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Abstract 

We investigated the trophic structure and habitat use of ten cetacean species occurring in the 

oceanic waters of the western South Atlantic using naturally-occurring stable isotopes. We 

analyzed δ15N in individual amino acids (AA) to estimate cetacean trophic position (TP) and to 

evaluate the spatial differences in baseline δ15N (source AAs). We adjusted cetacean bulk-skin 

δ13C and δ15N for the effect of trophic level using their estimated TPs, obtaining δ13CAdjusted and 

δ15NAdjusted, respectively. These values were applied to estimate the overlap in the niche areas 

of cetacean baseline sources. Our analyses showed spatial segregation between Steno 

bredanensis and the remaining odontocetes, and the high δ15N in this species reflects its 

occurrence in neritic waters of the southern region. The highest TPs were observed in Physeter 

macrocephalus, Stenella attenuata and Globicephala melas, while the lowest TPs were reported 

for S. longirostris, S. clymene and Orcinus orca. Overall, source AA-δ15N showed similar 

patterns as those of baseline-δ15N (zooplankton) and were higher in species sampled in the 

southernmost region of the study area (e.g., Delphinus delphis). Isotopic niche areas estimated 

using δ13CAdjusted and δ15NAdjusted suggested high overlap in foraging area between S. frontalis 

and Tursiops truncatus, with the latter occupying a higher TP. Our analyses of δ15N in AAs 

provide a unique insight into the trophic ecology, forage areas and spatial segregation in 

resource use among these cetacean populations. Additionally, our work provides AA-δ15N 

baseline for future studies on the trophic ecology and habitat use of marine organisms in the 

western South Atlantic. 

 

Key words: Compound-specific stable isotopes, Odontocetes, Nitrogen, South Atlantic 
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Graphical Abstract 

 

 

 

Analysis of amino acid δ15N helped reveal the trophic structure and habitat use of cetaceans 

from the oceanic waters of the western South Atlantic. Image: Genyffer C. Troina. Cetacean 

illustration by José Luis Vázquez, adapted from Bastida et al. 2018. 
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1. Introduction 

Identifying marine mammals’ preferred habitat and feeding ecology is key to 

understanding how they shape the structure and are affected by the dynamics of their 

ecosystems. The main ecological factor affecting cetacean distribution is prey availability 

(Ballance et al. 2006; Lambert et al. 2014), although their habitat use may also be influenced 

by interspecific competition for main prey or the presence of potential predators (Wells et al. 

1981; Heithaus 2001; Heithaus and Dill 2006). Knowledge of habitat and prey preference 

allows for the assessment of both actual and potential impacts from anthropogenic interactions, 

such as fishing activities (bycatch or fish depletion), ship collisions, habitat pollution or 

degradation, or prey composition changes due to climate change (Rayment et al. 2011; Evans 

2018) that are required to inform and implement effective conservation measures (e.g., Bailey 

and Thompson 2009; Chavez-Rosales et al. 2019).  

The offshore waters of the western South Atlantic (WSA) ocean represent an important 

area for several cetacean species. In this area, killer whale (Orcinus orca) occurs along the 

continental shelf and oceanic waters (Secchi and Vaske Jr. 1998; Di Tullio et al. 2016) and have 

been reported interacting with longline fisheries of southern Brazil and Uruguay (Secchi and 

Vaske Jr. 1998; Dalla Rosa and Secchi 2007; Passadore et al. 2015). The sperm whales 

(Physeter macrocephalus) are known to prey upon deep-water squids (Clarke et al. 1980; 

Santos and Haimovici 2000, 2002), occurring in pelagic waters at approximately 1000 m 

isobath and beyond (Di Tullio et al. 2016). The long-finned pilot whale (Globicephalas melas) 

prefers cold-temperate waters along the shelf break and slope regions (Di Tullio et al. 2016), 

where they consume mostly cephalopods (Mansilla et al. 2012; Beasley et al. 2019). The 

oceanic population of bottlenose dolphins (Tursiops truncatus) that occurs along the shelf break 

and slope waters in the WSA is frequently found in association with other Delphinidae species 

(Lima et al. 2021). The rough-toothed dolphin (Steno bredanensis) in the SWA has been 

registered mostly in coastal and in the inner continental shelf waters (Ott and Danilewicz 1996; 

Santos et al. 2017; 2019), but also in offshore areas (Di Tullio et al. 2016; Troina et al. 2020b). 

The common dolphin (Delphinus delphis) has often been sighted in neritic waters off southern 

Brazil (ECOMEGA, unpublished data) as well as in deeper waters of the outer continental shelf 

and slope (Tavares et al. 2010; Di Tullio et al. 2016). The Atlantic spotted dolphin (Stenella 

frontalis) is found in nearshore and oceanic waters of warm-tropical regions and in areas 

associated with upwelling systems (Moreno et al. 2005; Di Tullio et al. 2016). The spinner 

dolphin (S. longirostris), the pantropical spotted dolphin (S. attenuata), and the Clymene 
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dolphin (S. clymene) show large overlap in their distributional ranges, which include mainly 

warm pelagic environments (Moreno et al. 2005; Di Tullio et al. 2016). A large variety of small-

to-large meso-to-epipelagic fish and squids comprise the diets of several small delphinids, such 

as D. delphis or those species of the genus Stenella (Di Beneditto et al. 2001; Santos and 

Haimovici 2002; Melo et al. 2010; Lopes et al. 2012). 

Stable isotope analysis (SIA) has been widely applied to marine mammals to study 

migration and forage areas (e.g., Best and Schell 1996; Silva et al. 2019), feeding ecology (e.g., 

Castro et al. 2016; Borrell et al. 2021) and trophic interactions (e.g., Ryan et al. 2013; Botta et 

al. 2018). Trophic position can be estimated using bulk-tissue δ15N given the consistent increase 

in the heavy isotope (15N) at each trophic level (Minigawa and Wada 1984; Perkins et al. 2014). 

Such estimates require data on the isotopic values of organisms at the base of the food webs 

where consumers have been feeding (Post 2002), and usually assume a trophic discrimination 

factor (TDF) around 2-4‰ (Kelly 2000; McCutchen et al. 2003). Additionally, foraging areas 

and migratory patterns can be inferred by linking the isotopic values measured in consumers’ 

tissues with local baseline stable isotope patterns (i.e., isotopic landscapes or isoscapes, Hobson 

et al. 2010; McMahon et al. 2013). The trophic ecology and habitat use of odontocetes that 

occur in the WSA have been inferred from the analysis of bulk-skin carbon and nitrogen stable 

isotopes (Troina et al. 2020a). These authors have successfully applied SIA to identify areas 

used by the different species, which had remarkable latitudinal (north to south) and near-to-

offshore gradients in both carbon and nitrogen stable isotope ratios. Additionally, SIA 

suggested isotopic niche overlaps between T. truncatus and S. frontalis, or S. longirostris and 

S. attenuata (Troina et al. 2020a), species frequently found forming mixed species associations 

in the SWA (Lima et al. 2021). However, this method was unable to resolve some of the isotopic 

patterns observed, including the higher δ15N values in S. bredanensis and D. delphis, in 

comparison to those of presumed apex predators (P. macrocephalus and O. orca).  

Ecological inferences based on bulk-tissue isotope data of highly mobile marine 

predators require information on the distinct isotopic baselines between the areas they may 

occur (Graham et al. 2010). Isoscapes have been described for baseline organisms in the oceanic 

waters of the WSA, showing increasing latitudinal (N-S) and longitudinal (offshore-to-

nearshore) gradients in δ15N values (Troina et al. 2020b). Nevertheless, temporal mismatches 

can occur between the isotope values of consumers’ tissues and baseline organisms, due to 

difference in time required to achieve isotopic equilibrium with the environment. Turnover time 

may be longer in some consumers than the seasonal isotopic fluctuations at the base of the local 
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food webs (McCutchan and Lewis 2001; O’Reilly et al. 2002). Baseline isotopic information is 

often obtained from short lived organisms (e.g., copepods’ ~ 20 d, Irvine and Waya 1999) 

whose isotopic values result from high turnover rates that capture short term variations in 

underlying biogeochemical processes (e.g., Troina et al. 2020b). Conversely, predators’ 

isotopic measurements are usually carried out using tissues with considerably longer turnover 

times (e.g., > 2 months in skin; Dalerum and Angerbjörn 2005; Giménez et al. 2016). Applying 

adequate (species- and tissue-specific) diet-to-consumer TDF and carefully matching 

consumers tissue and baseline organisms considering their respective turnover rates are 

essential to represent approximately equivalent temporal scales and to allow for comparisons 

of relative trophic positions between species.  

Compound-specific stable isotope analysis of individual amino acids (CSIA-AA) 

reveals the isotopic differences among the amino acids (AAs) that build up the proteins in 

tissues. Within a consumer tissue, source AAs (e.g., phenylalanine, Phe; lysine, Lys; Popp et 

al. 2007) have δ15N values that are comparable to those in baseline organisms (e.g., 

phytoplankton, zooplankton) due to minimal fractionations (e.g., 0.4‰ in Phe; Chikaraishi et 

al. 2009), preserving baseline δ15N values within consumers with higher trophic positions 

(Lorrain et al. 2009; Dale et al. 2011; McMahon et al. 2019). Therefore, baseline δ15N values 

can be resolved with the analysis of source AAs, following the assumption that δ15N in these 

AAs reflect baseline isotopic data from where the consumers had been feeding. Conversely, 

trophic AAs (e.g., glutamic acid, Glu; Popp et al. 2007; Chikaraishi et al. 2009) undergo larger 

isotopic fractionations (e.g., 8.0‰ in Glu; Chikaraishi et al. 2009) due to transamination and 

deamination during metabolism (McMahon and McCarthy 2016; O’Connell 2017). The 

differences in δ15N between the weighted averages of the trophic and source AAs (δ15NTr -

δ15NSr) allow for the estimation of a consumer’s trophic position by applying a TDF between 

these AA groupings, which are usually estimated from controlled feeding experiments (e.g., 

Chikaraishi et al. 2009; Germain et al. 2013; Bradley et al. 2014; McMahon et al. 2015a,b). 

Consequently, CSIA-AA has the advantage of providing, based on a single sample, information 

on both the baseline isotopic values from where the consumer has been feeding and its trophic 

position (McClelland and Montoya 2002; Popp et al. 2007; Lorrain et al. 2009). Furthermore, 

some AAs are considered “metabolic” (e.g., threonine, Thr; serine, Ser), whose fractionations 

vary depending on dietary protein (Fuller and Petzke 2017), the consumer’s physiological state, 

and nutritional condition (Lübcker et al. 2020). In this context, CSIA-AA of δ15N has helped to 

investigate the foraging and nursery areas of marine organisms (Lorrain et al. 2009; Dale et al. 
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2011), food web structure and trophic interactions (Chikaraishi et al. 2014; Choy et al. 2015; 

McMahon et al. 2016), and anthropogenic related temporal changes in the feeding habits and 

in ocean biogeochemistry (Pomerleau et al. 2017; McMahon et al. 2019).  

In this study, we apply CSIA-AA to estimate the trophic position of free-ranging 

odontocetes from the WSA and combine their source AA δ15N with bulk δ15N values in 

zooplankton to assess the spatiotemporal gradients in baseline δ15N. Specifically, we address 

whether 1) intra- and inter-specific variations in cetacean bulk-skin isotopic values result from 

spatial gradients in δ15N at the base of the food web or from differences in the trophic position 

within and among species; and 2) the δ15N values of odontocetes source AAs reflect habitat use 

by being associated with the latitudinal patterns in baseline δ15N. We expect to see higher δ15N 

values in the source AAs of cetaceans that have a more inshore distribution (e.g., S. bredanensis 

and D. delphis) in comparison to the oceanic species (e.g., P. macrocephalus and G. melas); 

and that the smaller delphinids (e.g., D. delphis; Stenella spp.) have relatively lower TPs than 

P. macrocephalus, G. melas and O. orca, which will be evidenced by baseline-corrected TP 

estimates. This is the first time that δ15N values are analysed in individual AAs of free-ranging 

odontocetes to assess the trophic ecology and interspecific patterns in habitat use among the 

different species that occur in the oceanic waters of the WSA.  

 

2. Materials and methods 

2.1. Study area 

The oceanic waters along the Brazilian outer continental shelf (~150 m isobath) and slope 

(~2.000 m isobath, Fig. 1) have latitudinal and longitudinal gradients in their oceanographic 

conditions that affect baseline nitrogen stable isotopes (Troina et al. 2020b). Therefore, the 

region has been divided into two areas: southeast (SE, 24°S–28°S) and south (S, 28°S–34°S, 

Fig. 1). The SE area is mainly influenced by tropical waters transported southwards by the 

Brazil current and by upwellings of the South Atlantic Central Water along the shelf-break 

(Acha et al. 2004; Brandini et al. 2018). The S area is seasonally influenced by different water 

masses: the tropical waters of the Brazil current dominate the region in warmer months, whereas 

the subtropical shelf water (STSW) dominates in colder periods. The STSW is formed by the 

encounter and mixing of tropical waters, continental waters from Rio de la Plata and Patos-

Mirim Lagoon system, and the Subantarctic shelf water transported by the northward flowing 
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Malvinas current that reaches up to 32°S (Acha et al. 2004; Möller Jr. et al. 2008; Piola et al. 

2008). 

 

Figure 1:  Study area along the outer continental shelf (~150 m isobath) and offshore (up to ~2000 m isobath) 
waters in the western South Atlantic Ocean. Cetaceans’ sampling locations are indicated with the solid circles 
and coloured by species. Dotted line separates the southeast (SE) and the southern (S) regions. Southward and 
northward arrows represent the Brazil Current (BC) and Malvinas Current (MC), respectively. Red and blue open 
diamond indicate Río de la Plata and Patos Lagoon, respectively, which are the main sources of continental 
waters influencing the S region.  

 

2.2. Sample collection and preparation 

Samples were collected during ten research cruises in the scope of the Projeto Talude 

(Continental Slope Project) between 2009 and 2015 during austral spring (n = 5) and autumn 

(n = 5). Cetacean skin biopsies were obtained from bow-riding animals from the bow of the RV 

Atlântico Sul (Federal University of Rio Grande, FURG) or from a small boat deployed from 

the ship. Biopsies were collected using a 120-lb draw weight crossbow with modified darts 

specifically designed for sampling, with different size tips depending on the target species. 

Zooplankton data used here have been published in previous work (Troina et al. 2020b) and 

were collected at pre-determined oceanographic stations as a composite of the whole vertical 

profile of each station. All samples (zooplankton and cetacean) were immediately stored at -

20oC without any chemical treatment until processing. Zooplankton groups (amphipods, 
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copepods, euphausiids and chaetognaths) were analyzed separately for stable isotopes, with 

each taxon subsample including multiple specimens. Zooplankton and cetacean skin samples 

were rinsed with distilled water, dried in an oven at 60°C for 48 h, and ground to a fine powder 

using a mortar and pestle. More details about zooplankton sampling and treatment are presented 

in Troina et al. (2020b). The analyses of bulk-tissue stable isotopes have been described in 

previous publications for the zooplankton data (Troina et al. 2020b) and for the cetacean 

samples (Troina et al. 2020a).  

2.3. Compound-specific stable isotope analysis 

About 2-5 mg of 69 cetacean skin samples were processed for analysis of δ15N in amino acids. 

This method is a modified version of the method presented in Chikaraishi et al (2007) and is 

described in detail by Riekenberg et al. (2020). In short, samples were first acid hydrolyzed, 

then derivatized into N-pivaloyl/isopropyl derivatives and analyzed in duplicate using a Trace 

1310 gas chromatograph coupled to a DeltaV Advantage isotope ratio mass spectrometer 

(Thermo Scientific, Bremen) via a GC Isolink II, at the NIOZ Royal Netherlands Institute for 

Sea Research (Texel, The Netherlands). This method allowed the measurement of 13 individual 

amino acids: Phe, Lys, methionine (Met), tyrosine (Tyr), threonine (Thr), serine (Ser), glycine 

(Gly), alanine (Ala), aspartic acid (Asp), Glu, isoleucine (Ile), leucine (Leu) and Val. 

Underivatized amino acid δ15N values used for normalization were determined via EA-irMS 

and were calibrated against IAEA-N-1 and IAEA-N-2 using the secondary reference materials 

acetanilide #1 and urea #2 with a precision of ±0.1‰. Both samples and standard δ15N values 

were adjusted against an internal reference peak (norleucine), normalized to account for 

derivatization, and then adjusted for linearity using a ‘scaling mix’ of 5 amino acids known to 

have a large range (-2.4‰ to 61.5‰) composed of amino acid reference materials including 

Gly (USGS65) and Val (USGS74) provided by Arndt Schimmelmann (Indiana University; 

Schimmelmann et al. 2016). The precision for sample and standard measurements was <0.5‰ 

with an average sample precision (SD) of 0.24‰ for individual AAs, ranging between 0.2‰ 

for Leu and 0.3‰ for Thr. 

2.4. Cetacean trophic position 

Trophic positions estimated using bulk-tissue δ15N derive from the equation adapted from 

Germain et al. (2013), which uses a dual trophic discrimination factor (TDF) to account for a 

TDF between cetacean and their prey (TDFcetacean-prey) of 1.6‰ (Giménez et al. 2016) or 2.4‰ 
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(Caut et al. 2011), and a constant TDF of 3.4‰ (Post 2002) for the remaining trophic 

connections:  

𝑇𝑃𝑏𝑢𝑙𝑘 =  [
(δ15Nbulk-skin – TDFcetacean-prey)− δ15Ncopepods

3.4
] +  TPcopepods + 1     [1]  

where TPcopepods is the trophic position of copepods (= 2), δ15Nbulk-skin and δ15Ncopepods are the 

δ15N of cetacean bulk-skin and bulk-copepods, respectively. The last + 1 is to account for the 

cetacean-prey trophic step. Since there are spatial differences in baseline nitrogen stable 

isotopes throughout the study area (Troina et al. 2020b), estimates were carried out separately 

for cetaceans sampled in each region using δ15N values of copepods sampled in each respective 

location (S or SE). Additionally, since there is also a shelf-break-to-offshore difference in 

baseline δ15N, we estimated cetacean TP twice, either with δ15N from copepods sampled along 

the shelf-break (4.3±1.8‰ in the SE; 6.1±2.3‰ in the S region) or offshore region (1.3±2.1‰ 

in SE; 3.9±1.6‰ in S, data from Troina et al. 2020b). 

Cetacean trophic positions were also estimated using δ15N in trophic and source AAs. 

We assessed TP from AA-δ15N values using several approaches that resulted in similar intra- 

and inter-specific trends (Appendix 1 and 2). However, we present the results of TP estimates 

based on multiple AAs, as they usually yield more precise TP estimates (e.g., Nielsen et al. 

2015; Ruiz-Cooley et al. 2021). We used the weighted mean δ15N values of the trophic AAs 

Ala, Asp, Glu, Ile, Leu and Val (δ15NTr-AA) and the source AAs Phe and Lys (δ15NSr-AA). We 

adopted a TDF of 3.1 ± 0.4‰ (Ruiz-Cooley et al. 2021) and a β of 3.4± 0.9‰ determined for 

multiple AAs by Nielsen et al. (2015). 

𝑇𝑃𝑇𝑟−𝑆𝑟  =  (
δ15NTr-AA − δ15NSr-AA – β 

TDF
) +  1                 [2] 

Uncertainty in TP estimates was calculated using the propagation of error (e.g., Bradley 

et al. 2015; Ohkouchi et al. 2017) (see appendix 1 for more details).  

As there is a small increase in Phe-δ15N at each trophic level (0.4‰; Chikaraishi et al. 

2009), we used the estimated TP to correct Phe-δ15N using equation 3:  

Phe =  δ15NPhe − (0.4 × (TP − 1))                   [3] 

Cetacean bulk-skin δ15N and δ13C were also corrected for TP to obtain the baseline values (TP 

= 2, to be comparable to zooplankton) of their feeding areas, by re-arranging equation 1. We 

applied a cetacean-prey TDF of 1.6‰ and 1.01‰, for nitrogen and carbon, respectively 
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(Giménez et al. 2016), and assumed a TDF of 3.4‰ (δ15N) and 1.0‰ (δ13C) (Post 2002) for the 

remaining trophic connections: 

δ15NAdjusted = (δ15Nbulk − 1.6) − (3.4 × (TP − 2 − 1))            [4] 

δ13CAdjusted =  (δ13Cbulk − 1.01) − (1.0 × (TP − 2 − 1))          [5] 

 

2.5. Statistical analysis  

All statistical analyses were carried out using the R version 3.5.3 (R Core Team 2019). 

Because the data were not normally distributed (Shapiro test, p < 0.05), we applied the 

Spearman rank correlation test to assess the correlation between δ15N in Phe and bulk-skin; 

between bulk-skin and the difference in δ15N between δ15NTr-AA and δ15NSr-AA (Tr-Sr); and 

between Phe and Tr-Sr. These analyses allowed us to verify whether bulk-skin δ15N was 

affected by variation in baseline δ15N or in trophic position (TP), and if cetacean TP varied 

spatially following baseline δ15N changes, respectively. Welch one-way ANOVA was applied 

to evaluate the spatiotemporal differences in δ15N (SE and S region in autumn and spring) and 

to compare estimated TP by different equations. The Welch's test can be applied to compare 

populations with unequal variances and has good performance when data is not normally 

distributed (Ruxton 2006; Rasch et al. 2011). When the null hypothesis was rejected, post-hoc 

analysis was carried out with the Games-Howell Test, a nonparametric test to perform post-hoc 

analysis that does not assume normality, homoscedasticity or equal sample sizes (Ruxton and 

Beauchamp 2008; Shingala and Rajyaguru 2015).  

To assess the spatial patterns in δ15N values, we applied a generalized linear mixed-

effects model (GLMM) that estimates the probability of δ15N in baseline (bulk zooplankton, 

Phe and δ15NAdjusted) to correspond to region S or SE. GLMMs can incorporate random effects 

and are not limited to normally distributed data, allowing the user to determine the exponential 

family and link functions, which makes them ideal to apply in ecological studies (Bolker et al. 

2009). The model was fit with a binomial distribution family (logit link function) using the 

glmer function in R package lme4 (Bates et al. 2015). The variable group (Phe, δ15NAdjusted and 

pooled zooplankton, including amphipods, copepods and euphausiids) was used as a random 

effect. The probability that an individual sample (from any random group) comes from region 

SE was modelled as a function of its δ15N value. To test model accuracy, the data set was 

randomly divided for model training (70% of data) and testing (30% of data). The training data 
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set was used to construct the model and the testing set was applied to predict the model 

accuracy.  

Because sample size greatly differed among species (Table 1), with samples of only one 

individual for some species (e.g., S. attenuata, S. clymene, G. melas; Table 1), it was not 

possible to statistically test for inter-specific differences in estimated TPs. Therefore, we 

applied a hierarchical cluster analysis (Euclidean distance, complete-linkage) to assess the level 

of similarity between cetacean species based on Phe-δ15N and estimated TPs. Lastly, we used 

δ15NAdjusted and δ13CAdjusted values (cetacean bulk-skin adjusted for TP) to calculate the standard 

ellipse areas for each species using the Stable Isotope Bayesian Ellipses in R version 2.1.4 

(SIBER; Jackson et al. 2011).  

 

3. Results  

 

3.1. δ15N in cetacean bulk skin and in individual amino acids 

We measured δ15N in individual AAs from skin samples of 69 free-ranging odontocetes from 

10 different species (Table 1, see appendix 3-6 for δ15N values in each AA). We compare these 

new data with those of bulk-skin stable isotopes for the same individuals presented previously 

in Troina et al. (2020a). S. bredanensis had the highest mean δ15N in bulk-skin and in the 

majority of the AAs, followed by D. delphis (Fig. 2). The highest δ15N values were measured 

in Val, followed by Leu, Glu, Ile, Ala and Asp. Ser had intermediate δ15N, comparable to those 

of bulk-skin (Fig. 2), Gly, Lys and Phe had lower δ15N, while the lowest δ15N values were 

observed in Thr. There was significant positive correlation between δ15N in cetacean bulk-skin 

and Phe (rS = 0.7, p < 0.001, appendix 7), and weak correlation between δ15N in bulk-skin and 

Tr-Sr (rS = 0.25, p < 0.05). Spearman rank correlation was non-significant between Phe and Tr-

Sr (rS = -0.2, p > 0.05).  
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Table 1 Number of samples (N); mean ± standard deviation (SD) values of bulk-skin measured (δ13C and δ15N) and trophic adjusted(δ13CAdjusted and δ15NAdjusted) stable isotopes, 
δ15N values in trophic (Tr) and source (Sr) amino acids (weighted average) and trophic-adjusted phenylalanine (Phe), and the estimated trophic position (mean ± SD, and 
uncertainty in TP estimates - σ2) for each cetacean species sampled in the southwestern Atlantic Ocean. TP estimates obtained using the multiple-amino acids equation (see 
methods). For species sampled in both southeast (SE) and southern (S) regions, values are presented as overall mean (SD) and for each region separately.  

Species   Bulk-skin Amino acids TP 

  δ13C δ15N δ13CAdjusted δ15NAdjusted Tr Sr Phe   

 N Mean ± SD (‰) Mean ± SD (σ2) 

D. delphis 10 -16 ± 0.7 15.7 ± 1.5 -19 ± 0.8 7.2 ± 2.1 26.5 ± 1.3 10.7 ± 1.8 9.2 ± 2 5 ± 0.3 (0.6) 

G. melas 1 -17.8  13  -21.1  3.8  24.1  7.6  5.2  5.2 (0.7) 

O. orca 3 -17 ± 0.2 12.8 ± 0.2 -19.6 ± 0.3 6 ± 0.3 24.8 ± 2.6 10.4 ± 2.6 10.4 ± 2.4 4.5 ± 0.1 (0.6) 

P. macrocephalus 6 -17.2 ± 0.2 14.4 ± 0.6 -20.5 ± 0.5 5.1 ± 1.8 24.8 ± 0.6 8.2 ± 1.1 6.6 ± 1.9 5.3 ± 0.5 (0.7) 

S. attenuata 1 -17.7  11  -20.9 2  23.3  6.9  4.6  5.2 (0.7) 

S. bredanensis 5 -15.6 ± 0.2 18 ± 0.6 -18.6 ± 0.2 9.5 ± 0.9 27.9 ± 0.6 12 ± 0.9 11.6 ± 1 5 ± 0.2 (0.6) 

S. clymene 1 -16.8  10.9  -19.5 3.6  23.6  8.7  8.5  4.7 (0.6) 

S. frontalis 16 -17 ± 0.6 12.8 ± 1.5 -19.9 ± 0.7 4.8 ± 1.8 23.5 ± 1.2 8.2 ± 1.2 6.4 ± 1.3 4.8 ± 0.2 (0.6) 

S 10 -16.7 ± 0.5 12.9 ± 1.7 -19.6 ± 0.5 5.1 ± 1.9 23.7 ± 1.2 8.4 ± 1.2 6.6 ± 1.3 4.8 ± 0.2 (0.6) 

SE 6 -17.5 ± 0.4 12.4 ± 1 -20.4 ± 0.5 4.2 ± 1.7 23 ± 1.1 7.7 ± 1.1 6 ± 1.3 4.8 ± 0.2 (0.6) 

S. longirostris 9 -17.8 ± 0.2 11.1 ± 0.6 -20.4 ± 0.4 4 ± 1.2 21.6 ± 0.8 6.9 ± 0.9 5.6 ± 0.8 4.7 ± 0.3 (0.6) 

S 3 -17.9 ± 0.2 11.2 ± 0.8 -20.6 ± 0.2 3.7 ± 0.4 22 ± 0.9 7 ± 0.2 5.3 ± 0.5 4.7 ± 0.4 (0.6) 

SE 6 -17.7 ± 0.2 11.1 ± 0.6 -20.3 ± 0.4 4.1 ± 1.5 21.5 ± 0.7 6.8 ± 1.2 5.8 ± 1 4.6 ± 0.3 (0.6) 

T. truncatus 17 -16.9 ± 0.4 13 ± 1.1 -19.9 ± 0.5 4.6 ± 1.1 24 ± 1.2 8.2 ± 1 7 ± 1.7 5 ± 0.3 (0.6) 

S 14 -16.8 ± 0.3 13 ± 1.2 -19.8 ± 0.5 4.5 ± 1.2 24 ± 1.3 8.2 ± 1.1 7 ± 1.9 5 ± 0.3 (0.6) 

SE 3 -17.1 ± 0.4 12.8 ± 0.6 -20 ± 0.2 4.6 ± 1.1 23.7 ± 0.8 8.1 ± 0.3 6.7 ± 0.1 4.9 ± 0.3 (0.6) 
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Figure 2 Individual (grey open circles) and mean (solid diamonds) δ15N measured in amino acids (AA) of skin 
samples of cetaceans from the western South Atlantic. AAs are sorted by type, with different colours of solid 
diamonds (mean δ15N) representing AA type: source AA in green (lysine LYS, phenylalanine PHE, tyrosine TYR, 
methionine MET); trophic AA in blue (alanine ALA, aspartic acid ASP, glutamic acid GLU, isoleucine ILE, leucine 
LEU, valine VAL); and metabolic AA in pink (glycine GLY, serine SER). Mean δ15N in bulk-skin from each cetacean 
species is indicated with the red diamond and the horizontal dashed line. Threonine is not shown in this graph 
due to the strong differences in δ15N (negative values) in comparison to the other AAs, but δ15N for this AA can 
be seen in the appendix 3 and 6. Cetacean illustration by José Luis Vázquez, adapted from Bastida et al. 2018. 

 

3.2. Cetacean trophic position 

The Welch ANOVA showed significant differences in TP estimates among the different 

(bulk vs. AA) equations (F = 29.8, df = 166.3, p < 0.001), with those using bulk-skin δ15N data 

(both offshore and shelf-break baseline δ15N) resulting in significantly higher TPs than the 

equation using AA data (P < 0.05). Additionally, because the offshore baseline had a lower 

δ15N value (δ15Ncopepods in offshore < shelf-break), every cetacean species would have a higher 

TP (p < 0.05) if they were feeding along the offshore area (Fig. 3 and appendix 8). Estimates 

using bulk-skin δ15N identified S. bredanensis as occupying the highest TP amongst all cetacean 

species (Fig. 3, appendix 8). Conversely, estimates using AA-δ15N identified P. macrocephalus 

with the highest TP (TP = 5.3 ± 0.5), followed by G. melas (TP = 5.2) and S. attenuata (TP = 

5.2). Intermediate TPs were observed in D. delphis, T. truncatus, and S. bredanensis (Table 1). 
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Lower TPs were estimated for S. frontalis (TP = 4.8 ± 0.2), S. clymene and S. longirostris (TP 

= 4.7), and O. orca (TP = 4.5 ± 0.1). Overall cetacean TP did not differ between regions or 

seasons (F = 1.1, df = 19.6, p > 0.05; Fig. 4). 

 

 

Figure 3 Estimated trophic position (TP) for cetacean species with bulk-tissue (blue and green) and amino acid 
(red) nitrogen stable isotopes (δ15N). Bulk-tissue equation uses δ15N in cetacean skin and copepods (baseline, 
primary consumer) and considers different baseline δ15N for copepods sampled along the shelf-break (blue 
boxes) and offshore (green boxes), in the southeast (SE) and southern (S) regions. TP is presented separately for 
cetacean sampled in each region (SE or S), and used regional baseline δ15N values for copepods as their δ15N 
values differed between the shelf-break (SB) and offshore (OFF). Therefore, TP was estimated using baseline δ15N 
from SB = 4.3‰ and OFF = 1.3‰ in the SE; and from SB = 6.1‰ and OFF = 3.9‰ in the S region. The amino acid 
equation uses δ15N values of multiple trophic and source amino acids (TPTr-Sr), a trophic discrimination factor of 
3.1‰ and β = 3.4‰. 

 

3.3. Spatiotemporal patterns in δ15N 

The seasonal (autumn-spring) and latitudinal (SE-to-S) patterns of δ15N in bulk 

zooplankton (amphipods, copepods and euphausiids) and Phe were similar: mean δ15N value 

was higher in the south (both seasons) than in the SE, and slightly higher in spring than in 

autumn (Fig. 4). These spatiotemporal differences were statistically significant for δ15N values 

in bulk zooplankton (F = 26.6, df = 73.8, p < 0.001), δ15NAdjusted (F = 3.3, df = 21.4, p < 0.05), 

and Phe (F = 6.2, df = 24.8, p < 0.01). Post hoc Games-Howell comparisons showed that 

latitudinal (SE-to-S) differences were significant (higher δ15N value in the S region) in 

zooplankton and Phe in autumn, but not in Phe and δ15NAdjusted in spring (p > 0.05). Significant 
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seasonal differences were observed within the S region for zooplankton δ15N value (higher in 

spring), while none of the groups showed significant seasonal differences in δ15N in the SE 

region. Our logistic regression model confirmed that higher baseline δ15N values were observed 

in the S than in the SE region (Fig. 5). The training dataset had 74% predictability accuracy, 

and the accuracy of the model based on the testing dataset was 75%. The model predicted a 

decrease of 0.63 (95% CI = 0.52 – 0.78) in the odds of samples being from the S region for each 

unit decrease in δ15N (β = -0.45, se = 0.1, p < 0.001). Additionally, the small variance of the 

random intercept (σ2 = 0.05) indicated that all groups (zooplankton, Phe and δ15NAdjusted) had 

similar logistic curves (Fig. 5a).  

 

Figure 4 Latitudinal patterns in cetacean trophic position (TPmulti-AA), δ15N values of bulk zooplankton 
(δ15NZooplankton) and cetacean trophic-adjusted source amino acid phenylalanine (δ15NPhe) and bulk-skin 
(δ15NAdjusted), plotted separately for samples obtained in austral autumn and spring. 
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Figure 5 Latitudinal patterns in δ15N values observed in zooplankton and cetacean bulk-skin and amino acids: a) 
predicted probabilities from the logistic regression model for region as response to δ15N with groups (Baseline) 
as random effects: model predict a decrease in the probability of sample being from the southeast (SE) region as 
baseline δ15N values increase. Baseline is represented by pooled zooplankton (δ15NZooplankton), and cetacean bulk-
skin and source amino acid phenylalanine adjusted for trophic position effect (δ15NAdjusted and δ15NPhe, 
respectively); and b) shows the species patterns in Phe δ15N between the two regions. 

 

3.4. Inter-specific trends in trophic position and habitat use 

Our hierarchical cluster analysis identified cetacean groups based on the similarity in 

baseline δ15N value (adjusted Phe) and trophic position (Fig. 6). S. bredanensis and D. delphis 

were grouped together as the species with the highest baseline δ15N values, indicating a 

predominantly neritic distribution. These species, along with O. orca and S. clymene (with 

relatively lower TPs), were highly dissimilar from the other cetacean species (Fig. 6), that had 

isotopic baseline indicating predominant distribution towards the outer continental shelf and 

open oceanic waters. The cluster including the more oceanic species was further split into two 

groups, according to their relative trophic positions: P. macrocephalus, G. melas and S. 

attenuata were separated from the remaining cetaceans with relatively lower TPs (Fig. 6). 

Within this “relatively lower TP” group, the cluster analysis identified isotopic dissimilarity, 

further splitting S. longirostris from the more isotopically similar S. frontalis and T. truncatus 

(Fig. 6).  

The standard ellipse areas based on δ13CAdjusted and δ15NAdjusted (cetacean TP-adjusted 

bulk-skin), representing the isotopic niche of primary consumers in the areas used by each 

cetacean species, indicated marked inter-specific spatial segregations (Fig. 7). The pairwise 

percentage overlap between species is shown in appendix 9. The baseline niche area of S. 
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bredanensis did not overlap with those of any other cetacean species, except with D. delphis 

(17% overlap, appendix 9), although the overlap between the corresponding 95% prediction 

ellipses suggested a small (7%) overlap between S. bredanensis and S. frontalis (appendix 9). 

The highest overlap was observed between T. truncatus and S. frontalis (Fig. 7).  

 

Figure 6 Hierarchical cluster analysis (complete linkage) dendrograms based on estimated trophic position and 
δ15N in trophic-adjusted phenylalanine of cetaceans from the oceanic waters of southeast (SE) and southern (S) 
Brazil. 

 

Figure 7 Estimated isotopic niche areas of baseline sources where cetacean species forage, based on trophic 
adjusted cetacean bulk-skin (δ13CAdjusted and δ15NAdjusted) using SIBER; and δ13C and δ15N biplots of baseline 
sources for cetaceans from which the standard ellipse area could not be estimated due to small sample size (n 
< 6).  
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4. Discussion 

We measured the δ15N values of individual AAs to investigate the foraging areas and 

trophic position of odontocetes from the western South Atlantic. AAs generally adhered to 

source (e.g., Phe, Lys) vs. trophic (Val, Leu, Glu, Ile, Ala and Asp) groupings, which is in line 

with the expected low or high diet-to-consumer fractionation for source and trophic AAs, 

respectively (Popp et al. 2007; Chikaraishi et al. 2014; McMahon and McCarthy 2016; 

O’Connel 2017). The nitrogen isotopic patterns in trophic adjusted Phe measured in cetacean 

skin were highly associated with baseline (i.e. zooplankton) δ15N, confirming the baseline shift 

between SE and S regions, and helping to differentiate the cetacean species in terms of their 

habitat usage. The niche areas of baseline sources, assessed by correcting cetacean bulk-skin 

δ13C and δ15N values for trophic effect, revealed spatial segregation between S. bredanensis and 

the remaining odontocetes, and further confirmed the high overlap in habitat use between T. 

truncatus and S. frontalis. 

 

4.1. Spatial patterns in baseline nitrogen stable isotopes 

The spatial patterns in the isotopic values of cetacean Phe and bulk-skin were similar to 

those of bulk zooplankton: δ15N values were higher in individuals sampled in the S region than 

in those sampled in the SE (Figs. 4 and 5b), and GLMM estimated increased probabilities of 

higher δ15N to be from samples obtained in the S region (Fig. 5a). The spatial variation in δ15N 

of Phe was consistent with variation in bulk-skin δ15N in a much larger data set (Troina et al. 

2020a) and with the described nitrogen isoscapes throughout the region (Troina et al. 2020b). 

This was supported by the significant relationship between bulk-skin and TP-adjusted Phe δ15N 

values(Appendix 7), suggesting that cetacean 15N-enrichment in the south is consistent with 

baseline δ15N values and not due to higher TPs occupied by the southernmost species. 

Altogether, our analyses provided further support for the offset in baseline δ15N values based 

on location due to different oceanographic conditions throughout the study area that result in 

the upwelling of nutrient-rich 15N-enriched deep waters towards the south and along the shelf-

break (Troina et al. 2020b). The source AA Phe has been successfully applied to study penguins 

from different oceanic regions, where interspecific gradients in Phe-δ15N values among 

individuals sampled along latitudinal gradients represented the differences in the isotopic 

baseline of their respective foraging areas (Lorrain et al. 2009). Similar results have been 

described for marine predators in other regions, where AA-δ15N values observed in predators 
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sampled along a latitudinal gradient were associated with baseline (zooplankton) δ15N values 

(Popp et al. 2007) or with known marine isoscapes (Matthews and Ferguson 2014). Thus, even 

though cetaceans are highly mobile animals, populations inhabiting the oceanic waters of the 

western South Atlantic seem to have a high level of fidelity to either southeast (those with low 

δ15N values) or southern (high δ15N values) regions (see section 4.2).  

 

4.2. Cetaceans’ trophic ecology and habitat use  

The estimated TPs derived from equations based on bulk-tissue isotope values 

considered local baseline (e.g., δ15N from copepods sampled in the south to estimate the TP 

from cetaceans sampled in the same region) and the in-to-offshore gradient in baseline δ15N 

values. Equations using the lower δ15N value from copepods sampled in the offshore waters 

resulted in higher TPs for all odontocete species (Fig. 3). The inter-specific patterns in relative 

TPs estimated using equations based on bulk-tissue differed from those using AA data. While 

bulk-δ15N equations yielded the highest TPs for S. bredanensis and D. delphis, AA equations 

estimated the highest TPs for P. macrocephalus, G. melas and S. attenuata. Trophic position 

estimates based on bulk-tissue δ15N rely greatly on the use of correct isotopic values for baseline 

organisms (e.g., copepods), and the use of inadequate baseline δ15N will have critical influence 

on TP estimates. Inadequate isotopic baselines may result from missing baseline data (e.g., from 

other regions where species occur that were out of the range of our study), or from temporal 

mismatch between baseline and consumers’ stable isotopes, as different isotopic turnover rates 

may apply for cetacean and zooplankton tissues. Evidently, baseline δ15N values were resolved 

with the AA analyses, as source-AA δ15N values should reflect baseline isotopic patterns of 

their foraging areas (Chikaraishi et al. 2009; McMahon and McCarthy 2016). 

The highest TP was observed in S. bredanensis amongst all cetacean species, including 

P. macrocephalus, even though equations accounted for the higher baseline δ15N of copepods 

sampled in the S region along the shelf-break (where S. bredanensis were sampled). This 

suggested that we were still missing baseline isotopic information and was confirmed by AA-

based TPs that yielded  relatively lower TP values for this species (5.0 ± 0.2, Table 1). The 

inconsistency in TP estimates obtained by equations using bulk-skin or AA-δ15N values (Fig. 

3) likely indicates that the baseline δ15N values used were not representative of S. bredanensis’ 

feeding areas. This was supported by the δ15N values in TP-adjusted Phe, which were higher 

than in the remaining odontocete species (except for one individual of O. orca, Fig. 5b), and by 



22 
 

the estimated niche area of baseline sources based on trophic adjusted bulk-skin δ13C and δ15N 

(Fig. 7). Thus, our results suggest that S. bredanensis feeds and occurs in waters with a higher 

baseline δ15N value. This would be consistent with foraging in neritic waters along the 

continental shelf area where lower trophic level organisms have higher δ15N values (Condini et 

al. 2015), which was out of the range of this study and therefore not sampled for baseline isotope 

measurements. Indeed, cetacean species occurring in southern Brazilian coastal regions have 

considerably higher δ15N values (Botta et al. 2012; Troina et al. 2016; Secchi et al. 2017), and 

occurrence in inner shelf waters has been reported for S. bredanensis in the western South 

Atlantic (Ott and Danilewicz 1996; Santos et al. 2017; 2019). Thus, the comparison of TPs 

derived from these two types of equations (bulk-tissue and AA data) demonstrated that we were 

missing the isotopic baseline from other regions, resulting in unrealistic bulk-tissue TP 

estimates (e.g., TP > 6). Therefore, the δ15N values in Phe and the isotopic niche patterns of 

baseline sources (Fig. 7) suggest that the high δ15N values observed in bulk-skin are not due to 

occupying higher trophic positions, but rather due to foraging in the neritic waters of the 

southern region. 

Similarly, D. delphis also had high δ15NPhe (Fig. 5b) and the second highest bulk-skin 

δ15N (Table 1). The estimated TP based on bulk-skin δ15N value with a shelf break baseline 

(appendix 8) was comparable to those derived from the TPTr-Sr equation (Table 1), whereas 

TPBulk equation using the offshore baseline resulted in a considerably higher trophic position 

for this species (Fig. 3). D. delphis was sampled only in the southern region of the study area, 

where higher δ15N values have been reported for baseline organisms (Troina et al. 2020b). The 

surveys for the present work were carried out only in the oceanic waters off the SWA (between 

the outer continental shelf and slope waters), and D. delphis were mainly sighted along the shelf 

break waters (~150 m isobaths). Furthermore, the species is frequently observed in neritic 

waters, near the 100 m isobaths (ECOMEGA, unpublished data). Accordingly, our isotopic data 

indicates that the shelf break isotopic baseline is representative of this species’ foraging areas.   

Amino acid-based equations estimated the highest TPs for P. macrocephalus, G. melas 

and S. attenuata. The high TP estimated for P. macrocephalus was anticipated as these animals 

feed upon large squids (presumably high trophic position) at large depths (Clarke et al. 1980; 

Santos and Haimovici 2000). Bulk-δ15N data of the short fin squid Illex argentinus, an important 

prey item for sperm whales (Clarke et al. 1980; Santos and Haimovici 2000) ranged between 9 

and 13‰ in the same region (Troina 2019), which supports a relatively high trophic position of 

this prey in these oceanic waters. The high TP estimated for the single S. attenuata was 
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unexpected, as this species has been reported to feed mainly on small epi- and meso-pelagic 

fish, squids and crustaceans (Robertson and Chivers 1997; Wang et al. 2003; 2012; Perrin 

2018). Estimated TP for G. melas and S. attenuata are derived from a single individual, hence 

no inference can be made at the population level. Nevertheless, our estimated TP based on bulk-

skin were comparable to those of G. melas from the Southern Ocean based on a much larger 

dataset (Fontaine et al. 2015). Additionally, the high TP estimated for G. melas using bulk-skin 

isotope values (Table S5) were consistent with those based on AA data (Table 1), especially 

when considering an offshore isotopic baseline (both yielding TP = 5.2). G. melas feeds 

primarily on cephalopods (Gannon et al. 1997a, b; Santos and Haimovici 2001; Santos et al. 

2014; Beasley et al. 2019), prey with relatively high trophic positions.  

The estimated isotopic niche areas of baseline sources indicated little overlap between 

P. macrocephalus and the other odontocete species (Fig. 7). This pattern differed from the high 

isotopic niche overlap observed among the same species based on bulk-skin stable isotopes 

(Troina et al. 2020a) and shows how using only bulk-tissue δ15N values can affect the overall 

interpretation of trophic structure and habitat use. While high bulk-skin δ15N values in P. 

macrocephalus were due to the species occupying relatively higher trophic position, as 

evidenced by the AA-based TP estimates (Fig. 3), high δ15N in the other odontocetes (e.g., D. 

delphis) was due to occurrence in areas with relatively higher baseline δ15N values (Fig. 7). 

Additionally, biplots of bulk-skin δ13CAdjusted and δ15NAdjusted (Fig. 7) suggest an oceanic 

distribution for baseline sources used by P. macrocephalus, G. melas and S. attenuata, which 

is consistent with these species’ distributional patterns (Di Tullio et al. 2016).  

The AA data indicated that the lowest TP is occupied by O. orca. While the bulk-skin 

δ15N value was very similar between O. orca and G. melas, the AA-δ15N value suggests that G. 

melas occupies almost 1 TP higher than O. orca. The question that remains is whether the higher 

δ15N in O. orca’ source AA Phe than in G. melas is due to shifts in baseline δ15N between the 

regions where individuals of each species had been feeding, or due to potential trophic level 

enrichment for this AA (Matthews et al. 2020). When comparing fish- and marine mammal-

eating ecotypes of O. orca, Matthews and colleagues (2020) found that the latter ecotype had 

relatively higher δ15NPhe, which resulted in low estimated TPs. The authors suggested that not 

only trophic but also some source AAs, particularly Phe, may undergo large fractionations that 

result in 15N-enrichment as trophic level increases. This is consistent with our isotopic data for 

this species, that had high δ15N in Phe in comparison with other source AAs (e.g., Lys, Fig. 2). 

Looking at Lys-δ15N (Fig. 2), those of O. orca were always higher than those of G. melas, 



24 
 

strongly suggesting that O. orca sampled in the present study occur in areas with relatively 

higher baseline δ15N. This was also supported by the analysis of bulk-skin δ13CAdjusted and 

δ15NAdjusted values (Fig. 7). Additionally, the multiple AA equation to estimate TP should reduce 

the effect of large TDF in Phe, if that were the case. As these individuals were feeding on a 

minke whale calf (Balaenoptera spp.) when samples were obtained (Troina et al. 2020a), it is 

reasonable to assume that they occupy relatively lower TP than those who feed on seals, 

swordfish Xiphias gladius (Dalla Rosa and Secchi 2007; Passadore et al. 2015) or on blue shark 

Prionace glauca (Passadore et al. 2015). Nevertheless, controlled feeding experiments in 

marine fish have shown that the discrimination in δ15N values in some AAs between consumer 

and diet (δ15NAA-consumer - δ
15NAA-diet) depends on the quality of dietary protein (McMahon et al. 

2015b; McMahon and McCarthy 2016). These authors have demonstrated that large 

concentrations of high-quality protein (i.e. similar AA composition between prey and predator) 

seem to yield a lower TDF, while diet with a smaller quantity of low quality protein yields a 

significantly higher TDF. This is especially relevant for marine mammal-eating O. orca 

ecotypes, whose source-to-trophic AAs TDF could be lower than the values applied here. In 

this case, the use of incorrect (i.e. higher) TDF values would underestimate TPs, which would 

justify the relatively low values observed in O. orca sampled in this study. 

The low TPs estimated for S. longirostris based on the AA data confirms that their low 

δ15N in bulk-skin reflects both their occurrence in waters with low baseline δ15N (Troina et al. 

2020a) and consumption of lower trophic level prey. Indeed, bulk-muscle δ15N in epi- and 

mesopelagic fish, important prey items for this species (Silva-Jr. et al. 2007), are relatively 

lower than those in S. longirostris (~8-10‰ vs. 11.2±0.6‰, respectively; Table 1, Troina 2019). 

This difference is within the ~1.6‰ (±0.5) range of trophic enrichment factor estimated for 

δ15N values in cetacean bulk-skin (Giménez et al. 2016). Furthermore, S. longirostris sampled 

in the SE and S regions were clustered together (Fig. 6) and the lower baseline δ15N values 

observed in S. longirostris sampled in the S region were consistent with baseline values from 

the SE region. This indicates that, although some individuals may venture in the oceanic waters 

of the southern region, they spend most of the time in waters of relatively lower δ15N values 

(i.e. in the SE region). This is consistent with bulk-tissue δ15N values in a much larger dataset, 

that did not show isotopic differences in δ15N between S. longirostris sampled in these two 

regions (Troina et al. 2020a). Therefore, our AA data provides further support for the lack of 

spatial (SE-S) differences in TP and habitat use at the intra-specific level for S. longirostris. 
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Similarly as with bulk-skin isotopic data (Troina et al. 2020a), δ15N values in Phe were 

slightly higher in S. frontalis from the S region than in those from the SE, and higher in spring 

than in autumn (Appendix 10). These differences were not statistically significant (Appendix 

10) likely due to small sample sizes that affected statistical power when comparing intra-

specific differences between regions. Nevertheless, AA data provided further support for some 

level of intra-specific differences in habitat use between S. frontalis from the SE and S regions, 

indicating the existence of discrete populations. Accordingly, spatial (SE vs. S) differences in 

bulk-skin δ15N values were not due to distinct trophic positions occupied as individuals from 

both populations had the same TPs (Table 1), but rather reflect the spatial and seasonal 

differences in the isotopic baseline between the S and SE regions (Troina et al. 2020b).   

Baseline isotopic niche areas indicated resource overlap of D. delphis with S. frontalis 

(46%, appendix 9) and with T. truncatus (38%). However, the hierarchical cluster based on 

Phe-δ15N and estimated TPs did not indicate similarity between D. delphis and the latter two 

species (Fig. 6). This demonstrates that differences in the distributional ranges of these species 

are affecting their Phe-δ15N values: while D. delphis forages in neritic waters (as discussed 

above), S. frontalis and T. truncatus are distributed in further oceanic waters (~250 m and ~500 

m isobaths, respectively; Di Tullio et al. 2016). On the other hand, T. truncatus and S. frontalis 

showed high isotopic similarity (Fig. 6) and isotopic niche overlap (57%, appendix 9, Fig. 7). 

Additionally, estimated TPs were similar between T. truncatus (both SE and S regions) and D. 

delphis (Fig. 3), while S. frontalis had slightly lower TP values. In southern South America, the 

argentine anchovy (Engraulis anchoita) and long-finned squid (Loligo sanpaulensis) seem to 

be important items in the diet of D. delphis (Romero et al. 2012), while S. frontalis may have a 

predominantly teuthophagous diet with the long-finned squid Loligo plei reported as important 

prey (Di Beneditto et al. 2001; Lopes et al. 2012). T. truncatus is known to have a generalist 

feeding behaviour, frequently consuming sciaenid, scombrid and mugilid fish (Wells and Scott 

2018). Thus, although these species may have similar trophic positions, they most likely 

consume different prey species or segregate habitat temporarily and/or spatially. This agrees 

with the patterns of distribution and interspecific interactions reported in the western South 

Atlantic (Di Tullio et al. 2016; Lima et al. 2021). While D. delphis and S. frontalis show 

significant spatial segregation in their areas of occurrence (Di Tullio et al. 2016), T. truncatus 

and S. frontalis are often found in mixed-species groups, especially in the SE region (Lima et 

al. 2021). Accordingly, given the high overlap in the isotopic niches of the baseline sources 

used by T. truncatus and S. frontalis (Fig. 7) and the different relative TP (Fig. 3), our analyses 
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indicate that these two species overlap in the use of areas, while consuming prey at different 

trophic levels, thereby minimizing interspecific competition.  

  Finally, our current analyses indicated a relatively low TP (4.7) for the single S. clymene 

sampled. There is still little information about this species’ trophic ecology (Jefferson 2018), 

but mesopelagic fish and squids may be consumed (Fertl et al. 1997; Sakyi et al. 2019). 

Cephalopod, fish and crustaceans have been reported in the stomach of S. clymene from the 

eastern Atlantic Ocean, with the reef-associated, shoaling fish Decapterus sp. being an 

important prey item (Sakyi et al. 2019). This fish consumes planktonic invertebrates, including 

copepods and other zooplankton (Berry and Smith-Vaniz 1978). Accordingly, feeding on such 

low trophic level prey could explain the low TP observed in S. clymene in the present study.  

It should be noted that the small sample size for some of the species analysed here does 

not allow us to make inferences at the population level about the trophic ecology and habitat 

use of cetaceans from the SWA. We compare the data available on amino acid δ15N values with 

a much larger data set on bulk-skin δ15N (Troina et al. 2020a) and baseline organisms 

throughout the region (Troina et al. 2020b), with the aim to explore the patterns of foraging 

areas and feeding habits of these oceanic cetaceans. Thus, our work expands the understanding 

of these species’ trophic ecology and habitat use and provides baseline for future research. We 

highlight the need to continue investigating these oceanic populations aiming at obtaining more 

robust data on a long term basis to assess changes in their trophic and spatial ecology. 

 

4.3. Limitations and perspective for future research 

The high δ15N values observed in the source AA Phe, particularly in O. orca in this and 

in other study (Matthews et al. 2020), suggest that Phe might not always be the ideal AA to 

reflect baseline N isotopes, especially for high trophic level consumers. However, biases in 

estimated TPs should be minimized when adopting the multiple AA approach, that includes 

δ15N values of several source AAs (e.g., Nielsen et al. 2015; Ruiz-Cooley et al. 2021). 

Additionally, a recent controlled feeding study has found that Lys reliably represented baseline 

nitrogen values in captive sea turtles (Lemons et al. 2020). Given the consistently low δ15N 

values observed in Lys in all cetacean species analysed in the present study, as well as their 

relatively lower δ15N values in comparison to Phe in O. orca (Fig. 2), this AA might be a 

feasible alternative to represent the isotopic baseline of the regions where these odontocetes 

have been foraging. Future research should focus on understanding the effect of trophic 
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discrimination on Lys-δ15N in higher trophic level organisms. This would allow for trophic 

corrections, as the ones applied in the current study for Phe-δ15N, for accurate assessment of 

spatial isoscapes on Lys-δ15N. 

Furthermore, trophic position estimates depend on the use of accurate trophic 

discrimination factors for bulk-tissue (TDFconsumer-prey) and for predator’ source-to-trophic AA 

δ15N value (TDFtrophic–source). Aside from the quality and amount of dietary protein intake that 

may have substantial effect on TDF (Robbins et al. 2005; McMahon et al. 2015b; McMahon 

and McCarthy 2016), several other factors may affect δ15N discrimination between the 

assimilated food and the consumers’ bulk-tissues or individual compounds (e.g., amino acids). 

Therefore, TDFs differ among taxonomic group (Vanderklift and Ponsard 2003; Germain et al. 

2013; McMahon et al. 2015a) and tissue analysed (Hobson and Clark 1992; Caut et al. 2008, 

2009), and may be affected by consumers’ trophic level and the isotopic values of their prey 

(Adams and Sterner 2000; Germain et al. 2013; Hussey et al. 2014). Additionally, the form of 

nitrogen excretion may have an important influence on TDFtrophic-source, and consumers that 

excrete urea usually have lower TDF between source and trophic AAs (Germain et al. 2013; 

McMahon and McCarthy 2016). Controlled feeding experiments involving cetaceans are rare 

due to logistic and ethical reasons. Therefore, there are only a few instances when prey-to-

cetacean bulk-tissue δ15N TDF have been estimated in such conditions (Caut et al. 2011; 

Giménez et al. 2016). Only one study has estimated δ15N-TDF between prey and consumer AAs 

in controlled feeding experiments for marine mammals (harbour seals Phoca vitulina, Germain 

et al. 2013), but no such data are available for cetaceans. Nevertheless, as all species sampled 

here belong to the same taxon, have the same form of nitrogen excretion (urea), and isotopic 

measurements were carried out in the same type of tissue (skin), we assume that any of these 

factors would introduce similar biases in estimated TPs to all odontocetes. Additionally, while 

the absolute TPs presented here may not be accurate, as they rely on unknowns such as how 

odontocetes physiology and amino acid metabolism affect AA-δ15N and TDF values, they do 

represent relative differences among species as they consider the spatial patterns in baseline 

δ15N.  

 

5. Conclusion 

The present work is the first to analyse δ15N in individual AAs to study the trophic 

ecology and habitat use by odontocetes from the western South Atlantic. We observed several 
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interspecific patterns in the δ15N of the different AAs, although in the case of O. orca 

conclusions were limited by the lack of knowledge on the effect of baseline, trophic level or 

metabolic processes (e.g., fasting or nutritional stress, dietary protein quality, metabolic 

deficiency due to diseases, etc.) on phenylalanine δ15N discriminations. Continued research can 

greatly improve the potential for applying AA-δ15N to help answer a range of ecological 

questions. Specifically, three research directions are critical for effective use of stable isotopes 

in AAs to study the trophic structure and habitat use of oceanic cetacean species: 1) define β 

between source and trophic AAs in oceanic primary producers; 2) define Δ15N for source AAs 

(especially Phe and Lys) in marine mammals, to allow for adjustments to obtain baseline 

isotopic values that remove the trophic effects on these AAs; and 3) estimate TDF values 

between trophic and source AAs ) in high trophic level mammals (see Ruiz-Cooley et al. 2021). 

Advances in this research topic are especially relevant for studies on species or populations with 

oceanic distributions, highly migratory species, or to compare past and current populations.  

Furthermore, long-term monitoring of cetacean populations is critical to evaluate 

temporal trends in their trophic ecology and habitat use at the intra- and inter-specific levels. 

We provide novel data for the oceanic populations of cetaceans from the western South Atlantic, 

showing the applicability of this method to help distinguish species’ foraging areas along with 

the interspecific differences in trophic position. Additionally, our work provides AA-δ15N 

baseline for future studies applying stable isotopes to investigate the trophic ecology and habitat 

use of marine organisms in the western South Atlantic. The nitrogen isotopic patterns in source 

AAs were highly associated with baseline δ15N (zooplankton and cetacean δ15NAdjusted). 

Therefore, the analysis of δ15N in source AAs seems to be a good indicator of habitat use by 

cetaceans along the study area, allowing to differentiate between those individuals that were 

sampled in each respective region. Additionally, by removing the effect of trophic 

discrimination on bulk-skin δ13C and δ15N values, we have clearly demonstrated the patterns of 

overlap (e.g., between T. truncatus and S. frontalis) or segregation (e.g., S. bredanensis) in 

habitat use, that would otherwise have been masked by the trophic effect on these stable 

isotopes.  
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