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Abstract The long-chain diol index (LDI) is a new organic sea surface temperature (SST) proxy based on
the distribution of long-chain diols. It has been applied in several environments but not yet in subpolar
regions. Here we tested the LDI on surface sediments and a sediment core from the Sea of Okhotsk, which is
the southernmost seasonal sea ice-covered region in the Northern Hemisphere, and compared it with other
organic temperature proxies, that is, Uk0

37 and TEXL86. In the surface sediments, the LDI is correlated with
autumn SST, similar to the Uk0

37 but different from the TEXL86 that correlates best with summer sea subsurface
temperature. Remarkably, the obtained local LDI calibration was significantly different from the global
core-top calibration. We used the local LDI calibration to reconstruct past SST changes in the central Sea of
Okhotsk. The LDI-SST record shows low glacial (Marine Isotope Stage, MIS 2, 4, and 6) and high interglacial
(MIS 1 andMIS 5) temperatures and follows the same pattern as theUk0

37-SST and a previously published TEXL86
temperature record. Similar to the modern situation, the reconstructed temperatures during the interglacials
likely reflect different seasons, that is, summer for the TEXL86 and autumn for Uk0

37 and LDI. During glacials,
the reconstructed temperatures of all three proxies are similar to each other, likely reflecting summer
temperatures as this was the only season free of sea ice. Our results suggest that the LDI is a suitable proxy to
reconstruct subpolar seawater temperatures.

1. Introduction

Several organic proxies have been developed to reconstruct past sea surface temperatures (SST) in the geo-

logical record. The first organic SST proxy that was developed is the unsaturated ketone index (Uk0
37), based on

alkenone lipids synthesized by haptophyte algae (Brassell et al., 1986; Prahl & Wakeham, 1987). Culture stu-
dies showed that haptophyte algae adjust the degree of unsaturation of alkenones in response to growth
temperature, with increased fractional abundances of the tri-unsaturated alkenone at lower temperatures.

Subsequent work on surface sediments revealed that the Uk0
37 index is strongly related to annual mean SST

(Müller et al., 1998; Prahl et al., 1988). Another organic paleothermometer, the tetraether index (TEX86), uses
Thaumarchaeotal membrane lipids, that is, glyceryl dibiphytanyl glycerol tetraether lipids (GDGTs; Schouten
et al., 2002). These Archaea synthesize GDGTs with an increasing number of cyclopentanemoieties when sea-
water temperatures are higher and the TEX86 is strongly correlated with annual mean SST in global core-top

data sets (Kim et al., 2010, 2015; Tierney & Tingley, 2015). However, both theUk0
37 and TEX86 proxies have their

limitations. For example, theUk0
37might be affected by nutrient availability, lateral transport, or oxic degradation

(e.g., Gong & Hollander, 1999; Hoefs et al., 1998; Kim et al., 2009; Prahl et al., 2003; Rontani et al., 2013; Sikes et al.,
2005) and the TEX86 by subsurface production of GDGTs and input of terrestrial GDGTs (e.g., Ho et al., 2014;
Huguet et al., 2007; Kim et al., 2015; Shintani et al., 2011; Weijers et al., 2006). Furthermore, studies comparing

Uk0
37 and TEX86 show that they can reflect temperatures of different seasons of production and not annual mean

temperature (Huguet et al., 2006; Jonas et al., 2017; Lopes dos Santos et al., 2013; Smith et al., 2013).
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Recently, a new SST proxy, the long-chain diol index (LDI), was developed based on the distribution of long-
chain diols (LCDs; Rampen et al., 2012), that is, the ratio of the C30 1,15-diol over the sum of C28 1,13; C30 1,13;
and C30 1,15-diols, with higher fractional abundances of 1,15-diol observed at higher temperatures. The LDI
seems to be independent from salinity but is impacted by freshwater input (De Bar et al., 2016; Lattaud, Kim,
et al., 2017) and oxic degradation (Rodrigo-Gámiz et al., 2016). Nevertheless, the reconstruction of past SST
using the LDI has been successful in various marine environments, predominantly in temperate regions
(Jonas et al., 2017; Naafs et al., 2012; Plancq et al., 2015; Rampen et al., 2012; Rodrigo-Gámiz et al., 2014;
Smith et al., 2013). However, the LDI has, up to now, never been applied in subpolar regions. Rodrigo-
Gámiz et al. (2015) tested the application of the LDI in the North Atlantic Ocean, around Iceland, but the large
amount of 1,14-diols (>80% of all LCDs), derived from Proboscia diatoms (Rampen et al., 2007; Sinninghe
Damsté et al., 2003) obscured the LDI dependence to SST since Proboscia diatoms also produce minor
amounts of 1,13-diols (Rampen et al., 2007), biasing the LDI toward colder SST.

Here we tested the applicability of the LDI in the Sea of Okhotsk. We generated high-resolution records of

LDI-derived and Uk0
37-derived SST for the past 180 ka from the central Sea of Okhotsk and compared this to

a previously generated TEX86-derived SST record (Lo et al., 2018). Furthermore, we also determined whether

in the present-day environment the LDI,Uk0
37, and TEX86 are reflecting annual mean or seasonal temperatures

by analyzing a set of surface sediments from the Sea of Okhotsk.

2. Setting
2.1. Study Site

The Sea of Okhotsk is part of the Western Pacific Ocean and represents both the lowest-latitude and largest
region with seasonal sea ice in the world (Harada et al., 2014). It is the second largest marginal subpolar sea of
the Pacific after the Bering Sea. At present, in the Sea of Okhotsk, sea ice forms in the northwestern coastal
area in November. Its maximum elongation goes as far south as northern Hokkaido, Japan, in March and dis-
appears by June (Shimada & Hasegawa, 2001). The Sea of Okhotsk has many characteristics of a polar ocean:
severe winters with cold air and strong northern winds, mild but short summers, large seasonal variation of
air and water temperatures, and a subarctic water column structure (Wakatsuchi & Martin, 1991). The modern
SST ranges from 13 °C in summer to �1 °C in winter (Figure 1b). According to Harada et al. (2014), autumn
SST, sea surface salinity, and sea ice extent all impact the intensity of downwelling in the Sea of Okhotsk
and, subsequently, control the formation of the Sea of Okhotsk Intermediate Water, which is a key compo-
nent of the North Pacific Intermediate Water (itself an important carbon reservoir; Tsunogai et al., 1992).
The Amur River in the northwest releases freshwater into the Sea of Okhotsk but most of its detrital loading
does not reach the central part of the Sea of Okhotsk because the material is transported further to the south
by lateral currents present in the Sea of Okhotsk (Yasuda et al., 2014).

2.2. Previous Paleoceanographic Studies

Several paleoceanographic studies on the Sea of Okhotsk have been performed. For example, Gorbarenko
(1996) Gorbarenko et al. (2014) reconstructed periods of rapid warming and cooling during the Holocene
and late Pleistocene, synchronous with the Greenland climatic cycles (glacial and interglacial stages as well
as Heinrich events). SST reconstructions have been performed for the Holocene and the last glacial-
interglacial interval using the δ18O of planktonic foraminifera (Gorbarenko, 1996), as well as the TEX86
(Harada et al., 2012; Lo et al., 2018; Seki et al., 2009, 2014) and Uk0

37 (Harada et al., 2004, 2006, 2014; Seki
et al., 2004) temperature proxies. The reconstructed temperatures range from 5–7 °C to 8–12 °C for the

TEX86 and from 4–7 °C to 8–12 °C for the Uk0
37 for the last glacial maximum and the Holocene, respectively.

These studies indicate that the alkenone and GDGT records reflect temperatures of different seasons, with
the TEX86-derived temperatures representing summer subsurface temperature (Lo et al., 2018; Seki et al.,

2009, 2014) and the Uk0
37-derived temperatures representing autumn SST (Seki et al., 2007).

3. Material and Methods
3.1. Sampling and Age Model

Giant piston core MD01-2414 (53°11.770N, 149°34.800E; Figure 1) was collected during the IMAGES VII
cruise from the central region of the Sea of Okhotsk (Deyugin basin) at a water depth of 1,123 m in
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2001 (Chou et al., 2011). This core has a length of 52.76 m but here we studied the upper 900 cm. This
section was sampled every 10 cm, and the samples were stored frozen until freeze-dried. An age model
for the core was established by Lo et al. (2018) based on the correlation of XRF data (log-ratios of (Ba/Ti))
with the global benthic foraminiferal δ18O stack (LR04, Lisiecki & Raymo, 2005) and five accelerator
mass spectrometry radiocarbon (AMS 14C) dates of picked planktonic foraminifera (Neogloboquadrina
pachyderma, sinistral).

Thirteen surface sediments were collected from the Sea of Okhotsk as described by Lo et al. (2018) (Figure 1).

3.2. Extraction and Separation of Lipids

The sediments were previously extracted by Lo et al. (2018). Briefly, sediment samples (1–10 g) were homo-
genized, freeze-dried, and extracted using dichloromethane (DCM): methanol (4: 1 v/v) using an accelerated
solvent extractor. The extracts were separated into three fractions on a Pasteur pipette packed with activated
Al2O3: an apolar fraction (hexane: DCM, 9:1 vol/vol), a ketone fraction (hexane: DCM, 1:1 vol/vol) containing
alkenones, and a polar fraction containing the GDGTs and diols (DCM: MeOH, 1:1 vol/vol).

3.3. Alkenone Analysis and Determination of Uk0
37

Sedimentary alkenones were analyzed by dissolving the ketone fraction into 100 μl of hexane and using
capillary gas chromatography (GC) with an Agilent 6890 N GC equipped with a silica column coated with
CP Sil-5 (50 m × 320 μm; film thickness 0.12 μm), equipped with an on-column injector. The initial oven tem-
perature of 70 °C increased with 20 °C/min to 200 °C and subsequently with 3 °C/min to 320 °C, at which it was
held for 25 min. The carrier gas was helium at constant flow at 30 ml/min. Alkenones were detected with a
flame ionization detector held at 330 °C.

The alkenone unsaturation index Uk0
37 (Prahl & Wakeham, 1987) was calculated as follows:

Uk0
37 ¼ C37:2½ �

C37:2½ � þ C37:3½ � (1)

Several correlations betweenUk0
37 and water temperature have been reported (Müller et al., 1998; Prahl et al.,

1988; Prahl & Wakeham, 1987; Sikes et al., 1997). The most often used global calibration ofUk0
37 against annual

mean SST is that of Müller et al. (1998):

SST ¼ Uk0
37 � 0:044

� �
0:033

(2)

We applied the Bayspline calibration from Tierney and Tingley (2018) but no remarkable difference in abso-
lute temperatures or trends with the calibration of Müller et al. (1998) was observed (maximum 0.7 °C).

Figure 1. (a) Oceanographic setting of the Sea of Okhotsk and the location of core MD01 2414 and (b) monthly sea
temperature (from NOAA; Locarnini et al., 2010) at this site.
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3.4. LCD Analysis and Determination of LDI

LCDs were analyzed by silylation of an aliquot of the polar fraction with 10 μl BSTFA and 10 μl pyridine,
heated for 30 min at 60 °C and adding 30 μl of ethyl acetate. The analysis of diols was performed using a
gas chromatograph (Agilent 7990B GC), equipped with a capillary silica column coated with CP Sil 5
(25 m × 0.32 mm; film thickness 0.12 μm) and coupled with a mass spectrometer (Agilent 5977A MSD;
GC-MS). Oven temperature during injection was 70 °C and increased thereafter to 130 °C at 20 °C/min and
to 320 °C at 20 °C/min, at which it was maintained for 25 min. The flow of the carrier gas was held constant
at 2 ml/min. The MS source was held at 250 °C and the MS quadrupole at 150 °C. The electron impact
ionization energy of the source was 70 eV. The LCDs were identified and quantified via single-ion monitoring
of the fragment ions m/z 299.3 (C28 1,14-diol), 313.3 (C28 1,13-diol; C30 1,15-diol), 327.3 (C30 1,14-diol), and
341.3 (C30 1,13-diol; C32 1,15-diol) following Versteegh et al. (1997) and Rampen et al. (2012). The abundance
of the LCDs are expressed as fraction of the total LCDs quantified.

The long-chain diol index (LDI) is the ratio of C30 1,15-diol over the sum of C30 + C28 1,13-diols as defined by
Rampen et al. (2012):

LDI ¼ C301;15½ �
C301; 15½ � þ C301;13½ � þ C281; 13½ � (3)

The global calibration of LDI against annual mean SST (Rampen et al., 2012) is as follows:

SST ¼ 0:033� LDI þ 0:095 (4)

3.5. GDGT Analysis and Determination of TEX86

TEX86 (equation (5)); Schouten et al., 2002) values of the surface sediments and of the sediment core between
0 and 130 ka have been previously reported by Lo et al. (2018). Here we extended this record to 180 ka by
analyzing 20 additional sediment samples for GDGTs following the methods described by Lo et al. (2018).

TEX86 ¼ GDGT � 2þ GDGT � 3þ Cren0

GDGT � 1þ GDGT � 2þ GDGT � 3þ Cren0
(5)

A global calibration of the TEXL86, more suited for polar oceans, has been reported by Kim et al. (2010):

TEXL
86 ¼ log

GDGT � 2
GDGT � 1þ GDGT � 2þ GDGT � 3

� �
(6)

TEXL
86 � SST ¼ 67:5� TEXL

86 þ 46:9 (7)

The Branched versus Isoprenoid Tetraether index (BIT) was calculated as described by Hopmans et al. (2004,
2016) with the inclusion of the 6-methyl branched GDGT from De Jonge et al. (2013) to infer if the GDGTs in
the sediment core and surface sediments were affected by terrigenous input from the Amur River.

BIT ¼ Iaþ IIaþ IIIaþ IIa0 þ IIIa0

Iaþ IIaþ IIIaþ IIa0 þ IIIa0 þ IV
(8)

4. Results and Discussion
4.1. Proxy Calibration

In all surface sediments alkenones, GDGTs and LCDs were detected. The Uk0
37 ranges from 0.05 to 0.39, while

the LDI varies from 0.02 to 0.44 (Figure 2). The TEX86 has previously been reported to vary from 0.18 to 0.34
(Lo et al., 2018). The BIT index is low in all surface sediments (0.02–0.12; Figure 5a) indicating relatively little
input of terrestrial organic matter in these surface sediments (De Jonge et al., 2014; Hopmans et al., 2004;
Weijers et al., 2006, 2009). The fractional abundance of the C32 1,15-diol varies between 0.03 and 0.32
(Figure 5b), with higher fractional abundances close to the Soya Strait (0.20–0.32) compared to the northern
and central part of the Sea of Okhotsk (0.03–0.10). This indicates input of riverine organic matter to the
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southern part of the Sea of Okhotsk but shows that the northern and central parts of the Sea of Okhotsk are
not influenced by riverine organic matter (cf. Lattaud, Kim, et al., 2017).

To determine if each proxies are reflecting seasonal or annual temperatures in modern days in the Sea of

Okhotsk, we correlated the values ofUk0
37, LDI, and the TEXL86 from 13 surface sediments (Figure 2) with annual

mean and seasonal SSTs (World Ocean Database, 2009, Locarnini et al., 2010).

TheUk0
37 values are only weakly correlated with annual mean SST (Figure 3a; r2 = 0.24, p = 0.08, n = 13) but the

correlation obtained (Uk0
37 = 0.039 × SST + 0.0733) is statistically identical (homogeneity of slope, p = 0.98) to

the global calibration of Müller et al. (1998) (equation (2)); Figure 3c). Indeed, the global calibration (equa-
tion (2)) has been shown to be suitable for estimating past temperatures in the subarctic region of the
North Pacific, where Emiliana huxleyi is the main alkenone producer (Broerse et al., 2000) and has been
applied earlier in the Sea of Okhotsk (Harada et al., 2004, 2006). However, E. huxleyi has been reported to
bloom in autumn (late November to early December) in the Sea of Okhotsk (Broerse et al., 2000).
Moreover, Seki et al. (2007) reported peak fluxes of alkenones in descending particles in the water column

in autumn in the central Sea of Okhotsk and showed that Uk0
37-derived temperature estimates from the col-

lected sinking particles reflected autumn temperature of the shallow subsurface layer (20–30 mwater depth).
In the Sea of Okhotsk, autumn is a period with a strongly stratified water column and a warm and nutrient-
depleted surface layer favoring the growth of E. huxleyi (Figure 1b). Indeed, we find a stronger correlation of

the Uk0
37 with late autumn SST (October–December, Uk0

37 = 0.046 × SST + 0.030, r2 = 0.53, p < 0.005, n = 13;

Figure 3a) than with annual mean SST, suggesting that the Uk0
37 reflects autumn temperatures rather than

annual mean temperature in the Sea of Okhotsk. The significance of correlation with autumn temperatures
decreases with deeper water temperature (e.g., 50 m, r2 = 0.29, p = 0.06, n = 13; Figure 3a), suggesting that

Figure 2. Geographical distribution of the values for (a) LDI, (b) Uk0
37, and (c) TEXL86 of surface sediments and of (d) annual

mean temperature (from NOAA; Locarnini et al., 2010).
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Uk0
37 reflects autumn SST in the Sea of Okhotsk. There is no significant

(p = 0.95) difference between the global calibration of Müller et al.
(1998) and the local autumn SST calibration. Furthermore, because the
global calibration of Müller et al. (1998) is statistically more robust
(n = 149 for the global calibration versus n = 13 for the local calibration),
we use the global calibration for reconstructing autumn SST thereby also
making our study comparable with other studies (Harada et al., 2004;
Seki et al., 2007).

The LDI values of the surface sediments are strongly correlated with
annual mean SST (Figure 3c; LDI = 0.133 × SST � 0.416, r2 = 0.93,

p < 0.005). This correlation is stronger than the correlation of Uk0
37 with

annual mean or autumn SST. Furthermore, in contrast to the Uk0
37, this cor-

relation differs significantly from the global core-top calibration of
Rampen et al. (2012) (homogeneity of slopes, p < 0.05; Figure 3d). The
LCD producers are likely phototrophic (eustigmatophyte) algae (Gelin
et al., 1997; Méjanelle et al., 2003; Volkman et al., 1992, 1999), which prolifer-
ate in the photic zone. The relative proportion of 1,14-diols is low to
moderate (13–43%) so we do not expect Proboscia diatoms to be a major
source of the 1,13-diols. As the Sea of Okhotsk is partially frozen during
the year (Shimada & Hasegawa, 2001), light penetration and nutrients will
be limited during the winter and spring months, so it is likely that the LCDs
are produced during a specific season rather than over the whole year and
thus will likely reflect a seasonal rather than an annual mean signal. The
LDI values are equally strongly correlated with autumn SST (Figure 3c;
LDI = 0.103 × SST � 0.29, r2 = 0.94, p < 0.005) as with annual mean. In

contrast to the Uk0
37, an even stronger correlation is observed with deeper

water autumn temperatures, that is, at 20 m depth (Figure 3c;
LDI = 0.108 × SWT � 0.222, r2 = 0.98, p < 0.005, n = 13). However, the cali-
brations of the LDI for the autumn sea temperature at the surface and at
20 m are not statistically different (p = 0.95) and improvement of correla-
tion coefficient is relatively small, and thus, it is not clear if the LDI is really
reflecting SST or subsurface temperature. Based on the observation on
phytoplankton dynamics in the Sea of Okhotsk, that is, diatoms are bloom-
ing in June as soon as the sea ice melts and the water column is rich in
nutrients (Seki et al., 2007), while coccolithophorids are blooming in
autumn when the water column is well stratified and nutrient-depleted
(Seki et al., 2007), we assume that the LDI likely reflects autumn SST, when
the competition with diatoms is less. Since the local calibration with
autumn SST is significantly different from the global one, we used the for-
mer to reconstruct autumn SST (Figure 3d). This difference between the
global and local calibration could be explained by the absence of Pacific
surface sediments in the global calibration. Possibly, the diol producers
in the Pacific Ocean might respond in their diol composition to tempera-
ture differently than those in the Atlantic Ocean.

We combined the reported TEXL86 values of Lo et al. (2018) with those of
Seki et al. (2014) to infer if the TEXL86 is reflecting seasonal or annual
sea temperature. The TEXL86 values correlate weakly with annual mean
SST (r2 = 0.09, p = 0.03). Seki et al. (2007) suggested that the
Thaumarchaeota, producing the GDGTs, may be blooming in late summer
in the Sea of Okhotsk when enhanced ammonium concentration is
observed between 20 and 45 m depth (in June 2000; Seki et al., 2014).
Since Thaumarchaeota are ammonium oxidizers (De la Torre et al., 2008;

Figure 3. Correlation of observed sea temperature (from NOAA, Locarnini
et al., 2010) with (a) Uk0

37, (b) U
k0
37 and the global data set of Müller et al.

(1998), (c) LDI, (d) LDI and global data set of Rampen et al. (2012), and
(e) TEXL86 including the data of Seki et al. (2014) and the global data set of Kim
et al. (2010).
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Wuchter et al., 2006), this time and depth may be the optimal time to pro-
liferate. Indeed, the TEXL86 correlates more significantly with summer sea
subsurface temperatures at 20 m depth (SST = 0.018 × TEXL86-0.719,
r2 = 0.33, p < 0.005), while there is no significant correlation between
TEXL86 and summer SST (r2 = 0.002, p = 0.4). There is a correlation between
TEXL86 and summer sea temperatures at 200 m depth (r2 = 0.20, p < 0.005)
but this correlation is weaker than with the summer sea temperature at
20 m depth. Alternatively, instead of TEXL86, we can use the original
TEX86 definition (Schouten et al., 2002). However, correlation of the
TEX86 of the surface sediments with the annual mean SST showed a weak
correlation (r2 = 0.11, p = 0.02). We also correlated TEX86 with summer sea
temperature at 20 m and found a weak correlation (r2 = 0.20, p < 0.005),
weaker than with TEXL86. Therefore, it seems that TEXL86 is best applicable
for the Sea of Okhotsk. The regional calibration of TEXL86 with summer
sea temperatures at 20 m depth is not significantly different (homogeneity
of slopes, p = 0.9) from the global core-top calibration with annual mean

SST of Kim et al. (2010) (Figure 3c). Hence, we will thus use the global calibration, which is statistically more
robust, but are probably reconstructing a summer sea subsurface temperatures (around 20 m depth) signal.

4.2. Temperature Variations Over the Last 180 ka as Recorded by Organic Proxies

Using the global calibrations forUk0
37 and TEXL86 and the regional calibration of the LDI, we reconstructed tem-

peratures over the last 180 ka in the Sea of Okhotsk. The LDI varies from 0.06 to 0.62, theUk0
37 varies from 0.07

to 0.72, and the TEXL86 varies from �0.66 to �0.46 (TEX86 varies from 0.22 to 0.34). The three proxy
records yield quite different absolute sea temperatures and trends (Figure 4). Nevertheless, LDI-derived

andUk0
37-derived SST records show some significant correlation (r2 = 0.13, p-value< 0.005), but with consider-

able scatter, and both are not correlated with TEXL86-derived temperatures (r2 = 0.03 and 0.04, p-value> 0.05).

This agrees with our findings for the surface sediments; that is, both LDI andUk0
37 are thought to reflect similar

temperatures (autumn SST), while TEXL86 reflects summer subsurface temperatures. However, a difference in
seasonality cannot explain the lack of correlation between TEXL86 and the other proxies, as we expect some
correlation between seasonal temperatures. We also reconstructed temperatures using the BAYSPAR calibra-
tion (Tierney & Tingley, 2015) of TEX86 but this yielded mostly temperatures well below 0 (�7 to 3 °C), which

seems unrealistic. LDI-derived SSTs also frequently differ from Uk0
37-derived SSTs, especially during MIS 1, MIS

5, and MIS 6. These differences are often larger than the proxy calibration
errors (2 and 1.5 °C, respectively).

A general cause for the difference in the LDI temperature record and those

of the Uk0
37 could be input of LCDs from the Amur River as river input can

affect the LDI (De Bar et al., 2016; Lattaud, Kim, et al., 2017; Lattaud,
Dorhout, et al., 2017). The fractional abundance of C32 1,15-diols
(Figure 5b) in the sediment core is on average 0.33 ± 0.16, indicating some
riverine input (cf. Lattaud, Kim, et al., 2017). It shows maxima at the start of
Termination I and II, that is, at the end of MIS 2 (∼0.5) andMIS 6 (∼0.6), likely
because of the low sea level stand at that time, maximizing the influence
of the Amur River. We also observe a generally higher fractional abun-
dance of C32 1,15-diols (Figure 5b) during MIS 4. However, at times of a
high fractional abundance of C32 1,15-diols, no large variations in the
LDI-SST record are observed, suggesting that river input of LCDs does
not strongly affect the LDI (Figure 6a). The record of the BIT index
(Figure 5a), a proxy for input of continental derived GDGTs (De Jonge et al.,
2014; Hopmans et al., 2004; Weijers et al., 2006, 2009), also peaks at the
end of MIS 6 but not at the end of MIS 2. Overall, it remains <0.2 (average
0.08 ± 0.04), suggesting that application of the TEXL86 is not affected by ter-
rigenous input from the Amur River. Below we discuss potential causes for

Figure 4. Average reconstructed temperature of the three paleotherm-
ometers and standard deviation during marine isotope stages (MIS 1:
0–14 ka, n = 16; MIS 2: 14–29 ka, n = 8; MIS 3: 28–57 ka, n = 8; MIS 4: 53–64 ka,
n = 4; MIS 5: 64–130 ka, n = 26; and MIS 6: 130–180 ka, n = 20).

Figure 5. Terrigenous input proxies for core MD01–2414 (a) BIT index and
(b) FC32 1,15.
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the difference between LDI reconstructed temperatures and those of
other proxies in interglacial and glacial stages.
4.2.1. Sea Temperature Reconstructions During Interglacial Stages
During the early phase of MIS 5 the LDI shows a drop in temperature from

8.8 to 3.5 °C, while this drop for the Uk0
37 record is from 16.0 to 2.8 °C

(Figure 6a) and for the TEXL86 record from 13.6 to 4.6 °C. MIS 5e (130–
115 ka; Shackleton et al., 2003; Martrat et al., 2014) is the warmest period
of the LDI temperature record (6.6 ± 1.3 °C), exceeding the modern day
reconstructed LDI temperatures by 3 °C.

During the Holocene, both Uk0
37 and LDI temperatures show a (sub) maxi-

mum at 9 ka, with Uk0
37 -SST reaching 9 °C, 4 °C (Figure 6b) higher than

LDI-SST, while TEXL86 reflects higher temperatures from 12 ka to 9 ka

(15 °C). The warmest LDI and Uk0
37 temperature at 9 ka falls during the

Holocene Thermal Maximum (9–5 ka; Ritchie et al., 1983). This warm ther-
mal event corresponded with the maximum northern extension of the
warm Kuroshio current (Tsushima Current, Kuroshio culmination event;
Harada et al., 2004) and, like during MIS 5e, incurred permanent ice-free
condition in the entire Sea of Okhotsk (Lo et al., 2018; Nürnberg et al.,

2011). This optimum is also observed in the Uk0
37 -SST records of Harada

et al. (2004) and Martinez-Garcia et al. (2010) in the northwestern Pacific.
Finally, there is a decrease of about 2 °C in LDI-derived temperatures in
the late Holocene until modern days, reflecting the Late Holocene cooling
observed by, for example, Martrat et al. (2014) in the North Atlantic region

using Uk0
37 -derived SST reconstructions, and Russian terrestrial records

(Salonen et al., 2011). This decrease is also observed in the Sea of

Okhotsk and Northern Pacific records (via Uk0
37 by Harada et al., 2014).

Overall, the LDI-derived SSTs for the late Holocene are quite low; that is,
we reconstructed the same temperatures for MIS 2 and the late
Holocene. Potentially, these low temperatures could be explained by a

shift in the season of production of the diols from summer (during MIS 2) toward autumn (during the

Holocene). The Uk0
37-SST also shows a lowering of temperatures during the late Holocene but remains higher

than those during MIS 2.

Although LDI and Uk0
37 -SST records seem to match trend wise, in both interglacials MIS 1 and 5, there is a

mismatch in absolute temperatures with Uk0
37 being generally higher than those of the LDI, while our surface

sediment study suggests both could reflect autumn SST. This could be due to the enhanced presence of
diol-producing diatoms, that is, Proboscia (Rampen et al., 2011; Sinninghe Damsté et al., 2003) that produce
1,14-diols but also minor amounts of 1,13-diols that will biased the LDI temperatures toward colder values
(Rodrigo-Gámiz et al., 2015). However, the amount of 1,14-diols is generally much lower than observed by
Rodrigo-Gámiz et al. (2015) (up to 83% in Icelandic SPM against 33% for MIS 5 and for the Holocene in the
Sea of Okhotsk), suggesting that this effect may be less. Alternatively, sea ice limits the penetration of light
in the water column, so absence of sea ice (like during MIS 5e and 5c; Lo et al., 2018) extended the time period
of light availability for primary producer. Thus, the blooming period of the haptophyte algae may have
shifted or was extended to include warmer periods, such as summer and the blooming period of the diol

producers could be extended to colder periods, such as spring. Indeed, Uk0
37-SST temperatures are closer to

TEXL86-temperatures, which reflect subsurface summer temperatures in the present-day Sea of Okhotsk,
suggesting that they might have been blooming earlier in the season in between fall and summer.
4.2.2. Sea Temperature Reconstructions During Glacial Stages
In contrast to the interglacial stages, during the glacial stages (MIS 2, 4, and 6), the three temperature proxies

yield similar temperatures (within proxy error, with the exception of MIS 6 for theUk0
37-SST; Figure 4) indicating

that the proxies likely reflect the same season of production. This season is most likely summer as the Sea of
Okhotsk is frozen during the remaining part of the year during glacial stages (Lo et al., 2018; Nürnberg et al.,

Figure 6. Reconstructed temperatures over the last 180 ka in comparison
with the global LR04 stack. (a) LDI-SST (using the global calibration from
Rampen et al., 2012), (b) LDI-SST* (using the local Okhotsk calibration), (c)Uk0

37
-derived SST and (d) TEXL86-derived temperatures (partly from Lo et al., 2018),
and (e) δ18O from the LR04 stack (Lisiecki & Raymo, 2005).
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2011). The Uk0
37 -derived SST record shows a continuous warming trend

during MIS 6, in contrast to the other proxies (Figure 6b). During the late

MIS 6, the Uk0
37 -SSTs are unrealistically high; that is, the Uk0

37 -derived SST
was up to 16 °C higher than LDI-derived SST and TEXL86 temperatures
(Figures 6a and 6c). These temperatures are not plausible during a
glacial stage that was much colder than modern day temperature (Lo

et al., 2018; Nürnberg et al., 2011). These abnormally high Uk0
37 -derived

SSTs during late MIS 6 have also been observed by Martinez-Garcia et al.
(2010) in sediments from the Northwestern Pacific and by Seki et al.
(2009) in a core from the southern Sea of Okhotsk (51°N). These

anomalous Uk0
37 -derived SST values may be due to a contribution of

allochtonous alkenones transported laterally (Mollenhauer et al., 2008),
either from the warm Japan Sea via the Kuroshio current or from the rela-
tively warmer Amur River delta further north. However, studies of sedi-
ment traps located 100 m above the seafloor in the present-day Sea of
Okhotsk show no evidence for lateral transport of alkenones (Harada

et al., 2006; Seki et al., 2007). These anomalous Uk0
37 values cooccur with

an apparent input from the Amur River, as evidenced by the relatively
higher BIT values (0.2; Figure 5a) and a high abundance of the C32 1,15-diol
between 140 and 134 ka (fractional abundance up to 0.7 of 1,13 and 1,15
LCDs at 134 ka; Figure 5b). This higher input is likely partly caused by the
lower sea level during glacials, which will have moved the mouth of the
Amur River closer to the core site. However, it is unclear how this enhanced

river input would affect the Uk0
37 to anomalously high values, while the LDI

and TEXL86 do not seem to be affected. MIS 4 is not apparent as a strong glacial period in all three tempera-
tures (Figure 4), as observed in the δ18O of the LR04 stack (Figure 6d). The TEXL86-SST is particularly high
(6.9 ± 2.8 °C), which could be due to enhanced terrestrial input as suggested by the relatively higher BIT index
(0.14; Figure 5a) during that period.

MIS 2 (30–17 ka) is reflected as a cold stable period in the LDI temperature record (4.7 ± 0.3 °C; Figure 4) and

temperatures are similar to those of the Uk0
37 and TEXL86 records. During this period the Sea of Okhotsk was

almost totally closed because of the shallow depth of the Soya Strait and Kuril Islands passes that were
emerged during the low sea level stand of MIS 2 (Figure 1; Harada et al., 2004). This is similar to MIS 6, when
sea ice also extended, and supported by relatively high IP25 concentrations, a proxy for seasonal ice cover
(Belt et al., 2007; Knies et al., 2014), during MIS 2 (Lo et al., 2018). However, in contrast to MIS 6, the three
temperature proxies all reveal similar temperatures, as would be expected if they are produced during
the same season, that is, summer being the only ice-free season with substantial biological activity. Also,
in MIS 2, there seems to be an enhanced input from the Amur River, as suggested by elevated values of
the BIT index (0.14) and of FC32 1,15 (0.43), although these are lower than observed during MIS 6. The termi-

nation (16–12 ka) of MIS 2 shows increasing TEXL86 temperatures but a relatively constant LDI and Uk0
37-SST.

This may be caused by a deepening of the production of alkenones and diols in the water column resulting
in colder temperatures, as explained above, or by a shift from summer toward autumn SST (as found present

day) for the LDI and Uk0
37 , which would results in apparent relatively constant temperatures despite overall

global warming.

4.3. Diatom Productivity in the Sea of Okhotsk

MIS 5e is characterized by a higher percentage of 1,14-diols (30% of all LCDs; Figure 7b), derived from
Proboscia diatoms (Rampen et al., 2011; Sinninghe Damsté et al., 2003) and a high opal content (up to
0.63% at 129 ka; Figure 7c; from Liu et al., 2006), indicating increased diatom productivity (Leinen et al.,
1986), and an increased TOC content (up to 0.81% at 129 ka; Figure 7a), suggesting higher primary produc-
tivity and, hence, more nutrient-rich water. This is supported by opal records from other cores from the Sea of
Okhotsk (core PC3B, Iwasaki et al., 2012; and core GC09A, Khim et al., 2012; Bosin et al., 2015), with high opal
content indicating high productivity during this time period. MIS 5e was characterized by open water

Figure 7. Productivity indicators in core MD01-2414 (a) TOC content, (b) frac-
tional abundance of 1,14-diols, and (c) opal content (from Liu et al., 2006).
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conditions in the central Sea of Okhotsk with no sea ice formation all year (Lo et al., 2018; Nürnberg et al.,
2011). The absence of sea ice during MIS 5e allowed nutrients coming from the Amur River and the Pacific
Ocean to reach the Sea of Okhotsk, thereby stimulating productivity.

Similar to MIS 5, there is evidence of an increase in diatomaceous production during the mid-Holocene with
increase in biogenic opal content in the sediment (Figure 7c; Liu et al., 2006), paleontological indications of
the remains of diatoms (Bosin et al., 2015), and increases in relative proportion of 1,14-diols (Figure 7b; up
to 33%), as well as elevated TOC level (up to 1.5%), all suggesting increased (diatom) productivity. This agrees
with the findings of Bosin et al. (2015),who showed that diatoms are the main primary producers presently in
the Sea of Okhotsk (Sorokin & Sorokin, 1999) and that a phytoplankton transition occurred at the onset of the
Holocene going frommainly haptophyte productivity toward a diatom productivity (Katsuki et al., 2010; Khim
et al., 2012; Shiga & Koizumi, 2010).

5. Conclusions

Our study shows the applicability of the LDI as a proxy for SST in a polar region. The LDI-derived temperatures

from surface sediments correlates well with autumn SST, similar to theUk0
37 but different than the TEXL86, which

likely reflects summer subsurface temperature. Interestingly, the LDI-SST correlation is substantially different
from the global core-top correlation, suggesting the importance of local calibrations. The LDI-derived SST
record obtained from a sediment core in the central part of the Sea of Okhotsk shows temperature changes,

generally in agreement with known global temperature changes during glacials and interglacials. TheUk0
37, LDI

and TEXL86 temperature proxies yield similar temperatures during glacials, likely indicating the same season of
production, that is, summer months as this was the only period without the presence of sea ice. In contrast,
during interglacials when there is no sea ice, all three proxies yield different temperature representing differ-
ent season and depth of production. Diatom productivity in the Sea of Okhotsk is reflected in the proportion
of 1,14-diol and opal content of the sediment, showing increased productivity during terminations and dur-
ing the Holocene.
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