler–Lagrange equations are

ht + [ h ū ]x = 0; 4.37

ūt + ū ūx + g hx + ˛2 h−1 [ h2 ‚̃ ]x = 0; 4.38

where ‚̃ is defined in 4.29. If ˛ = 1=
√
3 the classical SGN equations are recovered.

Using equations 4.37 and 4.38 one can show that the following relations hold

[ h ū ]t +
ˆ
h ū2 + 1

2
g h2 + ˛ h2 ‚̃

˜
x
= 0; 4.39

[ ū − ˛ h−1(h3ūx)x ]t +
ˆ

1
2
ū2 + g h − 1

2
h2 ū2x − ˛ ūh−1 (h3ūx)x

˜
x
= 0; 4.40

[ h ū − ˛ (h3ūx)x ]t +
ˆ
h ū2 + 1

2 g h
2 − 2 ˛ h3 ū2x − ˛ h3 ū ūxx − h2 hx ū ūx

˜
x
= 0; 4.41ˆ

1
2 h ū

2 + 1
2 ˛ h

3 ū2x + 1
2 g h

2
˜
t
+
ˆ `

1
2 ū

2 + 1
2 ˛ h

2 ū2x + g h + ˛ h ‚̃
´
h ū
˜
x
= 0: 4.42

Physically, these relations represent conservationsof themomentum,quantity q̄ = ū−˛h−1(h3ūx)x ,

its flux q̃ := hū−˛(h3ūx)x and the total energy, respectively.Moreover, theSerre equations are invari-

ant under the Galilean transformation. This property is naturally inherited from the full water wave

problem since our Ansatz does not destroy this symmetry [20], and the derivation is made according

to variational principles.
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Remark4.2. In someapplications, suchas coastal engineering, it is required toestimate the loading

exerted bywater waves onto vertical structures [59]. The pressure can be computed in the framework

of the Serre equations as well. For the first time, these quantities were computed in the pioneering

paperbyZheleznyak (1985) [248]. Here, for simplicity,weprovide theexpressions in twospacedimen-

sions, whichwere derived in [248]. The pressure distribution inside the fluid column is given by

P(x; y ; t)

jgd
=
” − y

d
+

1

2

"„
h

d

«2

−
“
1 +

y

d

”2 # ‚̃ d
g h

;

one can compute the forceF exerted on a vertical wall:

F(x; t)

jgd2
=

Z ”

−d

P
jgd2

dy =

„
1

2
+

‚̃

3 g

«„
h

d

«2

:

Finally, the tilting momentM relative to the sea bed is given by the following formula:

M(x; t)

jgd3
=

Z ”

−d

P
jgd3

(y + d) dy =

„
1

6
+

‚̃

8 g

«„
h

d

«3

:

Equations 4.37–4.38 admit a (2ı=k)-periodic cnoidal travelling wave solution:

ū =
c ”

d + ”
; ” = a

dn2
`
1
2
{‰|m´− E=K

1− E=K
= a − H sn2

`
1
2{‰|m

´
; 4.43

with ‰ := x − ct, dn and sn being elliptic functions of Jacobi of parameterm (0 6 m 6 1), and where

K = K(m) andE = E(m) are the complete elliptic integrals of the first and second kinds, respectively

(see [1, Section §17.3]). The parameter { plays the rôle of a wavenumber, a is the wave amplitude

(mean level to crest elevation),H is the total waveheight (trough to crest elevation), and c is thewave

phase velocity observed in the frame of reference without mean flow. The wave parameters obey the

relations

k =
ı{

2K
; H =

maK

K − E
; ({d)2 =

g H

m˛2 c2
; 4.44

m =
g H (d + a) (d + a−H)

g (d + a)2 (d + a−H)− d2 c2
: 4.45

In the limiting casem → 1, we haveK → ∞,E=K → 0, k → 0,H → a and hence, a classical solitary

wave solution is recovered

” = a sech2 1
2{(x − ct); c2 = g (d + a); a

d = (˛{d)2

1−(˛{d)2 : 4.46
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(b) Cnoidal wave

Figure 4.1 Two exact solutions to the Serre equations. The solitary wave amplitude is equal to a=d = 0:05. For the cnoidal

wave parameters, m and a=d are equal to 0:99 and 0:05, respectively. Other cnoidal wave parameters can be deduced from

relations 4.44, 4.45.

For illustrative purposes, a solitarywave alongwith a cnoidalwaveof the sameamplitude a=d = 0:05

are depicted in Figure 4.1.

Utilising theexact solitarywave solutiondelineated inequation4.46,wearepoised toassess theaccu-

racy of the Serre equations (with ˛ = 1
3 ), through a comparative lens against the corresponding solu-

tions to the original, potential full Euler equations14. Themethodology that propels the construction

of travelling wave solutions to the Euler equations is meticulously articulated in references [53, 84].

Further facilitating this exploration is a MATLAB script, dedicated to generating these profiles with a

precision that approaches the machine limit. This script is readily accessible for download from the

File Exchange server, as cited in [51], thereby providing an open avenue for rigorous computational

examination.

As we unveil the outcomes of this comparative analysis for a spectrum of values attributed to the

speed parameter c , encapsulated in Figure 4.2, a narrative of approximation accuracy begins to

unfold. It is discernible that the solitary waves corresponding to the Serre equations exhibit a com-

mendable approximation to the full Euler solutions, maintaining this fidelity up to an amplitude ratio

14Usually, we call this mathematical formulation to be the full water wave problem.
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(c) c = 1.2
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Figure 4.2 Comparison of solitary wave solutions to the Serre and the full Euler equations.

of approximately a=d ≈ 1
2 . This observed accuracy not only underscores the robustness of the Serre

equations in encapsulating the dynamics of the Euler equations but also echoes a semblance of

validation for the analytical frameworks employed.

It is noteworthy tomention that our findings resonatewith the conclusions drawn in a prior investiga-

tive venture by Li et al. (2004) [154]. The harmony between these independent studies reinforces the

narrative of approximation accuracy, thereby elevating the confidence in the utilisation of the Serre

equations as a viable analytical tool for exploring the dynamics of solitary waves, especially in sce-

narios where the amplitude ratio hovers around or below the threshold of a=d . 1
2 . Through this
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comparative analysis, we have not only benchmarked the accuracy of the Serre equations but also

accentuated their potential as a reliable and efficacious conduit for delving into the complex realm of

fluid dynamics governed by the Euler equations.

At this stage, ˛ is still a free parameter. A suitable expression for this parameter may be obtained by

substituting the solution 4.43 into the Lagrangian density 4.36, integrating L over one wavelength,

then solving dL=d˛ = 0 while keeping k and c constant (as well as g and d ) and varying the other

parameters according to relations 4.44–4.45. Thus, after some cumbersome algebra, we found ˛ = 0

for this parameter, which is not very interesting for practical applications. A possible alternative here

is to choose˛ such that theexact (for potential flow) relation c2 = g tan({d)={ is satisfied identically

or up to some asymptotic order.

4.5.1 Invariants of the Serre equations

Henceforth, until the end of this Section, we consider only the two-dimensional case. As pointed out

by Li (2002) [153], the classical Serre equations possess a non-canonical Hamiltonian structure which

can be easily generalized for the model 4.37, 4.38

 
ht

q̃t

!
= J ·

 
‹H = ‹q̃

‹H = ‹h

!
;

where the Hamiltonian functionalH and the symplectic operator J are defined as

H = 1
2

Z
R

ˆ
h ū2 + ˛ h3 ū2x + g ”2

˜
dx; J = −

"
hx 0

q̃x + q̃@x h@x

#
:

The variable ū is related to q̃ as follows

q̃ ≡ h ū − ˛ [ h3 ūx ]x :

The conservation of the quantity q̃ was established in equation 4.41.

According to [153], one-parameter symmetry groups of Serre equations include the space translation

(x + "; t; h; u), the time translation (x; t + "; h; u), the Galilean boost (x + "t; t; h; u + ") and the

scaling e"(e"x; t; e"h; u). Using the first three symmetry groups and the symplectic operator J, one

may recover the following invariants:

Q =

Z
R

” q̃

d + ”
dx; H;

Z
R

[ t q̃ − x ” ] dx: 4.47
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It is manifest that the equation 4.37 engenders an invariant that is intimately tethered to the mass

conservation property15, encapsulated by the integral expression
R
R
” dx . The scaling symmetry,

however, does not furnish any conserved quantity in relation to the symplectic operator J. As we

navigate further, our discourse will pivot on the utilisation of the total energyH and the generalized

momentum Q conservation, employing these principles as pivotal instruments to rigorously evalu-

ate the accuracy of the numerical schemes at our behest. These evaluations will not merely dwell

in the abstract but will be juxtaposed against the exact analytical solution delineated in equation

4.46, thereby providing a grounded and comparative assessment of the fidelity and robustness of

the numerical schemes in replicating the underlying dynamics of the SGN equations. Through this

meticulous examination, we aim to forge a comprehensive understanding of the numerical schemes’

performance,while concurrently illuminating the inherent conservationprinciples and their interplay

with the accuracy and reliability of the numerical solutions generated.

4.5.2 Multi-symplectic structure of the Serre equations

This section is devoted to a further study of the celebrated SGN model 4.37, 4.38 of fully nonlinear

long water waves propagating in shallow water. For the sake of simplicity, we adopt the ‘classical’

value of theparameter˛ = 1√
3
. TheHamiltonian formulation for the SGNequationswas revisited ear-

lier. However, this structure is non-canonical and highly non-trivial, at least at first sight. Within this

section, we elucidate a multi-symplectic structure pertaining to the same system of SGN equations,

a structure whose initial unveiling in the scholarly domain was effectuated through the publication

[48]. This exposition not only revisits the groundbreaking revelation from [48] but also ventures to

delineate the nuanced intricacies and implications of this multi-symplectic structure in the context

of the SGN equations. Through a meticulous examination, we aim to accentuate the profound ana-

lytical utility and the enriched understanding that this multi-symplectic framework bequeaths upon

the SGN equations, thereby contributing to the broader comprehension and exploration of longwave

dynamics in shallow waters.

The multi-symplectic structure generalizes the classical Hamiltonian formulations [15] to the case

of PDEs such that the space and time variables are treated on the equal footing [33] (see also

[149, Chapter 12]). The hint for deriving this multi-symplectic structure is given in Appendix C. The

generalisation to a multi-symplectic structure from classical Hamiltonian formulations engenders a

more holistic and nuanced analytical framework, especially conducive for the examination of PDEs.

15Indeed, this invariant should be rather termedas themass perturbation conservation. However, we stick to the
classical term even if it is not fully accurate.
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By extending the Hamiltonian perspective to accommodate both space and time variables on an

equal footing, this multi-symplectic vantage point fosters a more harmonised understanding and

manipulation of the underlying dynamics encapsulated within the PDEs. This enriched framework

consequently broadens the horizon for deriving conservation laws and invariant properties, thereby

unveiling a more profound comprehension of the intricate interplay between spatial and temporal

dimensions within the equations under scrutiny. Moreover, the multi-symplectic structure holds the

promise of facilitating the derivation and analysis of numerical schemes that remain faithful to the

conservation laws inherent in the continuous problem, thus significantly enhancing the accuracy and

reliability of numerical solutions.

A system of PDEs in 1D is said to be multi-symplectic if it can written as a system of first-order equa-

tions of the form [33, 161]:

M · z t +K · zx = ∇z S(z); 4.48

where a dot denotes the contracted (inner) product, z ∈ Rn is a rank-one tensor (vector) of state

variables,M ∈ Rn×n and K ∈ Rn×n are skew-symmetric constant rank-two tensors (matrices) and

S is a smooth rank-zero tensor (scalar) function depending on z . (We use tensor notations because

they give more compact formulae than the matrix formalism [27].) The function S plays the rôle of

the Hamiltonian functional in classical symplectic formulations [15]. Consequently, S is sometimes

called the ‘Hamiltonian’ function as well. It should be noted that the matricesM and K can be (and

often are) degenerated [38].

It turns out that the SGNequations 4.37–4.38 have amulti-symplectic structurewith z = h e1+ffi e2+

u e3 + v e4 + p e5 + q e6 + r e7 + s e8 (e i unitary basis vectors) and

M = e1 ⊗ e2 − e2 ⊗ e1 +
1
3
e1 ⊗ e5 − 1

3
e5 ⊗ e1; 4.49

K = 1
3
e1 ⊗ e7 − 1

3
e7 ⊗ e1 − e2 ⊗ e6 + e6 ⊗ e2; 4.50

S =
`
1
6
v2 − 1

2
u2 − 1

3
s u v

´
h − 1

2
g h2 + 1

3
p (u s − v) + q

`
u + 1

3
s v
´ − 1

3
r s; 4.51

where ⊗ denotes the tensor product. Indeed, the substitution of these relations into 4.48 yields the

equations16

ffit +
1
3 pt +

1
3 rx = 1

6 v
2 − 1

2 u
2 − 1

3 s u v − g h; 4.52

−ht − qx = 0; 4.53

16The variables p, q, r , and s are defined right after the system.
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0 = q − h u + 1
3 s ( p − h v ) ; 4.54

0 = 1
3 ( h v − p ) + 1

3 s ( q − h u ) ; 4.55

− 1
3 ht =

1
3 ( s u − v ) ; 4.56

ffix = u + 1
3 s v ; 4.57

− 1
3 hx = − 1

3 s; 4.58

0 = 1
3 ( p u + q v − r − h u v ) : 4.59

These equations have the following physical meaning. Equation 4.58 gives s = hx , so s is the sur-

face slope. Equations 4.54 and 4.55 yield p = hv and q = hu , which are the vertical and horizontal

momenta, respectively. It follows that 4.53 is the mass conservation ht + [hu]x = 0 and 4.56 is the

impermeability of the free surface ht + uhx = v (v is then the vertical velocity at the free surface).

Equation 4.57 shows that the velocity field is not exactly irrotational for the SGN equations (a well-

known result). The definition above of p and q substituted into 4.59 gives r = huv . Finally, substitut-

ing all the preceding results into 4.52, after some algebra, one obtains

ffit +
1
2 u

2 + 1
6 h

2 u 2
x + g h − 1

3 h
2 uxt − 1

3 h u @x [ h ux ] = 0:

Differentiating this equation with respect to x , eliminating ffi using 4.57 and exploiting the mass con-

servation, one gets equation 4.40.

It should be noted that after eliminating p, q and r , the ‘Hamiltonian’S becomes

S = 1
2 h u

2 − 1
6 h v

2 − 1
2 g h

2 = 1
2 h u

2 − 1
6 h

3 u 2
x − 1

2 g h
2;

so S is neither a density of total energy nor a Lagrangian density.

Conservation laws

Amulti-symplectic system of partial differential equations has local conservation laws for the energy

andmomentum [37, 38]

@tE(z) + @xF (z) = 0; @tI(z) + @xG(z) = 0;

where

E(z) = S(z) + 1
2
zx ·K · z ; F (z) = − 1

2
z t ·K · z ;

G(z) = S(z) + 1
2 z t ·M · z ; I(z) = − 1

2 zx ·M · z :
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For the SGN equations, from the results given above (cf. 4.50–4.51), we thus find

E = 1
6 r hx − 1

6 h rx +
1
2 ffi qx − 1

2 q ffix − 1
2 g h

2 + 1
2 h u

2 − 1
6 h v

2;

F = 1
6 h rt − 1

6 r ht +
1
2 q ffit − 1

2 ffi qt ;

G = 1
6 p ht − 1

6 h pt +
1
2 ffi ht − 1

2 h ffit − 1
2 g h

2 + 1
2 h u

2 − 1
6 h v

2;

I = 1
6 h px − 1

6 p hx +
1
2 h ffix − 1

2 ffi hx :

Furthemore, after using the relations 4.52–4.59 and some algebra, one gets the expression of quanti-

tiesE, F ,G and I in terms of initial physical variables

−E = 1
2
h u2 + 1

2
g h2 + 1

6
h2 u 2

x − @x
ˆ
1
2
ffi h u + 1

6
h3 u ux

˜
;

−F =
`

1
2
u2 + 1

6
h2 u 2

x + g h + 1
3
h ‚
´
h u + @t

ˆ
1
2
ffi h u + 1

6
h3 u ux

˜
;

G = h u2 + 1
2
g h2 + 1

3
h2 ‚ + @t

ˆ
1
2
ffi h + 1

6
h3 ux

˜
;

I = h u − @x
ˆ
1
2
ffi h+ 1

6
h3 ux

˜
:

So themomentum and energy conservation equations 4.39 and 4.42 are recovered, though−E,−F ,
G and I arenot exactly thedensities of energy, energyflux,momentumflux and impulse, respectively.

Intermediate conclusions

In the discourse of this section, we have delved into the multi-symplectic structure pertinent to

the SGN equations, which have garnered substantial acclaim in recent times as a robust model for

long waves navigating shallow water terrains. Our understanding underscores the publication [48]

as a seminal piece, heralding the initial unveiling of such a structure within the academic litera-

ture, thereby contributing a novel lens through which to interpret the SGN equations. While a non-

canonical Hamiltonian structure of the SGN equations has been previously delineated, for instance

in [128], our exploration has led us to discern that the corresponding multi-symplectic structure

emanates as amore intuitive and streamlined framework for these equations. A salient feature of this

multi-symplectic structure is its egalitarian treatment of both spatial and temporal variables, as eluci-

dated in [161], thereby furnishing a balanced analytical perspective. Themerits of such a formulation

arewell-documented and recognized,with references such as [33] shedding light on its advantageous

disposition. This multi-symplectic formulation, hence, not only augments the analytical rigour but

also enhances the intuitive understanding of the dynamics encapsulated within the SGN equations,

thereby fostering amore comprehensive and nuanced exploration of long waves in shallow waters.
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The elucidation of the multi-symplectic structure in the exact water wave equations, as showcased

in [33], naturally engenders the conjecture that such a structure might extend to approximate equa-

tions aswell, a notion echoed in [79]. However, the terrain becomes nuancedwith the SGN equations,

which do not embody exact irrotationality, thereby casting a veil of uncertainty on an a priori basis,

over the existence of such a multi-symplectic structure within them. The quest to unearth this struc-

ture directly from theSGNequations, as enumerated in equations 4.37–4.38, transcends amere trivial

endeavour, presenting a complex analytical challenge.

In light of this, our investigative journey commenced with the relaxed variational principle, an exem-

plification of the generalized Hamilton principle, as expounded in [52]. This choice of starting point

provedpropitious, rendering thederivationof themulti-symplectic formulationof the SGNequations

considerably lucid, as substantiated in appendix C. This route not only illuminated the covetedmulti-

symplectic structurebutalsounderscored thenuanced interplaybetween irrotationalityand thesym-

plectic characteristics of the SGN equations. The transparent derivation ensuing from the relaxed

variational principle accentuates the profound utility and the insightful lens it provides in navigat-

ing the complex mathematical landscape of the SGN equations, thereby contributing significantly to

the understanding and analytical treatment of long waves in shallow waters.

The SGN equations can be extended to 3D in several ways. One extension of special interest concerns

the so-called irrotational Green–Naghdi equations [52, 136] forwhich amulti-symplectic structure can

be obtained following the same route as for the SGN equations, i.e., starting from the relaxed varia-

tional principle.

This formof structure revelationunveils fresh avenues for the fabricationof structure-preserving inte-

grators pertaining to the SGN equations. To our current understanding, this realm of inquiry remains

largely unexplored in contemporary times. There have been endeavours to resolve SGN equations

employing a variety of methodological approaches, including conventional finite volume techniques

[45], pseudo-spectralmethods [87], andfinite elementmethods [171], eachwith its unique set ofmer-

its and considerations.

However, it is noteworthy that these attempts do not invariably ensure the preservation of the

variational structures, be they symplectic or multi-symplectic, at the discrete level as well. The

quintessence of preserving these structures transcends a mere mathematical formality, venturing

into the realm of ensuring a faithful representation of the underlying physics even in a discretised

computational framework. The discourse presented in thismanuscript sheds light on pivotal findings

that could significantly ease the application of finite difference [9, 37, 174, 231] and pseudo-spectral
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[47, 111] variational schemes. These schemes are lauded for their capability to preserve, with exacti-

tude, the multi-symplectic conservation law even at the discrete echelon. This preservation is instru-

mental in engendering numerical solutions that are not only accurate but also imbuedwith the essen-

tial physical attributes inherent in continuous equations.

A meticulous numerical comparison has been orchestrated, juxtaposing symplectic, multi-

symplectic, and pseudo-spectral schemes, as articulated in [80, 82]. This comparison, pivoted

on the renowned KdV equation, unveils the nuanced performance and the fidelity of these schemes

in capturing the essence of the continuous problem in a discrete setting. The insights gleaned

from this comparison, in tandem with the findings elucidated in this manuscript, offer a promising

pathway towards not only constructing but also discerning the efficacy of variational schemes that

hold the promise of preserving the essential symplectic and multi-symplectic structures. This, in

turn, augments the robustness and reliability of numerical solutions, thereby fostering a more

informed and accurate exploration of the complex dynamics inherent in the SGN equations.

4.6 Numerical applications

In this Section, we shall consider the classical SGN equations corresponding to the choice of ˛ = 1√
3
.

A variety of numerical methods have been applied to discretize dispersive wave models and, more

specifically, the Serre equations [87]. A pseudo-spectral method was applied in [73], an implicit finite

difference scheme in [14, 169] and a compact higher-order scheme in [49, 50]. Some Galerkin and

Finite Element typemethods have been successfully applied to Boussinesq-type equations [6, 10, 75,

91, 170–172]. Afinitedifferencediscretizationbasedonan integral formulationwasproposedbyBona

and Chen [25]. Recently, efficient high-order explicit or implicit-explicit finite difference [46] and finite

volume schemes for dispersive wave equations have been developed [45, 93, 93]. The robustness of

theproposednumerical schemes also allowed simulationof the run-upof longwaves onabeachwith

high accuracy [93].

4.6.1 Finite volume scheme and numerical results

In the present study, we propose a finite-volume discretization procedure [12, 13] for the Serre

equations 4.37, 4.38, which we rewrite here as

ht + [ h u ]x = 0; 4.60

ut +
ˆ

1
2
u2 + g h

˜
x
= ˛ h−1

ˆ
h3 (uxt + u uxx − u 2

x )
˜
x
; 4.61

where the over-bars have been omitted for brevity. (In this section, over-bars denote quantities

averaged over a cell, as explained below.)
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We begin our presentation with a discretization of the hyperbolic part of the equations (which are

simply the classical (Airy–)Saint-Venant equations) and subsequently discuss the treatment of dis-

persive terms. The Serre equations can be formally put into the quasi-linear form

V t + [F (V ) ]x = S(V ); 4.62

where V , F (V ) are the conservative variables and the advective flux function, respectively

V ≡
 
h

u

!
; F (V ) ≡

 
h u

1
2 u

2 + g h

!
:

The source termS(V ) denotes the right-hand side of 4.60, 4.61 and thus, depends also on space and

time derivatives of V . The Jacobian of the advective flux F (V ) can be straightforwardly computed

A(V ) =
@F (V )

@V
=

"
u h

g u

#
:

The JacobianA(V ) has two distinctive eigenvalues

–± = u ± cs ; cs ≡
p
gh:

The corresponding right and left eigenvectors are provided here

R =

"
h −h
cs cs

#
; L = R

−1 =
1

2

"
h−1 c−1

s

−h−1 c−1
s

#
:

We consider a partitionof the real lineR into cells (or finite volumes) Ci = [xi− 1
2
;i+1

2
]with cell centers

xi =
1
2(xi− 1

2
+ xi+1

2
) (i ∈ Z). LetΔxi denote the length of the cell Ci . In the sequel, we will consider

only uniform partitions withΔxi = Δx , ∀i ∈ Z. We would like to approximate the solution V (x; t)

by discrete values. In order to do so, we introduce the cell average of V on the cell Ci (denoted with

an over-bar), i.e.,

V̄ i(t) ≡ `
h̄i(t) ; ūi(t)

´
=

1

Δx

Z
Ci

V (x; t) dx:

A simple integration of 4.62 over the cell Ci leads the following exact relation:

dV̄

dt
+

1

Δx

h
F (V (xi+ 1

2
; t)) − F (V (xi− 1

2
; t))

i
=

1

Δx

Z
Ci

S(V ) dx ≡ S̄i :
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Since the discrete solution is discontinuous at cell interfaces xi+ 1
2
(i ∈ Z), we replace the flux at the

cell faces with the so-called numerical flux function

F (V (xi± 1
2
; t)) ≈ Fi± 1

2
(V̄

L
i± 1

2
; V̄

R
i± 1

2
);

where V̄
L;R
i± 1

2
denotes the reconstructions of the conservative variables V̄ from the left and right sides

of each cell interface (the reconstruction procedure employed in the present study will be described

below). Consequently, the semi-discrete scheme takes the form

dV̄ i

dt
+

1

Δx

h
Fi+1

2
− Fi− 1

2

i
= S̄i : 4.63

In order to discretize the advective flux F (V ), we use the FVCF scheme17 [105, 106]:

F(V ;W ) =
F (V ) + F (W )

2
− U(V ;W ) · F (W )− F (V )

2
:

Thefirstpartof thenumericalflux is centred, and the secondpart is theupwinding introduced through

the Jacobian sign-matrixU(V ;W ) defined as

U(V ;W ) = sign
ˆ
A
`
1
2
(V +W )

´˜
; sign(A) = R · diag(s+s−) · L;

where s± ≡ sign(–±). After some simple algebraic computations, one can find

U =
1

2

"
s+ + s− (h=cs) (s

+ − s−)

(g=cs) (s
+ − s−) s+ + s−

#
;

the sign-matrixU being evaluated at the average state of left and right values.

4.6.2 High order reconstruction

In order to obtain a higher-order scheme in space, we need to replace the piecewise constant data

by a piecewise polynomial representation. This goal is achieved by various so-called reconstruction

procedures such asMUSCLTVD [137, 226, 227], UNO [120], ENO [119],WENO [240] andmanyothers. In

ourprevious studyonBoussinesq-typeequations [92], theUNO2schemeshowedagoodperformance

with small dissipation in realistic propagation and run-up simulations. Consequently, we retain this

scheme for the discretization of the advective flux in Serre equations.

17This scheme is slightly dissipative and non-variational. However, we choose finite volumes due to their excel-
lent shock-capturing properties, whose importance can hardly be underestimated for shallowwater flows.

36 #WaterMonographs IAHR.org



January 24, 2024 22:33: RPS: IAHR Monograph Series

IAHR Water Monographs A variational approach to water wavemodelling

Remark 4.3. In TVD schemes, the numerical operator is required (by definition) not to increase the

total variationof the numerical solution at each time step. It follows that the value of an isolatedmaxi-

mummayonlydecrease in time,which is not agoodproperty for the simulationof coherent structures

such as solitary waves. The non-oscillatory UNO2 scheme, employed in our study, is only required to

diminish the number of local extrema in the numerical solution. Unlike TVD schemes, UNO schemes

are not constrained to dampen the values of each local extremum at every time step.

The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic interpolant

Q(x) to a piecewise smooth function V (x) (see [120] for more details). On each segment containing

the face xi+ 1
2
∈ [xi ; xi+1], the functionQ(x) = q i+1

2
(x) is locally aquadratic polynomial andwherever

v(x) is smooth we have

Q(x)− V (x) = 0+O(Δx3);
dQ

dx
(x ± 0)− dV

dx
= 0+O(Δx2):

Also,Q(x) should benon-oscillatory in the sense that the number of its local extremadoes not exceed

that of V (x). Since q i+ 1
2
(xi) = V̄ i and q i+ 1

2
(xi+1) = V̄ i+1, it can be written in the form

q i+1
2
(x) = V̄ i + di+1

2
{V } × x − xi

Δx
+ 1

2 Di+1
2
{V } × (x − xi )(x − xi+1)

Δx2
;

where di+1
2
{V } ≡ V̄ i+1− V̄ i andDi+1

2
V is closely related to the second derivative of the interpolant

sinceDi+1
2
{V } = Δx2 q ′′

i+1
2

(x). Thepolynomialq i+1
2
(x) is chosen to be the least oscillatory between

two candidates interpolatingV (x) at (xi−1; xi ; xi+1) and (xi ; xi+1; xi+2). This requirement leads to the

following choice ofDi+ 1
2
{V } ≡ minmod (Di{V };Di+1{V })with

Di{V } = V̄ i+1 − 2 V̄ i + V̄ i−1; Di+1{V } = V̄ i+2 − 2 V̄ i+1 + V̄ i ;

and whereminmod(x; y) is the usual minmod function defined as

minmod(x; y) ≡ 1
2 [ sign(x) + sign(y) ] ×min(|x |; |y |):

To achieve the second orderO(Δx2) accuracy, it is sufficient to consider piecewise linear reconstruc-

tions in each cell. Let L(x) denote this approximately reconstructed function, which can be written in

this form

L(x) = V̄ i + Si × x − xi
Δx

; x ∈ [xi− 1
2
; xi+1

2
]:
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In order for L(x) to be a non-oscillatory approximation, we use the parabolic interpolationQ(x) con-

structed below to estimate the slopes Si within each cell

Si = Δx ×minmod

„
dQ

dx
(xi − 0);

dQ

dx
(xi + 0)

«
:

In other words, the solution is reconstructed on the cells, while the solution gradient is estimated on

thedualmesh as it is oftenperformed inmoremodern schemes [12, 13]. A brief summary of theUNO2

reconstruction can also be found in [92, 93].

4.6.3 Treatment of the dispersive terms

In this section, we explain how we treat the dispersive terms of Serre equations 4.60, 4.61. We begin

the exposition by discussing the space discretization, and then, we propose a way to remove the

intrinsic stiffness of the dispersion by partial implicitation.

For the sake of simplicity, we split the dispersive terms into three parts:

M(V ) ≡ ˛ h−1
ˆ
h3 uxt

˜
x
; D1(V ) ≡ ˛ h−1

ˆ
h3 u uxx

˜
x
; D2(V ) ≡ ˛ h−1

ˆ
h3 u 2

x

˜
x
:

We propose the following approximations in space (which are all of the second order O(Δx2) to be

consistent with UNO2 advective flux discretization presented above)

Mi(V̄ ) = ˛ h̄
−1
i

h̄
3
i+1 (ūxt)i+1 − h̄

3
i−1 (ūxt)i−1

2Δx

=
˛ h̄

−1
i

2Δx

»
h̄
3
i+1

(ūt)i+2 − (ūt)i
2Δx

− h̄
3
i−1

(ūt)i − (ūt)i−2

2Δx

–

=
˛ h̄

−1
i

4Δx2

h
h̄
3
i+1 (ūt)i+2 − (h̄

3
i+1 + h̄

3
i−1) (ūt)i + h̄

3
i−1 (ūt)i−2

i
:

The last relation can be rewritten in a short-hand form if we introduce thematrixM(V̄ ) such that the

i -th component of the productM(V̄ ) · V̄ t gives exactly the expressionMi (V̄ ).

In a similar way, we discretize the other dispersive terms without giving the intermediate steps

D1i(V̄ ) =
˛ h̄

−1
i

2Δx3

h
h̄
3
i+1 ūi+1 (ūi+2 − 2ūi+1 + ūi) − h̄

3
i−1 ūi−1 (ūi − 2ūi−1 + ūi−2)

i
;

D2i(V̄ ) =
˛h̄

−1
i

8Δx3

h
h̄
3
i+1 (ūi+2 − ūi )

2 − h̄
3
i−1 (ūi − ūi−2)

2
i
:
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In a more general non-periodic case, asymmetric finite differences should be used near the bound-

aries. Ifwedenoteby I the identitymatrix,wecan rewrite the semi-discrete scheme4.63byexpanding

the right-hand sideSi

dh̄

dt
+

1

Δx

h
F (1)

+ (V̄ )−F (1)
− (V̄ )

i
= 0; 4.64

(I−M) · dū
dt

+
1

Δx

h
F (2)

+ (V̄ )−F (2)
− (V̄ )

i
= D(V̄ ) · ū; 4.65

whereF (1;2)
± (V̄ ) are the two components of the advective numerical flux vectorF at the right (+) and

left (−) faces correspondingly andD(V̄ ) ≡ D1(V̄ )−D2(V̄ ).

Finally, in order to obtain the semi-discrete scheme, one has to solve a linear system to find explicitly

the time derivative dū=dt. A mathematical study of the resulting matrix I−M is not straightforward

to perform. However, in our numerical tests, we have never experienced any difficulties in inverting it.

4.6.4 Temporal scheme

We rewrite the inverted semi-discrete scheme 4.64–4.65 as a system of ODEs:

@t w = L(w; t); w(0) = w0;

wherew := ( h̄; ū )� .

In order to solve numerically the last system of equations, we apply the Bogacki–Shampine method

[24]. It is a third-order Runge–Kutta scheme with four stages. It has an embedded second-order

method, which is used to estimate the local error and, thus, to adapt the time step size. Moreover,

the Bogacki–Shampinemethod enjoys the First Same As Last (FSAL) property, so it needs three func-

tion evaluations per step. This method is also implemented in the ode23 function in MATLAB [205]. A

step of the Bogacki–Shampinemethod is given by

k1 = L(w (n); tn);

k2 = L(w (n) + 1
2
Δtnk1; tn +

1
2
Δt);

k3 = L(w (n)) + 3
4
Δtnk2; tn +

3
4
Δt);

w (n+1) = w (n) +Δtn ×
`
2
9
k1 +

1
3
k2 +

4
9
k3
´
;

k4 = L(w (n+1); tn +Δtn);

w
(n+1)
2 = w (n) +Δtn ×

`
4
24k1 +

1
4k2 +

1
3k3 +

1
8k4
´
:
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Here w (n) ≈ w(tn), Δt is the time step and w (n+1)
2 is a second-order approximation to the solu-

tionw(tn+1), so the difference betweenw (n+1) andw (n+1)
2 gives an estimation of the local error. The

FSAL property consists of the fact that k4 is equal to k1 in the next time step, thus saving one function

evaluation.

If the new time step Δtn+1 is given by Δtn+1 = jnΔtn, then according to the H211b digital filter

approach [208, 209], the proportionality factor jn is given by:

jn =

„
‹

"n

«˛1
„

‹

"n−1

«˛2

j−¸
n−1; 4.66

where "n is a local error estimation at time step tn, ‹ is the desired tolerance, and the constants ˛1, ˛2

and ¸ are defined as

¸ =
1

4
; ˛1 = ˛2 =

1

4 p
:

The parameter p is the order of the scheme (p = 3 in our case).

Remark 4.4. The adaptive strategy 4.66 can be further improved if we smooth the factor jn before

computing the next time stepΔtn+1

Δtn+1 = ĵn Δtn; ĵn = !(jn):

The function!(j) is called the time step limiter and should be smooth, monotonically increasing and

should satisfy the following conditions

!(0) < 1; !(+∞) > 1; !(1) = 1; !′(1) = 1:

One possible choice is suggested in [209]:

!(j) = 1 + » arctan

„
j− 1

»

«
:

In our computations, the parameter » is set to 1.

4.6.5 Pseudo-spectral Fourier-typemethod for the Serre equations

In this section, we describe a pseudo-spectral solver to integrate numerically the Serre equations in

periodic domains. With spectral methods, it is more convenient to take as variables the free surface
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elevation ”(x; t) and the conserved quantity q(x; t) . Hence, we consider the system of equations:

”t + [ (d + ”) ū ]x = 0; 4.67

qt +
ˆ
q u − 1

2 ū
2 + g ” − 1

2 (d + ”)2 ū2x
˜
x
= 0; 4.68

q − ū + 1
3 (d + ”)2ūxx + (d + ”)”x ūx = 0: 4.69

The first two equations 4.67 and 4.68 are of evolution type, while the third one 4.69 relates the con-

served variable q to the primitive variables: the free surface elevation ” and the velocity ū. In order to

solve the relation 4.69 with respect to the velocity ū, we extract the linear part as

ū − 1
3
d2 ūxx − q = 1

3
(2d” + ”2) ūxx + (d + ”) ”x ūx| {z }

N(”;ū)

:

Then, we apply to the last relation the following fixed point type iteration in Fourier space

ˆ̄uj+1 =
q̂

1 + 1
3 (kd)

2
+

F {N(”; ūj )}
1 + 1

3 (kd)
2
; j = 0; 1; 2; · · · ; 4.70

where  ̂ ≡ F{ } denotes the Fourier transform of a quantity  . The last iteration is repeated until

the desired convergence. For example, for moderate amplitude solitary waves (≈ 0:2), the accuracy

10−16 is attained in approximately 20 iterations if the velocity ū0 is initialized from the previous time

step. We note that the usual 3=2-rule is applied to the nonlinear terms for anti-aliasing [58, 102, 224].

Remark 4.5. One can improve the fixed point iteration 4.70 employing the so-called relaxation

approach [126]. The relaxed scheme takes the following form

ˆ̄uj+1 =

 
q̂

1 + 1
3 (kd)

2
+

F {N(”; ūj )}
1 + 1

3 (kd)
2

!
„ + (1− „) ˆ̄uj ; j = 0; 1; 2; · · · ;

where „ ∈ [0; 1] is a free parameter. We obtained the best convergence rate for „ = 1
2 .

In order to improve the numerical stability of the time-steppingmethod, we integrate exactly the lin-

ear terms in evolution equations

”t + d ūx = −[ ” ū ]x ;

qt + g ”x =
ˆ
1
2 ū

2 + 1
2 (d + ”)2 ū2x − q u

˜
x
:
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Taking the Fourier transform and using the relation 4.69 between ū and q, we obtain the following

system of ODEs:

”̂t +
ikd

1 + 1
3
(kd)2

q̂ = −ik F{”ū} − ikd F {N(”; ūj )}
1 + 1

3
(kd)2

;

q̂t + ikg ”̂ = ik F ˘ 1
2 ū

2 + 1
2(d + ”)2ū2x − qu

¯
:

The next step consists in introducing the vector of dimensionless variables in Fourier space

V̂ ≡ (ik”̂; i!q̂=g), where !2 = gk2d=[1 + 1
3
(kd)2] is the dispersion relation of the linearized Serre

equations. With unscaled variables in vectorial form, the last system becomes

V̂ t + L · V̂ = N (V̂ ); L ≡
"
0 i!

i! 0

#
:

On the right-hand side, we put all the nonlinear terms

N (V̂ ) =

 
k2F{”ū} + dk2F {N(”; ūj)} =(1 + 1

3
(kd)2)

−(k!=g)F ˘ 1
2 ū

2 + 1
2 (d + ”)2ū2x − qu

¯
!
:

In order to integrate the linear terms, wemake a last change of variables [102, 168]:

Ŵ t = e(t−t0)L ·N
n
e−(t−t0)L · Ŵ

o
; Ŵ (t) ≡ e(t−t0)L · V̂ (t); Ŵ (t0) = V̂ (t0):

Finally, the last system of ODEs is discretized in time by Verner’s embedded18 adaptive 9(8) Runge–

Kutta scheme[228]. The timestep is chosenadaptivelyusing theso-calledH211Bdigitalfilter [208, 209]

18Embedded Runge–Kutta schemes are a quintessence of numerical ingenuity in the realm of differential equa-
tions’ resolution, embodying a dual-tier architecture that furnishes not only the sought-after solution but also
an estimate of the local truncation error. This dual-faceted construct is eloquently manifest in the Verner embed-
dedadaptive9(8)Runge–Kutta scheme, aparadigm thatunveils a confluenceof accuracy andadaptability. At the
heart of this scheme lies a pair of intertwined Runge-Kutta methods, one of the ninth order and its counterpart
of the eighth order. The orchestration of these methods is such that they share common function evaluations,
thereby entwining efficiency with precision.

The crux of adaptivity in this scheme emanates from the discrepancy between the solutions procured by the
ninth and eighth-order methods, a discrepancy that serves as a harbinger of the local error. This local error esti-
mation, devoid of additional function evaluations, furnishes the fodder for an adaptive strategy, wherein the
step size is meticulously modulated to ensure that the error dovetails with a preordained tolerance. The Verner
scheme, thus, transcends a mere solver to embody a self-adjusting algorithm, acclimatising to the terrain of the
differential equation at hand.

Furthermore, the Verner scheme’s elegance is not confined to its adaptive prowess alone but extends to its
error control strategy. The scheme’s architecture is meticulously crafted to ensure that the error estimation is
robust, a feature indispensable for the scheme’s adaptive strategy. This symbiosis of a high-order method with a
reliable error estimator, encapsulated within a singular scheme, underscores the essence of embedded Runge-
Kutta schemes. The Verner embedded adaptive 9(8) Runge–Kutta scheme epitomises a harmonious blend of
precision, efficiency, and adaptability, rendering it a potent tool in the arsenal of a computational scientist ven-
turing into the intricate domain of differential equations resolution.
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Table 4.1 Values of various parameters used in convergence tests.

Undisturbed water depth: d 1
Gravity acceleration: g 1
Solitary wave amplitude: a 0.05
Final simulation time: T 2
Free parameter: ˛ 1/3

tomeet some prescribed error tolerance (generally of the same order of the fixed point iteration 4.70

precision). Since the numerical scheme is implicit in the velocity variable ū, the resulting time step

Δt is generally of the order of the spatial discretizationO(Δx).

4.6.6 Numerical results

In this section, we present some numerical results using the finite volume scheme described above.

First, we validate the discretization and check the convergence of the scheme using an analytical

solution. Then, we demonstrate the ability of the scheme to simulate the practically important soli-

tary wave interaction problem. Throughout this Section, we consider the initial value problem with

periodic boundary conditions unless a special remark is made.

Convergence test and invariants preservation

Consider the Serre equations 4.60 and 4.61 posed in the periodic domain [−40; 40 ]. We solve numer-

ically the initial-periodic boundary value problem with an exact solitary wave solution 4.46 posed as

an initial condition. Then, this specific initial disturbance will be translated into space with known

celerity under the systemdynamics. This particular class of solutions plays an important rôle inwater

wave theory [76, 77], and it will allow us to assess the accuracy of the proposed scheme. The values

of the various physical parameters used in the simulation are given in Table 4.1.

The error ismeasuredusing thediscreteL∞ norm for various successively refineddiscretizations. The

result is shown in Figure 4.3. As anticipated, the finite volume scheme (black solid line with circles)

shows a fairly good second-order convergence (with estimated slope≈ 1:99). During all the numer-

ical tests, the mass conservation was satisfied with the accuracy of the order ≈ 10−14. This remark-

able result is due to the excellent local conservative properties of the finite volume method. We also

investigate the numerical behaviour of the schemewith respect to the invariantsH andQ defined in

4.47. These invariants can be computed analytically19 for solitarywave solutions. However, we do not

19In the sense of closed-form solutions.
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Figure 4.3 Convergence of the numerical solution in the L∞ norm computed using the finite volume method. Circles repre-

sent the error measured in our numerical solution. Two other curves demonstrate typical first and second-order convergence

for the sake of comparison.

provide them to avoid cumbersome expressions. For the solitary wave with parameters given in

Table 4.1, the generalized energy andmomentum are given by the following expressions:

H0 =
21

√
7

100
+

7
√
3

10
log

√
21− 1√
21 + 1

≈ 0:0178098463;

Q0 =
62

√
15

225
+

2
√
35

5
log

√
21− 1√
21 + 1

≈ 0:017548002:

These values are used tomeasure the error on these quantities at the end of the simulation. The con-

vergence of this error under the mesh refinement is shown in Figure 4.4. One can observe a slight

super-convergence phenomenon of the finite volume scheme. This effect is due to the special nature

of the solution we use tomeasure the convergence. This solution is only translated under the system

dynamics. For more general initial conditions, we expect a fair theoretical 2nd order convergence for

the finite volume scheme. As anticipated, the pseudo-spectral scheme shows the exponential error

decay with respect to the number of spectral modes.
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Figure 4.4 Hamiltonian and generalized momentum conservation convergence computed using the finite volume and spec-

tral methods under the mesh refinement. The conserved quantities are measured at the final simulation time.

Solitary wave interaction

Solitary wave interactions are an important phenomenon in nonlinear dispersive waves, which have

been studied by numerical and analyticalmethods, and results have been compared to experimental

data. Theyalsooftenserveas robustnonlinear benchmark test cases for numericalmethods.Wemen-

tiononly a fewworks in the existing literature. For example, in [63, 163, 195] solitarywave interactions

were studied experimentally. The head-on collision of solitary waveswas studied in the framework of

full Euler equations in [42, 63]. Studies of solitary waves in various approximatemodels can be found

in [5, 74, 92, 93, 154]. To our knowledge, solitary wave collisions for the Serre equations were studied

numerically for the first time in the PhD thesis of Seabra-Santos [200]. Finally, there are also a few

studies devoted to simulations with full Euler equations [63, 102, 154].

Head-on collision

Consider the Serre equations posed in the domain [−40; 40 ]with periodic boundary conditions. In

the present section, we study the head-on collision (weak interaction) of two solitary waves of equal

amplitude moving in opposite directions. Initially, two solitary waves of amplitude a = 0:15 are

located at x0 = ±20 (other parameters can be found in Table 4.1). The computational domain is

divided into N = 1000 intervals (finite volumes in 1D) of the uniform length Δx = 0:08. The time

step is chosen to beΔt ≈ 10−3. The process is simulated up to time T = 36. The numerical results
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Figure 4.5 Head-on collision of two equal solitary waves simulated with the finite volume scheme.

are presented in Figure 4.5. As expected, the solitary waves collide quasi-elastically and continue to

propagate in opposite directions after the interaction. The value of importance is the maximum

amplitude during the interaction process, sometimes referred to as the run-up. Usually, it is larger

than the sum of the amplitudes of the two initial solitary waves. In this case, we obtain a run-up of

0:3130 > 2a = 0:3.

In order to validate the finite volume simulation, we performed the same computation with the

pseudo-spectral method presented briefly in section 4.6.5. We used a fine grid of 1024 nodes and

adaptive time stepping. The overall interaction process is visually identical to the finite volume

result shown in Figure 4.5. The run-up value according to the spectral method is 0:3127439, show-

ing again the accuracy of our simulation. A small inelasticity is evident from the small dispersivewave

train emerging after the interaction (for example, in a slightly different setting described below, see

Figure 4.15, as first found numerically and experimentally by Seabra-Santos [200].

Overtaking collision

A second type of solitarywave interaction is the overtaking collision (or strong interaction) of two soli-

tary waves of different amplitudes moving in the same direction. Sometimes, this situation is also

referred toas the following collisionor strong interaction. For this case,weconsider aphysical domain
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Figure 4.6 Overtaking (or following) collision of two solitary waves simulated with the finite volume scheme.

Table 4.2 Values of various parameters used to simulate the

overtaking collision.

Undisturbed water depth: d 1
Gravity acceleration: g 1
Large solitary wave amplitude: a1 0.6
Initial position: x1 −60
Small solitary wave amplitude: a2 0.1
Initial position: x2 −45
Final simulation time: T 96
Free parameter: ˛ 1/3

[−75; 75 ] divided into N = 1000 equal control volumes. The initial data consists of two separated

solitary waves of different amplitudes moving in the same direction. The solitary wave with larger

amplitude moves faster and will overtake the smaller wave. This situation was simulated with the

finite volume scheme, and the numerical results are presented in Figure 4.6. The parameters used in

this simulation are given in Table 4.2. The strong interaction is also inelastic, with a small dispersive

tail emerging after the over-taking (see Figure 4.14 for a magnification).

Experimental validation

In this Section, we present a comparison between the classical Serre model solved with our finite

volumeschemeandonehead-oncollisionexperiment from [63]. This specific experimentwasalready

considered in the context of Boussinesq-type systems [92].
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Table 4.3 Values of various parameters used to simulate the

head-on collision.

Undisturbed water depth: d [cm] 5
Gravity acceleration: g [ms−2] 9.81
Right-going SW amplitude: a1 [cm] 1.077
Initial position of the SW-1: x1 [m] 0.247
Left-going SW amplitude: a1 [cm] 1.195
Initial position of the SW-2: x2 [m] 1.348
Final simulation time: T [s] 20.5
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Figure 4.7 Head-on collision of two solitary waves of different amplitudes. Comparison with experimental data [63].

We simulate a portion of the wave tank [−0:9; 2:7 ] (divided into N =1000 equal control volumes)

where the interaction process takes place. The initial data consists of two solitary waves (of dif-

ferent amplitudes in this case) moving in opposite directions. The exact parameters are given in

Table 4.3. Simulation snapshots are presented in Figures 4.7–4.15. The general agreement is very

good, validating the Serre equations in water wave theory, along with our numerical developments.

Figure 4.15 shows visible dispersive oscillations after the interaction process, numerical evidence of

the inelastic character of solitarywave interactions in the framework of the Serre equations. This sim-

ulation thereby not only validates the theoretical constructs of the Serre equations but also augments

our numerical understanding of solitary wave interactions, paving the way for further analytical and

numerical explorations in elucidating the complex dynamics of water wave interactions.
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Figure 4.8 Head-on collision of two solitary waves of different amplitudes. Comparison with experimental data [63].
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(a) t = 18.92 s
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Figure 4.9 Head-on collision of two solitarywaves of different amplitudes. Comparison with experimental data [63]. Note the

difference in vertical scales on the left and right images.
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Figure 4.10 Head-on collision of two solitary waves of different amplitudes. Comparison with experimental data [63].
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Figure 4.11 Head-on collision of two solitary waves of different amplitudes. Comparison with experimental data [63].
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(b) t = 19.5 s

Figure 4.12 Head-on collision of two solitary waves of different amplitudes. Comparison with experimental data [63].
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(a) t = 19.85 s
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(b) t = 20.0 s

Figure 4.13 Head-on collision of two solitary waves of different amplitudes. Comparison with experimental data [63].
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Figure 4.14 Dispersive tail after overtaking collision of two solitary waves (strong interaction) at T = 120:0.
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Figure 4.15 Dispersive tail after head-on collision of two solitary waves (weak interaction). Small wavelets between two

solitary waves clearly indicate that the collision is inelastic.
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4.7 Modified shallow water equations for significantly varying bottoms

The celebrated classical nonlinear shallow water equations (NSWE) were derived in 1871 by

A. J. C. de Saint-Venant [68]. Currently, these equations are widely used in practice, and one can find

thousands of publications devoted to the applications, validations and numerical solutions of these

equations [95, 96, 164].

The interactionof surfacewaveswithmild or toughbottomshas always attracted theparticular atten-

tion of researchers [8, 44, 94, 180]. There are, however few studies which attempt to include the bot-

tomcurvature effect into the classical Saint-Venant [68, 212] or Savage–Hutter20 [113, 198] equations.

One of the first studies in this direction is perhaps due to Dressler [78]. Much later, this research was

pursued almost at the same time by Berger, Keller, Bouchut and their collaborators [22, 28, 132]. We

note that all these authors used some variants of the asymptotic expansion method. Recently, the

model proposed by Dressler was validated in laboratory experiments [70]. The present study is a fur-

ther attempt to improve the classical Saint-Venant equations by including a better representation of

the bottom shape. Dressler’s model includes the bottom curvature effects, which require the compu-

tation of the bottom’s profile second-order derivatives. For irregular shapes, it can be problematic.

Consequently, we try below to propose amodelwhich requires only the first spatial derivatives of the

bathymetry to be continuous.

The Saint-Venant equations are derived under the assumption of a hydrostatic pressure field, result-

ing in a non-dispersive system of equations. Many non-hydrostatic improvedmodels have long been

proposed; see [18, 158, 181, 239] for reviews. These Boussinesq-like and/or mild-slope [18, 181]

equations are dispersive (i.e., the wave speed depends on the wavelength) and involve (at least)

third-order derivatives. Although thesemodels capturemore physical effects than the classical Saint-

Venant shallow water equations, they have several drawbacks. First, the dispersive effects are often

negligible for very long waves such as tsunamis and tidal waves. Second, the higher-order deriva-

tives introduce stiffness into the equations, and thus, their numerical resolution is significantlymore

involved and costly than for the Saint-Venant equations. Third, the Boussinesq-like equations are not

hyperbolic and, unlike theSaint-Venant equations, themethodof characteristics cannotbeemployed

(unless the operators are split, e.g. [26]). Therefore, it is not surprising that various dispersive shallow

water models are not systematically21 used in coastal modelling.

20TheSavage–Hutter equationsareusually posedon inclinedplanes, and they areused tomodel variousgravity-
driven currents, such as snow avalanches [4].
21There is a notable exception of the SGN equations, which gained a certain popularity even in more applied
circles.
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In thepresenceof varyingbathymetry, the shallowwater equations arederivedunder the assumption

that the bottom variations are very weak. However, even for very long surface waves, significant vari-

ations of the bathymetry can play an important rôle in wave propagation. These bottom slope effects

can be even more important when the wave travels over many oscillations of the seabed, due to the

accumulation of bottom slope influences. Therefore, even for a shallow water long waves model, it

is important to take properly into account the significant bottom variations [44]. In this article, we

present a modification of the Saint-Venant equations in the presence of a seabed of significant varia-

tions. Thismodel is derived froma variational principle, which is a powerfulmethod to derive approx-

imations that cannot be obtained frommore classical asymptotic expansions.

Within the domain ofwater wave theory, variational principles are typically employed in concert with

small parameter expansions, a methodology that often proves instrumental in deriving approxima-

tions. When undertaken, this approach may yield approximations that mirror those acquired from

asymptotic expansions applied directly to the governing equations. A salient advantage of such con-

gruence is the preservation of the variational structure, a fundamental attribute that lends a coher-

ent framework for the ensuing analysis. However, should this congruence falter, the approximation

procedure risks fracturing the invaluable variational structure, thereby potentially obfuscating the

analytical clarity and coherence. The allure of variational methods extends beyond mere elegance

and streamlined derivations, although these are notable merits. Principally, these methods exude a

capacity for preserving the intrinsic variational structure evenas they navigate the complexities of the

problem at hand.

Variational methods transcend this conventional framework, showcasing their prowess in deriving

approximations even in the absence of reliance on asymptotic expansions. This feature burgeons into

a significant asset, particularly in scenarios where the identification of a discernible small parameter

proves elusive. The robustness of variational methods in such scenarios underscores their versatility

and thebreadthof their analytical potential. Theynotonly offer apathway toderivingapproximations

but do so in a manner that retains the core variational structure, thereby ensuring a structured and

disciplined analytical discourse. This capacity for adapting to the nuanced demands of the problem,

sans a tether to asymptotic expansions, amplifies the appeal and the utility of variationalmethods in

tackling the intricate and diverse challenges endemic to water wave theory.

Here, we adopt the same philosophy, applying it to the long water waves propagating over a seabed

with significant variations. Namely, the shallow water Ansatz from [52] is additionally constrained

to respect the bathymetry variations in space and time. Then, applying the variational principle,

we arrive naturally at some modified Saint-Venant (mSV) equations. These mSV equations, like the
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classical Saint-Venant equations, are hyperbolic and can be solved with similar techniques, which is

an interesting feature in the prospect of integration/modification of existing operational codes. The

derivation of mSV equations presented below were communicated by the same authors in a short

note announcing the main results [83]. In the present study, we investigate the properties of the pro-

posedmSV system along with its solutions through analytical and numerical methods. We especially

focus on predictions of interest for ocean modelling, in particular the fact that the waves are slowed

down by the seabed slope.

4.7.1 Model derivation

In order to simplify the full waterwaveproblem,we choose someapproximate but physically relevant

representationsof all dependent variables in the relaxedvariational principle. In this study,wechoose

a simple shallow water Ansatz, which is a velocity field, and velocity potential independent of the

vertical coordinate y such that

ffi ≈ ffī(x ; t); u = — ≈ ū(x ; t); v = � ≈ v̌(x ; t); 4.71

where ū(x ; t) is the depth-averaged horizontal velocity and v̌(x ; t) is the vertical velocity at the bot-

tom. In this Ansatz, we take for simplicity thepseudo-velocities to be equal to the velocity fieldu = —,

v = �. However, in other situations, they can differ (see [52] for more examples).

Physically, the Ansatz 4.71 means that we are considering a so-called columnar flow [167], which

is a sensible model for long waves in shallow water, as long as their amplitudes are not too large.

Mathematically, the Ansatz 4.71 implies that the vertical variation of the velocity field does not con-

tribute (i.e., is negligible) to the Lagrangian 3.6. Thus, with the Ansatz 4.71, the Lagrangian density 3.6

becomes

L = (@th + ū · ∇h+ h∇ · ū) ffī− 1
2 g ”

2 + 1
2 h (ū

2 + v̌2); 4.72

where we introduced the total water depth h = ” + d .

Since we are considering a columnar flowmodel, each vertical water column can be considered as a

moving rigid body. In the presence of bathymetry variations, the columnar flow paradigm then yields

the fluid vertical velocitymust be equal to the one at the bottombecause the bottom is impermeable.

Thus, we require that the fluid particles follow the bottom profile, i.e.,

v̌ = −@t d − ū · ∇d ; 4.73

this identity being the bottom impermeability condition expressed with the Ansatz 4.71.
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Remark 4.6. Note that for Ansatz 4.71 the horizontal vorticity! and the vertical one “ are given by:

! =
“
@x2 v̌ ; −@x1 v̌

”
; “ = @x1 ū2 − @x2 ū1:

Consequently, the flow is not exactly irrotational in general. It will be confirmed below onemore time

when we establish the connection between ū and ∇ffī. We would like to mention also that it was

demonstrated in [36] that perturbations of horizontal vorticity in shallowwatermodels are not stable

when embedded in the Euler equations.

After substitution of the relation 4.73 into the Lagrangian density 4.72, the Euler–Lagrange equations

yield:

‹ū : 0 = ū −∇ffī− v̌∇d; 4.74

‹ffī : 0 = @t h+∇ · [ h ū ]; 4.75

‹” : 0 = @t ffī+ g ” + ū · ∇ffī− 1
2
(| ū |2 + v̌2): 4.76

Taking the gradient of 4.76 and eliminating of ffī from 4.74 gives the system of governing equations:

@t h +∇ · [ h ū ] = 0; 4.77

@t [ ū − v̌∇d ] +∇ ˆ g ” + 1
2 | ū |2 + 1

2 v̌
2 + v̌ @td

˜
= 0; 4.78

together with the auxiliary relations

ū = ∇ffī+ v̌∇d = ∇ffī− @td + (∇ffī) · (∇d)
1 + |∇d |2 ∇d; 4.79

v̌ = −@t d − ū · ∇d = − @td + (∇ffī) · (∇d)
1 + |∇d |2 : 4.80

Hereafter, every time the variables ū and v̌ appear in equations, it is always assumed that they are

defined by the relations 4.79–4.80.

Remark 4.7. The classical irrotational NSWE or Saint-Venant equations [68, 212] can be recovered

by substituting v̌ = 0 into the last system:

@t h +∇ · [ h ū ] = 0;

@t ū +∇ [ g ” + 1
2 |ū |2 ] = 0;

where ū = ∇ffī.
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4.7.2 Properties of themSVmodel

From the governing equations 4.77, 4.78 one can derive an equation for the horizontal velocity ū:

@t ū + 1
2 ∇| ū |2 + g∇” = ‚∇d + ū ∧ (∇v̌ ∧∇d); 4.81

where ‚ is the vertical acceleration at the bottom defined as:

‚ ≡ d v̌

dt
= @t v̌ + (ū · ∇) v̌ : 4.82

Remark 4.8. Note that in 4.81, the last termon the right-hand side cancels out for two-dimensional

waves (i.e., one horizontal dimension). It can be seen from the following analytical representation,

which degenerates to zero in one horizontal dimension:

ū ∧ (∇v̌ ∧∇d) = (∇v̌) (ū · ∇d)− (∇d) (ū · ∇v̌):

This property has an interesting geometrical interpretation since ū∧(∇v̌ ∧∇d) is a horizontal vector
orthogonal to ū and thus vanishes for two-dimensional waves.

Defining the depth-averaged total (kinetic plus potential) energy density E together with the Ansatz

4.71, i.e.,

E =

Z ”

−d

» |u |2 + v2

2
+ g y

–
dy ≈ h

ū2 + v̌2

2
+ g

”2 − d2

2
; 4.83

and using 4.79–4.80, after some algebra, one derives the energy equation

@t E +∇ · ˆE ū + 1
2
g h2 ū

˜
= −(g + ‚) h @td: 4.84

Obviously, the source term on the right-hand side vanishes if the bottom is fixed d = d(x) or, equiva-

lently, if @td = 0.

The mSV equations 4.74–4.76 possess a Hamiltonian structure with canonical variables h and ffī, i.e.,

@ h

@t
=
‹H
‹ffī

;
@ ffī

@t
= −‹H

‹h
;

where the HamiltonianH is defined as

2H =

Z j
g(h − d)2 − gd2 + h|∇ffī|2 − h [ @td + (∇ffī) · (∇d) ]2

1 + |∇d |2
ff

d2x : 4.85
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One can easily check, after computing the variations, that the Hamiltonian 4.85 yields

@t h = −∇ ·
»
h∇ffī− @td + (∇ffī) · (∇d)

1 + |∇d |2 h∇d
–
;

@t ffī = −g (h − d)− |∇ffī|2
2

+
[ @td + (∇ffī) · (∇d) ]2

2 + 2 |∇d |2 ;

which are equivalent to the system 4.75–4.76 after introduction of the auxiliary variables ū and v̌

defined in 4.79 and 4.80.

Remark 4.9. If we rewrite the Hamiltonian 4.85 in the following equivalent form:

2H =

Z ˘
g ”2 − g d2 + h |ū |2 + h v̌2 + 2 h v̌ @td

¯
d2x ; 4.86

one can see that the Hamiltonian density is actually the physical energy density E if the bottom is

static (i.e., if @td = 0), but these two quantities are different if the bottom moves. In other words,

the Hamiltonian is the energy only if there is no external input of energy into the system. Note also

that the Hamiltonian structure of the classical Saint-Venant equations can be recovered substituting

v̌ = 0 into the last Hamiltonian 4.86:

2H0 =

Z ˘
g ”2 − g d2 + h |ū |2 ¯ d2x ;

where ū = ∇ffī .

4.7.3 Steady solutions

Weconsiderhere the two-dimensional case (i.e., onehorizontaldimension) inorder toderiveaclosed-

form solution for a steady state flow over a general bathymetry. We assume the following upstream

conditions at x → −∞:

” → 0; d → d0; ū → u0 > 0:

Physically, these conditionsmean that far upstream, we consider a uniform current over a horizontal

bottom. The mass conservation in steady condition yields

h ū = d0 u0;

while the momentum conservation equation becomes

g h+ 1
2 ū

2
ˆ
1 + (@xd)

2
˜
= g d0 +

1
2 u

2
0 :
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The last two relations yield the following cubic equations for the total water depth (with the dimen-

sionless height Z = h=d0 > 0 and the Froude numberF = u0=
√
gd0 > 0)

G(Z) ≡ Z3 − ( 1 + 1
2
F 2 )Z2 + 1

2
F 2 [ 1 + (@xd)

2 ] = 0: 4.87

Note thatG(0) > 0 for allF > 0,G has amaximumatZ = 0andaminimumatZ = Z1 = (2+F 2)=3.

Therefore, 4.87 has two positive solutions if G(Z1) < 0, one positive solution if G(Z1) = 0, and no

positive solutions if G(Z1) > 0. Equation 4.87 always has a real negative root, which is of no interest

for obvious physical reasons.

IfG(Z1) < 0, the two positive solutions may be presented as

Z+ =
h
2
p
A=3 cos

`
1
3
arccos

`−3−1=2BA−3=2
´− 2

3
ı
´i−1

and

Z− =
h
2
p
A=3 cos

`
1
3 arccos

`−3−1=2BA−3=2
´´i−1

;

where

A ≡ 1 + 2F−2

1 + (@xd)2
> 0; B ≡ 9F−2

1 + (@xd)2
> 0:

We note that Z− < Z+. The root Z = Z+ corresponds to the sub-critical regime, while Z = Z−

corresponds to a supercritical regime. For the special caseF = 1, we have Z+ > 1 and Z− < 1.

IfG(Z1) = 0, for a given Froude numberF , there is only one absolute value of the slope for which this

identity is satisfied, that is

(@xd)
2 = (F2 − 1)2 (F2 + 8) = 27F2:

For instance, if @xd = 0 then G(Z1) = 0 if and only ifF = 1.

Remark 4.10. It is straightforward to derive a similar equation for steady solutions to the classical

Saint-Venant equations

Z3 − ( 1 + 1
2 F 2 )Z2 + 1

2 F 2 = 0:

The last relation can also be obtained from equation 4.87 taking @xd = 0. Consequently, we can say

that steady solutions to the classical Saint-Venant equations do not take into account the bottom

slope local variations.
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Table 4.4 Values of various parameters used for the steady state

computation.

Parameter Value

Gravity acceleration g : 1m s−2

Undisturbed water depth d0: 1m
Deformation amplitude a: 0:5m
Half-length of the uplift area b: 2:5m

Upstream flow speed, u0: 2:0m s−1
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Supercritical flow with Fr = 2

 

 
Bottom shape
SV
mSV

Figure4.16 Supercritical steadystate solutionsoverabump for theFroudenumberF = 2. Comparisonbetween theclassical

and modified Saint-Venant equations.

In order to illustrate the developments made above, we compute a steady flow over a bump. The

bottom takes the form

d(x) = d0 − a b−4
`
x2 − b2

´2
H(b2 − x2);

where H(x) is the Heaviside step function [1], a and b being the bump amplitude and its half-length,

respectively. The values of various parameters are given in Table 4.4. We consider here, for illustrative

purposes, the supercritical case for the classical and new models. The result is shown in Figure 4.16

where some small differences can be noted with respect to the classical Saint-Venant equations.
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4.7.4 Hyperbolic structure

From now on, we consider equations 4.77, 4.78 written in one horizontal space dimension

(two-dimensional waves) for simplicity:

@t h + @x [ h ū ] = 0; 4.88

@t [ ū − v̌ @x d ] + @x
ˆ
g ” + 1

2
ū2 + 1

2
v̌2 + v̌ @t d

˜
= 0: 4.89

In order to present the equations in amore suitable conservative form,wewill introduce thepotential

velocity variableU = @x ffī. From equation 4.74, it is straightforward to see thatU satisfies the relation

U = ū − v̌ @x d;

Depth averaged, and vertical bottom velocities can also be easily expressed in terms of the potential

velocity U

ū =
U − (@td) (@xd)

1 + (@xd)2
; v̌ = −@td + U @xd

1 + (@xd)2
:

Consequently, using this new variable, equations 4.88 and 4.89 can be rewritten as a system of con-

servation laws

@t h + @x

»
h
U − (@td) (@xd)

1 + (@xd)2

–
= 0;

@t U + @x

»
g (h − d) +

1

2

U2 − 2U (@td) (@xd)− (@td)
2

1 + (@xd)2

–
= 0:

For the sake of simplicity, we rewrite the above system in the following quasi-linear vectorial form:

@t w + @x f (w) = 0;

where we introduced the vector of conservative variablesw and the advective flux f (w):

w =

 
h

U

!
; f (w) =

0
BB@ h

U − (@td)(@xd)

1 + (@xd)2

g(h − d) +
U2 − 2U(@xd)(@td)− (@td)

2

2 [1 + (@xd)2]

1
CCA :

The Jacobianmatrix of the advective flux f (w) can be easily computed:

A(w) =
@ f (w)

@w
=

1

1 + (@xd)2

"
U − (@td)(@xd) h

g (1 + (@xd)
2) U − (@td)(@xd)

#
=

2
4ū h

1 + (@xd)2

g ū

3
5 :

IAHR.org #WaterMonographs 61



January 24, 2024 22:33: RPS: IAHR Monograph Series

Shallowwater examples IAHR Water Monographs

The matrixA(w) has two distinct eigenvalues:

–± =
U − (@td) (@xd)

1 + (@xd)2
± c = ū ± c; c2 ≡ g h

1 + (@xd)2
:

Remark 4.11. Physically, the quantity c represents the phase celerity of long gravity waves. In the

framework of the Saint-Venant equations, it is well known that c =
√
gh. Both expressions differ

by the factor 1=
p
1 + (@xd)2. In our model, the long waves are slowed down by strong bathymetric

variations sincefluidparticlesareconstrained to follow theseabed22 .Wealsonote thata similar factor

was previously introduced in [107] to account for steepness in the bathymetry. In our case, it appears

naturally when one studies the hyperbolicity property of the model.

Right and left eigenvectors coincide with those of the Saint-Venant equations, and they are given by

the following matrices

R =

"
−h h√
gh

√
gh

#
; L =

1

2

"
−h−1 (gh)−1=2

h−1 (gh)−1=2

#
:

Columns of the matrix R constitute eigenvectors corresponding to eigenvalues –− and –+, respec-

tively. Corresponding left eigenvectors are conventionally written in lines of the matrix L.

4.7.5 Group velocity

Wewould like tocomputealso thegroupvelocity in the frameworkof themodifiedSaint-Venant (mSV)

equations. This quantity is traditionally associatedwith thewave energy propagation speed [89, 212].

Recall that in the classical linearized shallow water theory, the phase c and group cg velocities are

equal [212]:

c =
!

k
=
p
gh; cg =

d !

dk
=
p
gh;

where ! = k
√
gh is the dispersion relation for linear long waves, k being the wavenumber and !

being the angular frequency.

In order to assess thewave energy propagation speed, wewill consider a quasi-linear systemof equa-

tions composed of mass and energy conservation laws:

@th + @x

»
h
U − (@xd)(@td)

1 + (@xd)2

–
= 0;

@tE + @x

h
(E + 1

2gh
2)U−(@xd)(@td)

1+(@xd)2

i
= −(g + ‚) h @td;

22This property is rooted in the Ansatz that yields the mSV equations.
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where ‚ is defined in 4.82 and E is the total energy considered already above 4.84:

E = h
ū2 + v̌2

2
+
g (”2 − d2)

2
=
h

2

U2 + (@td)
2

1 + (@xd)2
+
g (h2 − 2hd)

2
:

The last formula can be inverted to express the potential velocity in terms of the wave energy:

U2 = [ 1 + (@xd)
2 ]

„
2E

h
− gh + 2gd

«
− (@td)

2:

In the spirit of computations performed in the previous section, we compute the JacobianmatrixJ of

the mass-energy advection operator:

J =
1

1 + (@xd)2

2
64 U − (@xd)(@td) + h

@ U

@h
h
@ U

@E

gh[U − (@xd)(@td)] + (E + 1
2gh

2)
@ U

@h
U − (@xd)(@td) + (E + 1

2gh
2)
@ U

@E

3
75 ;

where partial derivatives are given here:

@ U

@h
= − [ 1 + (@xd)

2 ]
gh2 + 2E

2 h2 U
;

@ U

@E
=

1 + (@xd)
2

h U
:

Computation of the Jacobian J eigenvalues leads the following expression for the group velocity of

the mSV equations:

c 2
g =

g h

1 + (@xd)2
U − (@xd)(@td)

U
:

The last formula is very interesting. It means that in the moving bottom case, the group velocity cg

is modified and does not coincide anymore with the phase velocity c2 = gh[1 + (@xd)
2]−1. This

fact represents another new and non-classical feature of the modified Saint-Venant equations. The

relative difference between phase and group velocities squared is

c2 − c 2
g

c2
=

(@xd) (@td)

U
;

which is not necessarily always positive. When it is negative, the energy is injected into the system

at a higher rate than can be spread, thus leading to energy accumulation and possibly favouring the

breaking events.

4.7.6 Numerical results

In this section, we also employ the finite volumemethod [85] very similar to the one presented above

to solve SGN equations. This scheme has already been validated in several studies, even in the case
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of dispersive waves [92, 93]. Consequently, we do not present here the standard convergence tests,

which can be found in the references cited above. In the present Section, we show numerical results

which illustrate some properties of the mSV equations with respect to their classical counterpart. In

the sequel, we consider only a one-dimensional case for simplicity. The physical domain will also

be limited by wall-boundary conditions. Other types of boundary conditions obviously could also be

considered.

Wave propagation over the oscillatory bottom.

We begin the exposition of numerical results by presenting a simple test case of a wave propagat-

ing over a static but highly oscillatory bottom. Let us consider a one-dimensional physical domain

[−10; 10 ]which is discretized intoN = 350 equal control volumes. The tolerance parameter ‹ in the

time stepping algorithm is chosen to be 10−4. The initial condition is simply a bump localized near

the centre x = 0 and posed on the free surface with an initial zero velocity field

”0(x) = b sech2(»x); u0(x) = 0:

The bottom is given analytically by the function

d(x) = d0 + a sin(kx):

In other words, the bathymetry function d(x) consists of uniform level d0, which is perturbed by uni-

formoscillations of amplitude a. Since thebathymetry is static, the governing equations 4.88 and 4.89

are simplified at some point.

Hereafter, wefix twowavenumbers k1 and k2 (k1 < k2) andperforma comparisonbetweennumerical

solutions to the classical and mSV equations. The main idea behind this comparison is to show the

similarity between twosolutions for gentlebottomsand, correspondingly, tohighlight thedifferences

for stronger gradients. The values of various physical parameters used in numerical simulations are

given in Table 4.5.

Several snapshots of the free surface elevation during the wave propagation test case are presented

in Figures 4.17–4.23. The left image refers to the gentle bottom gradient case (k1 = 2) while the right

image corresponds to the oscillating bottom (k2 = 6). Everywhere, the solid blue line represents a

solution to the mSV equations, while the dotted black line refers to the classical solution. Numerical

results on left images indicate that both models give very similar results when bathymetry gradients

are gentle. The two solutions are almost indistinguishable from graphical resolutions, especially at

the beginning. However, some divergences are accumulated with time. At the end of the simulation,
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Table 4.5 Values of various parameters used for the wave prop-

agation over an oscillatory bottom test case.

Parameter Value

Initial wavenumber »: 1m−1

Gravity acceleration g : 1m s−2

Final simulation time T : 24 s
Initial wave amplitude b: 0:2m
Undisturbed water depth d0: 1m
Bathymetry oscillation amplitude a: 0:1m

Low bathymetry oscillation wavelength k1: 2m−1

High bathymetry oscillation wavelength k2: 6m−1
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Figure 4.17 Wave propagation over an oscillatory bottom, t = 2 s.

somedifferences become visible in the graphic resolution. On the other hand, numerical solutions on

the right images are substantially different from the first instants of the wave propagation. In accor-

dance with theoretical predictions (see Remark 4.11), the wave in mSV equations propagates with

speed effectively reduced by bottom oscillations. This fact explains a certain lag between two numer-

ical solutions in the highly oscillating case. We note that the wave shape is also different in classical

and improved equations. Finally, in Figure 4.24, we show the evolution of the local time step during

the simulation. It can be easily seen that the time adaptation algorithm very quickly finds the optimal

value of the time step,which is thenmaintainedduring thewhole simulation. This observation is even

more flagrant on the right image corresponding to the highly oscillating case.
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(b) High oscillations, k2

Figure 4.18 Wave propagation over an oscillatory bottom, t = 5 s.
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(b) High oscillations, k2

Figure 4.19 Wave propagation over an oscillatory bottom, t = 9 s.

Wave generation by sudden bottom uplift

We continue to investigate various properties of themodified Saint-Venant equations. In this Section,

we present a simple test case which involves the bottommotion. More precisely, we will investigate

two cases of slowand fast uplifts of a portionof thebottom. This simple situationhas some important

implications for tsunami genesis problems [90, 118, 223].
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(a) Low oscillations, k1
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(b) High oscillations, k2

Figure 4.20 Wave propagation over an oscillatory bottom, t = 16 s.
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(b) High oscillations, k2

Figure 4.21 Wave propagation over an oscillatory bottom, t = 18 s.

The physical domain and discretization parameters are inherited from the last section. The bottom is

given by the following function:

d(x; t) = d0 − a T (t) H(b2 − x2)

»“x
b

”2
− 1

–2
; T (t) = 1− e−¸t ;
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(b) High oscillations, k2

Figure 4.22 Wave propagation over an oscillatory bottom, t = 20 s.
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(b) High oscillations (k2)

Figure 4.23 Wave propagation over an oscillatory bottom, t = 24 s.

whereH(x) is theHeavisidestep function [1],a is thedeformationamplitudeandb is thehalf-lengthof

the uplifting sea floor area. The functionT (t)provides uswith complete informationon the dynamics

of the bottommotion. In tsunami wave literature, it is called a dynamic scenario [88, 118, 133]. Obvi-

ously, other choices of timedependence are possible. Initially, the free surface is undisturbed, and the

velocity field is taken to be identically zero. The values of various parameters are given in Table 4.6.
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Figure 4.24 Local time step size during the simulation of a wave propagating over an oscillatory bottom test case.

Table 4.6 Values of various parameters used for the wave generation by amoving bottom.

Parameter Value

Slow uplift parameter ¸1: 2:0 s−1

Fast uplift parameter ¸2: 12:0 s−1

Gravity acceleration g : 1m s−2

Final simulation time T : 5 s
Undisturbed water depth d0: 1m
Deformation amplitude a: 0:25m
Half-length of the uplift area b: 2:5m

Numerical results of the moving bottom test case are shown in Figures 4.25–4.30. In all these images,

the blue solid line corresponds to themSV equations,while theblack dashed line refers to its classical

counterpart. The dash-dotted line shows the bottom profile, which evolves in time as well.

First, we present numerical results (see Figures 4.25–4.26) corresponding to a relatively slow uplift of

a portion of the bottom (¸1 = 2:0). There is a very good agreement between the two computations.

We note that the amplitude of bottom deformation a=d = 0:25 is strong, which explains some small

discrepancies in Figure 4.26(a) between the twomodels. This effect is rather due to the bottom shape

than to its dynamic motion.

Then we test the same situation, but the bottom uplift is fast with the inverse characteristic time

¸2 = 12:0. In this case, the differences between the two models are very flagrant. As it can be seen
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(a) t = 0.5 s
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(b) t = 1.0 s

Figure 4.25 Slow bottomuplift test-case (¸1 = 2).
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(a) t = 2.0 s
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(b) t = 5.0 s

Figure 4.26 Slow bottomuplift test-case (¸1 = 2).

in Figure 4.28, for example, the mSV equations give a wave with almost two times higher amplitude.

Some differences in the wave shape persist even during the propagation (see Figure 4.30). This test

case clearly shows another advantage of the modified Saint-Venant equations in better representa-

tion of the vertical velocity field.
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(a) t = 0.5 s
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(b) t = 0.9 s

Figure 4.27 Fast bottomuplift test-case (¸2 = 12).
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(a) t = 1.0 s
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(b) t = 1.5 s

Figure 4.28 Fast bottomuplift test-case (¸2 = 12).

In Figure 4.31, we show the evolution of the local time step adapted while solving the mSV equations

withmoving bottom (up to T = 5 s). We can observe a behaviour very similar to the result presented

above (see Figure 4.24) for the wave propagation test case.

IAHR.org #WaterMonographs 71



January 24, 2024 22:33: RPS: IAHR Monograph Series

Shallowwater examples IAHR Water Monographs

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.5

0

0.5

x [m]

η
(x
,
t
)
[m

]

Free surface elevation at t = 2.00

 

 
mSV
SV
Bathymetry

(a) t = 2.0 s
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(b) t = 2.5 s

Figure 4.29 Fast bottom uplift test-case (¸2 = 12).
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(a) t = 3.0 s
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(b) t = 5.0 s

Figure 4.30 Fast bottom uplift test-case (¸2 = 12).

Application to tsunami waves

Tsunami waves continue to pose various difficult problems to scientists, engineers and local author-

ities. There is one question initially stemming from the PhD thesis of Synolakis [218]. On page 85 of

his manuscript, one can find a comparison between a theoretical (NSWE) and experimental wave-

front paths during a solitary wave runup onto a plane beach. In particular, his results show some
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Figure 4.31 Local time step size evolution during the numerical experiment on wave generation bymoving bottom.

discrepancies whose importance was not completely recognized until the wide availability of videos

of the Tsunami Boxing Day 2004 [3, 182, 222]. In the same line of thinking, we quote here a recent

review by Synolakis and Bernard [219], which contains a very interesting paragraph:

“In a video taken near the Grand Mosque in Aceh, one can infer that the wavefront first moved

at speeds less than 8 km h−1, then accelerated to 35 km h−1. The same phenomenon is proba-

bly responsible for the mesmerization of victims during tsunami attacks, first noted in a series of

photographs of the 1946 Aleutian tsunami approaching Hilo, Hawaii, and noted again in count-

less photographs and videos from the 2004 mega-tsunami. The wavefront appears slow as it

approaches the shoreline, leading to a sense of false security, it appears as if one can outrun it,

but then the wavefront accelerates rapidly as the main disturbance arrives.”

Since our new mSV model is able to take into account the local bottom slope into the wave speed

computation, we propose a simple numerical setup which intends to shed some light on possible

mechanisms of the reported above wavefront propagation anomalies. Consider a one-dimensional

domain [−20; 20 ]with wall boundary conditions. This domain is discretized intoN = 4000 control

volumes in order to resolve local bathymetry oscillations. The bottom has a uniform slope, which is

perturbed on the left side (x < 0) by fast oscillations whichmodel the bottom “steepness”

d(x) = d0 − x tan(‹) + a [ 1 − H(x) ] sin(kx); 4.90
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Table 4.7 Values of various physical parameters used for the wave propagation over a sloping bottom.

Parameter Value

Undisturbed water depth d0: 1m

Gravity acceleration g : 1m s−2

Bottom slope tan(‹): 0:02
Oscillation amplitude a: 0:1m

Oscillation wavenumber k : 20m−1

Final simulation time T : 19 s
Solitary wave amplitude A: 0:3m
Solitary wave initial position x0: −12:0m

where H(x) is the Heaviside function. The initial condition is a solitary wave moving rightwards as it

was chosen in [218]:

”0(x)

d(x0)
= A sech2

`
1
2»(x − x0)

´
; u0(x) =

c0 ”0(x)

d(x0) + ”0(x)
;

»d(x0) =

r
3A

1 + A
;

c 2
0

g d(x0)
= 1 + A:

This configurationaims tomodel awave transition fromsteep togentlebottoms. Thevaluesof various

physical parameters are given in Table 4.7.

Then, thewavepropagationandtransformationover theslopingbottom4.90wascomputedusing the

classical and modified Saint-Venant (mSV) equations. The wavefront position was measured along

this simulation, and the computation result is presented in Figure 4.32. The slope of these curves

physically represents the wavefront propagation speed. Recall also that the point x = 0 corresponds

to the transition between steep and gentle regions of the sloping beach.

As one canexpect, the classicalmodel does not really ‘see’ a regionwith bathymetry variations except

from tiny oscillations. An observer situated on the beach, looking at the upcomingwavemodelled by

the classical Saint-Venant equations, will not see any change in the wave celerity. More precisely, the

slope of the black dashed curve in Figure 4.32 is rather constant up to the graphical resolution. On the

other hand, one can see a drastic change in the wavefront propagation speed predicted by the mSV

equations when the bottom variation disappears.

The scenario we present in this section is only a first attempt to shed some light on the reported

anomalies in tsunami wave arrival time on the beaches. For instance, a comprehensive study of Wes-

sel [234] shows that the reported tsunami travel time often exceeds slightly the values predicted by

the classical shallowwater theory (see, for example, Figures 5 and 6 in [234]). This fact indirectly sup-

ports our theory. Certainly, this mechanism does not apply to laboratory experiments, but it can be
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Figure 4.32 Wave front position computedwithmodified and classical Saint-Venant equations.

a good candidate to explain the wavefront anomalies in natural environments. The mechanism we

propose is only an element of explanation. Further investigations are needed to bring more valida-

tion to this approach.

We underline that the computational results rely on sound physical modelling without any ad hoc

phenomenological terms in the governing equations. Only an accurate bathymetry description is

required to take full advantage of the mSV equations.

4.7.7 Intermediate conclusions

We derived a novel non-hydrostatic, non-dispersive model of shallow water type, which takes into

account large bathymetric variations. Previously, some attempt was already made in the literature

to derive shallow water systems for arbitrary slopes and curvature [22, 28, 78, 132]. However, our

model contains a certain number of newelementswith respect to the existing state of the art. Namely,

our derivation procedure relies on a generalized Lagrangian principle of the water wave problem

[52], which allows easily the derivations of approximations that cannot be obtained with more con-

ventional asymptotic expansions. Indeed, we do not introduce explicitly any small parameter and

our approximation is made through the choice of a suitable Ansatz. The resulting governing equa-

tions have a simple form and physically sound structure. Another new element is the introduction of
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arbitrary bottom-time variations. Finally, the non-hydrostatic character of obtained equations is fun-

damentally different from thewell-knownBoussinesq-typeandmild-slopemodels. The reason for the

non-hydrostaticity of mSV equations lies in the pressure term and not in the frequency dispersion.

The proposed model was discretised with a finite volume scheme with adaptive time stepping

to capture the underlying complex dynamics. The performance of this scheme is then illustrated in

several test cases. Some implications for tsunami wave modelling are also suggested at the end of

this study. For ocean modelling, the most interesting feature of the model is perhaps the predic-

tion that a wave slows down due to the bottom slope. Among various perspectives, we would like to

underline the importance of a robust runup algorithm development using the current model. This

research should shift forward the accuracy and our comprehension of a water wave runup onto

complex shores [92, 94].
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C H A P T E R 5

Deepwater examples

The deep water approximation is the opposite of the shallow water case when h=– � 1, i.e.

the water depth is much larger than the typical wavelength. In practice, some deep water effects

(defocussing type of the Nonlinear Schrödinger equation (NSE) equation) can alreadymanifest when

kh = 2ıh=– & 1:36. This regime is relevant for most wave evolution problems in open oceans [23].

The sketch of the fluid domain is shown in Figure 5.1. Some classical variational structures of water

wave equations in the deep water regime are described in appendix D.

For waves in deep water, measurements show that the velocity field varies nearly exponentially

along the vertical [117, 127], even for very large, unsteady waves (including breaking waves). Thus,

this property is exploited here to derive a simple approximation for gravity waves in deep water

(cf. Figure 5.1).

5.1 State of the art

The golden standard in deep water wave modelling is incontestably the cubic Zakharovmodel used,

recently e.g. in [97, 139] to study wave (weak) turbulence [246]. These equations are obtained by

expanding the Hamiltonian in the wave steepness parameter

H = H0 +H1 +H2 + · · · :

The cubic Zakharov equations (cf. Appendix B) are obtained by truncating this expansion after quartic

terms (thus, the governing equations are effectively cubic after taking the variations). This model is

weakly nonlinear, but it is valid for the whole spectrum of gravity waves. Cubic Zakharov equations

are well understood nowadays. Consequently, in the present study, we focus on models which do

the opposite: on the one hand, there are a priori no assumptions on the nonlinearity parameter. On

the other hand, we describe waves around a certain wavenumber ». Let us review the state of the art

by following the main steps of [141]. However, below, we generalize their computations to the three-

dimensional case.
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Figure 5.1 Sketch of the physical fluid domain in the deep water case.

Consider the incompressible Euler equations:

∇ · u + vy = 0; 5.1

u̇ +∇p = 0; 5.2

v̇ + py + g = 0; 5.3

where p is the fluid pressure, and the over dot denotes the total material derivative, i.e.

˙(·) def
= (·)t + u · ∇(·) + v (·)y :

The governing equations are completed with the following boundary conditions:

”t + u · ∇” = v; y = ”(x ; t); 5.4

p = pa; y = ”(x ; t); 5.5

|u|; |v | → 0; y → −∞; 5.6

where pa is the constant atmospheric pressure.

In order to derive an approximatemodel, Kraenkel et al. [141] propose to take the following solution

Ansatz for the Euler equations 5.1–5.3:

u(x ; y ; t) = u0(x ; t) e
»y ; v(x ; y ; t) = − 1

»
(∇ · u 0) e

»y : 5.7
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(a) u1(x1, y, t) (b) v(x1, y, t)

Figure 5.2 Vertical structure of the chosen Ansatz 5.7 under a simple linear travelling periodic wave: (a) the horizontal and (b)

vertical components of the velocity field. The periodic wave amplitude is¸ = 0:2.

From the above Ansatz, it is straightforward to understand the physical sense of the variable u0 —

it is simply the value of the 3D horizontal velocity u on the surface23 y = 0 . Other Ansätze will be

considered below. Here, » = const is the wavenumber around which we model water waves in the

spectral domain. The vertical velocity Ansatz is chosen to satisfy identically the free surface incom-

pressibility 5.1. The velocity fields under a linear periodic wave predicted by this Ansatz are repre-

sented in Figure 5.2.

Substituting Ansatz 5.7 into the kinematic boundary condition 5.4, we readily obtain the mass con-

servation equation:

» ” t +∇ · ˆ u 0 e
»”
˜
= 0: 5.8

In order to derive momentum balance equations, we first compute the material derivatives using

Ansatz 5.7:

u̇ = u0t e
»y + C e2»y ;

−» v̇ = A e»y + B e2»y ;

23It is a direct consequence of the Asatz 5.7.
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(a) (p− pa) (x1, y, t) (b) pd (x1, y, t)

Figure 5.3 Fluid pressuredistributionunder a linear travellingwave as predictedby equation5.9 (a). The right panel (b) shows

the dynamic pressure pd
def
= p − pa − g(” − y) distribution (i.e.without hydrostatic effects). The periodic wave amplitude is

¸ = 0:2.

where A ,B and C =
`
C1;C2

´
are defined as

A = ∇ · u 0 t ; B = ∇(∇ · u0) · u0 − (∇ · u0)
2;

C1 = u2
@u1
@x2

− u1
@u2
@x2

; C2 = u1
@u2
@x1

− u2
@u1
@x1

:

By substituting v̇ into 5.3 and taking into account the boundary condition 5.5, we obtain the pressure

distribution in the fluid bulk:

p − pa = g (” − y) +
1

»2

h `
e»y − e»”

´
A +

1

2

`
e2»y − e2»”

´
B
i
: 5.9

Notice that the pressure field p diverges when y → −∞ due to the hydrostatic effects (in agree-

ment with the Archimedes law). The pressure distribution under a linear periodic wave is shown in

Figure 5.3.

The problem now is to satisfy in some sense equation 5.2 with available expressions for u̇ and p.

Kraenkel et al. proposed the following weak formulation:Z ”

−∞

h
u̇ +∇p

i
emy dy = 0;

where m > 0 is a modelling parameter to be chosen later. So, the Newton law is satisfied in a weak

sense. The exponential weight function allows us to overcome the problem of Archimedian pres-
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sure divergence. In order to derive the momentum equation in a conservative form, we shall use the

equivalent form: Z ”

−∞
u̇ emy dy +∇

» Z ”

−∞
p emy dy

–
− pa e

m” ·∇” = 0:

After performing all computations, we obtain the desired horizontal momentum equation:

e(m+»)”

m + »

h
u0t +

m+ »

m+ 2»
e»” C

i
+ ∇

»
g

em”

m2
− A

e(m+»)”

»m (m+ »)
− 1

2
B

e(m+2»)”

»m (m+ 2»)

–
= 0:

5.10

Theseequations 5.8 and5.10 constitute a closed systemwhichdescribes theevolutionofwaterwaves

in deep water.

Remark 5.1. In order tomake a check of the derivationmade above, we shall restrict our attention

to the two-dimensional case. Here we can set u01  u, u02  0 and dependent coefficients become:

A  uxt ; B  u uxx − u 2
x ; C  0:

Thus, Equations 5.8 and 5.10 in 2D become:

» ” t +
ˆ
u e»”

˜
x
= 0; 5.11

e(m+»)”

m+ »
ut +

»
g
em”

m2
− uxt

e(m+»)”

»m (m+ »)
− `u uxx − u 2

x

´ e(m+2»)”

»m (m+ 2»)

–
x

= 0: 5.12

By switching to dimensionless variables (g  1, »  1) we recover equations (2.18) and (2.20)

from [141].

As we saw above, the water wave problem possesses Hamiltonian and Lagrangian variational struc-

tures. The question we can ask is whether just derived equations 5.8, 5.10 (which are supposed to

approximate the full Euler equations) possess at least one of these structures. By looking at equa-

tions 5.8, 5.10 the answer is not clear. Even in the ‘Conclusion and comments’ section in [141], the

Authors admit that they did not succeed in finding aHamiltonian formulation even for the short wave

limit of these equations. We shall propose some fixes to this problem below.

5.1.1 Choice of themodelling parameter

In order to derive a physically sound value for themodelling parameterm, we consider the governing

equations in 2D, and we linearize Equations 5.11, 5.12:

» ”t + ux = 0;

1

m+ »
ut +

»
g

m
” − 1

»m (m+ »)
uxt

–
x

= 0:
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It is easy to eliminate the variable ” from the above equations to obtain the linear version of the so-

called improved Boussinesq equation:

m» utt − g (m+ ») uxx − uttxx = 0:

Then, we look for plane wave solutions of the form:

u(x; t) = ¸0 e
i(kx−!t):

Such solutions exist only ifwave frequency! andwavenumber k are relatedby the following relation,

which is called the dispersion relation:

cp(k) =
!(k)

k
=

r
g

m+ »

m»+ k2
:

The ratio cp(k) is called the phase velocity. Notice that in the limit k → »we obtain

lim
k→»

!(k)

k
=

r
g

»
;

whichcoincideswith theexactphase velocity of the full Euler equations indeepwater. Finally, inorder

to determine the modelling parameterm, we consider the group velocity:

cg (k)
def
=

@!(k)

@k
:

In the limit k → », we obtain

lim
k→»

cg (k) =
m

m+ »
·
r
g

»
:

Now, it is straightforward to notice that we recover the exact expression cg (») =
1

2
·
r
g

»
for deep

water Euler equations only ifm ≡ ». This is the desired value of the modelling parameterm.

5.2 Variational derivations

In the ensuing section, we are poised to present alternative derivations of the model equations akin

to equations 5.8, 5.10, albeit rooted in the relaxed variational principle embodied in equation D.4.

It is pivotal to note that the models emergent from this variational derivation might exhibit dis-

tinctions, and as will be elucidated, they indeed deviate from equations 5.8, 5.10. The crux of this

alternative approach lies in the preservation of the Lagrangian structure, a feature inherent to the

construction of the variational principle employed. This preservation is not merely a mathematical

nicety, but aprofoundattribute that facilitates a coherent and structuredexplorationof thedynamical
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behavior underpinning the model equations. By anchoring our derivations in the relaxed variational

principle D.4, we are effectively harnessing a robust framework that not only engenders alternative

model equations but also upholds the Lagrangian structural integrity.

5.2.1 Weakly compressible Ansatz

Consider an Ansatz similar to 5.7:

ffi(x ; y ; t) = ffi0(x ; t) e
»y ; u(x ; y ; t) = u0(x ; t) e

»y ; v(x ; y ; t) = v0(x ; t) e
»y : 5.13

The main difference with 5.7 is that here, the vertical velocity approximation v0 is kept independent

from u0, and it will be chosen by the variational principle. Substituting 5.13 into Lagrangian D.4 and

performing exactly all the integrations over the depth, we obtain the following Lagrangian density:

L = −
h
”t +

`
u0 · ∇” − v0

´
e»”
i
ffi0 e

»” +
1

2
g ”2

− 1

2»

h
1
2 (|u0| 2 + v 2

0 )− (∇ · u0 + » v0)ffi0
i
e2»”: 5.14

The governing equations are then obtained by computing variations of this functional:

‹ffi0 : ”t +
`
u0 · ∇” − v0

´
e»” =

1

2»

`∇ · u0 + » v0
´
e»”;

‹u0 : u0 +∇ffi0 + 4»ffi0∇” = 0;

‹v0 : ffi0 − 1

2»

`
v0 − »ffi0

´
= 0;

‹” :
`
ffi0 e

»”
´
t
+∇ · ˆffi0 u0 e

2»”
˜
+ g ”

−
h

1
2 (|u0| 2 + v 2

0 )− (∇ · u0 + » v0)ffi0
i
e2»”

− »
h
”t + 2

`
u0 · ∇” − v0

´
e»”
i
ffi0 e

»” = 0:

TheEuler–Lagrangeequations turnout tobe rather complicated.However,wecan learn some lessons

nevertheless. The variation ‹u 0 gives us the connection between the horizontal velocity u0 and the

velocity potential ffi0 (thus, u0 can be, in principle, eliminated from the equations). In particular, one

cansee that theflow isnot irrotational. Thevariation ‹v0givesus theexpressionof the vertical velocity

v0 = 3»ffi0 in terms of the velocity potential. The variationwith respect to ” gives the analogue of the

Cauchy–Lagrange integral (i.e. an unsteady Bernoulli equation). Finally, the variation with respect to
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ffi 0 gives us the mass conservation equation, and in order to have a conservative form, it is better to

reinforce the flow incompressibility, i.e.

∇ · u0 + » v0 ≡ 0:

It will be done in the following section.

5.2.2 Exactly incompressible Ansatz

Now, we take the same Ansatz 5.13, but the vertical velocity approximation v0 is chosen in order to

satisfy identically the incompressibility condition. It is notdifficult to see that this goal canbeachieved

by taking v0 ≡ − 1
» ∇ · u0. In this way, we recover Ansatz 5.7 proposed by Kraenkel et al. [141].

Substituting this expression for v0 into the Lagrangian density 5.14, we obtain the following slightly

more compact density functional:

L = −
h
”t +

`
u0 · ∇” + 1

»
∇ · u0

´
e»”
i
ffi0 e

»” +
1

2
g ”2 − 1

4»

h
|u0|2 + 1

»2
(∇ · u0)

2
i
e2»”:

The Euler–Lagrange equations yield the following system:

‹ffi0 : » ”t +∇ · `u0 e
»”
´
= 0;

‹u0 : ∇
“
(∇ · u0) e

2»”
”
− »2 u0 e

2»” = 2»3 ffi0∇” e2»” − 2»2∇
“
ffi0 e

2»”
”
;

‹” :
`
ffi0 e

»”
´
t
+∇ · ˆffi0 u0 e

2»”
˜
+ g ”

− »∇ ·
“
u0 e

»”
”
ffi0 e

2»” − 1

2

h
|u0|2 + 1

»2
(∇ · u0)

2
i
= 0:

Even if theseequations aremore compact (than the systemweobtained in section5.2.1) and themass

conservation coincides exactly with 5.8, still, this system seems to be quite complicated. This time, it

follows from the variation ‹u0 that in order to reconstruct the horizontal velocityu0 from the velocity

potential ffi0, one has to solve an elliptic (vectorial) equation.

Intermediate conclusions. We saw above that the variational method can easily lead to compli-

cated and unamenable equations, even if the latter naturally inherits the variational structure. Con-

sequently, the choice of good Ansatz is absolutely crucial for the derivation of an approximatemodel.

In this respect, a better Ansatz will be proposed below.

5.3 Alternative deepwater Ansatz

Let » > 0 be a characteristic wavenumber corresponding, e.g., to the carrier wave of a modulated

wave group or to the peak frequency of a JONSWAP spectrum. Following the discussion above, it is
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natural to seek approximations in the form

{ffi ; u ; v } ≈ { ffĩ ; ũ ; ṽ } e»(y−”); 5.15

where ffĩ, ũ and ṽ are functions of x and t that can be determined using the variational principle (with

orwithout additional constraints). The Ansatz 5.15 is certainly the simplest possible that is consistent

with experimental pieces of evidence.

The Ansatz 5.15 substituted into the Lagrangian density 3.7 yields

2»L = 2» ffĩ ”t − g » ”2 + 1
2 ũ

2 + 1
2 ṽ

2 − (ffĩx − » ffĩ ”) ũ − » ṽ ffĩ: 5.16

With (or without) subordinate relations, this Lagrangian gives various equations.

5.4 Unconstrained approximation

We present here the case without further constraints; thus, the Euler–Lagrange equations to

Lagrangian density 5.16 yield [81]:

‹ ũ : 0 = ũ − ffĩx + » ffĩ ”x ;

‹ ṽ : 0 = ṽ − » ffĩ;

‹ ffĩ : 0 = 2» ”t + ũx − » ṽ + » ũ ”x ;

‹ ” : 0 = 2 g » ” + 2» ffĩt + » [ ffĩ ũ ]x :

The two first relations imply that this approximation is exactly rotational, and their use in the last two

equations gives

”t +
1
2 »

−1 ffĩxx − 1
2 » ffĩ = 1

2 ffĩ
ˆ
”xx + » ” 2

x

˜
; 5.17

ffĩt + g ” = − 1
2

h
ffĩ ffĩx − » ffĩ2 ”x

i
x
: 5.18

Since Equations 5.17, 5.18 derive from an irrotational motion, they can also be obtained from Luke’s

Lagrangian 3.1 under the Ansatz 5.15. That would not be the case if, for example, we had enforced the

incompressibility in the Ansatz because, here, that leads to a rotational Ansatz (see [52, Section §4.3]).

Equations 5.17 and 5.18 are a deep water counterpart of Saint-Venant equations for shallow

water waves.

It is straightforward to verify that the gKG equations possess a canonical Hamiltonian structure 
@ t”

@ t ffĩ

!
= J ·

 
‹H = ‹ffĩ

‹H = ‹”

!
; J =

 
0 −1

1 0

!
;
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where the Hamiltonian functionalH is defined as

H =

Z
Ω

j
1
2 g ”

2 + 1
4 »

−1
h
∇ffĩ− » ffĩ∇”

i2
+ 1

4 » ffĩ
2

ff
d2x : 5.19

This Hamiltonian is quartic in nonlinearities and involves only first-order derivatives. It has to be com-

paredwith Zakharov’s quartic HamiltonianB.2, which involves second-order derivatives and pseudo-

differential operators. However, Zakharov’s quartic Hamiltonian is valid for broad spectra. Note that

the Hamiltonian 5.19 cannot be derived from the exact one B.1, since the latter assumes that irrota-

tionality and incompressibility are both satisfied identically in bulk, while the incompressibility is not

fulfilled by equations 5.17, 5.18.

To the linear approximation, after elimination of ffĩ, equations 5.17, 5.18 yield

”tt − (g=2») ”xx + (g»=2) ” = 0; 5.20

that is a Klein–Gordon equation. For this reason, equations 5.17 and 5.18 are named here generalized

Klein–Gordonequations (gKG). TheKlein–Gordonequation is prominent inmathematical physics and

appears, e.g., as a relativistic generalization of the Schrödinger equation. The Klein–Gordon equation

5.20 admits a special (2ı=k)-periodic travelling wave solution

” = a cos k(x − ct); c2 = g
`
k2 + »2

´ ‹`
2» k2

´
:

Therefore, if k = » the exact dispersion relation of linear waves (i.e., c2 = g=k) is recovered,

as it should be. This means, in particular, that the gKG model is valid for spectra narrow-banded

around the wavenumber ». Further details and properties of the gKG are given in [52, Section §4.2]

and in [81].

5.4.1 Stokes wave

We focus now on (2ı=»)-periodic progressive waves solution of the gKG equations 5.17, 5.18, i.e., we

seek for solutions depending only on the variable „ = »(x1 − ct). We were not able to find an exact

analytic solution, but a Stokes-like expansion gives some interesting insights. To the seventh order,

we have

» ” = ¸ cos „ + 1
2¸

2
`
1 + 25

12¸
2 + 1675

192 ¸
4
´
cos 2„

+ 3
8
¸3
`
1 + 99

16
¸2 + 11807

320
¸4
´
cos 3„ + 1

3
¸4
`
1 + 64

5
¸2
´
cos 4„

+ 125
384¸

5
`
1 + 6797

300 ¸
2
´
cos 5„ + 27

80¸
6 cos 6„ + 16807

46080¸
7 cos 7„ +O(¸8);
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g− 1
2»

3
2 ffĩ = ¸

`
1− 1

4¸
2 − 59

96¸
4 − 4741

1536¸
6
´
sin „ + 1

2¸
2
`
1 + 11

12¸
2 + 547

192¸
4
´
sin 2„

+ 3
8¸

3
`
1 + 163

48 ¸
2 + 221

15 ¸
4
´
sin 3„ + 1

3¸
4
`
1 + 149

20 ¸
2
´
sin 4„

+ 125
384¸

5
`
1 + 5057

375 ¸
2
´
sin 5„ + 27

80¸
6 sin 6„ + 16807

46080¸
7 sin 7„ +O(¸8);

g− 1
2»

1
2 c = 1 + 1

2¸
2 + 1

2¸
4 + 899

384¸
6 +O(¸8):

The expansions of ” and ffĩ match the exact Stokes wave (cf. Appendix A) up to the third order

(non-matching coefficients are displayed in bold). This is not surprising since the gKG equations are

cubic in nonlinearities. A bit more surprising is that the phase velocity c is correct up to the fifth

order. But the most interesting is that, to the leading order, the nth Fourier coefficient is (for all n up

to infinity)

nn−2 ¸n

2n−1 (n − 1)!
; 5.21

which is also the case for the exact Stokes wave (Appendix A).

In a comparative vein, when examining the cubic Zakharov equations as delineated in equations

B.3–B.4, it is observed that the phase velocity retains accuracy only up to the third order, and the

Fourier coefficients do not adhere to the asymptotic behaviour described in equation 5.21 (refer to

Appendix B for a detailed discussion). Upon truncating Zakharov’s Hamiltonian at the order ofN+1 in

nonlinearities, the ensuing Stokes double seriesmanifests correctness up to the orderN with respect

to the expansion parameter. However, it is noteworthy that none of these elevated approximations

attain the exact asymptotic behaviour outlined in equation 5.21 regarding their Fourier coefficients.

This discrepancy emanates from the fact that they encapsulate expansions centred around ” = 0 , a

feature not shared by the generalized Klein–Gordon equations (gKG) equations. The Zakharov equa-

tions, on the other hand, hold validity across a broad spectrum of conditions, showcasing a level

of versatility. Yet, they diverge from the gKG equations, which do not exhibit the same breadth in

applicability. This comparative analysis underscores the nuanced differences in the performance and

applicability of these mathematical formulations, illuminating the inherent trade-offs and the con-

textual efficacy of the Zakharov and gKG equations in capturing the complex dynamics of water wave

phenomena.

5.4.2 Multi-symplectic structure

The gKG equations have multiple variational structures. First of all, they appear as Euler–Lagrange

equations of an approximate Lagrangian that also possesses a canonical Hamiltonian formulation
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[52]. In this study, we show that the gKG system can be recast into themulti-symplectic form [37, 161]

as well. The main idea behind this formulation is to treat the time and space variables on equal foot-

ing [38] while, for instance, in Hamiltonian systems, the time variable is privileged with respect to

the space. Based on this special structure, numerous multi-symplectic schemes have been proposed

for multi-symplectic PDEs, including the celebrated KdV, NSE equations [37, 173, 199, 247] and the

Boussinesq family of equations [79]. These schemes are specifically designed to preserve exactly the

discretemulti-symplectic form [80]. However, these schemes turn out to be fully implicit and, thence,

advantageous only for long-time simulations using larger time steps. Since in the present study, we

focus on themid-rangedynamics; weopt for a pseudo-spectralmethodwhich canensure a high accu-

racy with an explicit time discretization [58, 102, 168, 224]. Since the periodic and localised solutions

play an important rôle in the nonlinear wave dynamics [187], we use the numerical method to study

the behaviour of these solutions.

In addition to the Lagrangian and Hamiltonian formulations, the gKG equations 5.17 and 5.18 can be

recast into a first-order PDE system:

2» @ t” +∇ · ũ = »2 ffĩ− » ũ ·¸; 5.22

−2» @ tffĩ−∇ · ‚ = 2» g ”; 5.23

−∇ffĩ = −ũ − » ffĩ¸; 5.24

∇” = ¸; 5.25

0 = ‚ − » ffĩ ũ; 5.26

where ¸ = (¸1; ¸2) and ‚ = (‚1; ‚2) are auxiliary variables. These relations yield the multi-

symplectic canonical structure

M · ~zt +K1 · ~zx1 +K2 · ~zx2 = grad~z S(~z); 5.27

where ~z = (ffĩ; ”; ũ1; ũ2; ‚1; ‚2; ¸1; ¸2)
� ∈ R8, S is the generalised Hamiltonian function

S (~z) = ¸ · ‚ + » g ”2 + 1
2

“
»ffĩ
”2

− » ffĩ ũ ·¸− 1
2 ũ · ũ;

and where the eight-by-eight skew-symmetricmatricesM,K1 andK2 are defined as

M = 2» (~e1 ⊗ ~e2 − ~e2 ⊗ ~e1) ;

K1 = ~e1 ⊗ ~e3 − ~e3 ⊗ ~e1 + ~e5 ⊗ ~e2 − ~e2 ⊗ ~e5;

K2 = ~e1 ⊗ ~e4 − ~e4 ⊗ ~e1 + ~e6 ⊗ ~e2 − ~e2 ⊗ ~e6;

~ej being j -th unitary vector of the Cartesian coordinates for theR8 space (⊗ the tensor product).
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Conservation laws

The local multi-symplectic conservation law for 5.27 is

@t ! +∇ · fi = 0;

where the pre-symplectic forms are defined, for any solution of the first variation of 5.27, as

! = 1
2 d~z ∧ (M · d~z); fi1 =

1
2 d~z ∧ (K1 · d~z); fi2 =

1
2 d~z ∧ (K2 · d~z);

that is to say

! = 2» d” ∧ dffĩ; fi1 = dũ1 ∧ dffĩ + d‚1 ∧ d”; fi2 = dũ2 ∧ dffĩ + d” ∧ d‚2;

where ∧ is the usual exterior or wedge product [37, 186].

Along with the multi-symplectic system solutions, local energy conservation law is verified

@ t E(~z) +∇ · F (~z) = 0;

with

E = S − 1
2 ~z

T ·K1 · ~zx1 − 1
2 ~z

T ·K2 · ~zx2 ; Fj =
1
2 ~z

T ·Kj · ~zt ;

which can be explicitly expressed in terms of the physical variables as

2E = 2» g ”2 − ũ2 + (»ffĩ)2 − » ffĩ ũ · ∇” + » ”∇ · (ffĩũ)− ffĩ∇ · ũ + ũ · ∇ffĩ;

2F = » ffĩ ũ @ t” − » ” @ t(ffĩũ) + ffĩ @ t ũ − ũ @ tffĩ:

There exists also two local momentum conservation laws associatedwith each spatial direction

@ t I1(~z) + @x1G11(~z) + @x2G12(~z) = 0;

@ t I2(~z) + @x1G21(~z) + @x2G22(~z) = 0;

the corresponding quantities being

2 Ij = ~z T ·M · ~zxj = 2»
“
ffĩ @xj” − ” @xj ffĩ

”
;

2G12 = ~z T ·K2 · ~zx1 = » ffĩ ũ2 @x1” − » ” @x1(ffĩũ2) + ffĩ @x1 ũ2 − ũ2 @x1 ffĩ;

2G21 = ~z T ·K1 · ~zx2 = » ffĩ ũ1 @x2” − » ” @x2(ffĩũ1) + ffĩ @x2 ũ1 − ũ1 @x2 ffĩ;
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2G11 = 2S − ~z T ·M · ~zt − ~z T ·K2 · ~zx2

= 2» g ”2 + (»ffĩ)2 − ũ2 + 2»
“
” @ t ffĩ − ffĩ @ t”

”
−
“
» ffĩ ũ2 @x2” − » ” @x2(ffĩ ũ2) + ffĩ @x2 ũ2 − ũ2 @x2ffĩ

”
;

2G22 = 2S − ~z T ·M · ~zt − ~z T ·K1 · ~zx1

= 2» g ”2 + (»ffĩ)2 − ũ2 + 2»
“
” @ t ffĩ − ffĩ @ t”

”
−
“
» ffĩ ũ1 @x1” − » ” @x1(ffĩ ũ1) + ffĩ @x1 ũ1 − ũ1 @x1 ffĩ

”
:

The multi-symplectic form highlighted above can be used to construct various numerical multi-

symplectic schemes, which preserve exactly the multi-symplectic form at the discrete level [37, 38,

173, 199, 247]. These schemes are suitable for long-time integration using rather coarse discretiza-

tions [80, 82]. The development and application of these schemes to proposed approximate model

equations are left for our future studies.

5.4.3 Travelling waves

For the sake of simplicity, we will consider hereinafter the special case of two-dimensional wave

motions, i.e. the dependent variables are independent of, say, the variable x2; for brevity, we denote

x = x1 and u = u1. The equations of motion become

ũ = ffĩx − » ffĩ ”x ;

ṽ = » ffĩ;

0 = 2» ”t + ũx − » ṽ + » ũ ”x ;

0 = 2 g » ” + 2» ffĩt + [ ũ ṽ ]x ;

which can be reduced into a two equations system

”t +
1
2 »

−1 ffĩxx − 1
2 » ffĩ = 1

2 ffĩ
ˆ
”xx + » ” 2

x

˜
;

ffĩt + g ” = − 1
2

h
ffĩ ffĩx − » ffĩ2 ”x

i
x
:

The equations can be combined to derive useful secondary relations. For instance, we derive the con-

servative equations

ũt +
ˆ

3
4
ũ2 + 1

4
ṽ2 + g ”

`
1− 1

2
»”
´ ˜

x
= 0; 5.28ˆ

1
2 g » ”

2 + 1
4 (ũ

2 + ṽ2)
˜
t
+
h

1
2 ũ (ṽ ”t − ffĩt)

i
x
= 0; 5.29
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which physically describe (after division by») the conservations of themomentumand energy fluxes,

respectively.

For travellingwaves of permanent form, the dependent variables are functions of the single indepen-

dent variable ‰ = x − ct. The equations 5.28 and 5.29 can then be integrated as

3
4 ũ

2 + 1
4 ṽ

2 + g ”
`
1− 1

2»”
´− c ũ = Kp;

1
2
g » ”2 − 1

4
ũ2 + 1

4
ṽ2 = Ke ;

whereKp andKe are integration constants. Adding these two relations, one obtains

1
2 ũ

2 + 1
2 ṽ

2 + g ” − c ũ = Kp +Ke ;

which is the Bernoulli equation, Kp + Ke being a Bernoulli constant. Subtracting the two relations,

one gets at once

ũ2 + g ” (1− »”)− c ũ = Kp −Ke ;

that can be used to express ũ in terms of ” (or vice-versa), i.e.,

ũ = 1
2 c ±

q
Kp −Ke +

1
4 c

2 − g ” (1− »”) ; 5.30

ũ‰ = g ”‰ (1− 2»”) = (c − 2ũ) : 5.31

With these relations, the Lagrangian density 5.16 becomes

2»L = −2 c ṽ ”‰ − g » ”2 − 1
2
ũ2 − 1

2
ṽ2

= 2 c ” 2
‰ [ 2 c − ũ − (g=») (1− 2»”) = (c − 2ũ) ] − ũ2 − 2Ke ;

where ũ should be expressed via 5.30. An equation for ” is then obtained from the Beltrami identity

L − ”‰
@L

@”‰
= constant ≡ (Kb − 2Ke) = 2»;

yielding

„
d ”

d‰

«2

=
» (Kb + ũ2) (c − 2ũ)

2 c [ g (1− 2»”) + » (2c − ũ) (c − 2ũ) ]
; 5.32

where ũ is given by 5.30. Unfortunately, we were not able to solve the equation 5.32 analytically.

However, this solution might be useful for theoretical investigations of travelling waves. In order to
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construct these solutions numerically to high accuracy (s 10−10), we employ a Newton Jacobian-

free method combined with the Levenberg–Marquardt algorithm [175]. The computed profiles will

be shown below in section 5.4.5.

5.4.4 Pseudo-spectral method

WebrieflydescribebelowahighlyaccurateFourier-typepseudo-spectralmethod [31, 224] thatweuse

to simulate thedynamics of the gKGequations. Thesemethods havebeenproven to be extremely effi-

cient (practically unbeatable) in the idealized periodic setting [31]. Below, we show that the gKG sys-

temcanbe integratedup to theRiemannwavebreaking using theproposedpseudo-spectral scheme.

Wewould like tomention that the pseudo-spectral method presented below does not rely on a varia-

tional structure. However, due to the fact that the numerical error committed by this pseudo-spectral

method is exponentially small, wemay use it confidently to study the dynamics of the gKG equations.

With V = (”; ffĩ)� denoting the vector of dynamic variables, the gKG system 5.17, 5.18 can be recast

in the vector form

V t + L · V = N(V ); 5.33

where the operatorN denotes the right-hand side of equations 5.17, 5.18 and the linear operatorL is

defined as

L =

"
0 ∇2−»2

2»

g 0

#
; L̂ =

"
0 − |k|2+»2

2»

g 0

#
;

where L̂ is the operator L in the Fourier space. The equation 5.33 is solved by applying the Fourier

transform in the spatial variable x . The transformed variables is denoted by V̂ (t; k) = F{V (t; x)},
k being the Fourier transform parameter. The nonlinear terms are computed in the physical space,

while spatial derivatives are computed spectrally in the Fourier space. For example, the term ffĩ∇2” is

discretised as:

F
n
ffĩ∇2”

o
= F

n
F−1

“
ffî
”
× F−1{−|k|2”̂}

o
:

The other nonlinear terms are treated in a similar way. We note that the usual three-half rule has to

be applied for anti-aliasing [58, 102, 224].

In order to improve the stability of the time discretization procedure, we integrate exactly the linear

terms. This is achieved bymaking a change of variables [102, 168]:

Ŵ (t) = exp
“
(t − t0)L̂

”
· V̂ (t); Ŵ (t0) = V̂ (t0);
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yielding the equation

Ŵt = exp
“
(t − t0)L̂

”
· F
n
N
“
exp
“
(t0 − t)L̂

”
· Ŵ
”o

:

The exponential matrix of the operator L̂ can be explicitly computed to give

exp
“
(t − t0)L̂

”
=

"
cos
`
!(t − t0)

´ −(!=g) sin
`
!(t − t0)

´
(g=!) sin

`
!(t − t0)

´
cos
`
!(t − t0)

´
#
;

where

!2 =
g »

2
+
g |k|2
2»

:

Finally, the resulting system of ODEs is discretised in space by the Verner embedded adaptive 9(8)

Runge–Kutta scheme [228]. The step size is chosen adaptively using the so-called H211b digital filter

[208, 209] to meet the prescribed error tolerance, set as of the order of machine precision.

5.4.5 Numerical results

Periodic steady solutions

We begin the numerical study of gKG equations by computing numerically steady periodic Stokes-

like solutions. We employ the Newton Levenberg–Marquardt method, which tends to the steepest

descent far from the solution (to ensure the convergence) and becomes the classical Newtonmethod

in the vicinity of the root [175]. Then, we compare the computed profile to the seventh-order Stokes

expansion to the full Euler equations A.1–A.3. In order to fix the ideas,we choose thewavelength to be

– ≡ 2‘ = 2ı, i.e. the computational domain is [−‘; ‘ ]. Consequently, the parameter » = 2ı=– = 1.

For simplicity,we take also g = 1m=s2. In steady computations, we use onlyN = 128 Fouriermodes.

It is sufficient to compute to high accuracy (s O(10−9)) the numerical solution at the collocation

points. The results are shown in Figures 5.4, 5.5 and 5.6.

In order to validate further the computed travelling wave profiles, we use the dynamic solver

described in section 5.4.4. Consider the computational domain composed of 16 periodic waves with

steepness " = 0:095. Thediscretizationwas donewithN = 4096 Fouriermodes. This initial condition

was propagated up to T = 250, which corresponds to approximatelys 40wave periods. As one can

see in Figure 5.7, the initial wave system propagates uniformly in space without changing its shape.

This simulation shows again that travelling waves were computed correctly. To test the stability of

these solutions, we consider the same initial conditionwith long (s 4wavelengths) and short (s 1=4

wavelength)waveperturbations. Both situationswere simulatednumerically on the same time scale,
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Figure 5.4 Comparison of the travelling wave solutions to the gKG equations with the seventh-order Stokes solution for vari-

ous values of the wave steepness parameter. The wavelength is fixed to 2ı.

and results are presented in Figures 5.7(a,b). We can see that the travelling wave solutions in the gKG

equations appear to be stable. However, amore detailed study is needed to answer this questionwith

more certitude.

Envelope soliton

In this Section, we consider an example stemming from thewave packet propagation theory on deep

waters. As itwas shown for the first time by Zakharov [243], the free surface complex envelopeA(x; t)

is governed by the classical Nonlinear Schrödinger equation (NSE) [57, 121, 243]:

At + cg Ax +
i cg
4 k0

Axx +
i!0 k

2
0

2
A |A|2 = 0; 5.34
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Figure 5.5 Speed–steepness relation for periodic steady waves: blue solid line — the gKG equations, red dashed line —

seventh-order Stokes expansion. The wavelength is fixed to 2ı.
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Figure 5.6 Periodic travelling wave to the gKG equations for the steepness parameter " = 0:29967.
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(a) Long perturbation (b) Short perturbation

Figure 5.7 Evolution of 16wavelengths of computed periodic travelling waves for " = 0:0954 during about 160 periods: (a)

long wave perturbation; (b) short wave perturbation.

where !0 =
√
gk0 and cg = @!0=@k0 = !0=2k0 is the linear group velocity. Equation 5.34 admits the

envelope soliton solution:

A(x; t) = a sech
“√

2k20 (x − cg t)
”
exp(−ia2k20!0t=4): 5.35

The free surfaceelevation”(x; t)and thevelocity potentialffi(x; t) canbe recovered fromthecomplex

envelope A(x; t) in the following way:

”(x; t) = Re
˘
A(x; t) ei(k0x−!0t)

¯
; ffi(x; t) = Re

n
− i!0

k0
A(x; t) ei(k0x−!0t)

o
: 5.36

The evolution of this envelope soliton in higher-ordermodels was studied in [57, 121]. Consequently,

we put this localised structure as the initial condition in the gKG equations. Consider the computa-

tional domain [−128; 128] with periodic boundary conditions and the envelope soliton 5.35 (trans-

formed tophysical variables using formulas 5.36)with a = 0:1,» ≡ k0 = 1:0 and g = 1. We simulated

the evolution of this wave packet until T = 1000:0, which was sufficient for the packet to go around

the computational domain three times. The space-time evolution is shown in Figure 5.8, and several

individual snapshots of the free surface elevation are shown in Figure 5.9. The shape of the envelope

soliton is not preserved exactly, of course. However, during short times, the preservation is satisfac-

tory. On snapshots 5.9 (b & c), one can notice a small wavelet travelling in the opposite direction.

The general effect is the broadening of the wave packet in agreement with previous investigations

[206, 207].
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Figure 5.8 Space–time plot of a localized wave packet under the gKG dynamics.

−128 −75 −25 0 25 75 128
−0.1

0

0.1

x

η
(x
,
t
)

(a)
√

g
κ t = 0.0

−128 −75 −25 0 25 75 128
−0.1

0

0.1

x

η
(x
,
t
)

(b)
√

g
κ t = 125.0

−128 −75 −25 0 25 75 128
−0.1

0

0.1

x

η
(x
,
t
)

(c)
√

g
κ t = 500.0

−128 −75 −25 0 25 75 128
−0.1

0

0.1

x

η
(x
,
t
)

(d)
√

g
κ t = 1000.0

Figure 5.9 Evolution of initially localized wave packet under the gKG dynamics.
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Table 5.1 Physical and numerical parameters used for the simulation of the shock wave formation in gKG equations.

Gravity acceleration: g [ms−2] 1:0

Characteristic wavenumber:» [m−1] 0:7
Computational domain half-length: ‘ [m] ı
Final simulation time: T [s] 11:5
Initial condition amplitude: a [m] 0:1

Initial bump width: k [m−1] ı
Number of Fourier modes:N 4096

Shock wave formation

Finally, we present an additional test casewhere the gKG system shows an interesting behaviour. The

initial condition is taken to be a localised bump on the free surface with zero initial velocity:

”(x; 0) = a sech2(kx); ffĩ(x; 0) = 0:

All the valuesofphysical andnumerical parameters aregiven inTable 5.1. The space-timedynamics of

this system are shown in Figure 5.12, and several snapshots of the free surface elevation are depicted

in Figure 5.10. The particularity of this simulation consists of two shock waves which develop at the

free surface. The snapshot at the final simulation time T is shown on the upper panel of Figure 5.11.

One can clearly see the sharp transitions at the free surface. It is even more instructive to look at the

energy spectrum, which is depicted on the bottom panel of the same Figure. For the sake of compar-

ison, we also plot the energy spectrum of a breaking Riemann wave, whichwas recently shown to be

exactly of the form |”̂k |2 s k−8=3 [178, 188]. This excellent agreement shows that the gKG systemmay

produce wave breaking of a similar type as classical shallow-water type systems. This result was to

be expected since the gKG system is a deep water counterpart of the classical Saint-Venant equations

[68].

Intermediate conclusions

We discussed the derivation of some gKG equations, which are a new model for water waves propa-

gating in deep water approximation. This model already appeared as an illustration for the relaxed

variational formulation [52, 81]. Here, the structure of this model was further investigated, and a

multi-symplectic formulation was proposed. Moreover, we computed periodic travelling wave solu-

tions, and we showed that they approximate fairly well the corresponding solutions of the full Euler

equations, including the formation of a limiting wave with a singular point at the crest [160, 213].

The dynamics of regular periodic waves were studied, and these solutions appear to be stable under

long and short-waveperturbations. Finally, we showed also that solutions of gKG equationsmay pro-

duce the shock wave formation phenomenon of a similar type as the breaking of Riemann waves in

98 #WaterMonographs IAHR.org



January 24, 2024 22:33: RPS: IAHR Monograph Series

IAHR Water Monographs A variational approach to water wavemodelling

−3.14 0 3.14
−0.1

−0.05

0

0.05

0.1

x

η
(x

,
t
)

(a) t = 0 s

−3.14 0 3.14
−0.1

−0.05

0

0.05

0.1

x

η
(x

,
t
)

(b) t = 2.875 s

−3.14 0 3.14
−0.1

−0.05

0

0.05

0.1

x

η
(x

,
t
)

(c) t = 5.75 s

−3.14 0 3.14
−0.1

−0.05

0

0.05

0.1

x

η
(x

,
t
)

(d) t = 8.625 s

Figure 5.10 Several snapshots of an initial bump evolution. See also Figure 5.12. The free surface at the final simulation time

is shown in Figure 5.11.
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Figure 5.11 Free surface elevationand the energy spectrumat thefinal simulation timeT = 11:5 s. The reddotted line shows

the theoretical prediction of a Riemann wave breaking spectrum [178, 188].

Figure 5.12 Space-time dynamics of an initial bump posed on the free surface in the gKG equations.
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shallow water models [178, 188]. To our knowledge, it is the first approximate model in deep waters

which shows this behaviour. Although the results presented here are encouraging, further investiga-

tionswouldbenecessary toassess the relevanceand limitationsof thegKG formodellingwaterwaves

in deep water.

5.5 Constraining with the free surface impermeability

In order to satisfy the free surface impermeability identically, we take

ṽ = ”t + ũ · ∇”;

and the Lagrangian density 5.16 becomes24

2»L = ffĩ (» ”t +∇ · ũ)− g» ”2 + 1
2 ũ

2 + 1
2(”t + ũ · ∇”)2; 5.37

while the Euler–Lagrange equations yield the relations

‹ ũ : 0 = ũ + (”t + ũ · ∇”)∇” −∇ffĩ; 5.38

‹ ffĩ : 0 = »”t +∇ · ũ; 5.39

‹ ” : 0 = 2g»” + »ffĩt + ”tt + (ũ · ∇”)t +∇ · (ũ”t) +∇ · [(ũ · ∇”)ũ]: 5.40

The relation 5.39 implies that∇ · u + vy = 0, the solution satisfies the incompressibility identically.

Notice that we did not require this condition at the level of Ansatz 5.15. On the other hand, the irrota-

tionality being not verified identically, equations 5.38–5.40 cannot be derived from Luke’s variational

formulation. Note that 5.38 yields∇ffĩ = ũ + ṽ∇” that is exact for potential flows [64, 102]. As for the

shallowwater case, the potential ffĩ can be eliminated fromequations 5.38, thus yielding a deepwater

analogue of SGN equations. These equations have also been studied in [86].

To the linear approximation, relations 5.38–5.40 can be combined into a single equation for the

elevation of the free surface:

(∇2 − »2) ”tt + 2 g »∇2” = 0;

which admits the special (2ı=k)-periodic solution

” = a cos k(x1 − ct); c2 = 2 g » (k2 + »2)−1:

24We refer to section 5.3 for the genesis of this Lagrangian density.
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Therefore, if k = », the exact linear approximation is recovered, as it should be. Again, this means

that this model is valid for narrow-banded spectra. The question on how narrow was investigated in

[52, section §4.3.1].

5.5.1 Evolution equations

The governing equations 5.38–5.40 may appear complicated to the reader. The main problem with

the formulation given above is that equations are not written in an evolutionary form of a system of

PDEs with time derivatives separated from other terms. We can recast the model 5.38–5.40 in a more

amenable form. In order to obtain a compact formof equations 5.38–5.40, firstwe are going to expand

them:

ṽ ≡ ” t + ũ · ∇” =
” t +∇ffĩ · ∇”
1 + |∇”| 2 ≡ ũ · ∇” − »−1∇ · ũ;

ũ ≡ ∇ffĩ− ṽ∇” =
∇ffĩ− ” t ∇” + |∇”| 2 ∇ffĩ− ˆ∇ffĩ · ∇” ˜∇”

1 + |∇”| 2 ;

0 = » ” t +∇ · ũ;

0 = 2» g ” + » ffĩ t + ṽ t +∇ · (ṽ ũ):

The last equation gives us a hint that the right evolution variable is

q̃
def
= ∇`ffĩ+ »−1 ṽ

´
= ũ + ṽ ∇” + »−1∇(ũ · ∇”)− »−2 ∇(∇ · ũ):

We can notice that ∇(∇ · ũ) can be seen as an application of the operator matrix ∇ ⊗ ∇ to the

vector ũ , i.e.

q̃ =
ˆ
I− »−2 ∇⊗∇ ˜| {z }

≡ D−1

· ũ + ṽ ∇” + »−1∇(ũ · ∇”);

where I denotes the identity operator. Finally, the system of evolution equations can be written as

» ”t +∇ ·D · q̃ = ∇ ·D · ˆ ṽ∇” + »−1 ∇(ũ · ∇”) ˜; 5.41

q̃t + 2 g∇” = −»−1 (∇⊗∇) · (ṽ ũ): 5.42

These equations have to be supplemented by two algebraic-differential relations:

ṽ = ũ · ∇” − »−1∇ · ũ;
ũ = D · ˆ q̃ − ṽ∇” − »−1∇(ũ · ∇”) ˜:
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The pseudo-differential operator D =
ˆ
I − »−2∇ ⊗ ∇ ˜−1

can be easily computed in the Fourier

space:

D̂ =
ˆ
I− »−2 k ⊗ k

˜−1
;

where k = (k1; k2) is the vector of wavenumbers. Otherwise, one has to invert an elliptic operator

numerically as it is custom in the numerical analysis of classical Serre equations [87].

An open problem. By analogy to the classical Serre–Green–Naghdi equations, the canonical Hamil-

tonian structure for deep water Serre equations 5.41 and 5.42 does not probably exist. The Authors

of the present manuscript did not succeed in finding even a non-canonical Hamiltonian formulation

which should exist in principle. Consequently, it remains an open problem so far. However, we suc-

ceeded in finding the multi-symplectic formulation for deep water Serre-type equations.

5.6 Multi-symplectic formulation

Here, we give themulti-symplectic structure for deepwater Serre equations in the case of one spatial

horizontal dimension x1 ≡ x (and, thus, ũ ≡ ũ1) for the sakeofnotationcompactness. Thegeneraliza-

tion to the case of twohorizontal dimensions is straightforward. The general formofmulti-symplectic

equations (with one spatial variable) is

M · z t +K · z x = ∇z S (z); 5.43

where z ∈ Rd is the vector of state variables and M; K ∈ Matd×d (R) are some skew-symmetric

matrices. It is not difficult to check that for deepwater Serre equations 5.38–5.40 (in 1D) it is sufficient

to take

z =
`
ffĩ; ”; ũ; ‚; ˛; ṽ

´�
;

S (z) = −g » ”2 + ˛ (ũ ṽ − ‚) + 1
2

`
ũ 2 − ṽ 2

´
;

and the skew-symmetricmatricesM andK are defined as

M
def
=

0
BBBBBBBBBB@

0 −» 0 0 0 0

» 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 0 0

1
CCCCCCCCCCA
; K

def
=

0
BBBBBBBBBB@

0 0 −1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCA
:
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Equation 5.43 can be rewritten in the component-wise form for the sake of clarity:

−» ” t − ũ x = 0;

» ffĩ t + ṽ t + ‚ x = −2 g » ”;

ffĩ x = ũ + ˛ ṽ ;

−” x = −˛;

0 = ‚ − ũ ṽ ;

−” t = −ṽ + ˛ ũ:

Now it is straightforward to check bymaking substitutions that equation 5.43 is indeed equivalent to

the deep Serre equations 5.38–5.40. The generalization to the 2D case is straightforward.
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C H A P T E R 6

Intermediate depth example

A general Ansatz, for waves in finite constant depth and satisfying identically the bottom imperme-

ability is suggested by the linear theory of water waves:

ffi ≈ cosh»Y

cosh»h
ffĩ(x; t); u ≈ cosh»Y

cosh»h
ũ(x; t); v ≈ sinh»Y

sinh»h
ṽ(x; t); 6.1

whereY = y+d . Theparameter» > 0 is a characteristicwavenumber tobemadepreciseaposteriori.

This Ansatz is uniformly valid for all depths because it yields the shallow water one 4.1 as »→ 0, and

the deep water one 5.15 as d → ∞. Obviously, the Ansatz 6.1 should be valid for wave fields with

wavenumber spectra that are narrow-banded around ».

Substituting the Ansatz 6.1 into 3.7, one obtains

L = [ ”t + ũ ”x ] ffĩ− g ”2

2
+
ṽ2

2

sinh(2»h)− 2»h

2» cosh(2»h)− 2»
+
ffĩ ṽ

2

»
2»h

sinh(2»h)
− 1

–

+

»
ũ2

2
+ ffĩ ũx − » tanh(»h) ffĩ ũ ”x

–
sinh(2»h) + 2»h

2» cosh(2»h) + 2»
: 6.2

Applying various constraints, one obtains generalized equations, including the ones derived in the

previous sections 4 and 5 as limiting cases. In particular, one can derive arbitrary depth generaliza-

tions of the Serre and Klein–Gordon equations. These derivations are left to the reader. The main

purpose of this section is to illustrate the easiness of deriving approximations uniformly valid for all

depths, contrary to perturbationmethodswithwhich the twomain theories (i.e., Stokes-like and shal-

low water expansions) have separated validity domains.

Indeed, the Serre equations of section 4 can also be derived from an asymptotic expansion (with the

depth over wavelength ratio as a small parameter). This is not the case for all approximations obtain-

able from the variational principle (see examples in [52] and [83]). However, this does not mean that

approximationsobtained thiswaydonothave restrictedvalidity domains, as further discussedbelow.
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C H A P T E R 7

Conclusions and perspectives

In the discourse of the current survey, we have elucidated a novel variational principle predicated on

a relaxed Lagrangian functional as expounded in [52]. The applicability and versatility of this varia-

tional principle have been demonstrated through a plethora of examples emanating from a spectrum

of water depths: shallow, deep, and intermediate. It is our aspiration that the wide array of examples

furnished herein would serve as a robust guide, aiding our readers in adeptly employing this method

to address the challenges inherent in their specific scenarios. However, awordof caution iswarranted

here: every approximationdeployed carrieswith it a defineddomainof validity. Therefore, it is imper-

ative that theseapproximatemodels arewielded judiciously, andpreferentially in scenarios that align

with their foundational design principles. The task of delineating the bounds of a model’s validity

region is not to be taken lightly and ideally warrants a dedicated study to ensure a nuanced under-

standing of themodel’s capabilities and limitations. It is pertinent to note that these observations are

not confined to the relaxed variational principle proposed herein but extend to all approximatemod-

els harnessed in the realm of applied sciences. The essence of these remarks underscores a broader

scientific rigour and discernment requisite in the employment of approximate models, thereby fos-

tering a more informed and judicious application of these tools in unravelling the intricacies of fluid

dynamics.

It may be worth reminding the main advantages of using the variational methods inmodelling water

waves (and not only):

• The approximate model inherits naturally the variational structure of the base model. Thus, it can

be studied using similar methods.

• Thanks to the celebrated Noether theorem, wemay preserve important symmetries and conserva-

tion laws. Inparticular, inwaterwaves,webelieve it is of capital importance tohave themomentum

andenergy conservation (or balance) laws alongwith theGalileanboost symmetry. This systematic

route has not been explored in our study yet.

• The derivedmodel also enjoys the Hamiltonian formulation25.

25Possibly a non-canonical one as it is the case of the classical Serre–Green–Naghdi equations [153].
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• This variational structure might be exploited to construct efficient and structure-preserving varia-

tional integrators [151]. We started the exploration of this research direction in [82] for the case of

the celebratedKdVequationand in [79, 80] for a family ofBoussinesq-typeequations.However, this

methodology should be applied tomore complex (in particular, fully nonlinear)waterwavemodels

as well.

We have illustrated the advantage of using a variational principle with as many variables as possible.

We call it the relaxed variational principle, since the Lagrangian density 3.6 involves more degrees of

freedom (i.e., the variables ”, ffi, u, v ,— and �) compared to the two degrees of freedom (” and ffi) in

the classical case. In particular, these extra variables can be used to impose various constraints such

as incompressibility, irrotationality, impermeability, etc. The practical use of the relaxed formulation

was illustrated in numerous examples in shallow, deep and intermediate waters. Thus, we obtained

several approximations, somewell-known and some new to our knowledge.

In the shallow water regime, we have first obtained the classical nonlinear shallow water (or Saint-

Venant) equations 4.19–4.20. Then, with the same Ansatz 4.9 but imposing the constraint of the free

surface impermeability, we have derived the irrotational Serre–Green–Naghdi equations 4.27–4.28.

Applying the incompressibility constraint and choosing the pseudo-velocity field in a different way,

wehaveobtained twokindsofgeneralizedKaup–Boussinesqequations. Severalwaysof further gener-

alizationswere also outlined. We considered a generalized Ansatz, andwe illustrated its consequence

in the limiting case of shallowwater. In this way, we derived themodified Serre–Green–Naghdi equa-

tions (mSGN)andsubsequentlyobtainedexact cnoidalandsolitarywavesolutions. Themainpurpose

of this example was to illustrate the fact that one can introduce an Ansatz which is not inspired by any

asymptotic expansion and nevertheless leads to reasonable approximations.

In deep water, two models were considered. Namely, we derived deep water counterparts of the

celebrated Saint-Venant and Serre equations. The former has a canonical Hamiltonian formulation

and degenerates to the Klein–Gordon equation in the linear approximation; we thus called the new

system 5.17, 5.18 generalized Klein–Gordon equations. The latter could be solved analytically for a

two-dimensional travellingwave. This solution is a striking illustration of the power of the variational

formulation compared to asymptotic expansion methods, especially for large amplitudes when the

expansion parameter is no longer small. Of course, the validity limits of all these models have to be

properly studied and assessed.

The case of arbitrary depth has also been briefly considered. In particular, it has been shown how

easily one can introduce an Ansatz valid for all depths. Indeed, the vertical variation of the velocity
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field suggested by the linear theory provides at once such a general Ansatz, which degenerates to

previous caseswhen thewater is shallow (»d → 0) or deep (d → ∞). This simplicity and flexibility of

the variational principle is quite remarkable compared to perturbation methods.

In this survey, some further possibilities for generalizations are also mentioned. However, we have

to emphasize that not all Ansätze and constraints will necessarily lead to physically relevant and

tractable approximations; the same is true formodels derived from asymptotic expansions, however.

Nonetheless, the relaxed variational formulation is sufficiently versatile to allow easy derivations of

physically sound models. We have illustrated this claim, in particular, by showing how it is simple to

obtain approximate equations valid for all depths.

Sometimes, the choice of the constraints may seem to be rather ad hoc, but that should not be sur-

prising. Indeed, the water wave theory already knows several ad hoc ‘tricks’ intended to improve the

approximationquality. For instance, itwas proposed in [157] to replace the polynomial shallowwater

expansion 4.8 by a (m; n)-Padé approximation, the ordersm and n being chosen to improve the linear

dispersion relation of progressive waves. Another example is the use of the velocity potential defined

at some depth y0 [183] and, as before, the free parameter y0 is chosen to improve linear dispersion

characteristics. The approach proposed here is notmore ad hoc than any examplementioned above.

Moreover, the variational principle allows for greater flexibility in the choice of the Ansatz. Thus, the

approximations derived via the relaxed variational proceduremust be studied a posteriori in order to

verify theirmathematical consistency andphysical relevance. This is also the case for approximations

derived via perturbation techniques, and many such approximations commonly used have not yet

been justified on a rigorousmathematical basis. In the several examples presented here, the Ansätze

involve free parameters that we have chosen constant for simplicity. One may also consider these

parameters as functions and find their values from the stationary point of the Lagrangian. Doing so

will lead tomore complicated equations, but this is not a major issue if these equations are intended

to be treated numerically.

In order to derive approximate models, variational formulations are an attractive alternative to

asymptotic expansions. However, both approaches can also be combined. Indeed, once the varia-

tional principlehasbeenapplied toanAnsatz, asymptotic expansions canbe further applied toobtain

simpler models. For instance, one could consider ‘unidirectionalized’ approximations [184, 185] to

derive variants of Korteweg and de Vries [140], Dysthe [98], Camassa and Holm [40], Degasperis and

Procesi [69], Kraenkel et al. [141], and other equations. This possibility will be investigated in future

works.
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Regarding the perspectives, interested readers could use this method to build new pertinent approx-

imations. The authors of the present survey are already fully engaged in the quest for newmodels. In

particular, a lot ofwork has still to bedone in the three-dimensional setting. Also, newphysical effects

may be added to the variational principle. The examples presented above stem from the free surface

gravity waves [41, 232, 242]. However, the (discretely or continuously) stratified flows can also be con-

sidered (such as internal waves [104, 116]). Adding the surface tension [54, 72, 189], flexural-gravity

[66] and electro-magneto fluid effects [123, 124] are very promising research directions which have

been treated mostly with non-variational approaches so far. It is only for the sake of simplicity that

we have considered only gravity waves propagating at the surface of a single layer of a homogeneous

fluid. It is trivial to introduce a relaxed variational formulation including, e.g., surface tension, stratifi-

cations in several homogeneous layers andobstacles. Suchgeneral variational formulations, together

with relevant Ansätze and well-chosen constraints, will easily lead to interesting models. For perfect

fluids, variational formulations canalso beobtained for rotationalmotions [60, 99, 152, 155, 176, 197].

A relaxedversionof suchvariational principleswill facilitate thederivationof approximatemodels.We

invite everybody to join this scientific direction.
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A P P E N D I X A

Exact Stokes wave

In deep water, a seventh-order Stokes expansion (for the exact equations) is

» ” = ¸ cos ‰ + 1
2¸

2
`
1 + 17

12¸
2 + 233

64 ¸
4
´
cos 2‰

+ 3
8
¸3
`
1 + 51

16
¸2 + 3463

320
¸4
´
cos 3‰ + 1

3
¸4
`
1 + 307

60
¸2
´
cos 4‰ A.1

+ 125
384
¸5
`
1 + 10697

1500
¸2
´
cos 5‰ + 27

80
¸6 cos 6‰ + 16807

46080
¸7 cos 7‰ + O(¸8);

g− 1
2»

3
2 ffĩ = ¸

`
1− 1

4¸
2 − 43

96¸
4 − 2261

1536¸
6
´
sin ‰ + 1

2¸
2
`
1 + 7

12¸
2 + 81

64¸
4
´
sin 2‰

+ 3
8¸

3
`
1 + 281

144¸
2 + 5813

1080¸
4
´
sin 3‰ + 1

3¸
4
`
1 + 431

120¸
2
´
sin 4‰ A.2

+ 125
384¸

5
`
1 + 3369

625 ¸
2
´
sin 5‰ + 27

80¸
6 sin 6‰ + 16807

46080¸
7 sin 7‰ + O(¸8);

g− 1
2»

1
2 c = 1 + 1

2
¸2 + 1

2
¸4 + 707

384
¸6 +O(¸8); A.3

where „ = »(x−ct). Note that, to the leading order, the nth Fourier coefficient is 21−nnn−2¸n=(n−1)!

(this is also true for all n > 7). In the bulk of the fluid, the velocity potential is

g− 1
2»

3
2 ffi = ¸

`
1− 1

8¸
2 − 7

12¸
4 − 14761

9216 ¸
6
´
e»y sin „ + 1

2¸
4
`
1 + 11

6 ¸
2
´
e2»y sin 2„

+ 1
12¸

5
`
1 + 191

24 ¸
2
´
e3»y sin 3„ + 1

72¸
6 e4»y sin 4„

+ 1
480
¸7 e5»y sin 5„ +O(¸8);

meaning that harmonics appear in the fourth order only, thus justifying the Ansatz 5.15. Note that, to

the leading order, the nth Fourier coefficient is¸n+2=n!(n − 1) for all n > 1.
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A P P E N D I X B

Cubic Zakharov’s equations

Satisfying exactly the Laplace equation and the bottom impermeability, the gravity waves variational

formulation [155] yields the Hamiltonian [243]:

H =
1

2

Z n
g ”2 + ffĩ V

o
d2x ; V = [ffiy −∇” · ∇ffi ]y=” : B.1

Introducing a Dirichlet–Neumann operator G, such that V = G(”)ffĩ (Craig and Sulem (1993), [64]),

expanding G around ” = 0 and neglecting the terms beyond the quartic nonlinearities, the Hamilto-

nian B.1 becomes

H =
1

2

Z n
g”2 + ffĩ

h
dffĩ− d(”dffĩ)−∇ · (”∇ffĩ)

+ 1
2d(”

2∇2ffĩ) + d(” d(” dffĩ)) + 1
2∇2(”2 dffĩ)

io
d2x ; B.2

with the pseudo-differential operator26 d = (−∇2)
1
2 tanh[(−∇2)

1
2 d ]. Thus, the cubic Zakharov

equations (CZE) are

”t − dffĩ = −∇ · (”∇ffĩ)− d(”dffĩ) + 1
2∇2(”2dffĩ) + d(”d(”dffĩ)) + 1

2d(”
2∇2ffĩ); B.3

ffĩt + g” = 1
2 (dffĩ)

2 − 1
2 (∇ffĩ)2 − (”dffĩ)∇2ffĩ− (dffĩ)d(”dffĩ): B.4

For progressive (2ı=»)-periodic solutions in infinite depth, a seventh-order Stokes expansion is

» ” = ¸ cos „ + 1
2
¸2
`
1 + 3

2
¸2 + 445

96
¸4
´
cos 2„

+ 3
8¸

3
`
1 + 41

12¸
2 + 5213

384 ¸
4
´
cos 3„ + 7

24¸
4
`
1 + 263

42 ¸
2
´
cos 4„

+ 67
384¸

5
`
1 + 2569

201 ¸
2
´
cos 5„ 9

320¸
6 cos 6„ 16751

46080¸
7 cos 7„ +O(¸8);

g− 1
2»

3
2 ffĩ = ¸

`
1− 1

4¸
2 − 31

64¸
4 − 465

256¸
6
´
sin „ + 1

2¸
2
`
1 + 3

4¸
2 + 123

64 ¸
4
´
sin 2„

+ 3
8
¸3
`
1 + 89

36
¸2 + 27271

3456
¸4
´
sin 3„ + 7

24
¸4
`
1 + 1795

336
¸2
´
sin 4„

+ 67
384¸

5
`
1 + 24769

2010 ¸
2
´
sin 5„ 9

320¸
6 sin 6„ 16751

46080¸
7 sin 7„ +O(¸8);

g− 1
2»

1
2 c = 1 + 1

2¸
2 + 41

64¸
4 + 913

384¸
6 +O(¸8);

26For one horizontal dimension in infinite depth df = −H (fx ), H being the Hilbert transform.
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where the incorrect (compared to the exact expansion) coefficients and signs are displayed in bold-

face. Thus, the CZE matches the exact Stokes wave up to the third-order only. Truncating the Hamil-

tonian at the order N + 1 in nonlinearities, the corresponding Stokes double series is correct up to

the order N in the expansion parameter. None of these approximations has the exact asymptotic

behaviour 5.21 for their Fourier coefficients.
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A P P E N D I X C

Theworkflow pattern

The section 4.5.2 would not be complete if we did not explain howwe arrived at themulti-symplectic

structure4.48 of theSGNequations. It is not so trivial to seehow this structureappears fromequations

4.37, 4.38.However,whenwederive theSGNsystem fromthe relaxedvariationalprinciple [52], amore

suitable form of the equations appears. Namely, the relaxed Lagrangian [52] under the shallowwater

Ansatz reads (see also [87])

L = (ht + —̄ hx) ffī− 1
2 g h

2 + h
ˆ
—̄ū − 1

2 ū
2 + 1

3 �̃ ṽ − 1
6 ṽ

2 + ffī —̄x

˜
;

where —̄, �̃ are the Lagrange multipliers. An additional constraint of the free surface impermeability

is imposed:

�̃ = ht + —̄ hx :

The corresponding Euler–Lagrange equations are

‹ ū : 0 = —̄ − ū; C.1

‹ ṽ : 0 = ht + —̄hx − ṽ ; C.2

‹ —̄ : 0 = ū + 1
3 ṽ hx − ffīx ; C.3

‹ ffī : 0 = ht + [ h —̄ ]x ; C.4

‹ h : 0 = —̄ū − 1
2
ū2 − 1

6
ṽ2 − —̄ffīx − ffīt − g h − 1

3
h [ ṽt + —̄ṽx + ṽ —̄x ] : C.5

After eliminating —̄ from equations C.2–C.5 thanks to C.1 and introducing the extra variables

p = hv , q = hu, r = huv , and s = hx , one almost obtains the required system 4.52–4.59 for the

multi-symplectic formulation.
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A P P E N D I X D

Classical variational structures in deepwater

In this Appendix, we briefly describe themain variational structures of the deep water wave problem

in the chronological order of their appearance. Of course, this list is not exhaustive. The water wave

problem is known since Petrov [190] and Zakharov [243] to have the Hamiltonian structure. Below,

we present the classical Lagrangian and Hamiltonian formulations together since they are naturally

related by Legendre transformation.

Let us compute the kinetic K and potential P energies of a deep fluid moving under the force of

gravity g :

K
def
=

1

2

Z
R2

Z ”

−∞
|u| 2 dy dx ; P =

1

2
g

Z
R2

”2 dx :

According to Hamilton’s principle [15], the fluid motion has to provide a stationary value to the

following action functional

S =

Z t1

t0

jL dt; D.1

whereL is the Lagrangian density classically defined as

L def
= K − P:

Below in section D.1, we shall give another Lagrangian density. We have to keep inmind that the flow

is incompressible, i.e.

∇ · u = 0;

and on the free surface, we also have the kinematic boundary condition that we shall write as

”t =
p
1 + |∇”|2 · un;

where un
def
= u ·n is the normal velocity at the free surface and n is the the outer unitary normal vector

n =
1p

1 + |∇”|2

 
−∇”
1

!
:
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We have to incorporate these conditions into Hamilton principle using two Lagrange multipliers

ffi = ffi(x ; y ; t) and ffĩ = ffĩ(x ; t):

L = K − P +

Z
R2

Z ”

−∞
ffi∇ · u dy dx +

Z
R2

ˆ
”t −

p
1 + |∇”|2 · un

˜
ffĩ dx :

By taking the variation of this functional with respect to u and requiring that it vanishes in the fluid

bulk, we obtain

‹u : u −∇ffi = 0: D.2

Consequently, the flow is necessarily irrotational. It is a direct consequence of assumptions made

above, and the Lagrange multiplier ffi is a velocity potential. From Kelvin’s circulation theorem, we

know that the flow that is initially irrotational will remain irrotational forever [16]. The variational

description of flows with vorticity is out of the scope of the present study.

Taking into account D.2, from now on, we can substitute u = ∇ffi into the Lagrangian density L.
By applying the Gauß–Ostrogradsky theorem to the Lagrangian density we obtain

L =

Z
R2

h
ffĩ ”t + un

p
1 + |∇”|2 · `ffĩ − ffi

˛̨
y=”

´ i
dx −K − P:

By taking the variation with respect to the normal velocity un we obtain

‹un : ffĩ− ffi
˛̨
y=”

= 0:

Thus, the other Lagrange multiplier ffĩ is simply the trace of the velocity potential at the free

surface, i.e.

ffĩ(x ; t) ≡ ffi
`
x ; y = ”(x ; t); t

´
:

Finally, the Lagrangian density L becomes

L =

Z
R2

ffĩ ”t dx −H

whereH def
= K + P is the total fluid energy being also the Hamiltonian of the water wave problem:

H =
1

2

Z
R2

Z ”

−∞
|∇ffi| 2 dx +

1

2
g

Z
R2

”2 dx :
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The last Hamiltonian functional was independently rediscovered by Broer [39], then by Miles [166]

and probably several other researchers.

The evolution equations for canonical variables are

”t =
‹H
‹ ffĩ

; ffĩt = −‹H
‹ ”

:

By ‹H, we denote the variational (Gâteaux’s) derivative. In order to compute the HamiltonianH one

has to solve the Laplace equation

∇2ffi = 0;

with corresponding boundary conditions:

ffi
˛̨
y=”

= ffĩ; |∇ffi| → 0; as y → −∞:

In general, it is not possible to solve this problem analytically. Consequently, in deep water, one uses

in practice asymptotic expansions with respect to the small parameter " s ‖∇”‖.

D.1 Luke’s Lagrangian formulation

In 1967, Luke proposed to use the following functional [155] (in finite depth case):

L =

Z ”

−d

ˆ
ffi t + 1

2 |∇ffi|2 + 1
2 ffi

2
y + g y

˜
dy;

where d is the constant water depth. The action integral is defined in D.1 as above. Without free sur-

face effects, this functional was proposed in 1929 by Bateman [17]. One can easily recognize that

the expression under the integral sign is the well-known Cauchy–Lagrange integral. In his seminal

paper [155], Luke justified the advantages of this functional over the classical LagrangianL = K − P

described above.

In order to apply the deep water approximation, we have to take the limit d → ∞. The term gy is not

integrable, so before taking this limit, we integrate it over the depth and remove the constant term

−g d
2

2
which disappears under the Gâteaux derivative operation. As a result, we obtain the following

Lagrangian density:

L =

Z ”

−∞

ˆ
ffit +

1
2
|∇ffi|2 + 1

2
ffi 2
y

˜
dy dx +

1

2
g ”2: D.3

IAHR.org #WaterMonographs 121



January 24, 2024 22:33: RPS: IAHR Monograph Series

Classical variational structures in deep water IAHR Water Monographs

In order to recover thewaterwaveproblemequations 2.5–2.8 in deepwater, wewrite down the Euler–

Lagrange equations corresponding to the functional D.3:

‹ffi : ∇2ffi+ ffiyy = 0;

‹ffi
˛̨
y=”

: ”t +∇ffi · ∇” − ffiy = 0;

‹” : ffit +
1
2 |∇ffi|2 + 1

2 ffi
2
y + g ” = 0:

Luke’s variational principle has at least one important advantage over the Hamiltonian principle: the

flow incompressibility 2.5 is incorporated into the variational principle, and it does not have to be

additionally assumed as a constraint. It appears as one of Euler–Lagrange equations.

D.2 Relaxed Lagrangian formulation in deepwater

In this Appendix, we shall redevelop the so-called ‘relaxed variational principle’ in the deep water

approximation. Earlier in the literature, this method was also introduced under the name of a “moti-

vated Legendre transform” (see e.g. [122] for more details).

Wewould like to introducemore variables into the Luke LagrangianD.3,which has the velocity poten-

tial ffi(x ; y ; t) and free surface elevation ”(x ; t) in its original form. Let us also introduce explicitly the

components of the velocity field u = ∇ffi and v = ffiy by using two Lagrange multipliers— and �:

L = −ffĩ ”t + 1

2
g ”2 +

Z ”

−∞

ˆ
1
2 (u

2 + v2) + — · (∇ffi− u) + � (ffiy − v)
˜
dy;

where we also took the term ffit out of the integral sign for the sake of convenience. By applying the

Gauß–Ostrogradsky theorem we can rewrite the LagrangianL in the following equivalent form:

L = −`”t + —̃ · ∇” − �̃
´
ffĩ+

1

2
g ”2

+

Z ”

−∞

h
1
2 (u

2 + v2)−— · u − � · v − (∇ ·—+ �y)ffi
i
dy:

The tildes denote the quantities evaluated at the free surface, i.e. �̃(x ; t)
def
= �

`
x ; y = ”(x ; t); t

´
. The

last functionalL is the so-called relaxed variational principle. Let us count the degrees of freedom:

(1) ”(x ; t) is the free surface elevation

(2) ffi(x ; y ; t) is the velocity potential

(3) u(x ; y ; t) is the horizontal velocities vector
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(4) v(x ; y ; t) is the vertical velocity

(5) —(x ; y ; t) is the Lagrangemultiplier associated to the horizontal velocities

(6) �(x ; y ; t) is the Lagrange multiplier associated to the vertical velocity

So, instead of having two degrees of freedom in the original Luke Lagrangian, the relaxed Lagrangian

has six. This extra freedomcanbeused to derive various approximations,whichwas illustrated in [52].

D.2.1 Lagrangemultipliers

For the practical purposes of wave modelling in deep waters, we may content with four degrees of

freedom by eliminating the Lagrange multipliers — and �. Indeed, let us compute the variations of

the relaxed Lagrangian with respect to u and v :

‹u : u −— = 0;

‹v : v − � = 0:

This computation also gives us the physical sense of Lagrange multipliers — they are pseudo-

velocities, which coincide with physical velocities u and v at least in the unconstrained case. Thus,

we can substitute— = u and � = v intoL to obtain

L = −`”t + ũ · ∇” − ṽ
´
ffĩ+

1

2
g ”2 −

Z ”

−∞

h
1
2
(u2 + v2)− (∇ · u + vy )ffi

i
dy: D.4

The last Lagrangian can also be used for modelling purposes in deep waters; see e.g. [86].

The variational structure in general (such as Hamiltonian or Lagrangian functionals) is important in

many respects. First of all, since the full water wave equations 2.5–2.8 enjoy this variational structure,

we should seek approximate models which enjoy the same structure and, thus, preserve some sub-

set of qualitative properties of the basemodel. For instance, the Hamiltonian formalism [245] allows

to simplify asymptotic developments in powers of the nonlinearity parameter "
def
= a=–, which is the

wave steepness in the deep water regime. Finally, the Hamiltonian formulation also allows us to put

theproblemof hydrodynamicwaves in a unified framework of nonlinearwaves in variousmedia [244,

245]. Thus, methods developed in other fields might be directly transposed to water waves.
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A P P E N D I X E

Nomenclature

R : The field of real numbers.

" : A dimensionless nonlinearity parameter.

× : The vector product of two vectors.

∇ : The gradient operator with respect to horizontal independent variables.

@ : A partial derivative operator.

D : The total (material) derivative operator.

t : Time evolution variable.

x = (x1; x2) : Vector of horizontal coordinates.

x : The short-hand notation for x1 in 2D.

y : Vertical coordinate.

y = 0 : Still water level.

”(x ; t) Free-surface elevation above the still water depth.

d(x ; t) : Bathymetry function.

h(x ; t) : Total water depth.

h0 : A positive constant having the meaning of the minimal water depth.

h : Average water depth.

˛ : A free real parameter.

– : Characteristic wave length.

u = (u1; u2) : Horizontal velocity of fluid particles.

ũ : Horizontal velocity at the free surface.

ǔ : Horizontal velocity at the bottom.

ū : Depth-averaged horizontal velocity in 2D.

ū : Depth-averaged horizontal velocity in 3D.

v : The vertical velocity of fluid particles.

ṽ : The vertical velocity of fluid particles at the free surface.

v̆ : The vertical velocity of fluid particles at the solid bottom.

‚ and ‚̃ : The vertical acceleration of fluid particles at the free surface.

p : Fluid pressure divided by the fluid constant density j.

B : Bernoulli constant.
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ffi : Velocity potential function.

ffĩ : Velocity potential trace at the free surface.

ffĭ : Velocity potential trace at the bottom.

— : The Lagrange multiplier corresponding to the horizontal velocity variable u.

—̃ : The Lagrange multiplier— evaluated at the free surface.

—̆ : The Lagrange multiplier— evaluated at the solid bottom.

—̄ The depth-averaged Lagrange multiplier—.

� : The Lagrange multiplier corresponding to the vertical velocity variable v .

�̃ : The Lagrange multiplier � evaluated at the free surface.

�̆ : The Lagrange multiplier � evaluated at the solid bottom.

a : (Solitary) Wave amplitude.

c : The travelling wave celerity.

j : Constant fluid density.

g : Constant gravity acceleration.

» : Characteristic wave number.

k : The wave number.

q̄ : The horizontal momentum.

q̃ : The horizontal momentum flux.

ff : The surface tension coefficient.

K : The kinetic energy.

P : The potential energy.

L : The Lagrangian density.

L : The action integral.

O : Landau symbol.

P : The reconstructed pressure distribution.

F : The reconstructed force.

M : The reconstructed tilting moment.

m : A parameter in the cnoidal wave solution.

H : The total cnoidal wave height.

{ : The cnoidal wave number.

J : A symplectic operator.

H : A Hamiltonian functional.

Q : A conserved quantity.

E : The total (conserved) energy.

I : The conserved momentum.
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F , G : The conservation laws fluxes.

M andK : Skew-symmetric matrices in the multi-symplectic formulation.

z : A vector of state variables in the multi-symplectic formulation.

S : The Hamiltonian function in the multi-symplectic formulation.

c1; 2; 3; 4 : Some real constants.

{ e i }ni=1 : The standard basis vectors inRn.

V : The vector of conservative variables.

F : The flux in the conservation laws.

S : The source term in a system of balance laws.

A : The Jacobianmatrix of the advective flux F (V ).

– : Eigenvalue of the Jacobian matrixA.

c s : The speed of infinitely long gravity waves.

R : The matrix of right eigenvectors.

L : The matrix of left eigenvectors.

Δx : The length of a discrete cell (control volume) in the finite volumemethod.

V̄ : The cell-averaged vector of conservative variables.

F : The numerical flux function.

U : The signmatrix.

Q : A quadratic interpolating polynomial.

L : A linear interpolant.

k 1;2; 3; 4 : Intermediate stages in the time-stepper.

Δt : The local time step.

N andN : A nonlinear operator.

„ : A free relaxation paremter in [ 0; 1 ].

i : The imaginary unit, i.e. i2 = −1.
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This IAHR Water Monograph takes the subject of variational principles for water waves to a new level. Lagrangians

such as Luke’s are improved via relaxation where a sequence of constraints are added, enforced by Lagrange

multipliers, that may be exact or approximate and, in the latter case, a range of new and surprising model equations

for water waves emerge, without the need to introduce a small parameter. It is a highly effective strategy and

produces Lagrangian, Hamiltonian and multisymplectic structures with equal ease.
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