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Predicting the ambient environmental conditions in the coming several years to one
decade is of key relevance for elucidating how deep-sea habitats, like for example
sponge habitats, in the North Atlantic will evolve under near-future climate change.
However, it is still not well known to what extent the deep-sea environmental
properties can be predicted in advance. A regional downscaling prediction system
is developed to assess the potential predictability of the North Atlantic deep-sea
environmental factors. The large-scale climate variability predicted with the coupled
Max Planck Institute Earth System Model with low-resolution configuration (MPI-ESM-
LR) is dynamically downscaled to the North Atlantic by providing surface and lateral
boundary conditions to the regional coupled physical-ecosystem model HYCOM-
ECOSMO. Model results of two physical fields (temperature and salinity) and two
biogeochemical fields (concentrations of silicate and oxygen) over 21 sponge habitats
are taken as an example to assess the ability of the downscaling system to predict the
interannual to decadal variations of the environmental properties based on ensembles of
retrospective predictions over the period from 1985 to 2014. The ensemble simulations
reveal skillful predictions of the environmental conditions several years in advance with
distinct regional differences. In areas closely tied to large-scale climate variability and
ice dynamics, both the physical and biogeochemical fields can be skillfully predicted
more than 4 years ahead, while in areas under strong influence of upper oceans or
open boundaries, the predictive skill for both fields is limited to a maximum of 2 years.
The simulations suggest higher predictability for the biogeochemical fields than for the
physical fields, which can be partly attributed to the longer persistence of the former
fields. Predictability is improved by initialization in areas away from the influence of
Mediterranean outflow and areas with weak coupling between the upper and deep
oceans. Our study highlights the ability of the downscaling regional system to predict
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the environmental variations at deep-sea benthic habitats on time scales of management
relevance. The downscaling system therefore will be an important part of an integrated
approach towards the preservation and sustainable exploitation of the North Atlantic
benthic habitats.

Keywords: sponge habitat, deep-sea, predictability, regional downscaling prediction, interannual to decadal
variability, environmental conditions

INTRODUCTION

The deep sea, which encompasses depths below around 200 m,
was initially considered to be a “marine desert” with low density
and biomass of benthic species (Sanders and Hessler, 1969).
Today we know that it can host a variety of unique ecosystems like
for example cold-water coral (CWC) reefs and sponge grounds
(Roberts et al., 2006; Hogg et al., 2010; Cathalot et al., 2015).
In the deep North Atlantic Ocean, numerous benthic habitats
widely spread across a broad spectrum of geomorphological
features such as shelves, slopes, seamounts, mid-ocean ridges,
canyons and fjords (Cárdenas and Rapp, 2015; Roberts et al.,
2018; Kazanidis et al., 2019a,b,c; Meyer et al., 2020a,b), which are
associated with a wide range of depths through the mesopelagic
and bathyal zones and even at abyssal and hadal depths
(Vacelet and Custódio, 2007; Hestetun et al., 2019). These deep-
sea habitats have gained increasing attention in recent years
from both ecological and conservation perspectives, as they
are found to be vital for the well-being of the entire ocean
and biosphere (e.g., Sweetman et al., 2017; Levin et al., 2019).
Sponge habitats and CWCs, for example, provide ecosystem
goods and services like the provision of habitats and food sources
for associated benthic and pelagic species (Bett and Rice, 1992;
Maldonado et al., 2017; Hawkes et al., 2019) and thereby sustain
hotspots of biodiversity in the deep sea (Klitgaard and Tendal,
2004; Buhl-Mortensen et al., 2010; Beazley et al., 2013, 2015;
Maldonado et al., 2017; Meyer et al., 2019). Further they are of
fundamental importance for the benthic–pelagic coupling and
marine biogeochemical cycling (Pile and Young, 2006; Oevelen
et al., 2009; Smith et al., 2009; Maldonado et al., 2019).

The deep-sea environmental conditions, including but not
limited to the physical (e.g., temperature, salinity, current
velocity, and bottom shear) and biogeochemical properties (e.g.,
nutrients and oxygen concentrations), are crucial constrains
of the biodiversity, distribution, and connectivity patterns of
the deep-sea habitats (e.g., Levin, 2003; Woulds et al., 2007;
Yasuhara and Danovaro, 2016; Puerta et al., 2020). For instance,
temperature influences metabolic rates and enzyme activities in
organisms, resulting in different temperature envelopes for their
species thriving (Hochachka and Somero, 1968; Yasuhara and
Danovaro, 2016). Salinity, together with temperature, defines the
water density — a key parameter with which the occurrence of
some important habitats, for example CWCs in the northeastern
Atlantic, is found to be correlated (Dullo et al., 2008). In addition,
temperature and salinity are often used as proxies of water
masses that are associated with circulation patterns, which is a
key physical process in influencing the distribution and density
of the benthic habitats through transporting food or larvae

(Puerta et al., 2020; Roberts et al., 2021). Inorganic nutrients
are crucial components for the construction of organisms,
with silicate as an example being an essential element for
building the skeleton of most deep-sea sponges (Howell et al.,
2016; Maldonado et al., 2020, 2021). Oxygen is an important
electron acceptor for biogeochemical processes and therefore
fundamental for aerobic life. If oxygen decreases below a certain
threshold, organisms experience a variety of stressors, limiting
their distributions like for example in oxygen minimum zones
(Vaquer-Sunyer and Duarte, 2008; Keeling et al., 2010). Those
environmental conditions vary among different benthic habitats.
As a result, the deep-sea species have their own preferred
ranges of environmental properties, connected to their optimal
growth and feeding conditions and the spreading or retention
of larvae (e.g., Klitgaard and Tendal, 2004; Roberts et al.,
2021). For instance, the reef-forming CWCs Lophelia pertusa
(as well as the non-reef-forming CWC species Desmophyllum
dianthus which is significantly similar to Lophelia molecularly
and morphologically, Addamo et al., 2016) and Madrepora
oculata are mainly found at a temperature range of 4–12◦C
(Naumann et al., 2014), while octocorals survive at a narrower
and lower temperature range of 1.6–6.1◦C (Buhl-Mortensen
et al., 2015). The boreal sponge grounds with Geodia barretti,
Stryphnus ponderosus, and Stelletta normani are only rarely
occurring at temperatures lower than 3◦C, whereas cold-
water sponge grounds with Geodia parva, Geodia hentscheli,
Geodia phlegraei, Stelletta rhaphidiophora, and Schaudinnia rosea
can live in waters below zero degrees (Hogg et al., 2010;
Roberts et al., 2021).

Emerging evidences show that changes in environmental
conditions will affect habitat integrity and representativeness, and
thus will alter species distributions and interactions (Meyer et al.,
2015; Pecl et al., 2017; Puerta et al., 2020). For instance, Blacker
(1957, 1965) mapped changes in the distribution of sponges off
West Spitzbergen and he ascribed the changes to a stronger
inflow of Atlantic water, which was reflected in a change of
water mass properties. Erekovsky (1995) found a nearly seven-
fold decrease of sponges in the Barents Sea between 1920–1950
and 1960–1980 which was presumed to be related to a shift in
the polar front (Klitgaard and Tendal, 2004). Even though the
response of deep-sea habitats to environmental changes varies
among species and locations (e.g., Buhl-Mortensen et al., 2015;
Hanz et al., 2020, 2021; Puerta et al., 2020), it is suggested that
many of the habitats are often living in a fragile equilibrium.
They are likely not able to adapt to abrupt changes in the
environment because of their slow growth rates and long
life spans (Yasuhara et al., 2008, 2014; Roark et al., 2009;
Morrison et al., 2020).

Frontiers in Marine Science | www.frontiersin.org 2 October 2021 | Volume 8 | Article 703297

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-703297 October 25, 2021 Time: 16:23 # 3

Liu et al. Deep-Sea Sponge Environmental Prediction

Climate change and anthropogenic activities are bringing
significant changes in the environmental properties of the deep
ocean, which are likely to move beyond the limits of past natural
variability by the end of 21st century (Purkey and Johnson,
2010; Levin and Le Bris, 2015; Sweetman et al., 2017; Perez
et al., 2018). Such unprecedented environmental changes could
further provoke a cascade of deleterious ecological consequences
like sponge demise (Sweetman et al., 2017). In fact, footprints
of climate change on deep-sea environmental conditions have
already been reported in recent decades (Purkey and Johnson,
2010; Stramma et al., 2010; Morato et al., 2020), which in turn
have raised substantial pressures on the deep-sea habitats (e.g.,
Yasuhara et al., 2016; Strand et al., 2017). In 2006 and 2008, mass
mortalities events of the deep-water sponge Geodia barretti at the
Tisler Reef on the sill of the Kosterfjord along the Norwegian shelf
were observed to coincide with a series of uncharacteristically
large and rapid increases in bottom water temperature, which
exceeded the typical short-term physiological limits of the host
reef, principally Lophelia pertusa (Guihen et al., 2012). It was
inferred that the unexpected temperature increase was associated
with climate change and that future temperature shock events
at this site might have a swift and negative impact on the
local CWC reef ecosystems. Johnson et al. (2018) predicted that
in a 20–50 year timeframe most of the deep-sea Area-Based
Management Tools (ABMTs) in the North Atlantic would be
affected by climate change, implying that significant changes
of the deep-sea ecosystem might take place in the near future.
Because of the high vulnerability of these deep-sea habitats to
the effects of anthropogenic disturbance and climate change, the
benthic invertebrates, e.g., CWC reefs and sponge habitats, are
classified as ‘vulnerable marine ecosystems (VMEs)’ by the Food
and Agriculture Organization of the United Nations (FAO, 2009),
which are in need of enhanced conservation and protection on
account of their longevity and expected long recovery times after
disturbance (Levin et al., 2019).

In face of ongoing environmental changes, addressing
the increasing pressures placed on the deep-sea habitats is
an urgent task requiring thorough evaluation of cumulative
impacts (Johnson et al., 2018). To date, numbers of studies,
including modeling prediction endeavors, have been conducted
to investigate the possible impacts of future climate change on
deep-sea benthic ecosystems (Knudby et al., 2013; Sweetman
et al., 2017; Beazley et al., 2018, 2021; Bell et al., 2018; Johnson
et al., 2018; Morato et al., 2020; Pearman et al., 2020; Puerta
et al., 2020). However, most of the studies were based on
environmental conditions that were projected into the end
of the 21st century with a broad range of assumptions on
future greenhouse gas emissions, world population growth and
technology development (Riahi et al., 2011; Van Vuuren et al.,
2011). Those climate projections explain well the long-term
trends while there is low confidence in the interannual to decadal
variability at a given point in time (Befort et al., 2020; Lee
et al., 2021). Therefore, the estimated deep-sea ecosystem status
is scenario dependent and potentially presents a high degree
of uncertainty at short timescales (Payne et al., 2016; Beazley
et al., 2021). By far, few studies regarding the impacts of near-
term environmental changes (i.e., over the next years to one

decade in the future) on the benthic habitats have been reported,
mostly because that reliable predictions of the environment
variations in the near-term future are lacking (Johnson et al.,
2017). One exception is Johnson et al. (2018), who drew the
information of environmental changes over the next 30 years
from a compilation of climate projection (IPCC 5th Assessment
Report) covering the North Atlantic and other published works
with varying sub-regional focuses (Johnson et al., 2017). In spite
of the compilation work, they pointed out that more precise and
detailed oceanographic data are needed.

In view of a practical protection and sustainable management
of the deep-sea habitats, effective and reliable predictions of
the natural and anthropogenic-derived variations of the deep-
sea environmental factors in the coming years to one decade
is required to inform management decisions (Tommasi et al.,
2017). Decadal oceanic predictions, encompassing predictions
on annual, multi-annual to decadal timescales, are proven to
be a suitable approach for this goal (Borchert et al., 2019).
A major advantage of decadal predictions compared to centennial
climate projections is that the former can integrate the known
knowledge from the past into the future—the predictability can
be assessed by performing retrospective forecasts of the historical
period and comparing them against subsequent observations
(Smith et al., 2019). The system is credible for forecasting the
future once it shows skillful predictions in the past (Brune et al.,
2018; Borchert et al., 2019; Smith et al., 2019). However, to our
knowledge, it is still poorly known how many years in advance the
environmental conditions at the North Atlantic deep-sea habitats
can be predicted, owing to the fact that there is no operational
decadal predictions dedicated to the deep sea. To close this
knowledge gap, we make a first trial to assess the predictability
of the deep-sea environmental factors with a novel downscaling
regional decadal prediction system with the main focus on the
deep North Atlantic Ocean.

We choose the coupled regional physical-ecosystem model
(HYCOM-ECOSMO) for the regional downscaling, with
particular considerations of the deep-sea dynamics. For instance,
in the physical model, HYCOM (Bleck, 2002), isopycnal levels
facilitate good conservation of water-mass and tracer properties
in the deep ocean, representing an advantage for simulations
focusing on deep-sea habitats at depth (Winther and Evensen,
2006). The ecosystem model, ECOSMO (Daewel and Schrum,
2013), includes a single layer of sediments with parameterizations
for processes of settling, resuspension and burial (when sediment
can no longer be resuspended) happening at the bottom ocean
(Samuelsen et al. submitted to this issue, under review). The
model has been shown the capability of reproducing the observed
states of the environmental properties at the deep North Atlantic
Ocean over the historical period of 1948–2014 (Samuelsen et al.,
2019; Samuelsen et al. submitted to this issue, under review). We
therefore use the same model configuration with Samuelsen et al.
(2019) in our study to perform the decadal predictions.

Specifically, in this study we aim at (1) setting up a
downscaling prediction system with retrospective predictions of
the marine environmental factors over the period of 1985–2014;
(2) assessing the predictability of selected environmental factors
at the deep-sea habitats. For assessing the predictability, we
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choose sponge habitats as examples, which are key components
of benthic marine ecosystems in the deep North Atlantic from
intertidal to abyssal depths (e.g., Rice et al., 1990; Klitgaard
and Tendal, 2004; Beazley et al., 2013). In this study, 21
sponge habitats are selected, covering almost all of the biggest
known sponge habitats through the North Atlantic (Figure 1
and Tables 1, 2). In addition, we choose four parameters
(temperature, salinity, concentrations of silicate and oxygen) for
detailed analysis since they are the most important predictor
variables in species distribution models (e.g., Knudby et al., 2013;
Beazley et al., 2018; Morato et al., 2020; Rodríguez-Basalo et al.,
2021) and have shown to influence the benthic habitats at present
as mentioned earlier in this section. Therefore, they are used to
represent the physical and biogeochemical fields.

This paper is organized as follows. First, we introduce
the downscaling strategy and the methods used to assess
the predictability. Subsequently, the potential predictability
of the four environmental factors is evaluated over the 21
sponge habitats. Then the possible factors influencing the
predictability, the limitations and potentials of the prediction,
as well as the applicability of the prediction in the deep-sea
habitat management are discussed, which are followed by a
final conclusion.

MODEL AND METHODS

Model Description
The downscaling prediction is performed based on a regional
coupled physical-ecosystem model, covering part of the southern
Atlantic and the whole domain of the North Atlantic and the
Arctic Ocean (Figure 2). The regional model is forced at the
ocean surface and lateral boundaries by output from decadal
climate predictions, which are based on fully coupled global
earth system models (ESMs), so that large-scale variability of the
climate is dynamically downscaled to the regional model domain.

The regional model, HYCOM-ECOSMO, consists of the
physical ocean model Hybrid Coordinate Ocean Model
(HYCOM; Bleck, 2002), including a sea ice component, and
the ECOSystem Model (ECOSMO) which is a medium-
complexity biogeochemical model (Daewel and Schrum, 2013).
HYCOM uses a curvilinear grid with a horizontal resolution of
approximately 20–70 km. Similar with Sakov et al. (2012) and
Samuelsen et al. (2015), the model uses hybrid coordinates in
vertical, with z-levels in the upper ocean and mixed layer and
isopycnal levels in the deep ocean. Consequently, the vertical
layers will be re-distributed along with changes in the deep ocean
density fields. The upper five layers are fixed as z-coordinates,
ensuring that the vertical resolution of the upper ocean is
maintained, which is particularly important for resolving the
gradient of light in the upper ocean when computing primary
production. At the open boundaries, which are placed between
the equator and 30◦S in the south, at the Strait of Gibraltar in
the east and at the Bering Strait in the north, we mimic the
treatments used in Hansen and Samuelsen (2009) and Samuelsen
et al. (2015) to set a relaxation zone of 20 model grids, over which
the modeled physical fields (temperature, salinity and density)

and biogeochemical fields (alkalinity, DIC, nitrate, phosphate,
silicate and oxygen) are relaxed toward prescribed fields. The
relaxation is strongest at the outer grid cell and is linearly
decreased toward the interior of the model, with a relaxation
time-scale on the outer grid cell of 20 days.

ECOSMO resolves four nutrients (nitrate, phosphate, silicate,
and ammonium), two types of phytoplankton functional
groups (diatoms and flagellates) as well as two classes of
zooplankton functional groups (herbi- and omnivorous). In
addition, particulate and dissolved organic material, and oxygen
are included. In the model, constant element ratios consistent
with the classical Redfield stoichiometry is applied (Tett et al.,
1985). The three nutrients (nitrate, phosphate, and silicate)
are tracked in the bottom sediments using simplified 0d
bulk parametrizations for sedimentation, resuspension, and
remineralization in the sediment layer. ECOSMO is online
coupled with HYCOM, sharing the same model grids. A detailed
description of the model can be found in Samuelsen et al.
(submitted to this issue, under review).

The global decadal climate prediction used in this study is
based on the coupled Max Planck Institute Earth System Model
with low-resolution configuration (MPI-ESM-LR baseline-1,
Pohlmann et al., 2013). The ocean component of MPI-ESM-
LR uses bipolar configuration, with one pole over Greenland
and another over Antarctica, leading to the spatial resolution
ranging from 15 km around Greenland to 185 km in the tropical
area (Jungclaus et al., 2013). The capability of this ESM to
predict the variability in the upper ocean of the North Atlantic
several years in advance has been identified both for the physical
states (e.g., Müller et al., 2014; Polkova et al., 2019) and for the
biogeochemistry (e.g., Li et al., 2016).

Simulations
Three sets of simulations are involved in the downscaling
prediction system: the reconstruction simulation, the ensemble
of initialized simulations and the ensemble of uninitialized
simulations. A schematic diagram showing the regional
simulations as well as the relevant global simulations are
illustrated in Figure 3.

Based on the availability of the forcing data, the simulation
period differs among the three sets of regional simulations.
Results over a common period of 1985–2014 are used for analysis
of the predictability. The three sets of simulations are described
as follows:

(i) A 67-year (1948–2014) simulation (referred to
“reconstruction simulation” hereafter) is used to provide a
long, consistent time series of the environmental conditions
at deep-sea sponge habitats in the North Atlantic. In this
simulation, a global high-resolution atmospheric reanalysis
product based on the atmospheric model ECHAM6 (Schubert-
Frisius and Feser, 2015) is used to provide forcing to the
regional model at the ocean surface. The modeled temperature,
salinity and density at the open boundaries are relaxed toward
climatological monthly fields from the Generalized Digital
Environment Model (GDEM; Carnes, 2009), while the modeled
nutrients (nitrate, phosphate, and silicate) and oxygen are relaxed
toward World Ocean Atlas (WOA2013) monthly climatology
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FIGURE 1 | Map of the North Atlantic Ocean including part of the Arctic Ocean showing the locations of the 21 sponge habitats studied in this paper. The habitats
are ordered from 1 to 21, with the corresponding number marked on the map.

(Garcia et al., 2013a,b). The simulation has been well validated by
being compared with observations at the same location and on
the same date (Samuelsen et al., 2019), providing us confidence
that this simulation is able to reproduce the interannual to
decadal variations of the environmental properties in the
simulation period.

(ii) An ensemble of five initialized prediction simulations
(referred to “initialized simulations” hereafter), is started from
the reconstruction simulation on 1 January in each year over
the period 1978–2014. Each simulation has a length of 8 years.
Six-hourly atmospheric forcing is obtained from five out of ten
randomly selected members of the initialized simulations of MPI-
ESM-LR. In this implementation, the five regional simulations
have identical initial conditions. Perturbations, represented by
the differences of the atmospheric forcing among the five global
members, quickly transfer to the regional ocean through the
air-sea interactions. In order to include the effect of large-scale
variability, which may propagate through the open boundaries
into the regional model domain, the modeled temperature,
salinity and density at the relaxation zones are relaxed toward
the corresponding MPI-ESM-LR monthly fields of the initialized
simulations. To avoid possible climatic shock between the
reconstruction and the initialized simulations, we apply a bias-
correction method to include both the observed climatology and
the variability from the global prediction system mimicking the
methods described in Pozo Buil et al. (2021) as follows:

OBCi,t
= OBCt

clim + OBCi,t
anom.,

where OBC stands for the open boundary conditions toward
which the modeled fields are relaxed, OBCclim stands for the
GDEM climatologically monthly fields, OBCanom. is the monthly
anomaly of the MPI-ESM-LR initialized simulations, which is
obtained by subtracting the climatologically monthly mean of the
MPI-ESM-LR assimilation (Figure 3), i is the ensemble member
from 1 to 5 and t is the month from 1 to 12. Boundaries
of biogeochemical variables are relaxed toward the WOA2013
monthly climatology.

(iii) An ensemble of five uninitialized prediction simulations
(referred to “uninitialized simulations” hereafter) is performed
for the period 1952–2014, which is started from the
reconstruction simulation on 1 January 1952 and forced with
6-hourly atmospheric data from five out of ten randomly selected
members of the uninitialized simulations of MPI-ESM-LR. As
our analysis focuses on the period of 1985–2014, we assume
that the model has lost the memory of the initial conditions
after more than 30 years of integration. The treatment of the
open boundaries is the same as in the initialized simulations
but with the calculation of the monthly anomalies based on the
climatology of the MPI-ESM-LR uninitialized simulations.

The above three sets of regional simulations are used to
assess the skill of retrospective predictions of the four variables.
The results will provide confidence for a further attempt to
forecast the future evolution of environmental conditions in the
forthcoming years to one decade.

Study Sites
In this work, we focus on 21 sponge habitats in the North Atlantic
(Figure 1). Those habitats represent good geographical coverage
of the North Atlantic and a diversity of species (Table 1). The
locations of those habitats are obtained from the EU Project
“SponGES1”. They are first digitalized and then mapped on
our model grids. Detailed information about the individual
habitat, including the name, the dominant sponge species, the
depth ranges, the sponge density, the topographical feature and
the corresponding references is listed in Table 1. The main
water masses that each sponge habitat is associated with are
listed in Table 2.

Despite the fact that some areas are shallower than 200 m
and may not represent the deep sea, they are still considered
in the analysis because of their importance in hosting sponge
habitats that are of great interest to the sponge communities.
For instance, the Scotian Shelf off Nova Scotia (Habitat 2), with

1http://www.deepseasponges.org/?page_id=45
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TABLE 1 | The habitat number given in our study and the corresponding name, sponge grounds/main sponge species, depths of highest sponge occurrence, sponge
density, topographical feature, and related references.

Habitat
no.

Region name Sponge grounds/main
sponge species

Depth of highest sponge
occurrence (range of
depth in model) (m)

Sponge
density

Topographical
feature

References

1 New England Seamounts and
Corner Rise Seamounts

Rossellidae sponges
Euplectella sp.

1000–2500 (855–4853) No data Seamount Lapointe et al., 2020

2 Vazella Ground/Scotian Shelf Vazella pourtalesi ∼75–935 (26.3–1613) Up to
16 ind/m2

Continental shelf Beazley et al., 2013,
Hawkes et al., 2019

3 Flemish Cap and Great Banks Astrophorid grounds Geodia
spp. Asconema sp.

128–1700 (44–1400) 0.0017 kg/m2 Continental margin Murillo et al., 2012,
Knudby et al., 2013,
Pham et al., 2019

4 Labrador and Newfoundland
shelves

Boreal grounds 500–2000 (278–754) Up to 500 kg
“sponge catch”

Continental shelf Knudby et al., 2013,
Guijarro et al., 2016,
Culwick et al., 2020

5 Davis Strait Toqqusaq Bank Boreal grounds and cold-water
grounds

200–900 (99–467) Up to 6 ind/m2 Strait Buhl-Mortensen et al.,
2019, Roberts et al.,
2021

6 Denmark Strait Boreal grounds and cold-water
grounds Geodia spp.

200–1000 (186–1079) <2000 kg in a
trawl

Continental
margin/fjords/upper
slope/slope of the
banks

Klitgaard and Tendal,
2004, Roberts et al.,
2021

7 South of Iceland Reykjanes
Ridge

Boreal grounds Geodia spp.
Pheronema sp.

<1400 (143–1529) >20.000 kg in
a trawl

Ridge Copley et al., 1996,
Klitgaard and Tendal,
2004

8 Northern Iceland Kolbeinsey
Ridge/North of Iceland

cold-water grounds Geodia
spp. Chondrocladia gigantea,
Cladorhiza sp. Tetilla cranium
Schaudinnia sp.

<840 (106–1332) 20–24 ind/m2 Continental margin Witte and Graf, 1996,
Klitgaard and Tendal,
2004, Cárdenas et al.,
2013

9 East Greenland Shelf Arctic, cold-water grounds
tetractinellids G. hentscheli, G.
parva, S. rhaphidiophora and
Thenea valdiviae

<800 (180–254) Up to
200 ind/m2

Shelf Klitgaard and Tendal,
2004

10 Schulz Bank Schaudinnia sp. Stelleta sp.
Geodia spp.

500–800 (1017–2570) >10 ind/m2 Seamount
(Mid-Atlantic Ridge)

Meyer et al., 2019

11 Northern Norway to
Spitzbergen/Western Barents
Sea

Astrophorid grounds Geodia
sp.

150–350 (34–1022) 5–6 kg/m2 Continental shelf
sea

Klitgaard and Tendal,
2004

12 Norway Shelf Boreal grounds Geodia spp.
Caulophacus arcticus,
Stryphnus sp., Aplysilla sp.

100–400 (61–136) Up to 6 ind/m2

1.8–45 kg/m2
Continental
margin/fjords

Klitgaard and Tendal,
2004, Kutti et al., 2013,
Maldonado et al., 2017,
Buhl-Mortensen et al.,
2019

13 Northeast Iceland Shelf Boreal grounds Geodia spp. 200–500 (66–968) No data Shelf plateau close
to the shelf break

Roberts et al., 2021

14 Rockall Bank and Hatton Bank Nodastrella asconemaoida 524–857 (430–1262) 0.7–7 ind/m2 Plateau van Soest et al., 2007

15 Porcupine Seabight Goban
Spur Malin Slope

“Holtenia ground” Pheronema
carpenteri, Rosella nodastrella

650–3000 (143–952) 1.5–5 ind/m2 Continental
slope/canyon

Rice et al., 1990,
Hughes and Gage,
2004

16 La Danois Bank Asconema setubalense
Pheronema carpenter
Neoschrammeniella sp.

400–1200 (105–545) 0.2 ind/m2 Elongated
shelf-adjacent
seamount

Tabachnick and
Menshenina, 2007,
Ríos et al., 2020

17 Bay of Biscay Aviles canyon Lithistid grounds (multispecific)
Asconema sp. Pheronema sp.

140–2000 (10–4864) 0.09–
0.27 ind/m2

Continental
margin/canyon

Xavier and van Soest,
2007,
Rodríguez-Basalo
et al., 2021

18 African continental margin off
Morocco Gorringe Bank Gulf of
Cadiz

Pheronema sp. 740–1350 (20–2090) Up to 6 ind/m2

Up to
1.1 kg/m2

Continental slope Rice et al., 1990,
Barthel et al., 1996,
Xavier and van Soest,
2007, Maldonado et al.,
2017

(Continued)
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TABLE 1 | (Continued)

Habitat
no.

Region name Sponge grounds/main
sponge species

Depth of highest sponge
occurrence (range of
depth in model) (m)

Sponge
density

Topographical
feature

References

19 Canary Islands Tropic
Seamount

Asconema setubalense 800–3000 (48–4165) Up to 5 ind/m2 Seamount Ramiro-Sánchez et al.,
2019

20 Azores Condor Seamount
Saldanha Mound Chaucer
Seamount

Pheronema sp. Poliopogon
amadou

400–4022 (68–3163) No data Seamount Rice et al., 1990,
Tempera et al., 2012

21 Great Meteor Seamount Poliopogon amadou 2600–2700 (1002–2483) Up to 5 ind/m2 Seamount Xavier et al., 2015

In the fourth column, the values in brackets show the range of depth in the regional model HYCOM-ECOSMO.

a range of depth from 75 m to 935 m (Table 1), is home to a
globally unique arrogation of the glass sponge Vazella pourtalesii.
Management measures to protect sponge habitats (and CWCs as
well) have been implemented in this area such as bottom-fishery
closures implemented by Fisheries and Oceans Canada (Breeze
and Fenton, 2007; Beazley et al., 2021). Thus, assessments of
the predictability of the environmental variables are meaningful.
Sponge habitats in part of the Arctic Ocean are also considered.
Note that the model depths at each habitat are not always in
the same range with the observations (Table 1) because of the
inconsistent locations between observations and the model, as
well as that the model resolution is not sufficient to resolve the
fine structures of the topography.

Analysis Methods
Our analysis is based on the annual mean values at the bottom
layer of the water column over the sponge habitats. The bottom
layer is represented by the last isopycnal layer of the model.

For the initialized simulations, we first construct time series
from the 8-year long individual simulation as a function of lead
time. For instance, the time series of lead year 1 is obtained by
concatenating the first lead year of every 8-year long initialized
simulation and thus covers a period of 1978–2014. This method
applies to lead year 1 to 8, resulting in eight time series over
1978–2014, 1979–2015, . . ., 1985–2021, respectively. The time
series of the anomalies in the common period 1985–2014 are
used for the following statistical analysis. Anomalies of the three
types of simulations are calculated by subtracting their respective
climatological means. For the uninitialized simulations, the
climatology is calculated from their ensemble mean, while for the
initialized simulations with additionally respect to the lead time.
The time series are all linearly detrended with the long-term trend
being removed to emphasize the predictability in interannual to
decadal variability.

Owing to the lack of adequate observational data to represent
the interannual to decadal variability, the predictions are verified
against the reconstruction simulation to quantify the potential
predictive skills. In this way, we assume the modeled fields
in the reconstruction simulation are proxies of the historical
variability. Therefore, we present in this paper the potential
predictability, an upper limit of the predictability, which is
obtained by considering a perfect reconstruction of the reality
(Boer et al., 2013). The comparison between the initialized and

uninitialized simulations is used to assess the improvement of the
prediction due to initialization.

We quantify the predictive skill with the anomaly correlation
coefficient (ACC) and the normalized mean absolute error
(NMAE). The ACC has an emphasis on evaluating the phasing
of the predictions against the reconstruction and is calculated
between the ensemble means of the prediction simulations
(both for uninitialized and initialized simulations) and the
reconstruction (Brady et al., 2020):

ACC
(
x, y

)
=

∑N
i = 1 x

′

i · y
′

i√∑N
i = 1 (x′i)

2
·

√∑N
i = 1 (y′i)

2
,

where x
′

is the anomaly of the prediction ensemble mean, y
′

is
the anomaly of the reconstruction, and N is the number of years
(30 years from 1985 to 2014). The ACC is a function of lead time
in the initialized simulations. A nonparametric bootstrapping
approach with 500 bootstrap samples following Goddard et al.
(2013) is used to quantify the significance of the correlation skill
with the null hypothesis that the two time series are uncorrelated.

The NMAE is used to assess the divergence between mean
trajectories of the prediction simulations and reconstruction and
is a measure of the accuracy in predicting anomaly magnitudes
(Brady et al., 2020). It is the mean absolute error (MAE) of the
ensemble mean relative to the reconstruction, then normalized by
the interannual standard deviation of the reconstruction. MAE is
used here instead of bias metrics such as the root mean square
error (RMSE), as it is more accurate in assessing average model
bias (Willmott and Matsuura, 2005).

NMAE(x, y) =
1
N
∑N

i = 1 |x
′

i−y
′

i|

σy′
,

where σ
′

y is the standard deviation of the reconstruction over
the assessing period. NMAE increases as the prediction error
grows. When NMAE < 1, the prediction error falls within
the variability of the reconstruction and we determine that the
prediction is accurate.

Based on the ACC and NMAE, we further define potential
predictability horizon (referred to ‘predictability horizon’
hereafter) as the time at which skillful prediction is lost
(Séférian et al., 2014). In this study, it is identified as the
maximum lead year of the initialized simulations for which
the ACC is significantly positive at 95% and the NMAE is
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FIGURE 2 | Sketch of the downscaling prediction system. Decadal predictions with the coupled Max Planck Institute Earth System Model with low-resolution
configuration (MPI-ESM-LR) provide surface and lateral boundary conditions to the regional coupled physical-ecosystem model HYCOM-ECOSMO. Colors illustrate
the horizontal resolution of the ocean models. Grid lines over the global model show the grid of the atmospheric model. Note not all grid-lines are shown.

significantly smaller than 1. Note that when determining the
predictability horizon, we don’t stick to the comparison between
the initialized and uninitialized simulations. The comparison of
the two prediction simulations is used to assess the benefit of
initialization.

Finally, we classify the sponge habitats into five categories
based on the predictability horizon in the physical fields
(temperature and salinity) and biogeochemical fields
(concentrations silicate and oxygen). The five categories
are:

1) High predictability in both physical (Phy.) and
biogeochemical (BGC) fields (referred to “High
Phy.&BGC”) – the predictability horizon is longer
than (including) 4 years for at least one variable in each of
the two fields (physical and biogeochemical);

2) High predictability only in biogeochemical fields (referred
to “High BGC”) – the predictability horizon is longer
than (including) 4 years for at least one variable in the
biogeochemical fields but no such long predictability in the
physical fields;

3) High predictability only in physical fields (referred to
“High Phy.”) – the predictability horizon is longer than
(including) 4 years for at least one variable in the physical
fields but no such long predictability in the biogeochemical
fields;

4) Moderate predictability in physical and biogeochemical
fields (referred to “Moderate Phy.&BGC”) – predictability
horizon in both two fields is less than 4 years, there are at
least one variable in the two fields having predictability of
longer than 2 years.

5) Low predictability in both physical and biogeochemical
fields (referred to “Low Phy.&BGC”) – no variable has
predictability of longer than 2 years.

RESULTS

Potential Predictive Skill at the Lead
Time of 2 Years
The potential predictability (referred to ‘predictability’ hereafter
for simplicity) is first assessed with the predictive skill at a
lead time of 2 years (Figures 4–6). The initialized simulations
produce skillful predictions of bottom temperature, salinity,
concentrations of silicate and oxygen at a large portion of sponge
habitats, as illustrated by the maps of the ACCs (Figures 4A–
D). The ACCs of the four variables share similar spatial patterns,
with high (>0.8) ACCs in the subtropical area (Habitats 1,
19–21), the subpolar gyre (SPG, 60◦W–10◦W, 50◦N–65◦N)
area (Habitats 6–8, 13–14) and along the North American and
Greenland margin (Habitats 2–5). In those areas, the correlations
with the initialized simulations are significantly higher than
those with the uninitialized simulations, implying improved
predictability due to initialization (Figure 4 and Supplementary
Figure S1). In contrast, there are no significant correlation skills
at sponge habitats along the European margin (Habitats 12,
15–18), as well as the Habitat 10 in the Nordic Sea in the
initialized simulations, indicating no predictability at those areas.
In the uninitialized simulations, the correlations over most of
the sponge habitats are low and seldom significantly different
from zero (Figures 4E–H). Exceptions are found in the SPG
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FIGURE 3 | Schematic diagram describing how the three sets of simulations with the regional prediction system are built. Blue box: Ensembles of initialized and
uninitialized simulations from the global prediction system (MPI-ESM-LR) provide 6-hourly atmospheric forcing and monthly anomalous open boundary conditions
(OBC) to the corresponding ensembles of initialized and uninitialized simulations with the regional prediction system (HYCOM-ECOSMO). The anomaly fields of the
initialized simulations from MPI-ESM-LR are based on the assimilation run, while the anomaly fields of the uninitialized simulations from MPI-ESM-LR are based on
their own climatology. Orange box: Reconstruction with HYCOM-ECOSMO provides initial conditions for the initialized and uninitialized simulations within the same
regional prediction system.

area and the Newfoundland and Labrador margin (Habitats 3–
7, 14) for silicate and oxygen, as relatively high correlations
emerge even without initializations (Figures 4G,H). The high
correlations in the uninitialized simulations indicate that certain
predictability in those two variables rises from external forcing
or internal variations, and imply that the predictability in
those two variables will be maintained to longer periods than
temperature and salinity, which is corroborated later by the
potential predictability horizon.

The spatial distribution of the MAEs of the predictions
against the reconstruction indicated by the NMAEs coincides
with the ACCs, as high NMAEs are corresponding with low
ACCs (Figures 4, 5). At sponge habitats along the North
American margin and open waters of the Atlantic as well as
along the African margin (Habitats 1–10, 13–14, 19–21) in
the initialized simulations, the NMAEs are significantly smaller
than 1 (Figures 5A–D), indicating that the mean error of the
prediction primarily falls within the magnitude of the interannual
variability. At those habitats, the prediction errors are smaller in
the initialized simulations than in the uninitialized simulations,
providing additional evidence for the improved predictive skill
due to initialization (Figure 5 and Supplementary Figure S1). In
contrast, the NMAEs at the sponge habitats along the European
margin (Habitats 11–12, 15–18) are close to or even higher than 1
in both the initialized and uninitialized simulations, showing no
significant benefit from initialization.

The improved predictive skills of the interannual to decadal
variations due to initialization is directly reflected by the
detrended time series of the four variables (Figure 6). Here
we show the time series at Habitat 11 and 14 (see Figure 1),
dominated by interannual and decadal variability, respectively.
We use the time series with a lead time of 2 years with the

initialized simulations to analyze the source of the improved
predictive skill. At Habitat 11, the temperature and oxygen
are dominated by interannual variations (Figures 6A,D) as
illustrated by the reconstruction. Such variations are well
captured by the initialized simulations in terms of both the
phasing and amplitude. In contrast, the uninitialized simulations
fail to predict such variations but only show a smoother temporal
evolution. For silicate, the simulated increase in the uninitialized
simulations is delayed by about 10 years as compared with
the reconstruction (Figure 6C). The weak or even absence of
predictive skill in the uninitialized simulations indicates that
the uninitialized simulations mostly capture only the long-
term trend in response to the external forcing such as climate
evolution caused by rising carbon emissions, and that the
initialized simulations, in addition to tracking the long-term
trend, are capable of maintaining the interannual to decadal
variations for some years. The reconstructed variability of salinity
is rather weak, varying within a limited range of ∼0.03. Neither
the initialized nor the uninitialized simulations capture the
variability well (Figure 6B). At Habitat 14, the time series of the
variables demonstrate significant decadal variability (Figures 6E–
H). Predictions with the initialized simulations agree well
with those reconstructed decadal variations. The uninitialized
simulations show chronological increasing/decreasing trends
with maxima/minima at around the year 2000, leading to a biased
phasing of the variations in particular before 2000.

Potential Predictability Horizon
The predictability of the four variables degrades along with
lead times, as is evidenced by the comparison of time
series at lead times of 2 years (Figure 6) and of 4 years
(Figure 7). After 2 years, the initialized simulations, on the
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TABLE 2 | The habitat number given in our study, the corresponding name, the associated water masses and related references.

Habitat
no.

Region name Water masses References

1 New England Seamounts and
Corner Rise Seamounts

North Atlantic deep western boundary current water Pickart, 1992

2 Vazella Ground/Scotian Shelf Warm Slope Water originating from the Gulf Stream, North Atlantic Central Water, Labrador Sea
Water, Labrador Current Water, Mixed Water

Petrie and Drinkwater,
1993

3 Flemish Cap and Great Banks Gibbs Fracture Zone Water, Denmark Strait Overflow Water Roberts et al., 2021

4 Labrador and Newfoundland
shelves

Gibbs Fracture Zone Water, Denmark Strait Overflow Water Roberts et al., 2021

5 Davis Strait Toqqusaq Bank (West Greenland) Irminger Atlantic Water, Baffin Bay Deep Water, (Canadian) Arctic Water Roberts et al., 2021

6 Denmark Strait (Irminger Current) Irminger Atlantic Water, Re-circulating Atlantic Water, Polar Water, (Nordic
Seas) Arctic Water

Roberts et al., 2021

7 South of Iceland Reykjanes Ridge Subpolar Mode Water, Labrador Sea Water, Iceland-Scotland Overflow Water Roberts et al., 2021

8 Northern Iceland Kolbeinsey
Ridge/North of Iceland

Norwegian Sea Arctic Intermediate Water, Norwegian Sea Deep Water, Arctic Ocean Deep
Water

Roberts et al., 2021

9 East Greenland Shelf Polar Water, Re-circulating Atlantic Water, Upper Polar Deep Water, Arctic Ocean Deep Water Roberts et al., 2021

10 Schulz Bank Norwegian Sea Deep Water, Norwegian Sea Arctic Intermediate Water Roberts et al., 2021

11 Northern Norway to
Spitzbergen/Western Barents

Norwegian Sea Arctic Intermediate Water, Norwegian Sea Atlantic Water, Norwegian Sea Deep
Water

Roberts et al., 2021

12 Norway Shelf Atlantic Inflow Norwegian Trench Inflow Turrell, 1992

13 Northeast Iceland Shelf Arctic Intermediate Water, Norwegian Sea Deep Water Roberts et al., 2021

14 Rockall Bank and Hatton Bank Lower Deep Water (Antarctic Bottom Water), Northeast Atlantic Deep Water, Labrador Sea
Water, East North Atlantic Central Water

Roberts et al., 2021

15 Porcupine Seabight Goban Spur
Malin Slope

Northeast Atlantic Deep Water, East North Atlantic Central Water, Labrador Sea Water, Lower
Deep Water (Antarctic Bottom Water)

Roberts et al., 2021

16 La Danois Bank Mediterranean Water, Eastern North Atlantic Central Water, Labrador Sea Water Puerta et al., 2020,
Roberts et al., 2021

17 Bay of Biscay Aviles Canyon Mediterranean Water, Eastern North Atlantic Central Water, Labrador Sea Water Puerta et al., 2020,
Roberts et al., 2021

18 African continental margin off
Morocco Gorringe Bank Gulf of
Cadiz

Northeast Atlantic Deep Water, Mediterranean Water, East North Atlantic Central Water Roberts et al., 2021

19 Canary Islands Tropic Seamount North Atlantic Central Water, South Atlantic Central Water, Antarctic Intermediate Water, Upper
North Atlantic Deep Water, Mediterranean Water

Ramiro-Sánchez et al.,
2019

20 Azores Condor Seamount
Saldanha Mound Chaucer
Seamount

Northeast Atlantic Deep Water, Mediterranean Water, East North Atlantic Central Water Roberts et al., 2021

21 Great Meteor Seamount North Atlantic Deep Water, Mediterranean Water, Canary Current Water, Antarctic Bottom Water Brenke, 2002, Heinz
et al., 2004

one hand, lose their ability to capture the variations in the
reconstruction (e.g., temperature and oxygen at Habitat 11 at
lead year 4, Figures 7A,D) and, on the other hand, generate
artificial variations that do not exist in the reconstruction
(e.g., salinity at Habitat 14 at lead year 4, Figure 7F).
The predictability of the low-frequency (decadal to multi-
decadal) variations is retained longer than the high-frequency
(interannual to multi-year) variations. The degradation of the
predictability is also evidenced in the decreasing of the ACCs
and the increasing of the NMAEs along with the lead times
(Figures 8, 9).

The predictability horizon of the four variables from
the initialized simulations varies among sponge habitats and
variables (Figures 8, 9). In this study, the predictability horizon is
more constrained by the NMAEs. For instance, high ACCs with
95% significance last until the lead time of 4 years for salinity at
Habitats 14, but the predictability horizon is only 1 year because

of the rapid increase of NMAE (Figures 8, 9). We find robust
high/low predictability of the environmental properties at certain
sponge habitats, e.g., at Habitat 14, three out of the four variables
can be predicted up to 4 years in advance while at Habitat 17, the
predictive skills for all the four variables are lost within 2 years. In
addition, we find that in a large part of the sponge habitats (e.g.,
Habitats 1–3, 5–7, 11, 14–15, 19–21), the predictability last longer
in the biogeochemical fields than in the physical fields.

The map of the categories illustrates a distinct regional
difference in the predictability (Figure 10). High predictability,
defined as predictability horizon of more than 4 years, exists
in both physical and biogeochemical fields at two habitats
inside the North Atlantic SPG (Habitats 13, 14) and one on
the East Greenland Shelf (Habitat 9). High predictability of
the biogeochemical fields is also found at numbers of habitats
either spreading along the western margins (Habitats 3, 5–
7) or in the open ocean (Habitats 1, 20) with additional one
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FIGURE 4 | Anomaly correlation coefficients (ACCs) for temperature (A,E), salinity (B,F), silicate (C,G), and oxygen (D,H). Left column (A–D): correlations between
the initialized simulations at a lead time of 2 years and the reconstruction. Right column (E–H): correlations between the uninitialized simulations and the
reconstruction. Stippling denotes statistically significant correlations at the 95% level based on a bootstrap approach with 500 bootstrapped resamples.

along the African margin (Habitat 19). For those habitats, the
predictability of the physical fields is less than 4 years. In contrast,
at Habitat 8, north of the Iceland, the physical fields can be
predicted more than 4 years ahead while the biogeochemical

fields are less predictable. Some habitats (Habitats 2, 4, 11)
located in the marginal seas are characterized by moderate
predictability, as at least one field can be predicted more than
2 years in advance but none of the variables are skillfully
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FIGURE 5 | Normalized mean absolute errors (NMAEs) for temperature (A,E), salinity (B,F), silicate (C,G), and oxygen (D,H). Left column (A–D): NMAEs of initialized
simulations at a lead time of 2 years. Right column (E–H): NMAEs of uninitialized simulations. Stippling denotes NMAEs less than 1 at the 95% significance level
based on a bootstrap approach with 500 bootstrapped resamples.

predictable for more than 4 years. There are six habitats,
with five located in the European margin (Habitats 12, 15–
18) and one located in the open Nordic Sea (Habitat 10),

subject to low predictable environmental conditions, as both
the physical and biogeochemical fields lose their predictive skill
quickly within 2 years.
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FIGURE 6 | Time series of detrended anomalies of annual mean temperature (A,E), salinity (B,F), concentrations of silicate (C,G), and oxygen (D,H) at sponge
habitats 11 (A–D) and 14 (E–H). Bold black lines: reconstruction, bold red/blue lines: ensemble means of the initialized/uninitialized simulations at a lead time of
2 years, thin red/blue lines: individual members of the initialized/uninitialized simulations. The locations of the two habitats can be seen in Figure 1.

DISCUSSION

Mechanisms Underlying the Spatial
Patterns of the Predictability
The sponge habitats involved in this study are subject to a
diversity of geographical and geomorphological features and
depths (Table 1), which are associated with substantial spatial
variability in their hydrographic settings like water masses,
local circulation patterns, interactions with upper oceans.
Those differences suggest different underlying mechanisms
describing/limiting the predictability.

High predictability for both the physical and the
biogeochemical fields is found at sponge habitats in the
SPG area (Habitats 13 and 14). A close coherence between the
winter North Atlantic Oscillation (NAO) index and decadal
changes in the deep-water temperature and salinity in the SPG
area was identified during 1950–2000, which was attributed to

the NAO-induced regulation of the relative contribution of cold
fresh subpolar water and warm saline subtropical water to the
deep-water formation (Sarafanov, 2009). The dominating water
masses (e.g., Northeast Atlantic Deep Water) in these areas
(Table 2) are integral to the Atlantic meridional overturning
circulation (AMOC) (Rhein et al., 2011). This implies that the
high predictive skills of the deep-sea environmental properties
are largely prompted by NAO-AMOC related climate variability.
In addition, we notice that Habitat 9, which is shallow with a
mean depth of 200 m, free from the AMOC influence and covered
by sea ice most of the year (Rudels, 1995), is characterized by
high predictability for both the physical and biogeochemical
fields. This skillful predictability arises probably from sea ice
processes, as suggested by Jacox et al. (2020) that persistence of
sea ice can cascade into predictability of the marine ecosystems.

Low predictability is found in the Gulf of Cadiz (Habitat
18), a region under the influence of the Mediterranean outflow.
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FIGURE 7 | Time series of detrended anomalies of annual mean temperature (A,E), salinity (B,F), concentrations of silicate (C,G), and oxygen (D,H) at sponge
habitats 11 (A–D) and 14 (E–H). Bold black lines: reconstruction, bold red/blue lines: ensemble means of the initialized/uninitialized simulations at a lead time of
4 years, thin red/blue lines: individual members of the initialized/uninitialized simulations. The locations of the two habitats can be seen in Figure 1.

In the regional model, the simulated Mediterranean outflow
is constrained by the restoring fields provided by the global
predictions, as the eastern open boundary is placed near the
Strait of Gibraltar (Figure 2). However, the water masses of the
Mediterranean outflow are not well described by the global model
because of its low resolution in the Mediterranean Sea (Marsland
et al., 2003; Jungclaus et al., 2013; Malanotte-Rizzoli et al., 2014).
The bias carried by the global model further propagates into
the North Atlantic along the pathway of the Mediterranean
outflow from the Strait of Gibraltar (Habitat 18) into the Bay
of Biscay (Habitats 16, 17) and further reaches the southwest of
Porcupine bank (Habitat 15) through a combination of narrow
slope currents and mixing processes with the North Atlantic
Current (Iorga and Lozier, 1999a,b; Bower et al., 2002), which in
turn leads to low predictability of the environmental properties
in those areas (Habitats 15–17). An opposite case is the Habitat
19, which receives less influence from the Mediterranean outflow
(Iorga and Lozier, 1999a,b; Pastor et al., 2012). As a result,

both the physical and biogeochemical fields at this site show
high correlations between the initialized simulations with the
reconstruction, albeit that the predictability of temperature and
salinity is more constrained by high NMAEs.

In the lower layers of the ocean, a vigorous coupling
with the upper ocean will likely degrade the predictability
of the variations of the bottom environment, since the
unpredictable signal of the atmosphere will cascade into the
lower layers via the vertical exchange (e.g., Boer, 2004; Fransner
et al., 2020). Thus, the low predictability at Habitat 12, the
shallowest area among the 21 habitats, is attributed to the
mean depth of 93 m, which suggests a profound impact of
the atmospheric forcing through strong mixing between the
ocean surface and bottom (Mathis et al., 2015). Although this
habitat is influenced by the Atlantic inflow, which is found
significantly correlated with large-scale atmosphere circulation
NAO (Hjøllo et al., 2009), predictability is not sustained
long in this area.
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FIGURE 8 | Anomaly correlation coefficients (ACCs, in colors) as a function of lead time (x axis) and sponge habitat (y axis) for (A) Temperature, (B) Salinity, (C)
Silicate, and (D) Oxygen. White triangles indicate that the ACCs are significant and significantly exceed the ACCs with the uninitialized simulations; black dots denote
that the ACCs are significant but not significantly larger than the uninitialized simulations. Green lines indicate the predictability horizon, which is defined as the last
lead year when ACCs are significant and the NMAEs are significantly smaller than 1. Significance is tested based on a bootstrap approach with 500 bootstrapped
resamples.

FIGURE 9 | Normalized mean absolute errors (NMAEs) as a function of lead time (x axis) and sponge habitat (y axis) for (A) Temperature, (B) Salinity, (C) Silicate, and
(D) Oxygen. White triangles indicate that the NMAEs are significantly smaller than 1 and significantly smaller than the NMAEs with the uninitialized simulations; black
dots denote that the NMAEs are significantly smaller than 1but not significantly smaller than the uninitialized simulations. NMAE > 1 is considered as no predictability.
Green lines, identical with the green lines in Figure 8, indicate the predictability horizon, which is defined as the last lead year when ACCs are significant and the
NMAEs are significantly smaller than 1. Significance is tested based on a bootstrap approach with 500 bootstrapped resamples.

In Habitat 10 (near the Schulz Bank), the bottom ocean
is occupied by the Norwegian Sea Deep Water (Roberts
et al., 2021). This water mass, a mixture of relatively cold
and fresh Greenland Sea Deep Water with warmer, saltier
Eurasian Basin Deep Water from the Arctic Ocean, can
be traced only for a short distance (Swift and Koltermann,
1988). In addition, the mixture is highly variable, as the
formation of the Greenland Sea Deep Water is depending
on the convective processes that are highly associated with
fluctuating atmospheric conditions (Blindheim and Rey, 2004).
As a result, the water properties are less predictable and show
low predictability.

Over a large fraction of the habitats, the predictive skills for
the biogeochemical fields are higher than for the physical fields.
Similar findings in the upper ocean have been reported by several
studies (e.g., Séférian et al., 2014; Li et al., 2016). The reasons
for this finding are under investigation. Enhanced persistence
likely plays a role. In this study, the persistence of silicate,
estimated to 3 years, is longer than that of temperature and
salinity maintaining only to 1 year, suggesting a longer memory
of silicate variations than the physical fields in the deep ocean
(Supplementary Figure S2).

It is suggested that the deep ocean is expected to be more
predictable than the surface layer, supported by the explanation
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FIGURE 10 | Map of the sponge habitats showing the five categories of predictability. (1) High predictability in both physical (Phy.) and biogeochemical (BGC) fields
(referred to “High Phy.&BGC”) – the predictability horizon is longer than (including) 4 years for at least one variable in each of the two fields (physical and
biogeochemical). (2) High predictability only in biogeochemical fields (referred to “High BGC”) – the predictability horizon is longer than (including) 4 years for at least
one variable in the biogeochemical fields but no such long predictability in the physical fields. (3) High predictability only in physical fields (referred to “High Phy.”) –
the predictability horizon is longer than (including) 4 years for at least one variable in the physical fields but no such long predictability in the biogeochemical fields. (4)
Moderate predictability in physical and biogeochemical fields (referred to “Moderate Phy.&BGC”) – predictability horizon in both two fields is less than 4 years, there
are at least one variable in the two fields having predictability of longer than 2 years. (5) Low predictability in both physical and biogeochemical fields (referred to “Low
Phy.&BGC”) – no variable has predictability of longer than 2 years.

that the deep ocean is not directly coupled to the high-frequency
atmosphere, the variability of which is relatively unpredictable
(Frölicher et al., 2020). The increasing of the predictability
with depth is evidenced on global or basin scales within a
perfect modeling framework (Frölicher et al., 2020). However,
this does not guarantee high predictability of the deep sea
on smaller spatial scales such as at sponge habitats in this
study. The spatial patterns of the predictability (Figures 8–
10) reveal that different regional processes operating on a
range of spatio-temporal scales are playing important roles in
controlling/limiting the predictability. A good understanding
of the local processes such as circulation patterns, mass
transport and interactions with atmosphere/sediment helps to
explain the predictability and thus to provide insights into the
possible improvement of the current prediction systems. For
instance, it is widely realized that the global coupled models
don’t capture the spatial scales required to correctly represent
the Mediterranean ocean climate (Somot et al., 2008; Sasaki
et al., 2020), since this climate is strongly driven by regional-
scale topography and local winds, which are not resolved
until the spatial resolution reaches certain values (Li, 2006).
Therefore, an extension of the regional model domain to cover
the whole Mediterranean Sea with an increased horizontal
resolution is a promising way to better describe the water
properties of the Mediterranean outflow and thus will probably
improve the ability to predict the environmental factors at
Habitats 15–18.

Prediction Into the Future
In this study, our analysis is based on a retrospective prediction
(hindcast) in the past 30 years. We gain confidence from the
analysis that our regional prediction system can be used to

predict deep-sea environmental conditions in the near future,
which is important for evaluating whether the environmental
conditions are moving beyond the levels of ‘typical’ or natural
variability that the sponges may have adapted to tolerate
(Roberts et al., 2021). Currently the extension of the historical
prediction into the future is limited by the length of the
atmospheric forcing used to drive the reconstruction, which
ends in the early 2015. It is promising to apply the prediction
system into the future once the continued production of the
atmospheric forcing with the related model is ready (Frauke
Feser, personal communication).

Benchmark of Observation-Based
Assessment
In assessing predictive skills, we are challenged by the lack
of observations. The potential predictability, as deduced by
comparing the prediction simulations against the reconstruction,
is the upper limit of the predictability horizon with a given
prediction system (e.g., Séférian et al., 2014). Such predictability
horizons are hardly obtained in a real forecast, since it would
require a perfect initialization and nudging of all fields in
the model (Boer et al., 2013). Alternatively, the effective
predictability horizon, requiring observationally based products
to verify the prediction skill (Penny et al., 2019), provides
a more restrictive and unbiased estimate of the predictability
(Séférian et al., 2014).

However, the amount of observations in the deep sea,
especially in specific benthic habitat, is constrained due to the
high cost and limited technological capabilities (Levin et al.,
2019). While there are short-term monitoring time-series at
some habitats (e.g., Hanz et al., 2021), long-term monitoring
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time series are missing at most sponge habitats. The existing
collective database, such as World Ocean Database (WOD, Boyer
et al., 2018) and GLODAPv2 (Olsen et al., 2016) are possible
sources of long-term time series. However, caution should be
taken when interpreting those data since available observations
are usually not equally or even normally distributed in space
nor in time (Schrum et al., 2006). For instance, the variability
displayed by the time series of the bottom temperature at
Habitat 14 extracted from WOD, is mainly associated with the
depths and dates of the observations, as high temperatures
are coincided with shallow depths (Supplementary Figure S3).
The variability shown by this time series is therefore not
representative of the interannual variability, which can not
be simply compared with the modeled annual mean. In the
model validation section of Samuelsen et al. (2019), the station
observations were compared directly to the model result from
the same date and location to avoid the issue discussed above.
It is also demonstrated by IPCC 6th Assessment Report that
the estimated predictive skill can be degraded by errors in
observational dataset used for verification, suggesting that skill
may tend to be underestimated, particularly for variables whose
observational uncertainties are relatively large (Lee et al., 2021).
In this sense, we don’t show the comparison of the prediction
against observations.

Implications of the Prediction System in
Deep-Sea Benthic Habitats Preservation
and Management
The assessment in this study provides a synoptic view of the
spatial patterns of the predictability of deep-sea environmental
factors over the widespread sponge habitats in the North
Atlantic, providing the sponge community an indication to
what extent the prediction of the environmental conditions can
be used. For instance, reconstructed decadal variations of the
four variables at the Rockall Bank (Habitat 14) demonstrate a
tendency of the sponge habitat toward a status of being exposed
to multiple stressors (simultaneous warming and decreasing
silicate and oxygen concentrations) during 1995–2005. Although
no negative impact of such change on the sponge habitat
was documented in the past, we deduce that similar changes
might occur in the future and are likely to be intensified by
anthropogenic-induced climate change. Those changes in the
near future might lead to a possibility that the environmental
conditions move beyond the historical natural variability and
become severe threats to the sponges. The high predictability
of 4 years allows an effective prediction of such possible
changes. Once the phase of change is predicted as continuously
increasing/decreasing in temperature and salinity/silicate and
oxygen in the coming 4 years, alert can be provided to the
related management. This is of particular importance also for
other benthic habitats living there, for instance the CWC reefs,
the distribution of which are closely linked with environmental
variations such as large-scale circulation patterns that can be
traced by oceanographical variables (Schulz et al., 2020). In
recent years, marine heat waves have been reported more
frequently under climate change (Frölicher et al., 2018). The

marine heat waves might affect deep-sea ecosystems, particularly
for the CWCs and sponges inhabiting shallower waters in the
northern areas of the North Atlantic such as the Norwegian
area (Habitat 12) (Guihen et al., 2012). Despite the low
predictability of temperature (1 year) in that region (Figures 8–
10), it is still meaningful to predict the bottom temperature
1 year ahead to identify the possible occurrence of marine heat
waves and mass mortality events, thus allowing reactions to
mitigate damage.

Species distribution models, predicting the possible degree
of habitats loss or gain under future climate change, offer a
powerful tool in the deep sea for the effective management
and conservation (Pearman et al., 2020). Those predictive
models, based upon species-environment relationships, require
accurately predicted environmental factors as important
predictor variables (Guisan and Zimmermann, 2000). However,
many knowledge gaps remaining in the biological processes and
oceanographic dynamics hamper the models’ credibility (Puerta
et al., 2020). In particular, the use of present-day database (e.g.,
World Ocean Atlas) or the long-term climate projection to
provide oceanographic parameters to the species distribution
models are likely to raise additional sources of uncertainty
(Burgos et al., 2020). Several studies have emphasized the
importance of incorporating oceanographic data to improve
the predictive capability of benthic species distribution models
(e.g., Pearman et al., 2020). Environmental variables required
by the habitats prediction vary among species, locations and
models (e.g., Knudby et al., 2013; Beazley et al., 2018; Morato
et al., 2020; Pearman et al., 2020). In addition, it is suggested that
the deep-sea ecosystems are likely to be impacted by multiple
stressors (Büscher et al., 2017). Our downscaling prediction
system describes more environmental variables than we analyzed
here, e.g. currents, other nutrients (nitrate, phosphate), primary
production, pH, particulate organic carbon flux and so on.
Therefore, the system has potentials to offer predictions for more
variables and locations, and thus facilitate the prediction of a
wider range of deep-sea benthic species like CWC reefs which are
also prevailing in the North Atlantic for example on the Rockall
Bank (Habitat 14). In that sense, our prediction will finally help
to set up management strategies like how to improve the current
deep-sea management tools, e.g., ABMTs (Johnson et al., 2018)
and how to adapt the sustainable development to climate changes
(Armstrong et al., 2019).

CONCLUSION

We have made an attempt for the first time to assess the
potential predictability of the interannual to decadal variations
of the deep-sea environmental conditions in the North Atlantic
under the ongoing climate change. The assessments are
based on a novel operational downscaling regional decadal
prediction system dedicated to the deep-sea dynamics. Model
results of four environmental parameters (temperature, salinity,
concentrations of silicate and oxygen) over 21 sponge habitats
are used as an example to assess the predictability. Our results
demonstrate the potential of the regional model to predict the
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environmental conditions multiple years in advance in the deep
North Atlantic Ocean.

Based on our analysis, we draw the following conclusions:

1. Variations of both physical (temperature and salinity)
and biogeochemical (concentrations of silicate and
oxygen) conditions are potentially predictable several
years in advance.

2. The predictability of the four variables is subject to distinct
regional differences, with the potential predictability
horizon varying from less than 2 years for all variables at
sponge habitats along the European margin to more than
4 years in the SPG area and the Arctic Ocean.

3. In areas with high predictability, the variations of
the environmental conditions are associated with ocean
overturning structures (e.g., AMOC) that are regulated
by large-scale climate variability such as the NAO or
with the persistence of sea ice, while in areas with low
predictability, the deep-sea environmental variations are
under remarkable influence of the atmosphere or the local
circulations such as the Mediterranean outflow.

4. The biogeochemical fields are more predictable than the
physical fields at a large portion of the sponge habitats,
partly due to the longer persistence of biogeochemical
fields than the physical counterparts.

5. Predictability is significantly improved by initialization in
areas with weak air-sea coupling and areas free from the
influence of the Mediterranean outflow.

Overall, our analysis demonstrates the capacity of the
downscaling regional system for skillfully predicting the
variations of the environmental conditions at deep-sea sponge
habitats in the near future. The assessment of the predictability
can be applied to other ocean parameters (e.g., pH and other
nutrients) and at other benthic habitats (e.g., CWC reefs). The
downscaling prediction system can therefore help to improve
management in the deep-sea ecosystems on interannual to
decadal timescales.
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